


geometric formulas

Formulas for area A, perimeter P, circumference C, volume V :

Rectangle Box

A 5 l„ V 5 l„ h

P 5 2l 1 2„ 

„

l

h

l
„

Triangle Pyramid

A 5 1
2 bh V 5 1

3 ha2 

h

b a
a

h

Circle Sphere

A 5 pr2 V 5 4
3 pr3 

C 5 2pr  A 5 4pr2

r r

Cylinder Cone

V 5 pr2h V 5 1
3 pr2h

hh

r

r

heron’s formula

Area 5 !s1s 2 a 2 1s 2 b 2 1s 2 c 2

where s 5
a 1 b 1 c

2

exponents and radicals

xmxn 5 xm1n

1 xm2n 5 xmn

1 xy2n 5 xnyn

x1/n 5 !n x

!n xy 5 !n x !n y

"m !n x 5 "n !m x 5 !nm
x

special products

1 x 1 y 2 2 5 x2 1 2xy 1 y2

1 x 2 y 2 2 5 x2 2 2xy 1 y2

1 x 1 y 2 3 5 x3 1 3x2y 1 3xy2 1 y3

1 x 2 y 2 3 5 x3 2 3x2y 1 3xy2 2 y3

factoring formulas

x2 2 y2 5 1 x 1 y 2 1 x 2 y 2
x2 1 2xy 1 y2 5 1 x 1 y 2 2

x2 2 2xy 1 y2 5 1 x 2 y 2 2

x3 1 y3 5 1 x 1 y 2 1 x2 2 xy 1 y2 2
x3 2 y3 5 1 x 2 y 2 1 x2 1 xy 1 y2 2

Quadratic formula

If ax2 1 bx 1 c 5 0, then

x 5
2b 6 "b2 2 4ac

2a

ineQualities and absolute value

If a , b and b , c, then a , c.

If a , b, then a 1 c , b 1 c.

If a , b and c . 0, then ca , cb.

If a , b and c , 0, then ca . cb.

If a . 0, then

0  x 0  5 a  means  x 5 a  or  x 5 2a.

0  x 0  , a  means  2a , x , a.

0  x 0  . a  means  x . a  or  x , 2a. b

B

CA

ac

xm

xn 5 xm2n

x2n 5
1

xn

a x

y
b

n

5
xn

yn

xm/n 5 !n xm 5 1!n x 2m

Å
n x
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!n y
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distance and midpoint formulas

Distance between P1 1 x1, y1 2  and P2 1 x2, y2 2 :
d 5 "1x2 2 x1 2 2 1 1y2 2 y1 2 2

Midpoint of P1P2:  a
x1 1 x2

2
, 

y1 1 y2

2
b

lines 

Slope of line through  m 5
y2 2 y1

x2 2 x1
 

P1 1 x1, y1 2  and P2 1 x2, y2 2

Point-slope equation of line  y 2 y1 5 m 1 x 2 x1 2
through P1 1 x1, y1 2  with slope m

Slope-intercept equation of  y 5 mx 1 b 
line with slope m and y-intercept b

Two-intercept equation of line x

a
1

y

b
5 1

with x-intercept a and y-intercept b

logarithms

y 5 loga x  means  a y 5 x

loga ax 5 x a loga x 5 x

loga 1 5 0 loga a 5 1

log x 5 log10 x ln x 5 loge x

loga xy 5 loga x  1 loga y logaa}
x
y

}b 5 loga x  2 loga y

loga xb 5 b loga x logb x 5 
loga x

loga b

exponential and logarithmic functions

0

1

y=a˛
0<a<1

0

1

y=a˛
a>1

1

y=loga x
a>1

0

y=loga x
0<a<1

10

y

x

y

x

y

x

y

x

graphs of functions

Linear functions:  f1x2 5 mx 1 b

Ï=b

b

x

y

    Ï=mx+b

b

x

y

Power functions:  f1x2 5 xn

Ï=≈
x

y

    Ï=x£

x

y

Root functions:  f1x2 5 !n x

Ï=œ∑x

x

y

    Ï=£œ∑x

x

y

Reciprocal functions:  f1x2 5 1/xn

Ï= 1
x

x

y

    
Ï= 1

≈

x

y

Absolute value function Greatest integer function

Ï=|x |

x

y

    Ï=“ x‘

1

1

x

y
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conic sections

Circles 

0

C(h, k)

r

x

y

1x 2 h2 2 1 1y 2 k2 2 5 r2

Parabolas
 x2 5 4py y2 5 4px

y

x

p>0

p<0

y

x

p>0p<0
p

p

Focus 10, p2 , directrix y 5 2p Focus 1p, 02 , directrix x 5 2p

0

y

x

(h, k)

0

y

x

(h, k)

y 5 a1x 2 h2 2 1 k, y 5 a1x 2 h2 2 1 k,
a , 0,  h . 0,  k . 0  a . 0,  h . 0,  k . 0

Ellipses

 
x2

a2 1
y2

b2 5 1 
x2

b2 1
y2

a2 5 1

a>b

b

a

_b

_a

c

_c

a>b

a

b

_a

_b

c_c x

y

x

y

Foci 16c, 02 , c2 5 a2 2 b2 Foci 10, 6c2 , c2 5 a2 2 b2

Hyperbolas

 
x2

a2 2
y2

b2 5 1 2 

x2

b2 1
y2

a2 5 1

a

b

_a

_b

_c c
x

y

b

a

_b
_a

c

_c

x

y

Foci 16c, 02 , c2 5 a2 1 b2 Foci 10, 6c2 , c2 5 a2 1 b2

complex numbers

For the complex number z 5 a 1 bi

  the conjugate is z 5 a 2 bi

  the modulus is 0  z 0 5 "a2 1 b2

  the argument is u, where tan u 5 b/a

Re

Im

bi

0

| z|
a+bi

¨
a

Polar form of a complex number

For z 5 a 1 bi, the polar form is

z 5 r 1cos u 1 i sin u 2
where r 5 0  z 0  is the modulus of z and u is the argument of z

De Moivre’s Theorem

zn 5 3r 1cos u 1 i sin u 2 4 n 5 rn1cos nu 1 i sin nu 2
 !n z 5 3r 1cos u 1 i sin u 2 4 1/n

 5 r1/na cos 
u 1 2kp

n
1 i sin 

u 1 2kp

n
b

where k 5 0, 1, 2, . . . , n 2 1

rotation of axes

0

P(x, y)
P(X, Y)

Y

X

ƒ
x

y

Angle-of-rotation formula for conic sections

To eliminate the xy-term in the equation

Ax2 1 Bxy 1 Cy2 1 Dx 1 Ey 1 F 5 0

rotate the axis by the angle f that satisfies

cot 2f 5 }
A 2

B
 C

}

polar coordinates

x

y

0

r

¨
x

y

P (x, y)
P (r, ¨)

x 5 r cos u

y 5 r sin u

r2 5 x2 1 y2

tan u 5 
y

x

Rotation of axes  
formulas

x 5 X cos f 2 Y sin f    

y 5 X sin f 1 Y cos f
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For many students an Algebra and Trigonometry course represents the first opportunity 
to discover the beauty and practical power of mathematics. Thus instructors are faced 
with the challenge of teaching the concepts and skills of the subject while at the same 
time imparting a sense of its utility in the real world. In this edition, as in the previous 
editions, our aim is to provide instructors and students with tools they can use to meet 
this challenge. 

In this Fourth Edition our objective is to further enhance the effectiveness of the book 
as an instructional tool for instructors and as a learning tool for students. Many of the 
changes in this edition are a result of suggestions we received from instructors and stu-
dents who are using the current edition; others are a result of insights we have gained from 
our own teaching. We have made several major changes in this edition. These include a 
restructuring of the beginning chapters to allow for an earlier introduction to functions. 
Some chapters have been reorganized and rewritten, new sections have been added (as 
described below), the review material at the end of each chapter has been substantially 
expanded, and exercise sets have been enhanced to further focus on the main concepts of 
algebra and trigonometry. In all these changes and numerous others (small and large) we 
have retained the main features that have contributed to the success of this book.

new to the Fourth edition
■ early chapter on Functions The chapter on functions now appears earlier in the 

book (Chapter 2). The review material (now in Chapters P and 1) has been 
streamlined and rewritten. 

■ diagnostic Test A diagnostic test, designed to test preparedness for an algebra 
and trigonometry course, can be found at the beginning of the book (p. xix).

■ exercises More than 20% of the exercises are new, and groups of exercises now 
have headings that identify the type of exercise. New Skills Plus exercises in 
most sections contain more challenging exercises that require students to extend 
and synthesize concepts.

■ Review Material The review material at the end of each chapter now includes a 
summary of Properties and Formulas and a new Concept Check which provides 
a step-by-step review of all the main concepts and applications of the chapter. 
Answers to the Concept Check questions are on tear-out sheets at the back of the 
book.

■ discovery projects References to Discovery Projects, including brief descrip-
tions of the content of each project, are located in boxes where appropriate in 
each chapter. These boxes highlight the applications of algebra and trigonometry 
in many different real-world contexts. (The projects are located at the book  
companion website: www.stewartmath.com.)

■ cHApTeR p prerequisites This chapter now concludes with two sections on equa-
tions. Section P.8 is about basic equations, including linear and power equations, 
and Section P.9 covers modeling with equations. 

■ cHApTeR 1 equations and Graphs This new chapter includes an introduction to 
the coordinate plane and graphs of equations in two variables, as well as material 
on solving equations. Combining these topics in one chapter highlights the rela-
tionship between algebraic and graphical solutions of equations.  

■ cHApTeR 2 Functions This chapter now includes the new Section 2.5, “Linear 
Functions and Models.” This section highlights the connection between the slope 
of a line and the rate of change of a linear function. These two interpretations of 
slope help prepare students for the concept of the derivative in calculus.

pReFAce

x
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■ cHApTeR 3 polynomial and Rational Functions This chapter now includes the new 
Section 3.7, “Polynomial and Rational Inequalities.” Section 3.6, “Rational Func-
tions,” has a new subsection on rational functions with “holes.”

■ cHApTeR 4 exponential and Logarithmic Functions The chapter now includes two 
sections on the applications of these functions. Section 4.6, “Modeling with 
Exponential Functions,” focuses on modeling growth and decay, Newton’s Law 
of Cooling, and other such applications. Section 4.7, “Logarithmic Scales,”  
covers the concept of a logarithmic scale with applications involving the pH, 
Richter, and decibel scales.

■ cHApTeR 6 Trigonometric Functions: Unit circle Approach This chapter includes a 
new subsection on the concept of phase shift as used in modeling harmonic 
motion.

■ Two chapters on systems of equations The material on solving systems of equa-
tions and inequalities is now in two chapters. Chapter 10 is about solving sys-
tems of equations in two or more variables algebraically (without using matri-
ces), and solving systems of inequalities in two variables graphically. Chapter 11 
covers solving systems of linear equations by using matrix methods. 

■ Appendix A: Geometry Review This appendix contains a review of the main con-
cepts of geometry used in this book, including similarity and the Pythagorean 
Theorem.

■ Appendix c: Graphing with a Graphing calculator This appendix includes general 
guidelines on graphing with a graphing calculator, as well as guidelines on how 
to avoid common graphing pitfalls. 

■ Appendix d: Using the Ti-83/84 Graphing calculator In this appendix we provide 
simple, easy-to-follow, step-by-step instructions for using the TI-83/84 graphing 
calculators.

Teaching with the Help of This Book
We are keenly aware that good teaching comes in many forms and that there are many 
different approaches to teaching and learning the concepts and skills of algebra and 
trigonometry. The organization and exposition of the topics in this book are designed to 
accommodate different teaching and learning styles. In particular, each topic is pre-
sented algebraically, graphically, numerically, and verbally, with emphasis on the rela-
tionships between these different representations. The following are some special fea-
tures that can be used to complement different teaching and learning styles:

diagnostic Test For a student to achieve success in any mathematics course it is 
important that he or she has the necessary prerequisite knowledge. For this reason we 
have included four Diagnostic Tests at the beginning of the book (pages xix–xxi) to test 
preparedness for this course.

exercise sets The most important way to foster conceptual understanding and hone 
technical skill is through the problems that the instructor assigns. To that end we have 
provided a wide selection of exercises.

■ concept exercises These exercises ask students to use mathematical language to 
state fundamental facts about the topics of each section.

■ skills exercises These exercises reinforce and provide practice with all the learn-
ing objectives of each section. They comprise the core of each exercise set.

■ skills plus exercises The Skills Plus exercises contain challenging problems that 
often require the synthesis of previously learned material with new concepts.

■ Applications exercises We have included substantial applied problems from 
many different real-world contexts. We believe that these exercises will capture 
students’ interest.
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■ discovery, Writing, and Group Learning Each exercise set ends with a block of 
exercises labeled Discuss ■ Discover ■ Prove ■ Write. These exercises are 
designed to encourage students to experiment, preferably in groups, with the con-
cepts developed in the section and then to write about what they have learned 
rather than simply looking for the answer. New Prove exercises highlight the 
importance of deriving a formula.

■ now Try exercise . . . At the end of each example in the text the student is 
directed to one or more similar exercises in the section that help to reinforce the 
concepts and skills developed in that example.

■ check Your Answer Students are encouraged to check whether an answer they 
obtained is reasonable. This is emphasized throughout the text in numerous 
Check Your Answer sidebars that accompany the examples (see, for instance, 
pages 55, 69, and 135).

Flexible Approach to Trigonometry The trigonometry chapters of this text have 
been written so that either the right triangle approach or the unit circle approach may 
be taught first. Putting these two approaches in different chapters, each with its relevant 
applications, helps to clarify the purpose of each approach. The chapters introducing 
trigonometry are as follows.

■ cHApTeR 5 Trigonometric Functions: Right Triangle Approach This chapter intro-
duces trigonometry through the right triangle approach. This approach builds on 
the foundation of a conventional high-school course in trigonometry.

■ cHApTeR 6 Trigonometric Functions: Unit circle Approach This chapter introduces 
trigonometry through the unit circle approach. This approach emphasizes that the 
trigonometric functions are functions of real numbers, just like the polynomial 
and exponential functions with which students are already familiar.

Another way to teach trigonometry is to intertwine the two approaches. Some instruc-
tors teach this material in the following order: Sections 6.1, 6.2, 5.1, 5.2, 5.3, 6.3, 6.4, 6.5, 
6.6, 5.4, 5.5, and 5.6. Our organization makes it easy to do this without obscuring the fact 
that the two approaches involve distinct representations of the same functions.

Graphing calculators and computers We make use of graphing calculators and 
computers in examples and exercises throughout the book. Our calculator-oriented 
examples are always preceded by examples in which students must graph or calculate 
by hand so that they can understand precisely what the calculator is doing when they 
later use it to simplify the routine, mechanical part of their work. The graphing calcula-
tor sections, subsections, examples, and exercises, all marked with the special symbol 

, are optional and may be omitted without loss of continuity.

■ Using a Graphing calculator General guidelines on using graphing calculators 
and a quick reference guide to using TI-83/84 calculators are available at the 
book companion website: www.stewartmath.com.

■ Graphing, Regression, Matrix Algebra Graphing calculators are used throughout 
the text to graph and analyze functions, families of functions, and sequences; to 
calculate and graph regression curves; to perform matrix algebra; to graph linear 
inequalities; and other powerful uses.

■ simple programs We exploit the programming capabilities of a graphing calcu-
lator to simulate real-life situations, to sum series, or to compute the terms of a 
recursive sequence (see, for instance, pages 664 and 940).
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Focus on Modeling The theme of modeling has been used throughout to unify and 
clarify the many applications of algebra and trigonometry. We have made a special ef-
fort to clarify the essential process of translating problems from English into the lan-
guage of mathematics (see pages 274 and 722).

■ constructing Models There are many applied problems throughout the book in 
which students are given a model to analyze (see, for instance, page 286). But 
the material on modeling, in which students are required to construct mathemati-
cal models, has been organized into clearly defined sections and subsections (see, 
for instance, pages 406, 547, and 721).

■ Focus on Modeling Each chapter concludes with a Focus on Modeling section. 
For example, the Focus on Modeling after Chapter 1 introduces the basic idea 
of modeling a real-life situation by fitting lines to data (linear regression). Other 
sections pre sent ways in which polynomial, exponential, logarithmic, and trigo-
nometric functions, and systems of inequalities can all be used to model familiar 
phenomena from the sciences and from everyday life (see, for instance, pages 
361, 428, and 568).

Review sections and chapter Tests Each chapter ends with an extensive review 
section that includes the following.

■ properties and Formulas The Properties and Formulas at the end of each chap-
ter contains a summary of the main formulas and procedures of the chapter (see, 
for instance, pages 422 and 490).

■ concept check and concept check Answers The Concept Check at the end of 
each chapter is designed to get the students to think about and explain each con-
cept presented in the chapter and then to use the concept in a given problem. 
This provides a step-by-step review of all the main concepts in a chapter (see, for 
instance, pages 266, 355, and 756). Answers to the Concept Check questions are 
on tear-out sheets at the back of the book.

■ Review exercises The Review Exercises at the end of each chapter recapitulate 
the basic concepts and skills of the chapter and include exercises that combine 
the different ideas learned in the chapter.

■ chapter Test Each review section concludes with a Chapter Test designed to 
help students gauge their progress.

■ cumulative Review Tests Cumulative Review Tests following selected chapters 
are available at the book companion website. These tests contain problems that 
combine skills and concepts from the preceding chapters. The problems are 
designed to highlight the connections between the topics in these related chapters. 

■ Answers Brief answers to odd-numbered exercises in each section (including 
the review exercises) and to all questions in the Concepts exercises and Chapter 
Tests, are given in the back of the book.

Mathematical Vignettes Throughout the book we make use of the margins to pro-
vide historical notes, key insights, or applications of mathematics in the modern world. 
These serve to enliven the material and show that mathematics is an important, vital 
activity and that even at this elementary level it is fundamental to everyday life.

■ Mathematical Vignettes These vignettes include biographies of interesting math-
ematicians and often include a key insight that the mathematician discovered 
(see, for instance, the vignettes on Viète, page 119; Salt Lake City, page 89; and 
radiocarbon dating, page 403).

■ Mathematics in the Modern World This is a series of vignettes that emphasize the 
central role of mathematics in current advances in technology and the sciences 
(see, for instance, pages 338, 742, and 828).
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Book Companion Website A website that accompanies this book is located at 
www.stewartmath.com. The site includes many useful resources for teaching algebra 
and trigonometry, including the following. 

■ Discovery Projects Discovery Projects for each chapter are available at the book 
companion website. The projects are referenced in the text in the appropriate sec-
tions. Each project provides a challenging yet accessible set of activities that enable 
students (perhaps working in groups) to explore in greater depth an interesting 
aspect of the topic they have just learned (see, for instance, the Discovery Projects 
Visualizing a Formula, Relations and Functions, Will the Species Survive?, and 
Computer Graphics II, referenced on pages 34, 199, 788, and 864).

■ Focus on Problem Solving Several Focus on Problem Solving sections are avail-
able on the website. Each such section highlights one of the problem-solving 
principles introduced in the Prologue and includes several challenging problems 
(see for instance Recognizing Patterns, Using Analogy, Introducing Something 
Extra, Taking Cases, and Working Backward).

■ Cumulative Review Tests Cumulative Review Tests following Chapters 4, 7, 9, 
12, and 14 are available on the website.
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eBook, Cengage YouBook, helping students to develop a deeper conceptual understand-
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This textbook was written for you to use as a guide to mastering algebra and trigonom-
etry. Here are some suggestions to help you get the most out of your course.

First of all, you should read the appropriate section of text before you attempt your 
homework problems. Reading a mathematics text is quite different from reading a 
novel, a newspaper, or even another textbook. You may find that you have to reread a 
passage several times before you understand it. Pay special attention to the examples, 
and work them out yourself with pencil and paper as you read. Then do the linked ex-
ercises referred to in “Now Try Exercise . . .” at the end of each example. With this kind 
of preparation you will be able to do your homework much more quickly and with more 
understanding.

Don’t make the mistake of trying to memorize every single rule or fact you may 
come across. Mathematics doesn’t consist simply of memorization. Mathematics is a 
problem-solving art, not just a collection of facts. To master the subject you must solve 
problems—lots of problems. Do as many of the exercises as you can. Be sure to write 
your solutions in a logical, step-by-step fashion. Don’t give up on a problem if you can’t 
solve it right away. Try to understand the problem more clearly—reread it thoughtfully 
and relate it to what you have learned from your instructor and from the examples in 
the text. Struggle with it until you solve it. Once you have done this a few times you 
will begin to understand what mathematics is really all about.

Answers to the odd-numbered exercises, as well as all the answers (even and odd) 
to the concept exercises and chapter tests, appear at the back of the book. If your answer 
differs from the one given, don’t immediately assume that you are wrong. There may 
be a calculation that connects the two answers and makes both correct. For example, if 
you get 1/ 1!2 2 1 2  but the answer given is 1 1 !2, your answer is correct, because 
you can multiply both numerator and denominator of your answer by !2 1 1 to 
change it to the given answer. In rounding approximate answers, follow the guidelines 
in Appendix B: Calculations and Significant Figures.

The symbol  is used to warn against committing an error. We have placed this 
symbol in the margin to point out situations where we have found that many of our 
students make the same mistake.

Abbreviations
The following abbreviations are used throughout the text.

xvii

TO THe sTUdenT

cm centimeter
dB decibel
F farad
ft foot
g gram
gal gallon
h hour
H henry
Hz Hertz
in. inch
J Joule
kcal kilocalorie
kg kilogram
km kilometer

kPa kilopascal
L liter
lb pound
lm lumen
M mole of solute
   per liter of  

solution
m meter
mg milligram
MHz megahertz
mi mile
min minute
mL milliliter
mm millimeter

N Newton
qt quart
oz ounce
s second
V ohm
V volt
W watt
yd yard
yr year
°C degree Celsius
°F degree Fahrenheit
K Kelvin
⇒ implies
⇔ is equivalent to
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To succeed in your Algebra and Trigonometry course you need to use some of the skills 
that you learned in your previous mathematics classes. In particular, you need to be 
familiar with the real number system, algebraic expressions, solving basic equations, 
and graphing. The following diagnostic tests are designed to assess your knowledge of 
these topics. After taking each test you can check your answers using the answer key 
on page xxii. If you have difficulty with any topic, you can refresh your skills by study-
ing the review materials from Chapters P and 1 that are referenced after each test.

A diAGnOsTic TesT: Real numbers and exponents

 1. Perform the indicated operations. Write your final answer as an integer or as a 
fraction in lowest terms.

(a) 1
3 1 1

2      (b) 2 2 2
3 1 1

4      (c) 4A2 2 2
3B       (d) 

12
4
3 1 1

6

 2. Determine whether the given number is an integer, rational, or irrational.

(a) 10      (b) 16
3       (c) 52      (d) !5

 3. Is the inequality true or false?

(a) 22 , 0      (b) 5 $ 5      (c) 5 . 5      

(d) 3 # 210      (e) 22 . 26

 4. Express the inequality in interval notation.

(a) 21 , x # 5      (b) x , 3      (c) x $ 4 

 5. Express the interval using inequalities.

(a) 12, ` 2       (b) 323, 21 4       (c) 30, 9 2    
 6. Evaluate the expression without using a calculator.

(a) 123 2 4      (b) 234      (c) 324

(d) 
512

510       (e) a 3

4
b

22

      (f) 163/4

 7. Simplify the expression. Write your final answer without negative exponents.

(a) 14x2y3 2 12xy2 2       (b) a 5a1/2

a2 b
2

      (c) 1x22y23 2 1xy2 2 2

Answers to Test A are on page xxii. If you had difficulty with any of the questions 
on Test A, you should review the material covered in Sections P.2, P.3, and P.4. 

B diAGnOsTic TesT: Algebraic expressions

 1. Expand and simplify.

(a) 41x 1 3 2 1 512x 2 1 2     (b) 1x 1 3 2 1x 2 5 2     (c) 12x 2 1 2 13x 1 2 2
(d) 1a 2 2b 2 1a 1 2b 2     (e) 1  y 2 3 2 2    (f) 12x 1 5 2 2

ARe YOU ReAdY FOR THis cOURse?

xix

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xx are you ready for this Course?

 2. Factor the expression.

(a) 4x2 1 2x      (b) 3xy2 2 6x2y      (c) x2 1 8x 1 15

(d) x2 2 x 2 2      (e) 2x2 1 5x 2 12      (f) x2 2 16

 3. Simplify the rational expression.

(a) 
x2 1 4x 1 3

x2 2 2x 2 3
      (b) 

2x2 2 3x 2 2

x2 2 1
# x 1 1

2x 1 1

(c) 
x2 2 x

x2 2 9
2

x 1 1

x 1 3
      (d) 

1
x

2
1
y

2
xy

 

 4. Rationalize the denominator and simplify.

(a) 
!3

!7
      (b) 

12

3 2 !5

Answers to Test B are on page xxii. If you had difficulty with any of the questions 
on Test B, you should review the material covered in Sections P.5, P.6, and P.7. 

c diAGnOsTic TesT: equations

 1. Solve the linear equation.

(a) 3x 2 1 5 5      (b) 2x 1 3 5 8

(c) 2x 5 5x 1 6      (d) x 1 11 5 6 2 4x

 2. Solve the equation.

(a) 1
3 x 5 6      (b) 1

2 x 2 3
2 5 7

2        

 3. Find all real solutions of the equation.

(a) x2 2 7 5 0      (b) x3 1 8 5 0       

(c) 2x3 2 54 5 0      (d) x4 2 16 5 0 

 4. Solve the equation for the indicated variable.

(a) 4x 1 y 5 108, for x      (b) 8 5
mn

k2 , for m 

Answers to Test C are on page xxii. If you had difficulty with any of the questions 
on Test C, you should review the material covered in Section P.8. 

d diAGnOsTic TesT: The coordinate plane

 1. Graph the following points in a coordinate plane.

(a) 12, 4 2       (b) 121, 3 2       (c) 13, 21 2
(d) 10, 0 2       (e) 15, 0 2       (f) 10, 21 2
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 2. Find the distance between the given pair of points.

(a) 11, 3 2 , 15, 6 2       (b) 122, 0 2 , 13, 12 2       (c) 10, 24 2 , 14, 0 2
 3. Find the midpoint of the segment PQ.

(a) P13, 7 2 , Q15, 13 2       (b) P122, 3 2 , Q18, 27 2
 4. Graph the equation in a coordinate plane by plotting points.

(a) y 5 x 1 2      (b) y 5 4 2 x2 

Answers to Test D are on page xxii. If you had difficulty with any of the questions 
on Test D, you should review the material covered in Sections 1.1 and 1.2. 
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xxii are you ready for this Course?

 answers to diaGnostiC tests

A Answers

1. (a) 5
6  (b) 19

12  (c) 16
3   (d) 8    2. (a) Integer and rational  (b) Rational  

(c) Integer and rational  (d) Irrational    3. (a) True  (b) True  (c) False  

(d) False  (e) True    4. (a) 121, 5 4   (b) 12`, 3 2   (c) 34, ` 2     

5. (a) x . 2  (b) 23 # x # 21  (c) 0 # x , 9    6. (a) 81  (b) 281  

(c) 1
81  (d) 25  (e) 16

9   (f) 8    7. (a) 8x3y5  (b) 
25

a3   (c) y

B Answers

1. (a) 14x 1 7  (b) x2 2 2x 2 15  (c) 6x2 1 x 2 2  (d) a2 2 4b2

(e) y2 2 6y 1 9  (f) 4x2 1 20x 1 25    2. (a) 2x12x 1 1 2   

(b) 3xy1y 2 2x 2   (c) 1x 1 3 2 1x 1 5 2   (d) 1x 2 2 2 1x 1 1 2   

(e) 12x 2 3 2 1x 1 4 2   (f) 1x 2 4 2 1x 1 4 2     3. (a) 
x 1 3

x 2 3
  (b) 

x 2 2

x 2 1
  

(c) 
1

x 2 3
  (d) 

y 2 x

2
    4. (a) 

!21

7
  (b) 9 1 3!5

c Answers

1. (a) 2  (b) 5
2  (c) 22  (d) 21    2. (a) 18  (b) 10    3. (a) 2!7, !7  

(b) 22  (c) 3  (d) 22, 2    4. (a) x 5 27 2 1
4 y  (b) m 5

8k2

n

d Answers

1. 

1

1

0

y

x
(0, 0)

(3, _1)

(2, 4)

(5, 0)

(0, _1)

(_1, 3)

2. (a) 5  (b) 13  (c) 4!2 < 5.66    3. (a) 14, 10 2   (b) 13, 22 2
4. 

1

1

0

y

x

1

1

0

y

x

y=x+2
y=4-≈
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The ability to solve problems is a highly prized skill in many aspects of our lives; it is 
certainly an important part of any mathematics course. There are no hard and fast rules 
that will ensure success in solving problems. However, in this Prologue we outline some 
general steps in the problem-solving process and we give principles that are useful in 
solving certain types of problems. These steps and principles are just common sense made 
explicit. They have been adapted from George Polya’s insightful book How To Solve It.

1. Understand the Problem
The first step is to read the problem and make sure that you understand it. Ask yourself 
the following questions:

What is the unknown?

What are the given quantities?

What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram. Usually, it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities, we often use letters such as a, b, c, m, 
n, x, and y, but in some cases it helps to use initials as suggestive symbols, for instance, 
V for volume or t for time.

2. Think of a Plan
Find a connection between the given information and the unknown that enables you to 
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the 
given to the unknown?” If you don’t see a connection immediately, the following ideas 
may be helpful in devising a plan.

■ Try to Recognize Something Familiar
Relate the given situation to previous knowledge. Look at the unknown and try to recall 
a more familiar problem that has a similar unknown.

■ Try to Recognize Patterns
Certain problems are solved by recognizing that some kind of pattern is occurring. The 
pattern could be geometric, numerical, or algebraic. If you can see regularity or repeti-
tion in a problem, then you might be able to guess what the pattern is and then prove it.

■ Use Analogy
Try to think of an analogous problem, that is, a similar or related problem but one that 
is easier than the original. If you can solve the similar, simpler problem, then it might 
give you the clues you need to solve the original, more difficult one. For instance, if a 
problem involves very large numbers, you could first try a similar problem with smaller 
numbers. Or if the problem is in three-dimensional geometry, you could look for some-
thing similar in two-dimensional geometry. Or if the problem you start with is a general 
one, you could first try a special case.

P1

PRologUe PRinciPleS oF PRoblem Solving
AP

 Im
ag

es

GeorGe Polya (1887–1985) is famous 
among mathematicians for his ideas on 
problem solving. His lectures on problem 
solving  at Stanford University attracted 
overflow crowds whom he held on the 
edges of their seats, leading them to dis-
cover solutions for themselves. He was 
able to do this because of his deep 
insight into the psychology of problem 
solving. His well-known book How To 
Solve It has been translated into 15 lan-
guages. He said that Euler (see page 63) 
was unique among great mathematicians 
because he explained how he found his 
results. Polya often said to his students 
and colleagues, “Yes, I see that your proof 
is correct, but how did you discover it?” In 
the preface to How To Solve It, Polya 
writes, “A great discovery solves a great 
problem but there is a grain of discovery 
in the solution of any problem. Your 
problem may be modest; but if it chal-
lenges your curiosity and brings into play 
your inventive faculties, and if you solve 
it by your own means, you may experi-
ence the tension and enjoy the triumph 
of discovery.”
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P2 Prologue

■ introduce Something extra
You might sometimes need to introduce something new—an auxiliary aid—to make the 
connection between the given and the unknown. For instance, in a problem for which a 
 diagram is useful, the auxiliary aid could be a new line drawn in the diagram. In a more 
algebraic problem the aid could be a new unknown that relates to the original unknown.

■ Take cases
You might sometimes have to split a problem into several cases and give a different 
argument for each case. For instance, we often have to use this strategy in dealing with 
absolute value.

■ Work backward
Sometimes it is useful to imagine that your problem is solved and work backward, step 
by step, until you arrive at the given data. Then you might be able to reverse your steps 
and thereby construct a solution to the original problem. This procedure is commonly 
used in solving equations. For instance, in solving the equation 3x  5  7, we suppose 
that x is a number that satisfies 3x  5  7 and work backward. We add 5 to each side 
of the equation and then divide each side by 3 to get x  4. Since each of these steps 
can be reversed, we have solved the problem.

■ establish Subgoals
In a complex problem it is often useful to set subgoals (in which the desired situation 
is only partially fulfilled). If you can attain or accomplish these subgoals, then you 
might be able to build on them to reach your final goal.

■ indirect Reasoning
Sometimes it is appropriate to attack a problem indirectly. In using proof by contradic-
tion to prove that P implies Q, we assume that P is true and Q is false and try to see 
why this cannot happen. Somehow we have to use this information and arrive at a 
contradiction to what we absolutely know is true.

■ mathematical induction
In proving statements that involve a positive integer n, it is frequently helpful to use the 
Principle of Mathematical Induction, which is discussed in Section 13.5.

3. carry out the Plan
In Step 2, a plan was devised. In carrying out that plan, you must check each stage of 
the plan and write the details that prove that each stage is correct.

4. look back
Having completed your solution, it is wise to look back over it, partly to see whether 
any errors have been made and partly to see whether you can discover an easier way to 
solve the problem. Looking back also familiarizes you with the method of solution, 
which may be useful for solving a future problem. Descartes said, “Every problem that 
I solved became a rule which served afterwards to solve other problems.”

We illustrate some of these principles of problem solving with an example.

PRoblem ■ Average Speed
A driver sets out on a journey. For the first half of the distance, she drives at the  
leisurely pace of 30 mi/h; during the second half she drives 60 mi/h. What is her  
average speed on this trip?
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Prologue P3

Thinking AboUT The PRoblem

It is tempting to take the average of the speeds and say that the average speed 
for the entire trip is

30  60

2
 45 mi/h

But is this simple-minded approach really correct?
Let’s look at an easily calculated special case. Suppose that the total distance 

traveled is 120 mi. Since the first 60 mi is traveled at 30 mi/h, it takes 2 h. The  
second 60 mi is traveled at 60 mi/h, so it takes one hour. Thus, the total time is  
2  1  3 hours and the average speed is

120

3
 40 mi/h

So our guess of 45 mi/h was wrong.

SolUTion

We need to look more carefully at the meaning of average speed. It is defined as

average speed 
distance traveled

time elapsed

Let d be the distance traveled on each half of the trip. Let t1 and t2 be the times taken 
for the first and second halves of the trip. Now we can write down the information we 
have been given. For the first half of the trip we have

30 
d

t1

and for the second half we have

60 
d

t2

Now we identify the quantity that we are asked to find:

average speed for entire trip 
total distance

total time


2d

t1  t2

To calculate this quantity, we need to know t1 and t2, so we solve the above equations 
for these times:

t1 
d

30
  t2 

d

60

Now we have the ingredients needed to calculate the desired quantity:

 average speed 
2d

t1  t2


2d

d

30


d

60

 
6012d 2

60 a d

30


d

60
b

  Multiply numerator and 
denominator by 60

 
120d

2d  d


120d

3d
 40

So the average speed for the entire trip is 40 mi/h. ■

Try a special case. ▶

 Understand the problem. ▶

 Introduce notation. ▶

 State what is given. ▶

 Identify the unknown. ▶

Connect the given
 with the unknown. ▶
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P4 Prologue

PRoblemS
 1. Distance, Time, and Speed  An old car has to travel a 2-mile route, uphill and down. 

Because it is so old, the car can climb the first mile—the ascent—no faster than an average 
speed of 15 mi/h. How fast does the car have to travel the second mile—on the descent it 
can go faster, of course—to achieve an average speed of 30 mi/h for the trip?

 2. comparing Discounts  Which price is better for the buyer, a 40% discount or two suc-
cessive discounts of 20%?

 3. cutting up a Wire  A piece of wire is bent as shown in the figure. You can see that one 
cut through the wire produces four pieces and two parallel cuts produce seven pieces. How 
many pieces will be produced by 142 parallel cuts? Write a formula for the number of 
pieces produced by n parallel cuts.

 4. Amoeba Propagation  An amoeba propagates by simple division; each split takes  
3 minutes to complete. When such an amoeba is put into a glass container with a nutrient 
fluid, the container is full of amoebas in one hour. How long would it take for the con-
tainer to be filled if we start with not one amoeba, but two?

 5. batting Averages  Player A has a higher batting average than player B for the first half 
of the baseball season. Player A also has a higher batting average than player B for the 
second half of the season. Is it necessarily true that player A has a higher batting average 
than player B for the entire season?

 6. coffee and cream  A spoonful of cream is taken from a pitcher of cream and put into a 
cup of coffee. The coffee is stirred. Then a spoonful of this mixture is put into the pitcher 
of cream. Is there now more cream in the coffee cup or more coffee in the pitcher of 
cream?

 7. Wrapping the World  A ribbon is tied tightly around the earth at the equator. How 
much more ribbon would you need if you raised the ribbon 1 ft above the equator every-
where? (You don’t need to know the radius of the earth to solve this problem.)

 8. ending Up Where You Started  A woman starts at a point P on the earth’s surface and 
walks 1 mi south, then 1 mi east, then 1 mi north, and finds herself back at P, the starting 
point. Describe all points P for which this is possible.  [Hint: There are infinitely many 
such points, all but one of which lie in Antarctica.]

Be
ttm

an
n/

Co
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is

Don’t feel bad if you can’t solve these prob-
lems right away. Problems 1 and 4 were 
sent to Albert Einstein by his friend 
Wertheimer. Einstein (and his friend Bucky) 
enjoyed the problems and wrote back to 
Wertheimer. Here is part of his reply:

Your letter gave us a lot of amuse-
ment. The first intelligence test 
fooled both of us (Bucky and me). 
Only on working it out did I no-
tice that no time is available for 
the downhill run! Mr. Bucky was 
also taken in by the second exam-
ple, but I was not. Such drolleries 
show us how stupid we are!

(See Mathematical Intelligencer, Spring 
1990, page 41.)

Many more problems and examples that highlight different problem-solving principles are 
available at the book companion website: www.stewartmath.com. You can try them as 
you progress through the book.
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In this chapter  we begin by taking a look at the central reason for 
studying algebra: its usefulness in describing (or modeling) real-world 
situations. 

In algebra we use letters to stand for numbers. This allows us to write 
equations and solve problems. Of course, the letters in our equations must 
obey the same rules that numbers do. So in this chapter we review 
properties of numbers and algebraic expressions. You are probably already 
familiar with many of these properties, but it is helpful to get a fresh look 
at how these properties work together to solve real-world problems. 

In the Focus on Modeling at the end of the chapter we see how 
equations can help us make the best decisions in some everyday situations. 
This theme of using algebra to model real-world situations is further 
developed throughout the textbook.

1

PrerequisitesP
P.1 Modeling the Real World  

with Algebra
P.2 Real Numbers
P.3 Integer Exponents and 

Scientific Notation
P.4 Rational Exponents  

and Radicals
P.5 Algebraic Expressions
P.6 Factoring 
P.7 Rational Expressions
P.8 Solving Basic Equations
P.9 Modeling with Equations

FocuS oN ModElINg
 Making the Best decisions

Andersen Ross/Blend Images/Alamy
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2 CHAPTER P ■ Prerequisites

P.1 ModElINg thE REAl WoRld WIth AlgEBRA
■ using Algebra Models ■ Making Algebra Models

In algebra we use letters to stand for numbers. This allows us to describe patterns that 
we see in the real world.

For example, if we let N stand for the number of hours you work and let W stand for 
your hourly wage, then the formula

P  NW

gives your pay P. The formula P  NW is a description or model for pay. We can also 
call this formula an algebra model. We summarize the situation as follows:

 Real World Algebra Model
You work for an hourly wage. You would like to 

P  NW
know your pay for any number of hours worked.

The model P  NW gives the pattern for finding the pay for any worker, with any 
hourly wage, working any number of hours. That’s the power of algebra: By using let-
ters to stand for numbers, we can write a single formula that describes many different 
situations.

We can now use the model P  NW to answer questions such as “I make $10 an 
hour, and I worked 35 hours; how much do I get paid?” or “I make $8 an hour; how 
many hours do I need to work to get paid $1000?”

In general, a model is a mathematical representation (such as a formula) of a real-
world situation. Modeling is the process of making mathematical models. Once a model 
has been made, it can be used to answer questions about the thing being modeled.

REAL WORLD

Making a model

Using the model

MODEL

The examples we study in this section are simple, but the methods are far reaching.  
This will become more apparent as we explore the applications of algebra in subsequent 
Focus on Modeling sections that follow each chapter.

■ using Algebra Models
We begin our study of modeling by using models that are given to us. In the next sub-
section we learn how to make our own models.

ExAMplE 1 ■ using a Model for pay
Aaron makes $9 an hour at his part-time job. Use the model P  NW  to answer the 
following questions:

(a) Aaron worked 35 hours last week. How much did he get paid?

(b)  Aaron wants to earn enough money to buy a calculus text that costs $126. How 
many hours does he need to work to earn this amount?
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SECTION P.1 ■ Modeling the Real World with Algebra 3

SolutIoN  

(a)  We know that N  35 h and W  $9. To find P, we substitute these values into 
the model.

 P  NW     Model

  35  9    Substitute N  35, W  9

  315     Calculate

  So Aaron was paid $315.

(b)  Aaron’s hourly wage is W  $9, and the amount of pay he needs to buy the book 
is P  $126. To find N, we substitute these values into the model.

 P  NW     Model

 126  9N     Substitute P  126, W  9

 
126

9
 N     Divide by 9

 N  14     Calculate

  So Aaron must work 14 hours to buy this book.

Now try Exercises 3 and 7 ■

ExAMplE 2 ■ using an Elevation-temperature Model
A mountain climber uses the model

T  20  10h

to estimate the temperature T (in C) at elevation h (in kilometers, km).

(a)  Make a table that gives the temperature for each 1-km change in elevation, from 
 elevation 0 km to elevation 5 km. How does temperature change as elevation 
 increases?

(b) If the temperature is 5C, what is the elevation?

SolutIoN

(a) Let’s use the model to find the temperature at elevation h  3 km.

 T  20  10h     Model

  20  1013 2     Substitute h  3

  10     Calculate

  So at an elevation of 3 km the temperature is 10C. The other entries in the  
following table are calculated similarly. 

Elevation (km) Temperature (ºC)

0 20
1 10
2 0
3 10
4 20
5 30

 We see that temperature decreases as elevation increases.
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4 CHAPTER P ■ Prerequisites

(b) We substitute T  5C in the model and solve for h.

 T  20  10h    Model

  5  20  10h    Substitute T  5

 15  10h     Subtract 20

 
15

10
 h     Divide by –10

 1.5  h     Calculator

 The elevation is 1.5 km.

Now try Exercise 11 ■

■ Making Algebra Models
In the next example we explore the process of making an algebra model for a real-life 
 situation.

ExAMplE 3 ■ Making a Model for gas Mileage
The gas mileage of a car is the number of miles it can travel on one gallon of gas.

(a)  Find a formula that models gas mileage in terms of the number of miles driven 
and the number of gallons of gasoline used.

(b) Henry’s car used 10.5 gal to drive 230 mi. Find its gas mileage.

thINkINg ABout thE pRoBlEM

Let’s try a simple case. If a car uses 2 gal to drive 100 mi, we easily see that

gas mileage 
100

2
 50 mi/gal

So gas mileage is the number of miles driven divided by the number of gallons 
used.

SolutIoN

(a)  To find the formula we want, we need to assign symbols to the quantities 
involved.

In Words In Algebra

Number of miles driven N
Number of gallons used G
Gas mileage (mi/gal) M

  We can express the model as follows:

 gas mileage 
number of miles driven

number of gallons used

 M 
N

G     
Model

12 mi/gal 40 mi/gal
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SECTION P.1 ■ Modeling the Real World with Algebra 5

(b) To get the gas mileage, we substitute N = 230 and G = 10.5 in the formula.

 M 
N

G
    Model

 
230

10.5
    Substitute N  230, G  10.5

  21.9    Calculator

  The gas mileage for Henry’s car is about 21.9 mi/gal.

Now try Exercise 19 ■

coNcEptS
 1. The model L  4S gives the total number of legs that S  

sheep have. Using this model, we find that 12 sheep have 

  L    legs.

 2. Suppose gas costs $3.50 a gallon. We make a model for the  
cost C of buying x gallons of gas by writing the formula 

  C     .

SkIllS
3–12 ■ using Models Use the model given to answer the ques-
tions about the object or process being modeled.

 3. The sales tax T in a certain county is modeled by the formula 
T  0.06x. Find the sales tax on an item whose price is $120.

 4. Mintonville School District residents pay a wage tax T that is 
modeled by the formula T  0.005x. Find the wage tax paid 
by a resident who earns $62,000 per year.

 5. The distance d (in mi) driven by a car traveling at a speed of 
√ miles per hour for t hours is given by 

d  √t

  If the car is driven at 70 mi/h for 3.5 h, how far has it traveled?

 6. The volume V of a cylindrical can is modeled by the formula

V  pr2h

  where r is the radius and h is the height of the can. Find the 
volume of a can with radius 3 in. and height 5 in.

5 in.

3 in.

 7. The gas mileage M (in mi/gal) of a car is modeled by  
M  N/G, where N is the number of miles driven and G is 
the number of gallons of gas used.

(a)  Find the gas mileage M for a car that drove 240 mi on  
8 gal of gas.

(b)  A car with a gas mileage M  25 mi/gal is driven  
175 mi. How many gallons of gas are used?

 8. A mountain climber models the temperature T (in F) at ele-
vation h (in ft) by

T  70  0.003h

(a) Find the temperature T at an elevation of 1500 ft.

(b) If the temperature is 64F, what is the elevation?

 9. The portion of a floating iceberg that is below the water sur-
face is much larger than the portion above the surface. The 
total volume V of an iceberg is modeled by 

V  9.5S

  where S is the volume showing above the surface.

(a)  Find the total volume of an iceberg if the volume show-
ing above the surface is 4 km3.

(b)  Find the volume showing above the surface for an ice-
berg with total volume 19 km3.

 10. The power P measured in horsepower (hp) needed to drive a 
certain ship at a speed of s knots is modeled by

P  0.06s3

(a) Find the power needed to drive the ship at 12 knots.

(b) At what speed will a 7.5-hp engine drive the ship?

 11. An ocean diver models the pressure P (in lb/in2) at depth d  
(in ft) by

P  14.7  0.45d

(a)  Make a table that gives the pressure for each 10-ft 
change in depth, from a depth of 0 ft to 60 ft.

(b) If the pressure is 30 lb/in2, what is the depth?

12. Arizonans use an average of 40 gal of water per person each 
day. The number of gallons W of water used by x Arizonans 
each day is modeled by W  40x.

(a) Make a table that gives the number of gallons of water 
used for each 1000-person change in population, from  
0 to 5000.

(b) What is the population of an Arizona town whose water 
usage is 120,000 gal per day?

p.1 ExERcISES
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6 CHAPTER P ■ Prerequisites

13–18 ■ Making Models  Write an algebraic formula that mod-
els the given quantity.

 13. The number N of cents in q quarters

 14. The average A of two numbers a and b

 15. The cost C of purchasing x gallons of gas at $3.50 a gallon

 16. The amount T of a 15% tip on a restaurant bill of x dollars

 17. The distance d in miles that a car travels in t hours at 60 mi/h

 18. The speed r of a boat that travels d miles in 3 h

ApplIcAtIoNS
 19. cost of a pizza  A pizza parlor charges $12 for a cheese 

pizza and $1 for each topping.

(a) How much does a 3-topping pizza cost?

(b)  Find a formula that models the cost C of a pizza with  
n  toppings.

(c) If a pizza costs $16, how many toppings does it have?

n=1 n=4

 20. Renting a car  At a certain car rental agency a compact car 
rents for $30 a day and 10¢ a mile.

(a)  How much does it cost to rent a car for 3 days if the car 
is driven 280 mi?

(b)  Find a formula that models the cost C of renting this car 
for n days if it is driven m miles.

(c)  If the cost for a 3-day rental was $140, how many miles 
was the car driven?

 21. Energy cost for a car  The cost of the electricity needed to 
drive an all-electric car is about 4 cents per mile. The cost of 
the gasoline needed to drive the average gasoline-powered 
car is about 12 cents per mile.

(a)  Find a formula that models the energy cost C of driving  
x miles for (i) the all-electric car and (ii) the average 
 gasoline-powered car. 

(b)  Find the cost of driving 10,000 mi with each type of car.

 22. Volume of Fruit crate  A fruit crate has square ends and is 
twice as long as it is wide.

(a) Find the volume of the crate if its width is 20 in.

(b)  Find a formula for the volume V of the crate in terms of 
its width x.

2x

x

x

 23. grade point Average  In many universities students are given 
grade points for each credit unit according to the  following 
scale:

 A 4 points
 B 3 points
 C 2 points
 D 1 point
 F 0 point

  For example, a grade of A in a 3-unit course earns 4  3  12 
grade points and a grade of B in a 5-unit course earns  
3  5  15 grade points. A student’s grade point average 
(GPA) for these two courses is the total number of grade 
points earned  divided by the number of units; in this case  
the GPA is 112  152/8  3.375.

(a)  Find a formula for the GPA of a student who earns a 
grade of A in a units of course work, B in b units, C in c 
units, D in d units, and F in f units.

(b)  Find the GPA of a student who has earned a grade of A 
in two 3-unit courses, B in one 4-unit course, and C in 
three 3-unit courses.

In the real world we use numbers to measure and compare different quantities. For ex-
ample, we measure temperature, length, height, weight, blood pressure, distance, speed, 
acceleration, energy, force, angles, age, cost, and so on. Figure 1 illustrates some situa-
tions in which numbers are used. Numbers also allow us to express relationships between 
different quantities—for example, relationships between the radius and volume of a ball, 
between miles driven and gas used, or between education level and starting salary.

P.2 REAl NuMBERS
■ Real Numbers ■ properties of Real Numbers ■ Addition and Subtraction ■ Multiplication 
and division ■ the Real line ■ Sets and Intervals ■ Absolute Value and distance
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FIguRE 1 Measuring with real numbers

Count Length Speed Weight
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■ Real Numbers
Let’s review the types of numbers that make up the real number system. We start with 
the natural numbers:

1, 2, 3, 4, . . .

The integers consist of the natural numbers together with their negatives and 0:

. . . , 3, 2, 1, 0, 1, 2, 3, 4, . . .

We construct the rational numbers by taking ratios of integers. Thus any rational 
number r can be expressed as

r 
m
n

where m and n are integers and n ? 0. Examples are

1
2  3

7  46  46
1  0.17  17

100

(Recall that division by 0 is always ruled out, so expressions like 3
0 and 0

0 are undefined.) 
There are also real numbers, such as !2, that cannot be expressed as a ratio of integers 
and are therefore called irrational numbers. It can be shown, with varying degrees of 
difficulty, that these numbers are also irrational:

!3   !5   !3 2   p   
3

p2

The set of all real numbers is usually denoted by the symbol . When we use the 
word number without qualification, we will mean “real number.” Figure 2 is a diagram 
of the types of real numbers that we work with in this book.

Every real number has a decimal representation. If the number is rational, then its 
corresponding decimal is repeating. For example,

 12  0.5000. . .  0.50   2
3  0.66666. . .  0.6

 157
495  0.3171717. . .  0.317  9

7  1.285714285714. . .  1.285714

(The bar indicates that the sequence of digits repeats forever.) If the number is irratio-
nal, the decimal representation is nonrepeating:

!2  1.414213562373095. . .   p  3.141592653589793. . .

If we stop the decimal expansion of any number at a certain place, we get an approxi-
mation to the number. For instance, we can write

p  3.14159265

where the symbol  is read “is approximately equal to.” The more decimal places we 
retain, the better our approximation.

The different types of real numbers 
were invented to meet specific needs. 
For example, natural numbers are 
needed for counting, negative numbers 
for describing debt or below-zero tem-
peratures, rational numbers for concepts 
like “half a gallon of milk,” and irratio-
nal numbers for measuring certain dis-
tances, like the diagonal of a square.

A repeating decimal such as

x  3.5474747. . .

is a rational number. To convert it to a 
ratio of two integers, we write

 1000x  3547.47474747. . .
    10x  35.47474747. . .
 990x  3512.0

Thus x  3512
990 . (The idea is to multiply 

x by appropriate powers of 10 and then 
subtract to eliminate the repeating part.)

1
2 0.17,  0.6,  0.317

,œ3

− − − … …

, 3
7- ,

,œ5 , ,œ2 π
π2

3 3

FIguRE 2 The real number system
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8 CHAPTER P ■ Prerequisites

■ properties of Real Numbers
We all know that 2  3  3  2, and 5  7  7  5, and 513  87  87  513, and so 
on. In algebra we express all these (infinitely many) facts by writing

a  b  b  a

where a and b stand for any two numbers. In other words, “a  b  b  a” is a concise 
way of saying that “when we add two numbers, the order of addition doesn’t matter.” 
This fact is called the Commutative Property of addition. From our experience with 
numbers we know that the properties in the following box are also valid.

pRopERtIES oF REAl NuMBERS

Property Example Description

Commutative Properties

a  b  b  a 7  3  3  7 When we add two numbers, order doesn’t matter.

ab  ba 3 # 5  5 # 3  When we multiply two numbers, order doesn’t  
matter.

Associative Properties

1a  b 2  c  a  1b  c 2  12  4 2  7  2  14  7 2   When we add three numbers, it doesn’t matter 
which two we add first.

1ab 2c  a1bc 2  13 # 7 2 # 5  3 # 17 # 5 2   When we multiply three numbers, it doesn’t  
matter which two we multiply first.

Distributive Property

a1b  c 2  ab  ac 2 # 13  5 2  2 # 3  2 # 5 When we multiply a number by a sum of two 

1b  c 2a  ab  ac 13  5 2 # 2  2 # 3  2 # 5 numbers, we get the same result as we get if we  
    multiply the number by each of the terms and then 

add the results.

The Distributive Property applies whenever we multiply a number by a sum.  
Figure 3 explains why this property works for the case in which all the numbers are 
positive integers, but the property is true for any real numbers a, b, and c.

2(3+5)

2#3 2#5

FIguRE 3 The Distributive Property

ExAMplE 1 ■ using the distributive property

(a)  21x  3 2  2 # x  2 # 3    Distributive Property

    2x  6     Simplify

The Distributive Property is crucial  
because it describes the way addition 
and multiplication interact with each 
other.
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SECTION P.2 ■ Real Numbers 9

(b)  1a  b 2 1x  y 2  1a  b 2x  1a  b 2y  Distributive Property

    1ax  bx 2  1ay  by 2  Distributive Property

    ax  bx  ay  by  Associative Property of Addition

    In the last step we removed the parentheses because, according to the  
Associative Property, the order of addition doesn’t matter.

Now try Exercise 15 ■

■ Addition and Subtraction
The number 0 is special for addition; it is called the additive identity because  
a  0  a for any real number a. Every real number a has a negative, a, that satisfies 
a  1a 2  0. Subtraction is the operation that undoes addition; to subtract a number 
from another, we simply add the negative of that number. By definition

a  b  a  1b 2
To combine real numbers involving negatives, we use the following properties.

pRopERtIES oF NEgAtIVES

Property Example

1. 11 2a  a 11 25  5

2. 1a 2  a 15 2  5

3. 1a 2b  a1b 2  1ab 2  15 27  517 2  15 # 7 2
4. 1a 2 1b 2  ab 14 2 13 2  4 # 3

5. 1a  b 2  a  b 13  5 2  3  5

6. 1a  b 2  b  a 15  8 2  8  5

Property 6 states the intuitive fact that a  b and b  a are negatives of each other. 
Property 5 is often used with more than two terms:

1a  b  c 2  a  b  c

ExAMplE 2 ■ using properties of Negatives
Let x, y, and z be real numbers.

(a) 1x  2 2  x  2 Property 5: (a  b)  a  b 

(b) 1x  y  z 2  x  y  1z 2  Property 5: (a  b)  a  b 

    x  y  z Property 2: (a)  a

Now try Exercise 27 ■

■ Multiplication and division
The number 1 is special for multiplication; it is called the multiplicative identity 
because a # 1  a for any real number a. Every nonzero real number a has an inverse, 
1/a, that satisfies a # 11/a 2  1. Division is the operation that undoes multiplication; 

s

 Don’t assume that a is a negative 
number. Whether a is negative or 
positive depends on the value of a. For 
example, if a  5, then a  5, a 
negative number, but if a  5, then 
a  15 2  5 (Property 2), a pos-
itive number.
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10 CHAPTER P ■ Prerequisites

to divide by a number, we multiply by the inverse of that number. If b ? 0, then, by 
definition,

a 4 b  a # 1

b

We write a # 11/b 2  as simply a/b. We refer to a/b as the quotient of a and b or as the 
fraction a over b; a is the numerator and b is the denominator (or divisor). To com-
bine real numbers using the operation of division, we use the following properties.

pRopERtIES oF FRActIoNS

Property Example Description

1. 
a

b
# c

d


ac

bd
 

2

3
# 5

7


2 # 5

3 # 7


10

21
 

 When multiplying fractions, multiply numerators 
and denominators.

2. 
a

b
4

c

d


a

b
# d
c

 
2

3
4

5

7


2

3
# 7

5


14

15
  

When dividing fractions, invert the divisor and 
multiply.

 

3. 
a
c


b
c


a  b

c
 

2

5


7

5


2  7

5


9

5
  

When adding fractions with the same denomina-
tor, add the numerators.

 

4. 
a

b


c

d


ad  bc

bd
 

2

5


3

7


2 # 7  3 # 5

35


29

35
 

 When adding fractions with different denomi-
nators, find a common denominator. Then add the 
numerators. 

5. 
ac

bc


a

b
 

2 # 5

3 # 5


2

3
 

 Cancel numbers that are common factors in 
numerator and denominator.

6. If 
a

b


c

d
, then ad  bc 

2

3


6

9
, so 2 # 9  3 # 6 Cross-multiply.

When adding fractions with different denominators, we don’t usually use Prop erty 4. 
Instead we rewrite the fractions so that they have the smallest possible common de-
nominator (often smaller than the product of the denominators), and then we use Prop-
erty 3. This denominator is the Least Common Denominator (LCD) described in the 
next example.

ExAMplE 3 ■ using the lcd to Add Fractions

Evaluate: 
5

36


7

120

SolutIoN  Factoring each denominator into prime factors gives

36  22 # 32  and  120  23 # 3 # 5

We find the least common denominator (LCD) by forming the product of all the prime 
factors that occur in these factorizations, using the highest power of each prime factor. 
Thus the LCD is 23 # 32 # 5  360. So

  
5

36


7

120


5 # 10

36 # 10


7 # 3

120 # 3
    Use common denominator

  
50

360


21

360


71

360
     Property 3: Adding fractions with the  

same denominator

Now try Exercise 29 ■
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SECTION P.2 ■ Real Numbers 11

■ the Real line
The real numbers can be represented by points on a line, as shown in Figure 4. The 
positive direction (toward the right) is indicated by an arrow. We choose an arbitrary 
reference point O, called the origin, which corresponds to the real number 0. Given any 
convenient unit of measurement, each positive number x is represented by the point on 
the line a distance of x units to the right of the origin, and each negative number x is 
represented by the point x units to the left of the origin. The number associated with the 
point P is called the coordinate of P, and the line is then called a coordinate line, or a 
real number line, or simply a real line. Often we identify the point with its coordinate 
and think of a number as being a point on the real line.

0_1_2_3_4_5 1 2 3 4 5

1
2

1
4

1
8

0.3∑

2
œ∑3

œ∑5 π
4.9999

4.5

4.44.2

4.3

1
16_

_ 2_2.63
_3.1725_4.7_4.9

_4.85

œ∑ œ∑

FIguRE 4 The real line

The real numbers are ordered. We say that a is less than b and write a  b if  
b  a is a positive number. Geometrically, this means that a lies to the left of b on  
the number line. Equivalently, we can say that b is greater than a and write b  a. The 
symbol a  b 1or b  a 2  means that either a  b or a  b and is read “a is less than 
or equal to b.” For instance, the following are true inequalities (see Figure 5):

7  7.4  7.5            p  3            !2  2            2  2

0 1 2 3 4 5 6 7 8_1_2_3_4

œ∑2 7.4 7.5_π

FIguRE 5

■ Sets and Intervals
A set is a collection of objects, and these objects are called the elements of the set. If S 
is a set, the notation a  S means that a is an element of S, and b o S means that b is not 
an element of S. For example, if Z represents the set of integers, then 3  Z but p o Z.

Some sets can be described by listing their elements within braces. For instance, the 
set A that consists of all positive integers less than 7 can be written as

A  51, 2, 3, 4, 5, 66
We could also write A in set-builder notation as

A  5x 0  x is an integer and 0  x  76
which is read “A is the set of all x such that x is an integer and 0  x  7.”

dIScoVERy pRojEct

Real Numbers in the Real World

Real-world measurements always involve units. For example, we usually mea-
sure distance in feet, miles, centimeters, or kilometers. Some measurements 
involve different types of units. For example, speed is measured in miles per 
hour or meters per second. We often need to convert a measurement from one 
type of unit to another. In this project we explore different types of units used 
for different purposes and how to convert from one type of unit to another. You 
can find the project at www.stewartmath.com.©
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12 CHAPTER P ■ Prerequisites

If S and T are sets, then their union S  T is the set that consists of all elements that 
are in S or T (or in both). The intersection of S and T is the set S  T consisting of all 
elements that are in both S and T. In other words, S  T is the common part of S and 
T. The empty set, denoted by , is the set that contains no element.

ExAMplE 4 ■ union and Intersection of Sets
If S  51, 2, 3, 4, 56 , T  54, 5, 6, 76 , and V  56, 7, 86 , find the sets S  T, S  T,  
and S  V.

SolutIoN

  S  T  51, 2, 3, 4, 5, 6, 76    All elements in S or T

  S  T  54, 56     Elements common to both S and T

  S  V       S and V have no element in common

Now try Exercise 41 ■

Certain sets of real numbers, called intervals, occur frequently in calculus and corre-
spond geometrically to line segments. If a  b, then the open interval from a to b con-
sists of all numbers between a and b and is denoted 1a,  b 2 . The closed interval from a to 
b includes the endpoints and is denoted 3a,  b 4 . Using set-builder notation, we can write

1a,  b 2  5x 0  a  x  b6   3a,  b 4  5x 0  a  x  b6
Note that parentheses 1  2  in the interval notation and open circles on the graph in  
Figure 6 indicate that endpoints are excluded from the interval, whereas square brackets 
3  4  and solid circles in Figure 7 indicate that the endpoints are included. Intervals may 
also include one endpoint but not the other, or they may extend infinitely far in one 
direction or both. The following table lists the possible types of intervals.

Notation Set description Graph

1a,  b 2 5x 0  a  x  b6
a b

a b

a b

a b

a

a

b

b

3a,  b 4 5x 0  a  x  b6
3a,  b 2 5x 0  a  x  b6
1a,  b 4 5x 0  a  x  b6
1a,  ` 2 5x 0  a  x6
3a,  ` 2 5x 0  a  x6
1`,  b 2 5x 0  x  b6
1`,  b 4 5x 0  x  b6
1`,  ` 2  (set of all real numbers)

ExAMplE 5 ■ graphing Intervals
Express each interval in terms of inequalities, and then graph the interval.

(a) 31,  2 2  5x 0  1  x  26

(b) 31.5,  4 4  5x 0  1.5  x  46

(c) 13,  ` 2  5x 0  3  x6
Now try Exercise 47 ■

 T
	 64748

1, 2, 3, 4, 5, 6, 7, 8
	14243		123

 S V

_3 0

1.5 40

_1 20

a b

FIguRE 6 The open interval 1a,  b 2

a b
FIguRE 7 The closed interval 3a,  b 4

The symbol `  (“infinity”) does not 
stand for a number. The notation 1a,  ` 2 , 
for instance, simply indicates that the 
interval has no endpoint on the right  
but extends infinitely far in the positive  
direction.
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SECTION P.2 ■ Real Numbers 13

ExAMplE 6 ■ Finding unions and Intersections of Intervals
Graph each set.

(a) 11,  3 2  32,  7 4    (b) 11,  3 2  32,  7 4
SolutIoN

(a)  The intersection of two intervals consists of the numbers that are in both  
intervals. Therefore

 11,  3 2  32,  7 4  5x 0  1  x  3 and 2  x  76
  5x 0  2  x  36  32,  3 2

  This set is illustrated in Figure 8.

(b)  The union of two intervals consists of the numbers that are in either one  
interval or the other (or both). Therefore

 11,  3 2  32,  7 4  5x 0  1  x  3 or 2  x  76
  5x 0  1  x  76  11,  7 4

  This set is illustrated in Figure 9.

30 1

70 2

30 2

(1,	3)

[2,	7]

[2,	3)

FIguRE 8 11,  3 2  32,  7 4  32,  3 2

30 1

70 2

10 7

(1,	3)

[2,	7]

(1,	7]

FIguRE 9 11,  3 2  32,  7 4  11,  7 4
Now try Exercise 61 ■

■ Absolute Value and distance
The absolute value of a number a, denoted by 0  a 0 , is the distance from a to 0 on  
the real number line (see Figure 10). Distance is always positive or zero, so we have 
0  a 0  0 for every number a. Remembering that a is positive when a is negative, we 
have the following definition.

dEFINItIoN oF ABSolutE VAluE

If a is a real number, then the absolute value of a is

0 a 0  e a if a  0

a if a  0

ExAMplE 7 ■ Evaluating Absolute Values of Numbers
(a) 0  3 0  3

(b) 0  3 0  13 2  3

(c) 0  0 0  0

(d) 0  3  p 0  13  p 2  p  3  1since 3  p 1 3  p  0 2
Now try Exercise 67 ■

50_3

|	5	|=5|	_3	|=3

FIguRE 10

No Smallest or largest Number  
in an open Interval
Any interval contains infinitely many 
numbers—every point on the graph of 
an interval corresponds to a real number. 
In the closed interval 30 ,   1 4 , the smallest 
number is 0 and the largest is 1, but the 
open interval 10 ,   1 2  contains no small
est or largest number. To see this, note 
that 0.01 is close to zero, but 0.001 is 
closer, 0.0001 is closer yet, and so on. We 
can always find a number in the interval 
10 ,   1 2  closer to zero than any given 
number. Since 0 itself is not in the inter
val, the interval contains no smallest 
number. Similarly, 0.99 is close to 1, but 
0.999 is closer, 0.9999 closer yet, and so 
on. Since 1 itself is not in the interval, the 
interval has no largest number.

0.10 0.01

0.010 0.001

0.0001 0.0010
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14 CHAPTER P ■ Prerequisites

When working with absolute values, we use the following properties.

pRopERtIES oF ABSolutE VAluE

Property Example Description

1. 0  a 0  0 0  3 0  3  0  The absolute value of a number is always positive or 
zero.

2. 0  a 0  0  a 0  0  5 0  0  5 0   A number and its negative have the same absolute 
value.

3. 0  ab 0  0  a 0 0  b 0  0  2 # 5 0  0  2 0 0  5 0   The absolute value of a product is the product of the 
absolute values.

4. `  a
b

 ` 
0  a 0
0  b 0  `  12

3
 ` 

0  12 0
0  3 0   

The absolute value of a quotient is the quotient of the 
absolute values.

5. 0  a  b 0  0  a 0  0  b 0  03  5 0  03 0  0  5 0  Triangle Inequality

What is the distance on the real line between the numbers 2 and 11? From  
Figure 11 we see that the distance is 13. We arrive at this by finding either 
0  11  12 2  0  13 or 0  12 2  11 0  13. From this observation we make the fol-

lowing definition (see Figure 12).

110_2

13

ba

|	b-a	|

FIguRE 11 FIguRE 12 Length of a line  
segment is 0  b  a 0

dIStANcE BEtWEEN poINtS oN thE REAl lINE

If a and b are real numbers, then the distance between the points a and b on the 
real line is

d1a, b 2  0  b  a 0

From Property 6 of negatives it follows that

0  b  a 0  0  a  b 0
This confirms that, as we would expect, the distance from a to b is the same as the 
distance from b to a.

ExAMplE 8 ■ distance Between points on the Real line
The distance between the numbers 8 and 2 is

d1a,  b 2  0  2  18 2 0  0  10 0  10

We can check this calculation geometrically, as shown in Figure 13.

Now try Exercise 75 ■

20_8

10

FIguRE 13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION P.2 ■ Real Numbers 15

coNcEptS
 1. Give an example of each of the following:

(a) A natural number

(b) An integer that is not a natural number

(c) A rational number that is not an integer

(d) An irrational number

 2. Complete each statement and name the property of real 
 numbers you have used.

(a) ab     ;   Property 

(b) a  1b  c2     ;   Property 

(c) a 1b  c2     ;   Property

 3. Express the set of real numbers between but not including 2 
and 7 as follows.

(a) In set-builder notation:  

(b) In interval notation:  

 4. The symbol 0  x 0  stands for the   of the number x. 

If x is not 0, then the sign of 0  x 0  is always    .

 5. The distance between a and b on the real line is d 1a, b 2 

   . So the distance between 5 and 2 is    .

6–8 ■ Yes or No? If No, give a reason. Assume that a and b are 
nonzero real numbers. 

 6. (a)  Is the sum of two rational numbers always a rational 
number?

(b) Is the sum of two irrational numbers always an irrational 
number?

 7. (a)  Is a  b equal to b  a?

(b) Is 21a  5 2  equal to 2a  10?

 8. (a)  Is the distance between any two different real numbers 
always positive?

(b)  Is the distance between a and b the same as the distance 
between b and a?

SkIllS
9–10 ■ Real Numbers  List the elements of the given set that are

(a) natural numbers
(b) integers
(c) rational numbers
(d) irrational numbers

 9. E1.5, 0, 52, !7, 2.71, p, 3.14, 100, 8F
 10. E1.3, 1.3333. . . , !5, 5.34, 500, 12

3, !16, 246
579, 20

5 F

11–18 ■ properties of Real Numbers  State the property of real 
numbers being used.

 11. 3  7  7  3 12. 412  3 2  12  3 24
 13. 1x  2y 2  3z  x  12y  3z2

 14. 21A  B 2  2A  2B

 15. 15x  1 23  15x  3

 16. 1x  a 2 1x  b 2  1x  a 2x  1x  a 2b
 17. 2x13  y 2  13  y 22x

 18. 71a  b  c 2  71a  b 2  7c

19–22 ■ properties of Real Numbers  Rewrite the expression 
using the given property of real numbers.

19. Commutative Property of Addition,  x  3 

20. Associative Property of Multiplication,  713x 2 

21. Distributive Property, 41A  B 2 

22. Distributive Property, 5x  5y 

23–28 ■ properties of Real Numbers  Use properties of real 
numbers to write the expression without parentheses.

23. 31x  y 2  24. 1a  b 28
25. 412m 2  26. 4

3 16y 2
27.  

5
2 12x  4y 2  28. 13a 2 1b  c  2d 2

29–32 ■ Arithmetic operations  Perform the indicated 
operations.

29. (a) 3
10  4

15 (b) 1
4  1

5

30. (a) 2
3  3

5 (b) 1  5
8  1

6

31. (a) 2
3 A6  3

2 B  (b) A3  1
4 B  A1  4

5 B
32. (a) 

2
2
3


2
3

2
 (b) 

2
5  1

2
1

10  3
15

33–34 ■ Inequalities  Place the correct symbol (, , or ) in 
the space.

33. (a) 3  
7
2  (b) 3   

7
2  (c) 3.5  

7
2

34. (a) 2
3   0.67 (b) 2

3   0.67

(c) 0  0.67 0   0  0.67 0

35–38 ■ Inequalities  State whether each inequality is true or 
false.

35. (a) 3  4 (b) 3  4

36. (a) !3  1.7325 (b) 1.732  !3

37. (a) 10
2  5 (b) 6

10  5
6

38. (a) 7
11  8

13 (b) 3
5  3

4

39–40 ■ Inequalities  Write each statement in terms of 
inequalities.

39. (a) x is positive.

(b) t is less than 4.

(c) a is greater than or equal to p.

(d) x is less than 1
3 and is greater than 5.

(e) The distance from p to 3 is at most 5.

p.2 ExERcISES
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16 CHAPTER P ■ Prerequisites

40. (a) y is negative.

(b) z is greater than 1.

(c) b is at most 8.

(d) „ is positive and is less than or equal to 17.

(e) y is at least 2 units from p.

41–44 ■ Sets  Find the indicated set if

A  51, 2, 3, 4, 5, 6, 76     B  52, 4, 6, 86
C  57, 8, 9, 106

41. (a) A  B (b) A  B

42. (a) B  C (b) B  C

43. (a) A  C (b) A  C

44. (a) A  B  C (b) A  B  C

45–46 ■ Sets  Find the indicated set if

A  5x 0  x  26     B  5x 0  x  46
C  5x 0  1  x  56

45. (a) B  C (b) B  C

46. (a) A  C (b) A  B

47–52 ■ Intervals  Express the interval in terms of inequalities, 
and then graph the interval.

47. 13,  0 2  48. 12,  8 4
49. 32,  8 2  50. C6,   

1
2 D

51. 32,  ` 2  52. 1`,  1 2

53–58 ■ Intervals  Express the inequality in interval notation, 
and then graph the corresponding interval.

53. x  1 54. 1  x  2

55. 2  x  1 56. x  5

57. x  1 58. 5  x  2

59–60 ■ Intervals  Express each set in interval notation.

59. (a)  
5_3 0

(b) 
5−3 0

60. (a) 
20

(b) −2 0

61–66 ■ Intervals  Graph the set.

61. 12,  0 2  11,  1 2  62. 12,  0 2  11,  1 2
63. 34,  6 4  30,  8 2  64. 34,  6 2  30,  8 2
65. 1`,  4 2  14,  ` 2  66. 1`,  6 4  12,  10 2

67–72 ■ Absolute Value  Evaluate each expression.

67. (a) 0  100 0  (b) 0  73 0
68. (a) 0  !5  5 0  (b) 0  10  p 0

69. (a)  @ 0 6 0  0  4  0 @ (b) 
1

0  1 0
70. (a)  @  2  0  12  0 @ (b) 1  @  1  0  1 0 @
71. (a) 0  12 2 # 6 0  (b) 0  A 

1
3 B  115 2  0

72. (a) `  6

24
 `  (b) `  7  12

12  7
 `

73–76 ■ distance  Find the distance between the given 
numbers.

73. 
321_3 _2 _1 0

74. 
321_3 _2 _1 0

75. (a) 2 and 17 (b) 3 and 21 (c) 11
8  and  

3
10

76. (a) 7
15  and  

1
21  (b) 38 and 57 (c) 2.6 and 1.8

SkIllS plus
77–78 ■ Repeating decimal  Express each repeating decimal as 
a fraction. (See the margin note on page 7.)

77. (a) 0.7 (b) 0.28 (c) 0.57

78. (a) 5.23 (b) 1.37 (c) 2.135

79–82 ■ Simplifying Absolute Value  Express the quantity with-
out using absolute value.

79. 0  p  3 0  80. 0  1  !2 0
81. 0  a  b 0 , where a  b

82. a  b  0  a  b 0 , where a  b

83–84 ■ Signs of Numbers  Let a, b, and c be real numbers 
such that a  0, b  0, and c  0. Find the sign of each 
expression.

83. (a) a (b) bc (c) a  b (d) ab  ac

84. (a) b (b) a  bc (c) c  a (d) ab2

ApplIcAtIoNS
85. Area of a garden  Mary’s backyard vegetable garden mea-

sures 20 ft by 30 ft, so its area is 20  30  600 ft 2.  
She decides to make it longer, as shown in the figure, so  
that the area increases to A  20130  x 2 . Which property 
of real numbers tells us that the new area can also be written  
A  600  20x?

x30 ft

20 ft
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SECTION P.2 ■ Real Numbers 17

86. temperature Variation  The bar graph shows the daily high 
temperatures for Omak, Washington, and Geneseo, New 
York, during a certain week in June. Let TO represent the 
temperature in Omak and TG the temperature in Geneseo. 
Calculate TO  TG and 0  TO  TG 0  for each day shown. 
Which of these two values gives more information?

80
Omak, WA
Geneseo, NY

75

70

65
Sun Mon Tue Wed

Day

D
ai

ly
 h

ig
h

te
m

pe
ra

tu
re

 (
*F

)

Thu Fri Sat

87. Mailing a package  The post office will accept only  
packages for which the length plus the “girth” (distance 
around) is no more than 108 in. Thus for the package in the 
figure, we must have

L  21x  y 2  108

(a) Will the post office accept a package that is 6 in. wide,  
8 in. deep, and 5 ft long? What about a package that 
measures 2 ft by 2 ft by 4 ft?

(b) What is the greatest acceptable length for a package that 
has a square base measuring 9 in. by 9 in.?

6 in.

L

8 in.

5 ft=60 in.
x

y

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
88. dIScuSS: Sums and products of Rational and Irrational  

Numbers  Explain why the sum, the difference, and the 
product of two rational numbers are rational numbers. Is the 
product of two irrational numbers necessarily irrational? 
What about the sum?

89. dIScoVER ■ pRoVE: combining Rational and Irrational 
Numbers  Is 1

2  !2 rational or irrational? Is 1
2
# !2 ratio-

nal or irrational? Experiment with sums and products of other 
rational and irrational numbers. Prove the following.

(a) The sum of a rational number r and an irrational number 
t is irrational. 

(b) The product of a nonzero rational number r and an irra-
tional number t is irrational. 

[Hint: For part (a), suppose that r  t is a rational number q, 
that is, r  t  q. Show that this leads to a contradiction. 
Use similar reasoning for part (b).]

90. dIScoVER: limiting Behavior of Reciprocals  Complete the 
tables. What happens to the size of the fraction 1/x as x gets 
large? As x gets small?

 x 1/x

1.0
0.5
0.1
0.01
0.001

 x 1/x

   1
   2
  10
 100
1000

91. dIScoVER: Irrational Numbers and geometry  Using the  
following figure, explain how to locate the point !2 on a 
number line. Can you locate !5 by a similar method? What 
about !6? List some other irrational numbers that can be  
located this way.

0_1

œ∑2

1 2

1

92. dIScuSS: commutative and Noncommutative operations   
We have seen that addition and multiplication are both com-
mutative operations.

(a) Is subtraction commutative?

(b) Is division of nonzero real numbers commutative?

(c)  Are the actions of putting on your socks and putting on 
your shoes commutative?

(d)  Are the actions of putting on your hat and putting on 
your coat commutative?

(e)  Are the actions of washing laundry and drying it 
 commutative?

(f) Give an example of a pair of actions that are 
commutative.

(g)  Give an example of a pair of actions that are not 
 commutative.

93. WRItE: Real Numbers in the Real World  Write a paragraph 
describing different real-world situations in which you would 
use natural numbers, integers, rational numbers, and irratio-
nal numbers. Give examples for each type of situation.

94. pRoVE: triangle Inequality  We prove Property 5 of abso-
lute values, the Triangle Inequality:

0  x  y 0  0  x 0  0  y 0
(a) Verify that the Triangle Inequality holds for x  2 and 

y  3, for x  2 and y  3, and for x  2 and 
y  3.

(b) Prove that the Triangle Inequality is true for all real num-
bers x and y. [Hint: Take cases.]
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18 CHAPTER P ■ Prerequisites

P.3 INtEgER ExpoNENtS ANd ScIENtIFIc NotAtIoN
■ Exponential Notation ■ Rules for Working with Exponents ■ Scientific Notation

In this section we review the rules for working with exponential notation. We also see 
how exponents can be used to represent very large and very small numbers.

■ Exponential Notation
A product of identical numbers is usually written in exponential notation. For example, 
5 # 5 # 5 is written as 53. In general, we have the following definition.

ExpoNENtIAl NotAtIoN

If a is any real number and n is a positive integer, then the nth power of a is

an  a # a # . . . # a
	 1442443

 n factors

The number a is called the base, and n is called the exponent.

ExAMplE 1 ■ Exponential Notation

(a) a 1

2
b

5

 a 1

2
b a 1

2
b a 1

2
b a 1

2
b a 1

2
b 

1

32

(b) 13 2 4  13 2 # 13 2 # 13 2 # 13 2  81

(c) 34  13 # 3 # 3 # 3 2  81

Now try Exercise 11 ■

We can state several useful rules for working with exponential notation. To discover 
the rule for multiplication, we multiply 54 by 52:

54 # 52  15 # 5 # 5 # 52 15 # 52  5 # 5 # 5 # 5 # 5 # 5  56  542

 144424443	 123	 1444442444443

 4 factors 2 factors 6 factors

It appears that to multiply two powers of the same base, we add their exponents. In 
general, for any real number a and any positive integers m and n, we have

aman  1a # a # . . . # a2  1a # a # . . . # a2   a # a # a # . . . # a  amn

 144424443	 1442443	 144424443

 m factors n factors m  n factors

Thus aman  amn.
We would like this rule to be true even when m and n are 0 or negative integers. For 

instance, we must have

20 # 23  203  23

But this can happen only if 20  1. Likewise, we want to have

54 # 54  54 142  544  50  1

and this will be true if 54  1/54. These observations lead to the following definition.

 Note the distinction between  
13 2 4 and 34. In 13 2 4 the exponent 
applies to 3, but in 34 the exponent 
applies only to 3.
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SECTION P.3 ■ Integer Exponents and Scientific Notation 19

ZERo ANd NEgAtIVE ExpoNENtS

If a ? 0 is a real number and n is a positive integer, then

a0  1    and    an 
1

an

ExAMplE 2 ■ Zero and Negative Exponents
(a) A47B0  1

(b) x1 
1

x1 
1
x

(c) 12 23 
1

12 2 3 
1

8
  

1

8

Now try Exercise 13 ■

■ Rules for Working with Exponents
Familiarity with the following rules is essential for our work with exponents and bases. 
In the table the bases a and b are real numbers, and the exponents m and n are integers.

lAWS oF ExpoNENtS

Law Example Description

1. aman  amn 32 # 35  325  37 To multiply two powers of the same number, add the exponents.

2. 
am

an  amn 
35

32  352  33 To divide two powers of the same number, subtract the exponents.

3. 1am 2 n  amn 132 2 5  32 #5  310 To raise a power to a new power, multiply the exponents.

4. 1ab 2 n  anbn 13 # 4 2 2  32 # 42 To raise a product to a power, raise each factor to the power.

5. a a

b
b

n


an

bn  a 3

4
b

2


32

42   
To raise a quotient to a power, raise both numerator and denominator 
to the power.

6. a a

b
b

n

 a b
a
b

n

 a 3

4
b

2

 a 4

3
b

2

  
To raise a fraction to a negative power, invert the fraction and change 
the sign of the exponent. 

7. 
an

bm 
bm

an  
32

45 
45

32  
 To move a number raised to a power from numerator to denominator 
or from denominator to numerator, change the sign of the exponent.

proof of law 3  If m and n are positive integers, we have

 1am2 n  1a # a # . . . # a2 n
 1444442444443

 m factors

  1a # a # . . . # a2 1a # a # . . . # a2 . . . 1a # a # . . . # a2
 1444442444443	 1444442444443	 1444442444443

 m factors m factors m factors
 144444444444424444444444443

 n groups of factors

  a # a # . . . # a  amn

 1442443

 mn factors

The cases for which m  0 or n  0 can be proved by using the definition of negative  
exponents. ■
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20 CHAPTER P ■ Prerequisites

proof of law 4  If n is a positive integer, we have

1ab2 n  1ab2 1ab2 . . . 1ab2  1a # a # . . . # a2 # 1b # b # . . . # b2  anbn

 144424443	 1442443	 1442443

 n factors n factors n factors

Here we have used the Commutative and Associative Properties repeatedly. If n  0,  
Law 4 can be proved by using the definition of negative exponents. ■

You are asked to prove Laws 2, 5, 6, and 7 in Exercises 58 and 59.

ExAMplE 3 ■ using laws of Exponents
(a) x4x7  x47  x11 Law 1: aman  amn

(b) y4y7  y47  y3 
1

y3  Law 1: aman  amn

(c) 
c9

c5  c95  c4 Law 2: 
am

an   amn

(d) 1b4 2 5  b4 #5  b20 Law 3: 1 am 2 n  amn

(e) 13x 2 3  33x3  27x3 Law 4: 1 ab 2 n  anbn

(f ) a x

2
b

5


x5

25 
x5

32
 Law 5: a a

b
b

n


an

bn

Now try Exercises 19 and 21 ■

ExAMplE 4 ■ Simplifying Expressions with Exponents
Simplify:

(a) 12a3b2 2 13ab4 2 3   (b) a x
y
b

3

a y2x
z b

4

SolutIoN

(a)  12a3b2 2 13ab4 2 3  12a3b2 2 333a31b4 2 3 4  Law 4: 1 ab 2 n  anbn

    12a3b2 2 127a3b12 2  Law 3: 1 am 2 n  amn

    12 2 127 2a3a3b2b12  Group factors with the same base

    54a6b14  Law 1: aman  amn

(b)  a x
y
b

3

a y2x
z b

4


x3

y3 
1y2 2 4x4

z4  Laws 5 and 4

    
x3

y3 
y8x4

z4  Law 3

    1x3x4 2 a y8

y3 b
1

z4  Group factors with the same base

    
x7y5

z4  Laws 1 and 2

Now try Exercises 25 and 29 ■

When simplifying an expression, you will find that many different methods will lead 
to the same result; you should feel free to use any of the rules of exponents to arrive at 
your own method. In the next example we see how to simplify expressions with nega-
tive exponents.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION P.3 ■ Integer Exponents and Scientific Notation 21

ExAMplE 5 ■ Simplifying Expressions with Negative Exponents
Eliminate negative exponents, and simplify each expression.

(a) 
6st4

2s2t2    (b) a y

3z3 b
2

SolutIoN

(a)  We use Law 7, which allows us to move a number raised to a power from the 
numerator to the denominator (or vice versa) by changing the sign of the exponent.

 
 
6st4

2s2t2 
6ss2

2t2t4  Law 7

   
3s3

t6   Law 1

(b)  We use Law 6, which allows us to change the sign of the exponent of a fraction 
by inverting the fraction.

  a y

3z3 b
2

 a 3z3

y
b

2

    Law 6

   
9z6

y2     Laws 5 and 4

Now try Exercise 31 ■

■ Scientific Notation
Exponential notation is used by scientists as a compact way of writing very large num-
bers and very small numbers. For example, the nearest star beyond the sun, Proxima 
Centauri, is approximately 40,000,000,000,000 km away. The mass of a hydrogen atom 
is about 0.00000000000000000000000166 g. Such numbers are difficult to read and to 
write, so scientists usually express them in scientific notation.

ScIENtIFIc NotAtIoN

A positive number x is said to be written in scientific notation if it is expressed 
as follows:

x  a  10n  where 1  a  10 and n is an integer

For instance, when we state that the distance to the star Proxima Centauri is  
4  1013 km, the positive exponent 13 indicates that the decimal point should be moved 
13 places to the right:

 4  1013  40,000,000,000,000

When we state that the mass of a hydrogen atom is 1.66  1024 g, the exponent 24 
indicates that the decimal point should be moved 24 places to the left:

 1.66  1024  0.00000000000000000000000166

Move decimal point 13 places to the right

0.00000000000000000000000166

Move decimal point 24 places to the left

t4 moves to denominator 
and becomes t4

s2 moves to numerator 
and becomes s2

Although we are often unaware of its 
presence, mathematics permeates nearly 
every aspect of life in the modern world. 
With the advent of modern technology, 
mathematics plays an ever greater role in 
our lives. Today you were probably awak
ened by a digital alarm clock, sent a text, 
surfed the Internet, watched HDTV or a 
streaming video, listened to music on 
your cell phone, drove a car with digitally 
controlled fuel injection, then fell asleep 
in a room whose temperature is con
trolled by a digital thermostat. In each of 
these activities mathematics is crucially 
involved. In general, a property such as 
the intensity or frequency of sound, the 
oxygen level in the exhaust emission from 
a car, the colors in an image, or the tem
perature in your bedroom is transformed 
into sequences of numbers by sophisti
cated mathematical algorithms. These 
numerical data, which usually consist of 
many millions of bits (the digits 0 and 1), 
are then transmitted and reinterpreted. 
Dealing with such huge amounts of data 
was not feasible until the invention of 
computers, machines whose logical proc
esses were invented by mathematicians.

The contributions of mathematics in 
the modern world are not limited to tech
nological advances. The logical processes of 
mathematics are now used to analyze com
plex problems in the social, political, and 
life sciences in new and surprising ways. 
Advances in mathematics continue to be 
made, some of the most exciting of these 
just within the past decade.

In other Mathematics in the Modern 
World, we will describe in more detail how 
mathematics affects all of us in our every
day activities.

Mathematics in the Modern World
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22 CHAPTER P ■ Prerequisites

ExAMplE 6 ■ changing from decimal Notation to Scientific Notation
Write each number in scientific notation.

(a) 56,920   (b) 0.000093

SolutIoN 

(a) 56,920  5.692  104        (b) 0.000093  9.3  105
 123	 123

 4 places 5 places

Now try Exercise 35 ■

ExAMplE 7 ■  changing from Scientific Notation  
to decimal Notation

Write each number in decimal notation.

(a) 6.97  109   (b) 4.6271  106

SolutIoN 

(a) 6.97  109  6,970,000,000 Move decimal 9 places to the right
 1442443

 9 places

(b) 4.6271  106  0.0000046271 Move decimal 6 places to the left
 14243

 6 places

Now try Exercise 37 ■

Scientific notation is often used on a calculator to display a very large or very small 
number. For instance, if we use a calculator to square the number 1,111,111, the display 
panel may show (depending on the calculator model) the approximation

1.234568 12   or  1.234568 e12

Here the final digits indicate the power of 10, and we interpret the result as

1.234568  1012

ExAMplE 8 ■ calculating with Scientific Notation
If a  0.00046, b  1.697  1022, and c  2.91  1018, use a calculator to approxi-
mate the quotient ab/c.

SolutIoN  We could enter the data using scientific notation, or we could use laws of 
exponents as follows:

 
ab
c


14.6  104 2 11.697  1022 2

2.91  1018

  
14.6 2 11.697 2

2.91
 1042218

  2.7  1036

We state the answer rounded to two significant figures because the least accurate of 
the given numbers is stated to two significant figures.

Now try Exercise 41 ■

To use scientific notation on a calcula-
tor, press the key labeled ee  or  
eXP  or eeX  to enter the exponent.  
For example, to enter the number  
3.629  1015 on a TI-83 or TI-84  
calculator, we enter

3.629  2nd  ee   15

and the display reads

3.629e15

For guidelines on working with signifi-
cant figures, see Appendix B, Calcula-
tions and Significant Figures. 
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coNcEptS
 1. Using exponential notation, we can write the product 

  5 # 5 # 5 # 5 # 5 # 5 as    .

 2. Is there a difference between 15 2 4 and 54?

 3. In the expression 34 the number 3 is called the    , 

  and the number 4 is called the    .

 4. When we multiply two powers with the same base, we 

    the exponents. So 34 # 35     .

 5. When we divide two powers with the same base, we   

  the exponents. So 
35

32
     .

 6. When we raise a power to a new power, we   the  

  exponents. So 13422     .

 7. Express the following numbers without using exponents.

(a) 21    (b) 23   

(c) A12 B1
    (d) 

1

23   

 8. Scientists express very large or very small numbers using 

    notation. In scientific notation 8,300,000 is 

     , and 0.0000327 is    .

9–10 ■ Yes or No? If No, give a reason.

 9. (a)  Is the expression A23 B2
 equal to 3

4?

(b) Is there a difference between 15 2 4 and 54?

 10. (a) Is the expression 1x2 2 3 equal to x5?

(b) Is the expression 12x4 2 3 equal to 2x12? 

SkIllS
11–18 ■ Exponential Notation  Evaluate each expression.

 11. (a) 26  (b) 12 2 6 (c) A15 B2 # 13 2 3
 12. (a) 15 2 3  (b) 53 (c) 15 2 2 # A25 B2

13. (a) A53 B0 # 21  (b) 
23

30  (c) A14 B2

14. (a) 23 # 12 2 0  (b) 23 # 12 2 0 (c) A2
3 B3

15. (a) 53 # 5 (b) 32 # 30 (c) 122 2 3
16. (a) 38 # 35  (b) 60 # 6 (c) 154 2 2

17. (a) 54 # 52  (b) 
107

104  (c) 
32

34

18. (a) 33 # 31  (b) 
54

5
 (c) 

72

75

19–24 ■ Expressions with Exponents  Simplify each 
expression.

 19. (a) x2x3 (b) 1x2 2 3 (c) t3t5

 20. (a) y5 # y2 (b) 18x 2 2 (c) x4x3

21. (a) x5 # x3 (b) „2„4„5 (c) 
y10y0

y7

22. (a) y2 # y5 (b) z5z3z4 (c) 
x6

x10

23. (a) 
a9a2

a
 (b) 1a2a4 2 3 (c) 12x 2 215x6 2

24. (a) 
z2z4

z3z1  (b) 12a3a2 2 4 (c) 13z2 2 312z3 2

25–34 ■ Simplifying Expressions with Exponents  Simplify each 
expression, and eliminate any negative exponent(s).

 25. (a) 13x2y 2 12x3 2  (b) 12a2b1 2 13a2b2 2
  (c) 14y2 2 1x4y 2 2
 26. (a) 14x3y2 2 17y5 2  (b) 19y2z2 2 13y3z 2
  (c) 18x7y2 2 1 12x3y 22

 27. (a) 12x2y3 2 213y 2  (b) 
x2y1

x5  

  (c) a x2y

3
b

3

 28. (a) 15x4y3 2 18x3 2 2 (b) 
y2z3

y1

  (c) a a3b2

b3 b
2

 29. (a) 1x3y3 21 (b) 1a2b2 231a3 22

  (c) a x2

y2 b
2

a 2y3

x2 b
3

 30. (a) 1x2y4 23 (b) 1y2 2112x3y4 23

  (c) a 2a1

b2 b
3

a b1

2a2 b
2

 31. (a) 
3x2y5

9x3y2  (b) a 2x3y1

y2 b
2

  (c) a y1

x2 b
1

a 3x3

y2 b
2

 32. (a) 
1
2 
a3b4

2a5b1  (b) a x2y

5x4 b
2

  (c) a 2y1z
z2 b

1

a y

3z2 b
2

 33. (a) a 3a

b3 b
1

 (b) a q1r1s2

r5sq8 b
1

 34. (a) a s2t4

5s1t
b

2

 (b) a xy2z3

x2y3z4 b
3

p.3 ExERcISES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



24 CHAPTER P ■ Prerequisites

35–36 ■ Scientific Notation  Write each number in scientific 
notation.

35. (a) 69,300,000 (b) 7,200,000,000,000

(c) 0.000028536 (d) 0.0001213

 36. (a) 129,540,000 (b) 7,259,000,000

(c) 0.0000000014 (d) 0.0007029

37–38 ■ decimal Notation  Write each number in decimal 
notation.

37. (a) 3.19  105 (b) 2.721  108

(c) 2.670  108 (d) 9.999  109

38. (a) 7.1  1014 (b) 6  1012

(c) 8.55  103 (d) 6.257  1010

39–40 ■ Scientific Notation  Write the number indicated in each 
statement in scientific notation.

39. (a)  A light-year, the distance that light travels in one year, is 
about 5,900,000,000,000 mi.

(b) The diameter of an electron is about 0.0000000000004 cm.

(c) A drop of water contains more than 33 billion billion  
molecules.

40. (a)  The distance from the earth to the sun is about  
93 million miles.

(b) The mass of an oxygen molecule is about 
0.000000000000000000000053 g.

(c) The mass of the earth is about  
5,970,000,000,000,000,000,000,000 kg.

41–46 ■ Scientific Notation  Use scientific notation, the Laws 
of Exponents, and a  cal culator to perform the indicated opera-
tions. State your answer rounded to the number of significant dig-
its indicated by the given data.

41. 17.2  1092 11.806  10122
 42. 11.062  10242 18.61  10192

 43. 
1.295643  109

13.610  1017 2 12.511  106 2

 44. 
173.1 2 11.6341  1028 2

0.0000000019

 45. 
10.0000162 2 10.01582 2
1594,621,000 2 10.0058 2  46. 

13.542  106 2 9
15.05  104 2 12

SkIllS plus
 47. distances Between powers  Which pair of numbers is closer 

together?

1010 and 1050    or    10100 and 10101

 48. Signs of Numbers  Let a, b, and c be real numbers  
with a  0, b  0, and c  0. Determine the sign of each 
 expression.

(a) b5 (b) b10 (c) ab2c3

(d) 1b  a23 (e) 1b  a24 (f) 
a3c3

b6c6

ApplIcAtIoNS
 49. distance to the Nearest Star  Proxima Centauri, the star near-

est to our solar system, is 4.3 light-years away. Use the informa-
tion in Exercise 39(a) to express this distance in miles.

 50. Speed of light  The speed of light is about 186,000 mi/s. Use 
the information in Exercise 40(a) to find how long it takes for 
a light ray from the sun to reach the earth.

 51. Volume of the oceans  The average ocean depth is  
3.7  103 m, and the area of the oceans is 3.6  1014 m2. 
What is the total volume of the ocean in liters? (One cubic 
meter contains 1000 liters.)

 52. National debt  As of July 2013, the population of the  
United States was 3.164  108, and the national debt was 
1.674  1013 dollars. How much was each person’s share of 
the debt?
[Source: U.S. Census Bureau and U.S. Department of  
Treasury] 

 53. Number of Molecules  A sealed room in a hospital, measur-
ing 5 m wide, 10 m long, and 3 m high, is filled with pure 
oxygen. One cubic meter contains 1000 L, and 22.4 L of any 
gas contains 6.02  1023 molecules (Avogadro’s number). 
How many molecules of oxygen are there in the room?

 54.  Body-Mass Index  The body-mass index is a measure that 
medical researchers use to determine whether a person is 
overweight, underweight, or of normal weight. For a person 
who weighs W pounds and who is H inches tall, the body-
mass index B is given by

B  703 

W

H 
2

  A body-mass index is considered “normal” if it satisfies  
18.5  B  24.9, while a person with body-mass index  
B  30 is considered obese.

(a) Calculate the body-mass index for each person listed in 
the table, then determine whether he or she is of normal 
weight, underweight, overweight, or obese.

Person Weight Height

Brian 295 lb 5 ft 10 in.
Linda 105 lb 5 ft 6 in.
Larry 220 lb 6 ft 4 in.
Helen 110 lb 5 ft 2 in.

(b) Determine your own body-mass index.

P.4 RAtIoNAl ExpoNENtS ANd RAdIcAlS
■ Radicals ■ Rational Exponents ■ Rationalizing the denominator; Standard Form

In this section we learn to work with expressions that contain radicals or rational 
exponents.

■ Radicals
We know what 2n means whenever n is an integer. To give meaning to a power, such as 
24/5, whose exponent is a rational number, we need to discuss radicals.

The symbol !  means “the positive square root of.” Thus

!a  b    means    b2  a    and    b  0

Since a  b2  0, the symbol !a makes sense only when a  0. For instance,

!9  3  because  32  9  and  3  0

Square roots are special cases of nth roots. The nth root of x is the number that, when 
raised to the nth power, gives x.

dEFINItIoN oF nth Root

If n is any positive integer, then the principal nth root of a is defined as 
follows:

!n a  b  means  bn  a

If n is even, we must have a  0 and b  0.

It is true that the number 9 has two 
square roots, 3 and 3, but the nota-
tion !9 is reserved for the positive 
square root of 9 (sometimes called the 
principal square root of 9). If we want 
the negative root, we must write !9, 
which is 3.
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 55. Interest on a cd  A sum of $5000 is invested in a 5-year 
certificate of deposit paying 3% interest per year, com-
pounded monthly. After n years the amount of interest I that 
has accumulated is given by

I  5000 3 11.0025 2 12n  1 4
  Complete the following table, which gives the amount of 

interest accumulated after the given number of years.

Year Total interest

1 $152.08
2  308.79
3
4
5

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
 56. dIScuSS: how Big Is a Billion?  If you had a million (106) 

dollars in a suitcase and you spent a thousand (103) dollars 

each day, how many years would it take you to use all the 
money? If you spent at the same rate, how many years would 
it take you to empty a suitcase filled with a billion (109) 
dollars?

 57. dIScuSS: Easy powers that look hard  Calculate these 
expressions in your head. Use the Laws of Exponents to help 
you.

(a) 
185

95  (b) 206 # 10.5 2 6

 58. pRoVE: laws of Exponents  Prove the following laws of 
exponents for the case in which m and n are positive integers 
and m  n.

(a) Law 2: 
am

an  amn (b) Law 5: a a

b
b

n


an

bn

 59. pRoVE: laws of Exponents  Prove the following laws of 
exponents.

(a) Law 6: a a

b
b

n


bn

an  (b) Law 7: 
an

bm 
bm

an

P.4 RAtIoNAl ExpoNENtS ANd RAdIcAlS
■ Radicals ■ Rational Exponents ■ Rationalizing the denominator; Standard Form

In this section we learn to work with expressions that contain radicals or rational 
exponents.

■ Radicals
We know what 2n means whenever n is an integer. To give meaning to a power, such as 
24/5, whose exponent is a rational number, we need to discuss radicals.

The symbol !  means “the positive square root of.” Thus

!a  b    means    b2  a    and    b  0

Since a  b2  0, the symbol !a makes sense only when a  0. For instance,

!9  3  because  32  9  and  3  0

Square roots are special cases of nth roots. The nth root of x is the number that, when 
raised to the nth power, gives x.

dEFINItIoN oF nth Root

If n is any positive integer, then the principal nth root of a is defined as 
follows:

!n a  b  means  bn  a

If n is even, we must have a  0 and b  0.

It is true that the number 9 has two 
square roots, 3 and 3, but the nota-
tion !9 is reserved for the positive 
square root of 9 (sometimes called the 
principal square root of 9). If we want 
the negative root, we must write !9, 
which is 3.
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For example,

!4 81  3     because  34  81  and  3  0

!3
8  2  because  12 2 3  8

But !8, !4 8, and !6 8 are not defined. (For instance, !8 is not defined  
because the square of every real number is nonnegative.)

Notice that

"42  !16  4  but  "14 2 2  !16  4  0  4 0
So the equation "a2  a is not always true; it is true only when a  0. However, we 
can always write "a2  0  a 0 . This last equation is true not only for square roots, but 
for any even root. This and other rules used in working with nth roots are listed in the 
following box. In each property we assume that all the given roots exist.

pRopERtIES oF nth RootS

Property Example

1. "n
ab  "n

a "n
b !3

8 # 27  !3
8!3 27  12 2 13 2  6

2. Å
n a

b


"n
a

"n
b

 Å
4 16

81


!4 16

!4 81


2

3

3. #m !n a  3
mn

a
_
 #!3 729  !6 729  3

4. "n
an  a  if n is odd "3 15 2 3  5, "5 25  2

5. "n
an  0  a 0   if n is even "4 13 2 4  0  3 0  3

ExAMplE 1 ■ Simplifying Expressions Involving nth Roots
(a)  "3 x4  "3 x3x Factor out the largest cube

    "3 x3
 "3 x Property 1: !3 ab  !3 a!3 b

    x"3 x Property 4: "3 a3  a

(b)  "4 81x8y4  "4 81 "4 x8
 "4 y4 Property 1: "4 abc  "4 a "4 b "4 c

    3"4 1x2 2 4 0  y 0  Property 5: "4 a4  0  a 0
    3x2 0  y 0  Property 5: "4 a4  0  a 0 , 0  x2

 0  x2

Now try Exercises 27 and 35 ■

It is frequently useful to combine like radicals in an expression such as 2!3  5!3. 
This can be done by using the Distributive Property. For example,

2!3  5!3  12  5 2!3  7!3

The next example further illustrates this process.

ExAMplE 2 ■ combining Radicals
(a)  !32  !200  !16 # 2  !100 # 2 Factor out the largest squares

   !16!2  !100!2 Property 1

   4!2  10!2  14!2 Distributive Property

 Avoid making the following error:

!a  b  !a  !b

For instance, if we let a  9 and  
b  16, then we see the error:

 !9  16 0 !9  !16

 !25 0 3  4

 5 0 7    Wrong!
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SECTION P.4 ■ Rational Exponents and Radicals 27

(b) If b  0, then

  "25b  "b3  "25 "b  "b2
 "b Property 1: !xy  !x!y

   5!b  b!b Property 5, b  0

   15  b 2!b Distributive Property

(c)  "49x2  49  "491x2  1 2  Factor out 49

   7"x2  1 Property 1: !ab  !a !b

Now try Exercises 39, 43, and 47 ■

■ Rational Exponents
To define what is meant by a rational exponent or, equivalently, a fractional exponent 
such as a1/3, we need to use radicals. To give meaning to the symbol a1/n in a way that 
is consistent with the Laws of Exponents, we would have to have

1a1/n 2 n  a11/n2n  a1  a

So by the definition of nth root,

a1/n  !n a

In general, we define rational exponents as follows.

dEFINItIoN oF RAtIoNAl ExpoNENtS

For any rational exponent m/n in lowest terms, where m and n are integers and  
n  0, we define

am/n  1!n a 2m  or equivalently  am/n  "n
am

If n is even, then we require that a  0.

With this definition it can be proved that the Laws of Exponents also hold for ratio-
nal exponents (see page 19).

ExAMplE 3 ■ using the definition of Rational Exponents
(a) 41/2  !4  2

(b) 82/3  1!3 8 2 2  22  4    Alternative solution: 82/3  "3 82  "3 64  4

(c) 1251/3 
1

1251/3


1

!3 125


1

5

Now try Exercises 49 and 51 ■

ExAMplE 4 ■ using the laws of Exponents with Rational Exponents
(a) a1/3a7/3  a8/3 Law 1: aman  amn

(b) 
a2/5a7/5

a3/5
 a2/57/53/5  a6/5    Law 1, Law 2: 

am

an  amn
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(c) 12a3b4 2 3/2  23/21a3 2 3/21b4 2 3/2 Law 4: 1abc 2 n  anbncn

   1!2 2 3a313/22b413/22 Law 3: 1am 2 n  amn 

   2!2a9/2b6

(d)  a 2x3/4

y1/3
b

3

a y4

x1/2
b 

231x3/4 2 3
1 y1/3 2 3

# 1 y4x1/2 2  Laws 5, 4, and 7

 
 

8x9/4

y
# y4x1/2  Law 3

   8x11/4y3  Laws 1 and 2

Now try Exercises 59, 61, 63, and 67 ■

ExAMplE 5 ■ Simplifying by Writing Radicals as Rational Exponents

(a) 
1

"3 x4


1

x4/3
 x4/3 Definition of rational and negative exponents

(b)  12!x 2 13!3 x 2  12x1/2 2 13x1/3 2  Definition of rational exponents

   6x1/21/3  6x5/6 Law 1

(c)  #x"x  1xx1/2 2 1/2 Definition of rational exponents

   1x3/2 2 1/2 Law 1

   x3/4 Law 3

Now try Exercises 71, 75, and 83 ■

■ Rationalizing the denominator; Standard Form
It is often useful to eliminate the radical in a denominator by multiplying both numera-
tor and denominator by an appropriate expression. This procedure is called rational-
izing the denominator. If the denominator is of the form !a, we multiply numerator 
and denominator by !a. In doing this we multiply the given quantity by 1, so we do 
not change its value. For instance,

1

!a


1

!a
# 1 

1

!a
# !a

!a


!a
a

Note that the denominator in the last fraction contains no radical. In general, if the  
denominator is of the form "n

am with m  n, then multiplying the numerator and  
denominator by "n

anm will rationalize the denominator, because (for a  0)

"n
am

 "n
anm  "n

amnm  "n
an  a

A fractional expression whose denominator contains no radicals is said to be in 
standard form.

ExAMplE 6 ■ Rationalizing denominators
Put each fractional expression into standard form by rationalizing the denominator. 

(a)  
2

!3
   (b) 

1

!3 5
   (c) Ä

7 1

a2

SolutIoN

(a)  
2

!3


2

!3
# !3

!3
 Multiply by 

!3

!3

  
 

2!3

3
 !3 # !3  3

This equals 1

The word algebra comes from the  
9thcentury Arabic book Hisâb al-Jabr 
w’al-Muqabala, written by alKhowarizmi. 
The title refers to transposing and com
bining terms, two processes that are used 
in solving equations. In Latin trans lations 
the title was shortened to Aljabr, from 
which we get the word algebra. The 
author’s name itself made its way into 
the English language in the form of our 
word algorithm.
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(b) 
1

"3 5


1

"3 5
# "

3 52

"3 52
 Multiply by 

"3 52

"3 52

  
 

"3 25

5
 "3 5 # "3 52  "3 53  5

(c)  Ä
7 1

a2 
1

"7 a2
 Property 2: Ä

n a

b


!n a

!n b

   
1

"7 a2
# "

7 a5

"7 a5
 Multiply by 

"7 a5

"7 a5

   
"7 a5

a
 "7 a2 # "7 a5  a

Now try Exercises 85, 87, and 89 ■

coNcEptS
 1. Using exponential notation, we can write "3 5 as    .

 2. Using radicals, we can write 51/2 as    .

 3. Is there a difference between "52 and 1!5 2 2? Explain.

 4. Explain what 43/2 means, then calculate 43/2 in two different 
ways:

141/2 2        or    143 2    

 5. Explain how we rationalize a denominator, then complete the 

following steps to rationalize 
1

!3
:

  
1

!3


1

!3
# f
a


a
f

 6. Find the missing power in the following calculation:  
51/3 # 5   5. 

7–8 ■ Yes or No? If No, give a reason.

 7. Is the expression "4a2 necessarily equal to 2a?

 8. Is the expression "a2  4 necessarily equal to a  2?

SkIllS
9–18 ■ Radicals and Exponents  Write each radical expression 
using exponents and each exponential expression using radicals.

Radical expression Exponential expression

 9.  
1

!3 

10.  "3 72 

11.   42/3

12.   103/2

13.  "5 53 

14.   21.5

15.   a2/5

16.  
1

"x5  

17.  "3 y4

 
18.   y5/3

19–26 ■ Evaluating Radicals  Evaluate each expression.

 19. (a) !16 (b) !4 16 (c) "4 1
16

 20. (a) !64 (b) !3
64  (c) !5

32

21. (a) 3!3 16 (b) 
!18

!81
 (c) "27

4

22. (a) 2!3 81 (b) 
!12

!25
 (c) "18

49

23. (a) !7 !28 (b) 
!48

!3
 (c) !4 24 !4 54

24. (a) !12 !24 (b) 
!54

!6
 (c) !3 15 !3 75

25. (a) 
!216

!6
 (b) !3 2 !3 32 (c) "4 1

4 "4 1
64

26. (a) "5 1
8 "5 1

4  (b) "6 1
2 !6 128 (c) 

!3 4

!3 108

27–38 ■ Simplifying Radicals  Simplify the expression. Assume 
that the letters denote any real numbers.

 27. "4 x4 28. "5 x10

 29. "5 32y6 30. "3 8a5

31. "4 16x8 32. "3 x3y6

p.4 ExERcISES
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33. "3 x3y 34. "x4y4

35. "36r2t4 36. "4 48a7b4

 37. "3 !64x6 38. "4 x4y2z2

39–48 ■ combining Radicals  Simplify the expression. Assume 
that all letters denote positive numbers.

 39. !32  !18 40. !75  !48

 41. !125  !45 42. "3 54  "3 16

 43. "9a3  "a  44. "16x  "x5

 45. "3 x4  "3 8x  46. "3 2y4  "3 2y

 47. "81x2  81 48. "36x2  36y2

49–54 ■ Rational Exponents  Evaluate each expression.

49. (a) 161/4 (b) 1251/3 (c) 91/2

50. (a) 271/3 (b) 18 2 1/3 (c) A18 B1/3

51. (a) 322/5 (b) A49 B1/2
 (c) A16

81 B3/4

52. (a) 1252/3 (b) A25
64 B3/2

 (c) 274/3

53. (a) 52/3 # 51/3 (b) 
33/5

32/5
 (c) 1!3 4 2 3

54. (a) 32/7 # 312/7 (b) 
72/3

75/3
 (c) 1!5 6 210

55–58 ■ Evaluating for given Values  Evaluate the expression  
using x  3, y  4, and z  1.

 55. "x2  y2 56. "4 x3  14y  2z

 57. 19x 2 2/3  12y 2 2/3  z2/3 58. 1xy 2 2z

59–68 ■ Simplifying Expressions Involving Rational Exponents   
Simplify the expression and eliminate any negative exponent(s). 
Assume that all letters denote positive numbers.

 59. (a) x3/4x5/4 (b) y2/3y4/3

60. (a) r1/6r5/6 (b) a3/5a3/10

 61. (a) 
„4/3„ 

2/3

„1/3
 (b) 

a5/412a3/4 2 3
a1/4

62. (a) 
x3/4x7/4

x5/4  (b) 
12y4/3 2 2y2/3

y7/3

 63. (a) 18a6b3/2 2 2/3 (b) 14a6b8 2 3/2

64. (a) 164a6b3 2 2/3
 (b) 116„8z3/2 2 3/4

 65. (a) 18y3 22/3 (b) 1u4√6 21/3

 66. (a) 1x5y1/3 23/5 (b) 14r8t1/2 2 1/2132t5/4 21/5

 67. (a) a x2/3

y1/2
b a x2

y3 b
1/6

 (b) a x1/2y2

2y1/4
b

4

a 4x2y4

y2 b
1/2

 68. (a) a x8y4

16y4/3
b

1/4

 (b) a8y3/4

y3z6 b
1/3

69–84 ■ Simplifying Expressions Involving Radicals  Simplify 
the expression and express the answer using rational exponents.  
Assume that all letters denote positive numbers.

 69. (a) "x3 70. "x5

71. "9 x5 72. 
1

"5 x3

 73. A"6 y5B A"3 y2B  74. "4 b3!b

 75. A5!3 x B  A2!4 x B  76. A2!a B A"3 a2B

 77. 
"4 x7

"4 x3
 78. 

"3 8x2

"x

 79. Å
16u3√
u√5  80. Å

3 54x2y4

2x5y

 81. 
!xy

"4 16xy
 82. 

"a3b

"4 a3b2

 83. "3 y!y 84. "s!s3

85–90 ■ Rationalizing the denominator  Put each fractional 
expression into standard form by rationalizing the denominator.

85. (a) 
1

!6
 (b) Ä

3

2
 (c) 

9

!4 2

86. (a) 
12

!3
 (b) Ä

12

5
 (c) 

8

"3 52

87. (a) 
1

!5x
 (b) Ä

x

5
 (c) Ä

5 1

x3

88. (a) Ä
s

3t
 (b) 

a

"6 b2
 (c) 

1

c3/5

 89. (a) 
1

!3 x
 (b) 

1

"6 x5
 (c) 

1

"7 x3

 90. (a) 
1

"3 x2
 (b) 

1

"4 x3
 (c) 

1

"3 x4

SkIllS plus
91–92 ■ comparing Roots  Without using a calculator, deter-
mine which number is larger in each pair.

91. (a) 21/2 or 21/3 (b) A12 B1/2
 or A12 B1/3

92. (a) 71/4 or 41/3 (b) !3 5 or !3

ApplIcAtIoNS
93. how Far can you See?  Because of the curvature of the earth, 

the maximum distance D that you can see from the top of a 
tall building of height h is estimated by the formula

D  "2rh  h2

  where r  3960 mi is the radius of the earth and D and h are 
also measured in miles. How far can you see from the 
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SECTION P.4 ■ Rational Exponents and Radicals 31

observation deck of the Toronto CN Tower, 1135 ft above the 
ground?

r

CN Tower

94. Speed of a Skidding car  Police use the formula 

s  "30fd

  to estimate the speed s (in mi/h) at which a car is traveling if 
it skids d feet after the brakes are applied suddenly. The num-
ber f is the coefficient of friction of the road, which is a mea-
sure of the “slipperiness” of the road. The table gives some 
typical estimates for f.

Tar Concrete Gravel

Dry 1.0 0.8 0.2
Wet 0.5 0.4 0.1

(a) If a car skids 65 ft on wet concrete, how fast was it mov-
ing when the brakes were applied?

(b) If a car is traveling at 50 mi/h, how far will it skid on wet 
tar?

 95. Sailboat Races  The speed that a sailboat is capable of sail-
ing is determined by three factors: its total length L, the sur-
face area A of its sails, and its displacement V (the volume of 
water it displaces).

    In general, a sailboat is capable of greater speed if it is longer, 
has a larger sail area, or displaces less water. To make sailing 
races fair, only boats in the same “class” can qualify to race 
together. For a certain race, a boat is considered to  qualify if

0.30L  0.38A1/2  3V1/3  16

  where L is measured in feet, A in square feet, and V in cubic 
feet. Use this inequality to answer the following questions.

(a)  A sailboat has length 60 ft, sail area 3400 ft2, and dis-
placement 650 ft3. Does this boat qualify for the race?

(b)  A sailboat has length 65 ft and displaces 600 ft3. What is 
the largest possible sail area that could be used and still 
 allow the boat to qualify for this race?

 96. Flow Speed in a channel  The speed of water flowing in a 
channel, such as a canal or river bed, is governed by the 
Manning Equation,

V  1.486 
A2/3S1/2

p2/3n

   Here V is the velocity of the flow in ft/s; A is the cross- 
sectional area of the channel in square feet; S is the down-
ward slope of the channel; p is the wetted perimeter in feet 
(the distance from the top of one bank, down the side of the 
channel, across the bottom, and up to the top of the other 
bank); and n is the roughness coefficient (a measure of the 
roughness of the channel bottom). This equation is used to 
predict the capacity of flood channels to handle runoff from 
heavy rainfalls. For the canal shown in the figure, A  75 ft2, 
S  0.050, p  24.1 ft, and n  0.040.

(a)  Find the speed at which water flows through the canal.

(b)  How many cubic feet of water can the canal discharge 
per second?  [Hint: Multiply V by A to get the volume 
of the flow per second.]

5 ft

10 ft

20 ft

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
 97. dIScoVER: limiting Behavior of powers  Complete the fol-

lowing tables. What happens to the nth root of 2 as n gets 
large? What about the nth root of 1

2?

 n A12 B1/n

1
2
5

10
100

 n 21/n

  1
  2
  5
 10
100

  Construct a similar table for n1/n. What happens to the nth 
root of n as n gets large?
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P.5 AlgEBRAIc ExpRESSIoNS
■ Adding and Subtracting polynomials ■ Multiplying Algebraic Expressions  
■ Special product Formulas

A variable is a letter that can represent any number from a given set of numbers. If we 
start with variables, such as x, y, and z, and some real numbers and combine them using 
addition, subtraction, multiplication, division, powers, and roots, we obtain an alge-
braic expression. Here are some examples:

2x2  3x  4   !x  10   
y  2z
y2  4

A monomial is an expression of the form axk, where a is a real number and k is a 
nonnegative integer. A binomial is a sum of two monomials and a trinomial is a sum 
of three monomials. In general, a sum of monomials is called a polynomial. For ex-
ample, the first expression listed above is a polynomial, but the other two are not.

polyNoMIAlS

A polynomial in the variable x is an expression of the form

a n 
x 

n  an1x
n1  . . .  a1x  a0

where a0, a1, . . . , an are real numbers, and n is a nonnegative integer. If an ? 0, 
then the polynomial has degree n. The monomials akxk that make up the poly-
nomial are called the terms of the polynomial.

Note that the degree of a polynomial is the highest power of the variable that appears 
in the polynomial.

Polynomial Type Terms Degree

2x2  3x  4 trinomial 2x2, 3x, 4 2
x8  5x binomial x8, 5x 8
8  x  x2  1

2 x3 four terms  
1
2 x3, x2, x, 8 3

5x  1 binomial 5x, 1 1
9x5 monomial 9x5 5
6 monomial 6 0

■ Adding and Subtracting polynomials
We add and subtract polynomials using the properties of real numbers that were dis-
cussed in Section P.2. The idea is to combine like terms (that is, terms with the same 
variables raised to the same powers) using the Distributive Property. For instance,

5x7  3x7  15  3 2x7  8x7

In subtracting polynomials, we have to remember that if a minus sign precedes an ex-
pression in parentheses, then the sign of every term within the parentheses is changed 
when we remove the parentheses:

1b  c 2  b  c

[This is simply a case of the Distributive Property, a1b  c 2  ab  ac, with a  1.]

distributive property

ac  bc  1a  b 2c
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SECTION P.5 ■ Algebraic Expressions 33

ExAMplE 1 ■ Adding and Subtracting polynomials
(a) Find the sum 1x3  6x2  2x  4 2  1x3  5x2  7x 2 .
(b) Find the difference 1x3  6x2  2x  4 2  1x3  5x2  7x 2 .
SolutIoN

(a) 1x3  6x2  2x  4 2  1x3  5x2  7x 2
        1x3  x3 2  16x2  5x2 2  12x  7x 2  4 Group like terms

        2x3  x2  5x  4 Combine like terms

(b) 1x3  6x2  2x  4 2  1x3  5x2  7x 2
        x3  6x2  2x  4  x3  5x2  7x Distributive Property

        1x3  x3 2  16x2  5x2 2  12x  7x 2  4 Group like terms

        11x2  9x  4 Combine like terms

Now try Exercises 17 and 21 ■

■ Multiplying Algebraic Expressions

To find the product of polynomials or other algebraic expressions, we need to use the 
Distributive Property repeatedly. In particular, using it three times on the product of two 
binomials, we get

1a  b 2 1c  d 2  a1c  d 2  b1c  d 2  ac  ad  bc  bd

This says that we multiply the two factors by multiplying each term in one factor by 
each term in the other factor and adding these products. Schematically, we have

1a  b 2 1c  d 2  ac  ad  bc  bd
 ↑ ↑ ↑ ↑
 F O I L

In general, we can multiply two algebraic expressions by using the Distributive 
Property and the Laws of Exponents.

ExAMplE 2 ■ Multiplying Binomials using FoIl

 12x  1 2 13x  5 2  6x2  10x  3x  5    Distributive Property
 ↑ ↑ ↑ ↑
 F O I L

   6x2  7x  5     Combine like terms

Now try Exercise 37 ■

When we multiply trinomials or other polynomials with more terms, we use the 
Distributive Property. It is also helpful to arrange our work in table form. The next ex-
ample illustrates both methods.

ExAMplE 3 ■ Multiplying polynomials
Find the product:  12x  3 2 1x2  5x  4 2  
SolutIoN 1: using the distributive property

12x  3 2 1x2  5x  4 2  2x1x2  5x  4 2  31x2  5x  4 2  Distributive Property

  12x # x2  2x # 5x  2x # 4 2  13 # x2  3 # 5x  3 # 4 2  Distributive Property

  12x3  10x2  8x 2  13x2  15x  12 2  Laws of Exponents

  2x3  7x2  7x  12  Combine like terms

The acronym FOIL helps us remember 
that the product of two binomials is the 
sum of the products of the First terms, 
the Outer terms, the Inner terms, and 
the Last terms.

2x � 1)(3x � 5)2x � 1)(3x � 5)

2x � 1)(3x � 5)2x � 1)(3x � 5)
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SolutIoN 2: using table Form

  x2  5x  4
  2x  3

  3x2  15x  12    Multiply x2  5x   4 by 3

  2x3  10x2  8x     Multiply x2  5x   4 by 2x

  2x3  7x2  7x  12    Add like terms

Now try Exercise 67 ■

■ Special product Formulas
Certain types of products occur so frequently that you should memorize them. You can 
verify the following formulas by performing the multiplications.

SpEcIAl pRoduct FoRMulAS

If A and B are any real numbers or algebraic expressions, then

1. 1A  B 2 1A  B 2  A2  B2 Sum and difference of same terms

2. 1A  B 2 2  A2  2AB  B2 Square of a sum

3. 1A  B 2 2  A2  2AB  B2 Square of a difference

4. 1A  B 2 3  A3  3A2B  3AB2  B3 Cube of a sum

5. 1A  B 2 3  A3  3A2B  3AB2  B3 Cube of a difference

The key idea in using these formulas (or any other formula in algebra) is the  
Principle of Substitution: We may substitute any algebraic expression for any letter in 
a formula. For example, to find 1x2  y3 2 2 we use Product Formula 2, substituting x 2 
for A and y 3 for B, to get

1x2  y3 2 2  1x2 2 2  21x2 2 1 y3 2  1 y3 2 2

ExAMplE 4 ■ using the Special product Formulas
Use the Special Product Formulas to find each product.

(a) 13x  5 2 2   (b) 1x2  2 2 3
SolutIoN

(a) Substituting A  3x and B  5 in Product Formula 2, we get

13x  5 2 2  13x 2 2  213x 2 15 2  52  9x2  30x  25

1A  B 2 2    A2    2AB    B2

dIScoVERy pRojEct

Visualizing a Formula

Many of the Special Product Formulas in this section can be “seen” as geomet-
rical facts about length, area, and volume. For example, the formula about the 
square of a sum can be interpreted to be about areas of squares and rectangles. 
The ancient Greeks always interpreted algebraic formulas in terms of geometric 
figures. Such figures give us special insight into how these formulas work. You 
can find the project at www.stewartmath.com.

ab b™

a™

b

a ab

a b
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(b) Substituting A  x2 and B  2 in Product Formula 5, we get

 1x2  2 2 3  1x2 2 3  31x2 2 212 2  31x2 2 12 2 2  23

  x6  6x4  12x2  8

Now try Exercises 45 and 63 ■

ExAMplE 5 ■ using the Special product Formulas
Find each product.

(a) 12x  !y 2 12x  !y 2    (b) 1x  y  1 2 1x  y  1 2
SolutIoN

(a) Substituting A  2x and B  !y in Product Formula 1, we get

12x  !y 2 12x  !y 2  12x 2 2  1!y 2 2  4x2  y

(b)  If we group x  y together and think of this as one algebraic expression, we can 
use Product Formula 1 with A  x  y and B  1.

 1x  y  1 2 1x  y  1 2  3 1x  y 2  1 4 3 1x  y 2  1 4
  1x  y 2 2  12     Product Formula 1

  x2  2xy  y2  1     Product Formula 2

Now try Exercises 61 and 85 ■

coNcEptS
 1. Which of the following expressions are polynomials?

(a) 2x3  1
2 x  !3 (b) x2  1

2  3!x 

(c) 
1

x2  4x  7
  (d) x5  7x2  x  100

(e) "3 8x6  5x3  7x  3 (f) "3x4  "5x2  15x

 2. To add polynomials, we add   terms. So 

  13x2  2x  4 2  18x2  x  1 2     .

 3. To subtract polynomials, we subtract   terms. So 

  12x3  9x2  x  10 2  1x3  x2  6x  8 2     .

  4. Explain how we multiply two polynomials, then perform the 

  following multiplication: 1x  22 1x  32     .

 5. The Special Product Formula for the “square of a sum” is 

  1A  B 2 2     . So 12x  3 2 2     .

 6. The Special Product Formula for the “product of the sum and 

  difference of terms” is 1A  B 2 1A  B 2      . 

  So 1 5  x 2 1 5  x 2      .

7–8 ■ Yes or No? If No, give a reason.

 7. (a) Is the expression 1x  5 2 2 equal to x2  25?

(b) When you expand 1x  a 2 2, where a ? 0, do you get 
three terms?

 8. (a) Is the expression 1x  5 2 1x  5 2  equal to x2  25?

(b) When you expand 1x  a 2 1x  a 2 , where a ? 0, do you 
get two terms?

SkIllS
9–14 ■ polynomials  Complete the following table by stating 
whether the polynomial is a monomial, binomial, or trinomial; 
then list its terms and state its degree.

Polynomial Type Terms Degree

 9. 5x3  6   

10. 2x2  5x  3 
  

11. 8   

12. 1
2 x7

   

13. x  x2  x3  x4 
  

14. !2x  !3   

15–32 ■ Adding and Subtracting polynomials  Find the sum, 
difference, or product.

15. 16x  3 2  13x  7 2  16. 13  7x 2  111  4x 2
 17. 12x2  5x 2  1x2  8x  3 2

p.5 ExERcISES
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 18. 12x2  3x  1 2  13x2  5x  4 2
 19.  31x  12  41x  22
 20. 812x  52  71x  92
 21. 15x3  4x2  3x 2  1x2  7x  2 2
 22.  41x2  3x  52  31x2  2x  12
 23. 2x1x  12 24. 3y12y  52
 25. x21x  32 26. y1y2  22
 27. 212  5t 2  t1 t  10 2  28. 513t  4 2  2t1 t  3 2
 29. r1r2  9 2  3r212r  1 2  30. √31√  9 2  2√212  2√ 2
 31. x212x2  x  1 2  32. 3x31x4  4x2  5 2

33–44 ■ using FoIl  Multiply the algebraic expressions using 
the FOIL method, and simplify.

33. 1x  3 2 1x  5 2  34. 14  x 2 12  x 2
35. 1s  6 2 12s  3 2  36. 12t  3 2 1 t  1 2
 37. 13t  22 17t  42 38. 14s  12 12s  52
 39. 13x  52 12x  12 40. 17y  32 12y  12
 41. 1x  3y2 12x  y2 42. 14x  5y2 13x  y2
 43. 12r  5s2 13r  2s2 44. 16u  5√2 1u  2√2

45–66 ■ using Special product Formulas  Multiply the algebraic 
expressions using a Special Product Formula, and simplify.

45. 15x  1 2 2 46. 12  7y 2 2
47. 13y  1 2 2 48. 12y  5 2 2
49. 12u  √22 50. 1x  3y2 2
51. 12x  3y22 52. 1r  2s2 2
53. 1x2  122 54. 12  y322
55. 1x  6 2 1x  6 2  56. 15  y 2 15  y 2
57. 13x  42 13x  42 58. 12y  52 12y  52
59. 1x  3y2 1x  3y2 60. 12u  √2 12u  √2
61. 1!x  2 2 1!x  2 2  62. 1!y  !2 2 1!y  !2 2
63. 1y  223 64. 1x  323
65. 11  2r23 66. 13  2y23

67–86 ■ Multiplying Algebraic Expressions  Perform the indi-
cated operations, and simplify.

67. 1x  2 2 1x2  2x  3 2  68. 1x  1 2 12x2  x  1 2
69. 12x  5 2 1x2  x  1 2  70. 11  2x 2 1x2  3x  1 2
71. !x1x  !x 2  72. x3/21!x  1/!x 2
73. y1/31y2/3  y5/3 2  74. x1/412x3/4  x1/4 2

75. 1x2  y2 2 2 76. a c 
1
c
b

2

77. 1x2  a2 2 1x2  a2 2  78. 1x1/2  y1/2 2 1x1/2  y1/2 2
79. 1!a  b 2 1!a  b 2
80. 1"h2  1  1 2 1"h2  1  1 2

81. 11  x2/3 2 11  x2/3 2  82. 11  b 2 211  b 2 2
83. 11x  1 2  x2 2 11x  1 2  x2 2  
84. 1x  12  x2 22 1x  12  x2 22
85. 12x  y  32 12x  y  32  86. 1x  y  z2 1x  y  z2

SkIllS plus
87–88 ■ Verifying Identities  Show that the following identities 
hold.

 87.  (a) ab  1
2 3 1a  b 2 2  1a2  b2 2 4

(b) 1a2  b2 2 2  1a2  b2 2 2  4a2b2

 88. 1a2  b2 2 1c2  d2 2  1ac  bd 2 2  1ad  bc 2 2

ApplIcAtIoNS
89. Volume of a Box  An open box is constructed from a 6 in. by 

10 in. sheet of cardboard by cutting a square piece from each 
corner and then folding up the sides, as shown in the figure. 
The volume of the box is

V  x16  2x2 110  2x2
(a) Explain how the expression for V is obtained.

(b)  Expand the expression for V. What is the degree of the 
resulting polynomial?

(c) Find the volume when x  1 and when x  2.

10 in.

6 in.

x

x

x

x

x

x

x

x
6 _ 2x

10 _ 2x

 90. Building Envelope  The building code in a certain town 
requires that a house be at least 10 ft from the boundaries of 
the lot. The buildable area (or building envelope) for the rect-
angular lot shown in the following figure is given by

A  1x  202 1y  202
(a) Explain how the expression for A is obtained.

(b) Expand to express A as a polynomial in x and y.

(c)  A contractor has a choice of purchasing one of two rect-
angular lots, each having the same area. One lot mea-
sures 100 ft by 400 ft; the other measures 200 ft by  
200 ft. Which lot has the larger building envelope?

10 ft

10 ft

Building
envelope

x

y

P.6 FActoRINg
■ common Factors ■ Factoring trinomials ■ Special Factoring Formulas ■ Factoring  
an Expression completely ■ Factoring by grouping terms

We use the Distributive Property to expand algebraic expressions. We sometimes need 
to reverse this process (again using the Distributive Property) by factoring an expres-
sion as a product of simpler ones. For example, we can write

 

x2  4  1x  2 2 1x  2 2
 

We say that x  2 and x  2 are factors of x 2  4.

■ common Factors
The easiest type of factoring occurs when the terms have a common factor.

ExAMplE 1 ■ Factoring out common Factors
Factor each expression.

(a) 3x2  6x  (b) 8x4y2  6x3y3  2xy4

SolutIoN

(a) The greatest common factor of the terms 3x 2 and 6x is 3x, so we have

3x2  6x  3x 1x  2 2
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 91. Interest on an Investment  A 3-year certificate of deposit 
pays interest at a rate r compounded annually. If $2000 is 
 invested, then the amount at maturity is

A  2000 11  r2 3

(a)  Expand the expression for A. What is the degree of the  
resulting polynomial?

(b) Find the amounts A for the values of r in the table.

Interest rate r 2% 3% 4.5% 6% 10%

Amount A

92. profit  A wholesaler sells graphing calculators. For an order 
of x calculators his total cost in dollars is 

C  50  30x  0.1x2 

  and his total revenue is 

R  50x  0.05x2

(a) Find the profit P on an order of x calculators.

(b)  Find the profit on an order of 10 calculators and on an  
order of 20 calculators.

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
93. dIScuSS: An Algebra Error  Beginning algebra students 

sometimes make the following error when squaring a 
binomial:

1x  52 2  x2  25

(a) Substitute a value for x to verify that this is an error.

(b) What is the correct expansion for 1x  52 2?
94.  dIScuSS: degrees of Sums and products of polynomials   

Make up several pairs of polynomials, then calculate the sum 
and product of each pair. On the basis of your experiments 
and observations, answer the following questions.

(a)  How is the degree of the product related to the degrees of 
the original polynomials?

(b) How is the degree of the sum related to the degrees of 
the original polynomials?

(c)  Test your conclusions by finding the sum and product of 
the following polynomials:

2x3  x  3    and    2x3  x  7

P.6 FActoRINg
■ common Factors ■ Factoring trinomials ■ Special Factoring Formulas ■ Factoring  
an Expression completely ■ Factoring by grouping terms

We use the Distributive Property to expand algebraic expressions. We sometimes need 
to reverse this process (again using the Distributive Property) by factoring an expres-
sion as a product of simpler ones. For example, we can write

 

x2  4  1x  2 2 1x  2 2
 

We say that x  2 and x  2 are factors of x 2  4.

■ common Factors
The easiest type of factoring occurs when the terms have a common factor.

ExAMplE 1 ■ Factoring out common Factors
Factor each expression.

(a) 3x2  6x  (b) 8x4y2  6x3y3  2xy4

SolutIoN

(a) The greatest common factor of the terms 3x 2 and 6x is 3x, so we have

3x2  6x  3x 1x  2 2
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(b) We note that

8, 6, and 2 have the greatest common factor 2

x 4, x 3, and x have the greatest common factor x

y 2, y 3, and y 4 have the greatest common factor y 2

   So the greatest common factor of the three terms in the polynomial is 2xy 2, and we 
have

 8x4y2  6x3y3  2xy4  12xy2 2 14x3 2  12xy2 2 13x2y 2  12xy2 2 1y2 2
  2xy214x3  3x2y  y2 2

chEck youR ANSWERS

(a) Multiplying gives (b) Multiplying gives

 3x1x  2 2  3x2  6x ✓  2xy214x3  3x2y  y2 2
      8x4y2  6x3y3  2xy4 ✓

Now try Exercises 9 and 11 ■

ExAMplE 2 ■ Factoring out a common Factor
Factor:  12x  421x  32  51x  32
SolutIoN  The two terms have the common factor x  3.

12x  4 2 1x  3 2  51x  3 2  3 12x  4 2  5 4 1x  3 2     Distributive Property

  12x  1 2 1x  3 2     Simplify

Now try Exercise 13 ■

■ Factoring trinomials
To factor a trinomial of the form x 2  bx  c, we note that

1x  r 2 1x  s 2  x2  1r  s 2x  rs

so we need to choose numbers r and s so that r  s  b and rs  c.

ExAMplE 3 ■ Factoring x 2 1 bx 1 c  by trial and Error
Factor:  x 2  7x  12

SolutIoN  We need to find two integers whose product is 12 and whose sum is 7. By 
trial and error we find that the two integers are 3 and 4. Thus the factorization is

x2  7x  12  1x  3 2 1x  4 2
 
 factors of 12

Now try Exercise 15 ■

To factor a trinomial of the form ax2  bx  c with a ? 1, we look for factors of  
the form px  r and qx  s:

ax2  bx  c  1 px  r 2 1qx  s 2  pqx2  1 ps  qr 2x  rs

Therefore we try to find numbers p, q, r, and s such that pq  a, rs  c, ps  qr  b. 
If these numbers are all integers, then we will have a limited number of possibilities to 
try for p, q, r, and s.

chEck youR ANSWER

Multiplying gives

1x  3 2 1x  4 2  x2  7x  12 ✓

 factors of a
 ↓ ↓

ax2  bx  c  Ópx  rÔÓqx  sÔ
 ↑ ↑
 factors of c

terms and Factors
When we multiply two numbers 
together, each of the numbers is called 
a factor of the product. When we add 
two numbers together, each number is 
called a term of the sum. 

 2  3 2  3

If a factor is common to each term of 
an expression we can factor it out. The 
following expression has two terms. 

 ax  2ay

Each term contains the factor a, so we 
can factor a out and write the expres-
sion as 

ax  2ay  a1x  2y 2

Factors Terms

a is a factor 
of each term
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ExAMplE 4 ■ Factoring ax 2 1 bx 1 c  by trial and Error
Factor:  6x2  7x  5

SolutIoN  We can factor 6 as 6 # 1 or 3 # 2 and can factor 5 as 5 # 1 or 5 # 11 2 . 
By trying these possibilities, we arrive at the factorization

 factors of 6
 

Title
Issue
Job	#
Code
Proof
Date
Return

Stewart

5035
pg	35

9-14

Illustrator
Designer
Art	Dir.
Story	Ed.
Copy	Ed.
Man.	Ed.
Editor

A	BOLEY

6x2  7x  5  13x  5 2 12x  1 2
 
 factors of 5

Now try Exercise 19 ■

ExAMplE 5 ■ Recognizing the Form of an Expression
Factor each expression.

(a) x2  2x  3   (b) 15a  1 2 2  215a  1 2  3

SolutIoN

(a) x2  2x  3  1x  3 2 1x  1 2   Trial and error

(b) This expression is of the form

2  2   3

   where  represents 5a  1. This is the same form as the expression in part (a), 
so it will factor as 1   32 1   12 :

1 5a  1 22  21 5a  1 2  3  31 5a  1 2  34 31 5a  1 2  14
  15a  22 15a  22

Now try Exercise 21 ■

■ Special Factoring Formulas
Some special algebraic expressions can be factored by using the following formulas. 
The first three are simply Special Product Formulas written backward.

FActoRINg FoRMulAS

Formula Name

1. A2  B2  1A  B 2 1A  B 2  Difference of squares

2. A2  2AB  B2  1A  B 2 2 Perfect square

3. A2  2AB  B2  1A  B 2 2 Perfect square

4. A3  B3  1A  B 2 1A2  AB  B2 2  Difference of cubes

5. A3  B3  1A  B 2 1A2  AB  B2 2  Sum of cubes

ExAMplE 6 ■ Factoring differences of Squares
Factor each expression.

(a) 4x2  25      (b) 1x  y 2 2  z2

chEck youR ANSWER

Multiplying gives

13x  5 2 12x  1 2  6x2  7x  5 ✓
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SolutIoN

(a) Using the Difference of Squares Formula with A  2x and B  5, we have

4x2  25  12x 2 2  52  12x  5 2 12x  5 2

(b) We use the Difference of Squares Formula with A  x  y and B  z.

1x  y 2 2  z2  1x  y  z 2 1x  y  z 2
Now try Exercises 25 and 29 ■

A trinomial is a perfect square if it is of the form

A2  2AB  B2    or    A2  2AB  B2

So we recognize a perfect square if the middle term (2AB or 2AB) is plus or minus 
twice the product of the square roots of the outer two terms.

ExAMplE 7 ■ Recognizing perfect Squares
Factor each trinomial.

(a) x2  6x  9      (b) 4x2  4xy  y2

SolutIoN

(a)  Here A  x and B  3, so 2AB  2 # x # 3  6x. Since the middle term is 6x, the 
trinomial is a perfect square. By the Perfect Square Formula we have

x2  6x  9  1x  3 2 2
(b)  Here A  2x and B  y, so 2AB  2 # 2x # y  4xy. Since the middle term is 

4xy, the trinomial is a perfect square. By the Perfect Square Formula we have

4x2  4xy  y2  12x  y 2 2
Now try Exercises 31 and 37 ■

ExAMplE 8 ■ Factoring differences and Sums of cubes
Factor each polynomial.

(a) 27x3  1      (b) x6  8

SolutIoN

(a) Using the Difference of Cubes Formula with A  3x and B  1, we get

 27x3  1  13x 2 3  13  13x  1 2 3 13x 2 2  13x 2 11 2  12 4
  13x  1 2 19x2  3x  1 2

(b) Using the Sum of Cubes Formula with A  x 2 and B  2, we have

x6  8  1x2 2 3  23  1x2  2 2 1x4  2x2  4 2
Now try Exercises 41 and 43 ■

■ Factoring an Expression completely
When we factor an expression, the result can sometimes be factored further. In general, 
we first factor out common factors, then inspect the result to see whether it can be fac-
tored by any of the other methods of this section. We repeat this process until we have 
factored the expression completely.

A2      B2      1A    B 2 1A   B 2

Changing Words, Sound, and 
Pictures into Numbers
Pictures, sound, and text are routinely 
transmitted from one place to another 
via the Internet, fax machines, or 
modems. How can such things be trans
mitted through telephone wires? The  
key to doing this is to change them into 
numbers or bits (the digits 0 or 1). It’s 
easy to see how to change text to  
numbers. For example, we could use  
the correspondence A  00000001,  
B  00000010, C  00000011,  
D  00000100, E  00000101, and  
so on. The word “BED” then becomes 
000000100000010100000100. By reading 
the digits in groups of eight, it is possible 
to translate this number back to the word 
“BED.”

Changing sound to bits is more com
plicated. A sound wave can be graphed 
on an oscilloscope or a computer. The 
graph is then broken down mathemati
cally into simpler components corre
sponding to the different frequencies of 
the original sound. (A branch of mathe
matics called Fourier analysis is used 
here.) The intensity of each component is 
a number, and the original sound can be 
reconstructed from these numbers. For 
example, music is stored on a CD as a 
sequence of bits; it may look like 
101010001010010100101010 10000010 
11110101000101011. . . . (One second of 
music requires 1.5 million bits!) The CD 
player reconstructs the music from the 
numbers on the CD.

Changing pictures into numbers 
involves expressing the color and bright
ness of each dot (or pixel) into a number. 
This is done very efficiently using a 
branch of mathematics called wavelet 
theory. The FBI uses wavelets as a com
pact way to store the millions of 
fingerprints they need on file.

Mathematics in the Modern World
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ExAMplE 9 ■ Factoring an Expression completely
Factor each expression completely.

(a) 2x4  8x2      (b) x5y2  xy6

SolutIoN

(a) We first factor out the power of x with the smallest exponent.

  2x4  8x2  2x21x2  4 2     Common factor is 2x2

   2x21x  2 2 1x  2 2     Factor x2  4 as a difference of squares

(b) We first factor out the powers of x and y with the smallest exponents.

  x5y2  xy6  xy21x4  y4 2     Common factor is xy2

   xy21x2  y2 2 1x2  y2 2      Factor x4  y4 as a difference of squares

   xy21x2  y2 2 1x  y 2 1x  y 2      Factor x2  y2 as a difference of squares

Now try Exercises 87 and 91 ■

In the next example we factor out variables with fractional exponents. This type of 
factoring occurs in calculus.

ExAMplE 10 ■ Factoring Expressions with Fractional Exponents
Factor each expression.

(a) 3x3/2  9x1/2  6x1/2   (b) 12  x 22/3x  12  x 2 1/3

SolutIoN

(a) Factor out the power of x with the smallest exponent, that is, x1/2.

  3x3/2  9x1/2  6x1/2  3x1/21x2  3x  2 2     Factor out 3x1/2

   3x1/21x  1 2 1x  2 2     Factor the quadratic x2  3x  2

(b) Factor out the power of 2  x with the smallest exponent, that is, 12  x 22/3.

  12  x 22/3x  12  x 2 1/3  12  x 22/3 3x  12  x 2 4     Factor out 12  x 22/3

   12  x 22/312  2x 2     Simplify

   212  x 22/311  x 2     Factor out 2

chEck youR ANSWERS

To see that you have factored correctly, multiply using the Laws of Exponents.

(a) 3x1/21x2  3x  2 2  (b) 12  x 22/3 3x  12  x 2 4
   3x3/2  9x1/2  6x1/2 ✓    12  x 22/3x  12  x 2 1/3 ✓

Now try Exercises 55 and 57 ■

■ Factoring by grouping terms
Polynomials with at least four terms can sometimes be factored by grouping terms. The 
following example illustrates the idea.

ExAMplE 11 ■ Factoring by grouping
Factor each polynomial.

(a) x3  x2  4x  4      (b) x3  2x2  9x  18

To factor out x1/2 from x 3/2, we  
subtract exponents:

x3/2  x1/21x3/2 11/22 2
  x1/21x3/21/2 2
  x1/21x2 2
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SolutIoN

(a)  x3  x2  4x  4  1x3  x2 2  14x  4 2  Group terms

    x21x  1 2  41x  1 2  Factor out common factors

    1x2  4 2 1x  1 2  Factor x  1 from each term

(b)  x3  2x2  9x  18  1x3  2x2 2  19x  18 2     Group terms

    x21x  2 2  91x  2 2     Factor common factors

    1x2  9 2 1x  2 2      Factor 1x  2 2  from each term

    1x  3 2 1x  3 2 1x  2 2     Factor completely

Now try Exercises 47 and 95 ■

coNcEptS
1–2 ■ Consider the polynomial 2x5  6x4  4x3.

 1. How many terms does this polynomial have?  

  List the terms:    

 2. What factor is common to each term?  

  Factor the polynomial: 2x5  6x4  4x3     .

 3. To factor the trinomial x2  7x  10, we look for two  integers 

  whose product is   and whose sum is    .

  These integers are   and    , so the trinomial

  factors as    .

 4. The greatest common factor in the expression 

41x  1 2 2  x1x  1 2 2 is    , and the expression fac-

tors as   1        2 .
 5. The Special Factoring Formula for the “difference of squares” 

  is A2  B 2     . So 4x2  25 factors as 

   .

 6. The Special Factoring Formula for a “perfect square” is 

  A2  2AB  B2     . So x2  10x  25

  factors as    .

SkIllS
7–14 ■ Factoring common Factors  Factor out the common 
factor.

 7. 5a  20  8. 3b  12

 9. 2x3  x 10. 3x4  6x3  x2

 11. 2x2y  6xy2  3xy 12. 7x4y2  14xy3  21xy4

 13. y1y  62  9 1y  62 14. 1z  222  5 1z  22

15–22 ■ Factoring trinomials  Factor the trinomial.

 15. x2  8x  7  16. x2  4x  5

 17. x2  2x  15 18. 2x2  5x  7

 19. 3x2  16x  5 20. 5x2  7x  6

 21. 13x  222  8 13x  22  12

 22. 21a  b22  5 1a  b2  3

23–30 ■ difference of Squares  Factor the difference of squares.

23. x2  25 24. 9  y2

25. 49  4z2 26. 9a2  16  

27. 16y2  z2 28. a2  36b2

29. 1x  3 2 2  y2 30. x2  1y  5 2 2

31–38 ■ perfect Squares  Factor the perfect square.

31. x2  10x  25 32. 9  6y  y2

33. z2  12z  36 34. „2  16„  64

35. 4t2  20t  25 36. 16a2  24a  9

37. 9u2  6u√  √2 38. x2  10xy  25y2

39–46 ■ Sum or difference of cubes  Factor the sum or differ-
ence of cubes.

39. x3  27 40. y3  64

41. 8a3  1 42. 8  27„3

43. 27x3  y3 44. 1  1000y3

45. u3  √6 46. 8r3  64t6

47–52 ■ Factoring by grouping  Factor the expression by 
grouping terms.

47. x3  4x2  x  4 48. 3x3  x2  6x  2

49. 5x3  x2  5x  1 50. 18x3  9x2  2x  1

51. x3  x2  x  1 52. x5  x4  x  1

53–60 ■ Fractional Exponents  Factor the expression completely. 
Begin by factoring out the lowest power of each common factor.

53. x5/2  x1/2 54. 3x1/2  4x1/2  x3/2

55. x3/2  2x1/2  x1/2 56. 1x  1 2 7/2  1x  1 2 3/2

57. 1x2  1 2 1/2  21x2  1 21/2 

p.6 ExERcISES
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 58. x1/21x  1 2 1/2  x1/21x  1 21/2

 59. 2x1/31x  2 2 2/3  5x4/31x  2 21/3

 60. 3x 1/21x2  1 2 5/4  x3/21x2  1 2 1/4

61–86 ■ Factoring completely  Factor the expression completely.

 61. 12x3  18x  62. 30x3  15x4

 63. 6y4  15y3  64. 5ab  8abc

 65. x2  2x  8  66. x2  14x  48

 67. y2  8y  15  68. z2  6z  16

 69. 2x2  5x  3  70. 2x2  7x  4

 71. 9x2  36x  45  72. 8x2  10x  3

 73. 6x2  5x  6  74. 6  5t  6t2

 75. x2  36  76. 4x2  25

 77. 49  4y2  78. 4t2  9s2

 79. t2  6t  9  80. x2  10x  25

 81. 4x2  4xy  y2  82. r2  6rs  9s2

 83. t3  1  84. x3  27

 85. 8x3  125  86. 125  27y3

87–98 ■ Factoring completely  Factor the expression completely.

 87. x3  2x2  x   88. 3x3  27x

 89. x4  2x3  3x2  90. 3„3  5„4  2„3

 91. x4y3  x2y5  92. 18y3x2  2xy4

 93. x6  8y3  94. 27a3  b6

 95. y3  3y2  4y  12  96. y3  y2  y  1

 97. 3x3  x2  12x  4  98. 9x3  18x2  x  2

99–108 ■ Factoring completely  Factor the expression and  
simplify.

 99. 1a  b 2 2  1a  b 2 2 

100. a1 
1
x
b

2

 a1 
1
x
b

2

101. x21x2  1 2  91x2  1 2  
102. 1a2  1 2b2  41a2  1 2
 103. 1x  1 2 1x  2 2 2  1x  1 2 21x  2 2
 104. 1x  1 2 3x  21x  1 2 2x2  x31x  1 2
 105. y41y  2 2 3  y51y  2 2 4 

 106. n1x  y 2  1n  1 2 1y  x 2
 107. 1a2  1 2 2  71a2  1 2  10

 108. 1a2  2a 2 2  21a2  2a 2  3

109–114 ■ Factoring completely  Factor the expression com-
pletely. (This type of expression arises in calculus in using the 
“product rule.”) 

 109. 3x214x  12 2 2  x312 2 14x  12 2 14 2
 110. 51x2  4 2 412x 2 1x  2 2 4  1x2  4 2 514 2 1x  2 2 3

 111. 312x  1 2 212 2 1x  3 2 1/2  12x  1 2 3A12 B 1x  3 21/2

 112. 1
3 1x  6 22/312x  3 2 2  1x  6 2 1/312 2 12x  3 2 12 2

 113. 1x2  3 21/3  2
3 x21x2  3 24/3

 114. 1
2 x 1/213x  4 2 1/2  3

2 x1/213x  4 21/2

ApplIcAtIoNS
115.  Volume of concrete  A culvert is constructed out of large 

cylindrical shells cast in concrete, as shown in the figure. 
Using the formula for the volume of a cylinder given on the 
inside front cover of this book, explain why the volume of 
the cylindrical shell is

V  pR2h  pr2h

  Factor to show that

V  2p # average radius # height # thickness

  Use the “unrolled” diagram to explain why this makes sense 
geometrically.

r
R

h h

116.  Mowing a Field  A square field in a certain state park is 
mowed around the edges every week. The rest of the field is 
kept unmowed to serve as a habitat for birds and small ani-
mals (see the figure). The field measures b feet by b feet, 
and the mowed strip is x feet wide.

(a) Explain why the area of the mowed portion is 
b2  1b  2x 2 2.

(b) Factor the expression in part (a) to show that the area of 
the mowed portion is also 4x1b  x 2 .

x

x

b

b

x

x

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
 117.  dIScuSS: the power of Algebraic Formulas  Use the Differ-

ence of Squares Formula A2  B2  1A  B 2 1A  B 2  to 
evaluate the following differences of squares in your head. 
Make up more such expressions that you can do in your head.

(a) 5282  5272

(b) 1222  1202

(c) 10202  10102
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118. dIScuSS: the power of Algebraic Formulas  Use the  
Special Product Formula 1A  B 2 1A  B 2  A2  B2 to 
evaluate the following products of numbers in your head. 
Make up more such products that you can do in your  
head.

(a) 501 # 499

(b) 79 # 61

(c) 2007 # 1993

119. dIScoVER: differences of Even powers
(a) Factor the expressions completely: A4  B 4 and  

A6  B 6.

(b) Verify that 18,335  124  74 and that  
2,868,335  126  76.

(c) Use the results of parts (a) and (b) to factor the  
integers 18,335 and 2,868,335. Then show that in 
both of these factorizations, all the factors are prime 
numbers.

120. dIScoVER: Factoring An 2 1
(a) Verify the following formulas by expanding and simpli-

fying the right-hand side.

  A2  1  1A  1 2 1A  1 2
  A3  1  1A  1 2 1A2  A  1 2
  A4  1  1A  1 2 1A3  A2  A  1 2

(b) On the basis of the pattern displayed in this list, how do 
you think A5  1 would factor? Verify your conjecture. 
Now generalize the pattern you have observed to obtain 
a factoring formula for An  1, where n is a positive 
integer.

121. pRoVE: Special Factoring Formulas  Prove the following 
formulas by expanding the right-hand side. 

(a) Difference of Cubes: 
A3  B3  1A  B 2 1A2  AB  B2 2

(b) Sum of Cubes:  
A3  B3  1A  B 2 1A2  AB  B2 2

P.7 RAtIoNAl ExpRESSIoNS
■ the domain of an Algebraic Expression ■ Simplifying Rational Expressions ■ Multiplying 
and dividing Rational Expressions ■ Adding and Subtracting Rational Expressions ■ compound 
Fractions ■ Rationalizing the denominator or the Numerator ■ Avoiding common Errors

A quotient of two algebraic expressions is called a fractional expression. Here are 
some examples:

2x

x  1   

y  2

y2  4   

x3  x

x2  5x  6   

x

"x2  1

A rational expression is a fractional expression in which both the numerator and the 
denominator are polynomials. For example, the first three expressions in the above 
list are rational expressions, but the fourth is not, since its denominator contains a 
radical. In this section we learn how to perform algebraic operations on rational ex-
pressions.

■ the domain of an Algebraic Expression
In general, an algebraic expression may not be defined for all values of the variable. 
The domain of an algebraic expression is the set of real numbers that the variable is 
permitted to have. The table in the margin gives some basic expressions and their 
domains.

ExAMplE 1 ■ Finding the domain of an Expression
Find the domains of the following expressions.

(a) 2x2  3x  1   (b) 
x

x 2  5x  6
   (c) 

!x

x  5

SolutIoN

(a)  This polynomial is defined for every x. Thus the domain is the set  of real  
numbers.

Expression Domain

1
x

5x 0  x ? 06

!x 5x 0  x  06
1

!x
5x 0  x  06
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(b) We first factor the denominator.

x

x2  5x  6


x

1x  2 2 1x  3 2

Denominator would be 0 if  
x  2 or x  3

   Since the denominator is zero when x  2 or 3, the expression is not defined for 
these numbers. The domain is 5x 0  x ? 2 and x ? 36 .

(c)  For the numerator to be defined, we must have x  0. Also, we cannot divide by 
zero, so x ? 5.

!x

x  5

  Thus the domain is 5x 0  x  0 and x ? 56 .
Now try Exercise 13 ■

■ Simplifying Rational Expressions
To simplify rational expressions, we factor both numerator and denominator and use 
the following property of fractions:

AC

BC


A

B

This allows us to cancel common factors from the numerator and denominator.

ExAMplE 2 ■  Simplifying Rational Expressions by cancellation

Simplify:  
x2  1

x2  x  2

SolutIoN

  
x2  1

x2  x  2

1x  1 2 1x  1 2
1x  1 2 1x  2 2     Factor

   
x  1

x  2
    Cancel common factors

Now try Exercise 19 ■

■ Multiplying and dividing Rational Expressions
To multiply rational expressions, we use the following property of fractions:

A

B
# C

D


AC

BD

This says that to multiply two fractions, we multiply their numerators and multiply their 
denominators.

Must have x  0  
to take square root Denominator would  

be 0 if x  5

 We can’t cancel the x 2’s in 

x2  1

x2  x  2
 because x 2 is not a factor.
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ExAMplE 3 ■ Multiplying Rational Expressions

Perform the indicated multiplication and simplify:  
x2  2x  3

x2  8x  16
# 3x  12

x  1
SolutIoN  We first factor.

 
x2  2x  3

x2  8x  16
# 3x  12

x  1

1x  1 2 1x  3 2
1x  4 2 2

#
31x  4 2

x  1
    Factor

  
31x  1 2 1x  3 2 1x  4 2
1x  1 2 1x  4 2 2     Property of fractions

  
31x  3 2

x  4
    

Cancel common 
factors

Now try Exercise 27 ■

To divide rational expressions, we use the following property of fractions:

A

B
4

C

D


A

B
# D

C

This says that to divide a fraction by another fraction, we invert the divisor and 
multiply.

ExAMplE 4 ■ dividing Rational Expressions

Perform the indicated division and simplify:  
x  4

x2  4
4

x2  3x  4

x2  5x  6
SolutIoN

 
x  4

x2  4
4

x2  3x  4

x2  5x  6


x  4

x 2  4
# x2  5x  6

x2  3x  4
    Invert and multiply

  
1x  4 2 1x  2 2 1x  3 2

1x  2 2 1x  2 2 1x  4 2 1x  1 2     Factor

  
x  3

1x  2 2 1x  1 2     Cancel common 
factors

Now try Exercise 33 ■

■ Adding and Subtracting Rational Expressions
To add or subtract rational expressions, we first find a common denominator and 
then use the following property of fractions:

A

C


B

C


A  B

C

Although any common denominator will work, it is best to use the least common de-
nominator (LCD) as explained in Section P.2. The LCD is found by factoring each 
denominator and taking the product of the distinct factors, using the highest power that 
appears in any of the factors.

 Avoid making the following error:

A

B  C
   

A

B


A

C

For instance, if we let A  2, B  1, 
and C  1, then we see the error:

  
2

1  1
0

2

1


2

1

  
2

2
0 2  2

  1 0 4  Wrong!
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ExAMplE 5 ■  Adding and Subtracting Rational Expressions
Perform the indicated operations and simplify.

(a) 
3

x  1


x

x  2
      

(b) 
1

x2  1


2

1x  1 2 2

SolutIoN

(a) Here the LCD is simply the product 1x  1 2 1x  2 2 .

  
3

x  1


x

x  2


31x  2 2
1x  1 2 1x  2 2 

x1x  1 2
1x  1 2 1x  2 2  

Write fractions using 
LCD

   
3x  6  x2  x

1x  1 2 1x  2 2  Add fractions

   
x2  2x  6

1x  1 2 1x  2 2  Combine terms in 
numerator

(b) The LCD of x2  1  1x  1 2 1x  1 2  and 1x  1 2 2 is 1x  1 2 1x  1 2 2.

  
1

x2  1


2

1x  1 2 2 
1

1x  1 2 1x  1 2 
2

1x  1 2 2    Factor

   
1x  1 2  21x  1 2
1x  1 2 1x  1 2 2     

Combine fractions  
using LCD

   
x  1  2x  2

1x  1 2 1x  1 2 2     Distributive Property

   
3  x

1x  1 2 1x  1 2 2     
Combine terms in  
numerator

Now try Exercises 43 and 45 ■

■ compound Fractions
A compound fraction is a fraction in which the numerator, the denominator, or both, 
are themselves fractional expressions.

ExAMplE 6 ■ Simplifying a compound Fraction

Simplify:  

x
y

 1

1 
y

x

SolutIoN 1  We combine the terms in the numerator into a single fraction. We do the 
same in the denominator. Then we invert and multiply.

 

x
y

 1

1 
y

x



x  y

y

x  y

x


x  y

y
# x
x  y

  
x1x  y 2
y1x  y 2

DioPhaNtuS lived in Alexandria about 
250 a.d. His book Arithmetica is considered 
the first book on algebra. In it he gives 
methods for finding integer solutions of 
algebraic equations. Arithmetica was read 
and studied for more than a thousand 
years. Fermat (see page 154) made some 
of his most important discoveries while 
studying this book. Diophantus’ major 
contribution is the use of symbols to stand 
for the unknowns in a problem. Although 
his symbolism is not as simple as what  
we use today, it was a major advance  
over writing everything in words. In 
Diophantus’ notation the equation

x5  7x2  8x  5  24

is written

Kga%h

c

gzM°eiskd

Our modern algebraic notation did not 
come into common use until the 17th 
century.
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SolutIoN 2  We find the LCD of all the fractions in the expression, then multiply  
numerator and denominator by it. In this example the LCD of all the fractions is xy.  
Thus

  

x
y

 1

1 
y

x



x
y

 1

1 
y

x

# xy

xy
    Multiply numerator 

and denominator by xy

   
x2  xy

xy  y2     Simplify

   
x1x  y 2
y1x  y 2     Factor

Now try Exercises 59 and 65 ■

The next two examples show situations in calculus that require the ability to work 
with fractional expressions.

ExAMplE 7 ■ Simplifying a compound Fraction

Simplify:  

1

a  h


1
a

h

SolutIoN  We begin by combining the fractions in the numerator using a common  
denominator.

 

1

a  h


1
a

h


a  1a  h 2
a1a  h 2

h
  

Combine fractions in the 
 numerator

  
a  1a  h 2

a1a  h 2 # 1

h
  

Property 2 of fractions (invert 
divisor and multiply)

  
a  a  h

a1a  h 2 # 1

h
  Distributive Property

  
h

a1a  h 2 #
1

h
  Simplify

  
1

a1a  h 2   
Property 5 of fractions 
(cancel common factors)

Now try Exercise 73 ■

ExAMplE 8 ■ Simplifying a compound Fraction

Simplify:  
11  x2 2 1/2  x211  x2 21/2

1  x2

SolutIoN 1  Factor 11  x2 21/2 from the numerator.

 
11  x2 2 1/2  x211  x2 21/2

1  x2 
11  x2 21/2 3 11  x2 2  x2 4

1  x2

  
11  x2 21/2

1  x2 
1

11  x2 2 3/2

We can also simplify by multiplying 
the numerator and the denominator by 
a1a  h 2 .

Factor out the power of 1  x2 with  
the smallest exponent, in this case 
11  x2 21/2

.
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SolutIoN 2  Since 11  x2 21/2  1/ 11  x2 2 1/2 is a fraction, we can clear all frac-
tions by multiplying numerator and denominator by 11  x2 2 1/2.

 
11  x2 2 1/2  x211  x2 21/2

1  x2   
11  x2 2 1/2  x211  x2 21/2

1  x2
#
11  x2 2 1/2

11  x2 2 1/2

  
11  x2 2  x2

11  x2 2 3/2


1

11  x2 2 3/2

Now try Exercise 81 ■

■ Rationalizing the denominator or the Numerator
If a fraction has a denominator of the form A  B !C, we can rationalize the denomi-
nator by multiplying numerator and denominator by the conjugate radical A  B !C. 
This works because, by Special Product Formula 1 in Section P.5, the product of the 
denominator and its conjugate radical does not contain a radical:

1A  B !C 2 1A  B !C 2  A2  B2C

ExAMplE 9 ■ Rationalizing the denominator

Rationalize the denominator:  
1

1  !2

SolutIoN  We multiply both the numerator and the denominator by the conjugate 
radical of 1  !2, which is 1  !2.

 
1

1  !2


1

1  !2
# 1  !2

1  !2
 

Multiply numerator and 
 denominator by the 
conjugate radical

  
1  !2

12  1!2 2 2  Special Product Formula 1

  
1  !2

1  2


1  !2

1
 !2  1

Now try Exercise 85 ■

ExAMplE 10 ■ Rationalizing the Numerator

Rationalize the numerator:  
!4  h  2

h

SolutIoN  We multiply numerator and denominator by the conjugate radical 
!4  h  2.

 
!4  h  2

h


!4  h  2

h
# !4  h  2

!4  h  2
    

Multiply numerator and 
 denominator by the 
conjugate radical

  
1!4  h 2 2  22

h1!4  h  2 2     Special Product Formula 1

  
4  h  4

h1!4  h  2 2

  
h

h1!4  h  2 2 
1

!4  h  2
    Property 5 of fractions  

(cancel common factors)

Now try Exercise 91 ■

Special Product Formula 1

1A  B 2 1A  B 2  A2  B2

Special Product Formula 1

1A  B 2 1A  B 2  A2  B2
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■ Avoiding common Errors
Don’t make the mistake of applying properties of multiplication to the operation of addition. 
Many of the common errors in algebra involve doing just that. The following table states 
several properties of multiplication and illustrates the error in applying them to addition.

Correct multiplication property Common error with addition

1a # b 2 2  a2 # b2 1a  b 2 2  a2  b2

!a # b  !a !b 1a, b  0 2 !a  b  !a  !b

"a2 # b2  a # b    1a, b  0 2 "a2  b2  a  b

1
a

# 1

b


1

a # b

1
a


1

b


1

a  b

ab
a

 b
a  b

a
 b

a1 # b1  1a # b 21 a1  b1  1a  b 21

To verify that the equations in the right-hand column are wrong, simply substitute 
numbers for a and b and calculate each side. For example, if we take a  2 and b  2 
in the fourth error, we get different values for the left- and right-hand sides:

1
a


1

b


1

2


1

2
 1

    

1

a  b


1

2  2


1

4
 Left-hand side Right-hand side

Since 1 ? 1
4, the stated equation is wrong. You should similarly convince yourself of the 

error in each of the other equations. (See Exercises 101 and 102.)

coNcEptS
 1. Which of the following are rational expressions?

(a) 
3x

x2  1
      (b) 

!x  1

2x  3
      (c) 

x 1x2  1 2  
x  3

 2. To simplify a rational expression, we cancel factors that are 

  common to the   and    . So the expression 

1x  1 2 1x  2 2
1x  3 2 1x  2 2  

  simplifies to    .

 3. To multiply two rational expressions, we multiply their

    together and multiply their   together. 

  So 
2

x  1
# x

x  3
 is the same as    .

 4. Consider the expression 
1
x


2

x  1


x

1x  1 2 2 .

(a) How many terms does this expression have?

(b) Find the least common denominator of all the terms.

(c) Perform the addition and simplify. 

5–6 ■ Yes or No? If No, give a reason. (Disregard any value that 
makes a denominator zero.)

 5. (a)  Is the expression 
x1x  1 2
1x  1 2 2  equal to 

x

x  1
? 

(b) Is the expression "x2  25 equal to x  5? 

 6. (a)  Is the expression 
3  a

3
 equal to 1 

a

3
? 

(b) Is the expression 
2

4  x
 equal to 

1

2


2
x

? 

SkIllS
7–14 ■ domain  Find the domain of the expression.

 7. 4x2  10x  3  8. x 4  x 3  9x

 9. 
x2  1

x  3
 10. 

2t2  5

3t  6

 11. !x  3 12. 
1

!x  1

 13. 
x2  1

x2  x  2
 14. 

!2x

x  1

p.7 ExERcISES
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15–24 ■ Simplify  Simplify the rational expression.

 15. 
51x  3 2 12x  1 2

101x  3 2 2  16. 
41x2  1 2

121x  2 2 1x  1 2

 17. 
x  2

x2  4
 18. 

x2  x  2

x2  1

19. 
x2  5x  6

x2  8x  15
 20. 

x2  x  12

x2  5x  6

21. 
y2  y

y2  1
 22. 

y2  3y  18

2y2  7y  3

23. 
2x3  x2  6x

2x2  7x  6
 24. 

1  x2

x3  1

25–38 ■ Multiply or divide  Perform the multiplication or divi-
sion and simplify.

25. 
4x

x2  4
# x  2

16x
 26. 

x2  25

x2  16
# x  4

x  5

27. 
x2  2x  15

x2  25
# x  5

x  2
 28. 

x2  2x  3

x2  2x  3
 #  

3  x

3  x

29. 
t  3

t2  9
# t  3

t2  9
 30. 

x2  x  6

x2  2x
# x3  x2

x2  2x  3

31. 
x2  7x  12

x2  3x  2
# x2  5x  6

x2  6x  9

32. 
x2  2xy  y2

x2  y2
# 2x2  xy  y2

x2  xy  2y2

33. 
x  3

4x2  9
4

x2  7x  12

2x2  7x  15

 34. 
2x  1

2x2  x  15
4

6x2  x  2

x  3

35. 

x3

x  1

 

x

x2  2x  1
 

 36. 

2x2  3x  2

x2  1

 

2x2  5x  2

x2  x  2
 

 37. 
x/y

z
  38. 

x

y/z

39–58 ■ Add or Subtract  Perform the addition or subtraction 
and simplify.

39. 1 
1

x  3
 40. 

3x  2

x  1
 2

41. 
1

x  5


2

x  3
 42. 

1

x  1


1

x  1

43. 
3

x  1


1

x  2
 44. 

x

x  4


3

x  6

 45. 
5

2x  3


3

12x  3 2 2  46. 
x

1x  1 2 2 
2

x  1

47. u  1 
u

u  1
 48. 

2

a2 
3

ab


4

b2

49. 
1

x2 
1

x2  x
 50. 

1
x


1

x2 
1

x3

51. 
2

x  3


1

x2  7x  12
 52. 

x

x2  4


1

x  2

53. 
1

x  3


1

x2  9

54. 
x

x2  x  2


2

x2  5x  4

55. 
2
x


3

x  1


4

x2  x

56. 
x

x2  x  6


1

x  2


2

x  3

57. 
1

x2  3x  2


1

x2  2x  3

58. 
1

x  1


2

1x  1 2 2 
3

x2  1

59–72 ■ compound Fractions  Simplify the compound frac-
tional expression.

59. 
1 

1
x

1
x

 2

 60. 
1 

2
y

3
y

 1

 61. 
1 

1

x  2

1 
1

x  2

 62. 
1 

1

c  1

1 
1

c  1

 63. 

1

x  1


1

x  3

x  1
 64. 

x  3

x  4


x  2

x  1

x  3

 65. 
x 

x

y

y 
y

x

 66. 
x 

y

x

y 
x

y

 

67. 

x

y


y

x

1

x2 
1

y2

 68. x 
y

x

y


y

x

69. 
x2  y2

x1  y1  70. 
x1  y1

1x  y 21

 71. 1 
1

1 
1
x

 72. 1 
1

1 
1

1  x

73–78 ■ Expressions Found in calculus  Simplify the fractional 
expression. (Expressions like these arise in calculus.)

73. 

1

1  x  h


1

1  x

h
 74. 

1

!x  h


1

!x
h
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 75. 

1

1x  h 2 2 
1

x2

h

76. 
1x  h 2 3  71x  h 2  1x3  7x 2

h

77. Å1  a x

"1  x2
b

2

 78. Å1  a x3 
1

4x3 b
2

79–84 ■ Expressions Found in calculus  Simplify the expres-
sion. (This type of expression arises in calculus when using the 
“quotient rule.”)

79. 
31x  2 2 21x  3 2 2  1x  2 2 312 2 1x  3 2

1x  3 2 4

80. 
2x1x  6 2 4  x214 2 1x  6 2 3

1x  6 2 8

 81. 
211  x 2 1/2  x 11  x 21/2

x  1

 82. 
11  x2 2 1/2  x211  x2 21/2

1  x2

 83. 
311  x 2 1/3  x 11  x 22/3

11  x 2 2/3

 84. 
17  3x 2 1/2  3

2 x 17  3x 21/2

7  3x

85–90 ■ Rationalize denominator  Rationalize the denominator.

 85. 
1

5  !3
 86. 

3

2  !5

 87. 
2

!2  !7
 88. 

1

!x  1

 89. 
y

!3  !y
 90. 

21x  y 2
!x  !y

91–96 ■ Rationalize Numerator  Rationalize the numerator.

 91. 
1  !5

3
 92. 

!3  !5

2

 93. 
!r  !2

5
 94. 

!x  !x  h

h!x !x  h

 95. "x2  1  x 96. !x  1  !x

ApplIcAtIoNS
 97. Electrical Resistance  If two electrical resistors with  

resistances R1 and R2 are connected in parallel (see the 
figure), then the total resistance R is given by

R 
1

1

R1


1

R2

(a) Simplify the expression for R.

(b) If R1  10 ohms and R2  20 ohms, what is the total  
resistance R?

R⁄

R™ 

 98. Average cost  A clothing manufacturer finds that the cost 
of producing x shirts is 500  6x  0.01x2 dollars.

(a) Explain why the average cost per shirt is given by the 
rational expression

A 
500  6x  0.01x2

x

(b) Complete the table by calculating the average cost per 
shirt for the given values of x.

x Average cost

10
20
50

100
200
500

1000

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
 99. dIScoVER: limiting Behavior of a Rational Expression  The 

rational expression

x2  9

x  3

  is not defined for x  3. Complete the tables, and determine 
what value the expression approaches as x gets closer and 
closer to 3. Why is this reasonable? Factor the numerator of 
the expression and simplify to see why.

x x2 2 9
x 2 3

2.80
2.90
2.95
2.99
2.999

x x2 2 9
x 2 3

3.20
3.10
3.05
3.01
3.001

 100. dIScuSS ■ WRItE: Is this Rationalization?  In the expres-
sion 2/!x we would eliminate the radical if we were to 
square both numerator and denominator. Is this the same 
thing as rationalizing the denominator? Explain.

P.8 SolVINg BASIc EquAtIoNS
■ Solving linear Equations ■ Solving power Equations ■ Solving for one Variable  
in terms of others

Equations are the basic mathematical tool for solving real-world problems. In this sec-
tion we learn how to solve equations.

An equation is a statement that two mathematical expressions are equal. For example,

3  5  8

is an equation. Most equations that we study in algebra contain variables, which are 
symbols (usually letters) that stand for numbers. In the equation

4x  7  19

the letter x is the variable. We think of x as the “unknown” in the equation, and our goal 
is to find the value of x that makes the equation true. The values of the unknown that 
make the equation true are called the solutions or roots of the equation, and the process 
of finding the solutions is called solving the equation.

Two equations with exactly the same solutions are called equivalent equations. To 
solve an equation, we try to find a simpler, equivalent equation in which the variable 
stands alone on one side of the equal sign. Here are the properties that we use to solve 
an equation. (In these properties, A, B, and C stand for any algebraic expressions, and 
the symbol 3 means “is equivalent to.”)
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 101. dIScuSS: Algebraic Errors  The left-hand column of the 
table lists some common algebraic errors. In each case, give 
an example using numbers that shows that the formula is 
not valid. An example of this type, which shows that a state-
ment is false, is called a counterexample.

Algebraic errors Counterexample

1
a


1

b


1

a  b

1

2


1

2
?

1

2  2

1a  b 2 2  a2  b2

"a2  b2  a  b

a  b

a
 b

a

a  b


1

b

am

an  am/n

 102. dIScuSS: Algebraic Errors  Determine whether the given 
equation is true for all values of the variables. If not, give a 
counterexample. (Disregard any value that makes a denomi-
nator zero.) 

(a) 
5  a

5
 1 

a

5
 (b) 

x  1

y  1


x

y

(c) 
x

x  y


1

1  y
 (d) 2 a a

b
b 

2a

2b

(e) 
a

b
  

a

b
 (f) 

1  x  x2

x


1
x

 1  x

 103. dIScoVER ■ pRoVE: Values of a Rational Expression   
Consider the expression

x 
1
x

  for x  0.

(a) Fill in the table, and try other values for x. What do you 
think is the smallest possible value for this expression?

x 1 3 1
2

9
10

99
100

x 1
1
x

(b) Prove that for x  0,

x 
1
x

 2

[Hint: Multiply by x, move terms to one side, and then fac-
tor to arrive at a true statement. Note that each step you 
made is reversible.]

P.8 SolVINg BASIc EquAtIoNS
■ Solving linear Equations ■ Solving power Equations ■ Solving for one Variable  
in terms of others

Equations are the basic mathematical tool for solving real-world problems. In this sec-
tion we learn how to solve equations.

An equation is a statement that two mathematical expressions are equal. For example,

3  5  8

is an equation. Most equations that we study in algebra contain variables, which are 
symbols (usually letters) that stand for numbers. In the equation

4x  7  19

the letter x is the variable. We think of x as the “unknown” in the equation, and our goal 
is to find the value of x that makes the equation true. The values of the unknown that 
make the equation true are called the solutions or roots of the equation, and the process 
of finding the solutions is called solving the equation.

Two equations with exactly the same solutions are called equivalent equations. To 
solve an equation, we try to find a simpler, equivalent equation in which the variable 
stands alone on one side of the equal sign. Here are the properties that we use to solve 
an equation. (In these properties, A, B, and C stand for any algebraic expressions, and 
the symbol 3 means “is equivalent to.”)

x  3 is a solution of the equation  
4x  7  19, because substituting  
x  3 makes the equation true:

413 2  7  19 ✓

x  3
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pRopERtIES oF EquAlIty

Property Description

1. A  B  3  A  C  B  C  Adding the same quantity to both sides of 
an equation gives an equivalent equation.

2. A  B  3  CA  CB  (C ? 0)  Multiplying both sides of an equation 
by the same nonzero quantity gives an 
equivalent equation.

These properties require that you perform the same operation on both sides of an 
equation when solving it. Thus if we say “add 4” when solving an equation, that is just 
a short way of saying “add 4 to each side of the equation.”

■ Solving linear Equations
The simplest type of equation is a linear equation, or first-degree equation, which is an 
equation in which each term is either a constant or a nonzero multiple of the variable.

lINEAR EquAtIoNS

A linear equation in one variable is an equation equivalent to one of the form

ax  b  0

where a and b are real numbers and x is the variable.

Here are some examples that illustrate the difference between linear and nonlinear 
equations.

 Linear equations Nonlinear equations

 4x  5  3 x2  2x  8

 2x  1
2 x  7 !x  6x  0

 x  6 
x

3
 

3
x

 2x  1

ExAMplE 1 ■ Solving a linear Equation
Solve the equation 7x  4  3x  8.

SolutIoN  We solve this by changing it to an equivalent equation with all terms that 
have the variable x on one side and all constant terms on the other.

 7x  4  3x  8     Given equation

 17x  4 2  4  13x  8 2  4     Add 4

 7x  3x  12     Simplify

 7x  3x  13x  12 2  3x    Subtract 3x

 4x  12     Simplify

 14 # 4x  1
4
# 12     Multiply by 1

4

 x  3     Simplify

Not linear; contains the  
reciprocal of the variable

Not linear; contains the 
square of the variable

Not linear; contains the 
square root of the variable
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chEck youR ANSWER

x  3:   LHS  713 2  4  RHS  313 2  8

    17    17

 LHS  RHS ✓  

Because it is important to CHECK 
YOUR ANSWER, we do this in many 
of our examples. In these checks, LHS 
stands for “left-hand side” and RHS 
stands for “right-hand side” of the  
original equation.

x  3 x  3

Now try Exercises 15 and 21 ■

When a linear equation involves fractions, solving the equation is usually easier if 
we first multiply each side by the lowest common denominator (LCD) of the fractions, 
as we see in the following examples.

ExAMplE 2 ■ Solving an Equation that Involves Fractions

Solve the equation 
x

6


2

3


3

4
 x.

SolutIoN  The LCD of the denominators 6, 3, and 4 is 12, so we first multiply each 
side of the equation by 12 to clear the denominators.

 12 # a x

6


2

3
b  12 # 3

4
 x  Multiply by LCD

 2x  8  9x   Distributive Property

 8  7x   Subtract 2x

 
8

7
 x   Divide by 7

The solution is  x  8
7.

Now try Exercise 27 ■

In the next example we solve an equation that doesn’t look like a linear equation, but 
it simplifies to one when we multiply by the LCD.

ExAMplE 3 ■  An Equation Involving Fractional Expressions

Solve the equation 
1

x  1


1

x  2


x  3

x 
2  x  2

 .

SolutIoN  The LCD of the fractional expressions is 1x  12 1x  2 2  x2  x  2. 
So as long as x ? 1 and x ? 2, we can multiply both sides of the equation by the 
LCD to get

 1x  1 2 1x  2 2 a 1

x  1


1

x  2
b  1x  1 2 1x  2 2 a x  3

x 
2  x  2

b   
Mulitiply  
by LCD

 1x  2 2  1x  1 2  x  3   Expand

 2x  1  x  3   Simplify

 x  4   Solve

The solution is x  4.

Now try Exercise 49 ■

chEck youR ANSWER

x  4:

 LHS 
1

4  1


1

4  2

 
1

5


1

2


7

10

 RHS 
4  3

42  4  2


7

10

 LHS  RHS ✓
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It is always important to check your answer, even if you never make a mistake in 
your calculations. This is because you sometimes end up with extraneous solutions, 
which are potential solutions that do not satisfy the original equation. The next example 
shows how this can happen.

ExAMplE 4 ■ An Equation with No Solution

Solve the equation 2 
5

x  4


x  1

x  4
.

SolutIoN  First, we multiply each side by the common denominator, which is x  4.

 1x  4 2 a 2 
5

x  4
b  1x  4 2 a x  1

x  4
b     Multiply by x  4

 21x  4 2  5  x  1     Expand

 2x  8  5  x  1     Distributive Property

 2x  3  x  1     Simplify

 2x  x  4     Add 3

 x  4     Subtract x

But now if we try to substitute x  4 back into the original equation, we would be 
dividing by 0, which is impossible. So this equation has no solution.

chEck youR ANSWER

x  4:

 LHS  2 
5

4  4
 2 

5

0
   RHS 

4  1

4  4


5

0

Impossible—can’t divide by 0. LHS and RHS are undefined, so x  4 is not a solution. ✗

Now try Exercise 51 ■

The first step in the preceding solution, multiplying by x  4, had the effect of mul-
tiplying by 0. (Do you see why?) Multiplying each side of an equation by an expression 
that contains the variable may introduce extraneous solutions. That is why it is impor-
tant to check every answer.

■ Solving power Equations
Linear equations have variables only to the first power. Now let’s consider some equa-
tions that involve squares, cubes, and other powers of the variable. Such equations will 
be studied more extensively in Sections 1.4 and 1.6. Here we just consider basic equa-
tions that can be simplified into the form Xn  a. Equations of this form are called 
power equations and can be solved by taking radicals of both sides of the equation.

SolVINg A poWER EquAtIoN

The power equation Xn  a has the solution

 X  !n a   if n is odd

 X  6!n a  if n is even and a  0

If n is even and a  0, the equation has no real solution.
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Here are some examples of solving power equations:

The equation x5  32 has only one real solution: x  "5 32  2.

The equation x4  16 has two real solutions: x  6"4 16  62.

The equation x5  32 has only one real solution: x  "5
32  2.

The equation x4  16 has no real solutions because "4
16 does not exist.

ExAMplE 5 ■ Solving power Equations
Solve each equation.

(a) x2  5  0      

(b) 1x  4 2 2  5

SolutIoN

(a)  x2  5  0

   x 
2  5   Add 5

   x  6 !5  Take the square root

  The solutions are x  !5 and x  !5.

(b) We can take the square root of each side of this equation as well.

1x  4 2 2  5

 x  4  6!5   Take the square root

 x  4 6 !5  Add 4

  The solutions are x  4  !5 and x  4  !5.

Be sure to check that each answer satisfies the original equation.

Now try Exercises 55 and 63 ■

We will revisit equations like the ones in Example 5 in Section 1.6.

ExAMplE 6 ■ Solving power Equations
Find all real solutions for each equation.

(a) x3  8      

(b) 16x4  81

SolutIoN

(a)  Since every real number has exactly one real cube root, we can solve this equa-
tion by taking the cube root of each side:

 1x 
3 2 1/3  18 2 1/3

 x  2

(b)  Here we must remember that if n is even, then every positive real number has two 
real nth roots, a positive one and a negative one.

 x 
4  81

16   Divide by 16

 1x 
4 2 1/4  6A81

16B1/4
  Take the fourth root

x  6 
3
2

Now try Exercises 65 and 67 ■

The next example shows how to solve an equation that involves a fractional power 
of the variable.

 If n is even, the equation 
x 

n  c 1c  0 2  has two solutions,  
x  c1/n and x  c1/n.

M
ar

y 
Ev

an
s 

Pi
ct

ur
e 

Li
br

ar
y/

Al
am

y

EuCLiD (circa 300 b.c.) taught in 
Alexandria, Egypt. His Elements is the 
most widely influential scientific book in 
history. For 2000 years it was the stan
dard introduction to geometry in the 
schools, and for many generations it was 
considered the best way to develop  
logical reasoning. Abraham Lincoln, for 
instance, studied the Elements as a way 
to sharpen his mind. The story is told that 
King Ptolemy once asked Euclid whether 
there was a faster way to learn geometry 
than through the Elements. Euclid replied 
that there is “no royal road to geometry”— 
meaning by this that mathematics does 
not respect wealth or social status. Euclid 
was revered in his own time and was 
referred to by the title “The Geometer” or 
“The Writer of the Elements.”  The great
ness of the Elements stems from its pre
cise, logical, and systematic treatment of 
geometry. For dealing with equality, 
Euclid lists the following rules, which he 
calls “common notions.”

1. Things that are equal to the same 
thing are equal to each other.

2. If equals are added to equals, the 
sums are equal.

3. If equals are subtracted from equals, 
the remainders are equal.

4. Things that coincide with one another 
are equal.

5. The whole is greater than the part.
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ExAMplE 7 ■  Solving an Equation with a Fractional power
Solve the equation 5x2/3  2  43.

SolutIoN  The idea is to first isolate the term with the fractional exponent, then raise 
both sides of the equation to the reciprocal of that exponent.

 5x 
2/3  2  43

 5x 
2/3  45   Add 2

 x 
2/3  9   Divide by 5

 x  693/2  Raise both sides to 3
2  power

 x  627   Simplify

The solutions are x  27 and x  27.

chEck youR ANSWER

x  27:  x  27:

   LHS  5127 2 2/3  2    LHS  5127 2 2/3  2

    519 2  2      519 2  2

    43      43

   RHS  43     RHS  43

   LHS  RHS ✓    LHS  RHS ✓

Now try Exercise 77 ■

■ Solving for one Variable in terms of others
Many formulas in the sciences involve several variables, and it is often necessary to 
express one of the variables in terms of the others. In the next example we solve for a 
variable in Newton’s Law of Gravity.

ExAMplE 8 ■ Solving for one Variable in terms of others
Solve for the variable M in the equation

F  G  

mM

r 
2

SolutIoN  Although this equation involves more than one variable, we solve it as usual 
by isolating M on one side and treating the other variables as we would numbers:

 F  aGm

r 
2 bM   Factor M from RHS

 a r 
2

Gm
bF  a r 

2

Gm
b aGm

r 
2 bM  Multiply by reciprocal of 

Gm

r 
2

 
r 

2F

Gm
 M   Simplify

The solution is M 
r 

2F

Gm
.

Now try Exercise 89 ■

 If n is even, the equation xn/m  c 
has two solutions, x  cm/n and  
x  cm/n.

This is Newton’s Law of Gravity. It 
gives the gravitational force F between 
two masses m and M that are a distance 
r apart. The constant G is the universal 
gravitational constant.
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ExAMplE 9 ■  Solving for one Variable in terms of others
The surface area A of the closed rectangular box shown in Figure 1 can be calculated 
from the length l, the width „, and the height h according to the formula

A  2l„  2„h  2lh

Solve for „ in terms of the other variables in this equation.

SolutIoN  Although this equation involves more than one variable, we solve it as 
usual by isolating „ on one side, treating the other variables as we would numbers:

  A  12l„  2„h 2  2lh Collect terms involving „

  A  2lh  2l„  2„h  Subtract 2lh

  A  2lh  12l  2h 2„  Factor „ from RHS

  
A  2lh

2l  2h
 „  Divide by 2l  2h

The solution is „ 
A  2lh

2l  2h
.

Now try Exercise 91 ■

h

l

„
FIguRE 1 A closed rectangular box

coNcEptS
 1. Substituting x  3 in the equation 4x  2  10 makes the 

  equation true, so the number 3 is a   of the equation.

 2. To solve an equation, we use the rules of algebra to put the 
variable alone on one side. Solve the equation 3x  4  10 
by using the following steps:

3x  4  10    Given equation

     Subtract 4

     Multiply by 1
3

  So the solution is x     .

 3. Which of the following equations are linear?

(a) 
x

2
 2x  10 (b) 

2
x

 2x  1  

(c) x  7  5  3x

 4. Explain why each of the following equations is not linear.

(a) x1x  1 2  6 (b) !x  2  x  

(c) 3x2  2x  1  0

 5. True or False?

(a)  Adding the same number to each side of an equation 
 always gives an equivalent equation.

(b)  Multiplying each side of an equation by the same number 
 always gives an equivalent equation.

(c)  Squaring each side of an equation always gives an equiv-
alent equation.

 6. To solve the equation x3  125, we take the   root 

  of each side. So the solution is x =    .

SkIllS
7–14 ■ Solution?  Determine whether the given value is a solu-
tion of the  equation.

 7. 4x  7  9x  3

(a) x  2 (b) x  2

 8. 2  5x  8  x

(a) x  1 (b) x  1

 9. 1  32  13  x 2 4  4x  16  x 2
(a) x  2 (b) x  4

 10. 
1
x


1

x  4
 1

(a) x  2 (b) x  4

 11. 2x1/3  3  1

(a) x  1 (b) x  8

 12. 
x3/2

x  6
 x  8

(a) x  4 (b) x  8

 13. 
x  a

x  b


a

b
 1b ? 02

(a) x  0 (b) x  b

14. x2  bx 
1

4
 b2  0

(a) x 
b

2
 (b) x 

1

b

p.8 ExERcISES
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15–28 ■ Linear Equations  Solve the given linear equation.

 15. 5x  6  14   16. 3x  4  7

17. 7  2x  15   18. 4x  95  1 

19. 
1

2
 x  7  3 20. 2 

1

3
 x  4

 21. 3x  3  5x  3 22. 2x  3  5  2x 

 23. 7x  1  4  2x 24.  1  x  x  4 

 25. x  3  4x 26. 2x  3  7  3x 

 27. 
x

3
 1 

5

3
 x  7 28. 

2

5
 x  1 

3

10
 x  3 

29–40 ■ Linear Equations  The given equation is either linear or 
equivalent to a linear equation. Solve the equation.

 29. 211  x 2  311  2x 2  5

 30. 51x  3 2  9  21x  2 2  1

 31. 4Ay  1
2 B  y  615  y 2

 32. r  2 31  312r  4 2 4  61

 33. x 
1

3
 x 

1

2
 x  5  0 34. 

2

3
 y 

1

2
 1y  3 2 

y  1

4

 35. 2x 
x

2


x  1

4
 6x

 
36. 3x 

5x

2


x  1

3


1

6

37. 1x  1 2 1x  2 2  1x  2 2 1x  3 2
38. x1x  1 2  1x  3 2 2
39. 1x  1 2 14x  5 2  12x  3 2 2
 40. 1 t  4 2 2  1 t  4 2 2  32

41–54 ■ Equations Involving Fractional Expressions  The given 
equation is either linear or equivalent to a linear equation. Solve 
the equation.

 41. 
1
x


4

3x
 1

 
42. 

2
x

 5 
6
x

 4

43. 
2x  1

x  2


4

5 
44. 

2x  7

2x  4


2

3

 45. 
2

t  6


3

t  1 
46. 

6

x  3


5

x  4

 47. 
3

x  1


1

2


1

3x  3 
48. 

12x  5

6x  3
 2 

5
x

 49. 
1
z


1

2z


1

5z


10

z  1 

 50. 
1

3  t


4

3  t


15

9  t2  0

 51. 
x

2x  4
 2 

1

x  2

 
52. 

1

x  3


5

x2  9


2

x  3

 53. 
3

x  4


1
x


6x  12

x2  4x  
54. 

1
x


2

2x  1


1

2x2  x

55–78 ■ Power Equations  The given equation involves a power 
of the variable. Find all real solutions of the equation.

 55. x2  25 56. 3x2  48

 57. 5x2  15 58. x2  1000

 59. 8x2  64  0 60. 5x2  125  0

 61. x2  16  0 62. 6x2  100  0

 63. 1x  3 2 2  5 64. 13x  4 2 2  7

 65. x3  27 66. x5  32  0

 67. x4  16  0 68. 64x6  27

 69. x4  64  0 70. 1x  1 2 3  8  0

 71. 1x  2 2 4  81  0 72. 1x  1 2 4  16  0

 73. 31x  3 2 3  375 74. 41x  2 2 5  1

 75. "3 x  5 76. x4/3  16  0

 77. 2x5/3  64  0 78. 6x2/3  216  0

79–86 ■ Linear Equations  Find the solution of the equation 
rounded to two decimals.

 79. 3.02x  1.48  10.92 80. 8.36  0.95x  9.97

 81. 2.15x  4.63  x  1.19

 82. 3.95  x  2.32x  2.00

 83. 3.161x  4.63 2  4.191x  7.24 2
 84. 2.141x  4.06 2  2.27  0.11x

 85. 
0.26x  1.94

3.03  2.44x
 1.76

 
86. 

1.73x

2.12  x
 1.51

87–100 ■ Solving for a Variable  Solve the equation for the indi-
cated variable.

 87. r 
12

M
;  for M  88. „d  rTH ;  for T 

 89. PV  nRT;  for R  90. F  G 

mM

r2 ;  for m

 91. P  2l  2„;  for „ 92. 
1

R


1

R1


1

R 2
;  for R1

 93. V  1
3 pr2h;  for r 94. F  G 

mM

r2 ;  for r

 95. V  4
3 pr3;  for r

 96. a2  b2  c2;  for b

 97. A  P a 1 
i

100
b

2

;  for i

 98. a2x  1a  1 2  1a  1 2x;  for x

 99. 
ax  b

cx  d
 2;  for x

 100. 
a  1

b


a  1

b


b  1
a

;  for a

P.9 ModELIng wIth EquatIonS
■ Making and using Models ■ Problems about Interest ■ Problems about area  
or Length ■ Problems about Mixtures ■ Problems about the time needed to do a Job  
■ Problems about distance, Rate, and time 

Many problems in the sciences, economics, finance, medicine, and numerous other 
fields can be translated into algebra problems; this is one reason that algebra is so 
useful. In this section we use equations as mathematical models to solve real-life 
problems.

■ Making and using Models
We will use the following guidelines to help us set up equations that model situations 
described in words. To show how the guidelines can help you to set up equations, we 
note them as we work each example in this section.
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ApplIcAtIoNS
 101.  Shrinkage in concrete Beams  As concrete dries, it shrinks; 

the higher the water content, the greater the shrinkage. If a 
concrete beam has a water content of „ kg/m3, then it will 
shrink by a factor

S 
0.032„  2.5

10,000

  where S is the fraction of the original beam length that dis-
appears owing to shrinkage.

(a)  A beam 12.025 m long is cast in concrete that contains  
250 kg/m3 water. What is the shrinkage factor S? How 
long will the beam be when it has dried?

(b)  A beam is 10.014 m long when wet. The manufacturer 
wants it to shrink to 10.009 m, so the shrinkage factor 
should be S  0.00050. What water content will provide 
this amount of shrinkage?

 102. Manufacturing cost  A toy maker finds that it costs  
C  450  3.75x dollars to manufacture x toy trucks. If  
the budget allows $3600 in costs, how many trucks can be 
made?

 103.  power produced by a Windmill  When the wind blows  
with speed √ km/h, a windmill with blade length 150 cm 
 generates P watts (W) of power according to the formula 
P  15.6 √ 

3.

(a)  How fast would the wind have to blow to generate  
10,000 W of power?

(b) How fast would the wind have to blow to generate  
50,000 W of power?

 104.  Food consumption  The average daily food consumption F 
of a herbivorous mammal with body weight x, where both F 
and x are measured in pounds, is given approximately by 

the equation F  0.3x3/4. Find the weight x of an elephant 
that consumes 300 lb of food per day.

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
 105.  dIScuSS: A Family of Equations  The equation

3x  k  5  kx  k  1

  is really a family of equations, because for each value of k, 
we get a different equation with the unknown x. The letter k  
is called a parameter for this family. What value should we 
pick for k to make the given value of x a solution of the 
 resulting equation?

(a) x  0      (b) x  1      (c) x  2

 106.  dIScuSS: proof that 0  1?  The following steps appear to 
give equivalent equations, which seem to prove that 1  0.  
Find the error.

 x  1  Given

 x2  x  Multiply by x

  x2  x  0  Subtract x

 x1x  1 2  0  Factor

 x  0  Divide by x  1

 1  0  Given x = 1

P.9 ModElINg WIth EquAtIoNS
■ Making and using Models ■ problems About Interest ■ problems About Area  
or length ■ problems About Mixtures ■ problems About the time Needed to do a job  
■ problems About distance, Rate, and time 

Many problems in the sciences, economics, finance, medicine, and numerous other 
fields can be translated into algebra problems; this is one reason that algebra is so 
useful. In this section we use equations as mathematical models to solve real-life 
problems.

■ Making and using Models
We will use the following guidelines to help us set up equations that model situations 
described in words. To show how the guidelines can help you to set up equations, we 
note them as we work each example in this section.
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guIdElINES FoR ModElINg WIth EquAtIoNS

1. Identify the Variable.  Identify the quantity that the problem asks you to find. 
This quantity can usually be determined by a careful reading of the question 
that is posed at the end of the problem. Then introduce notation for the 
variable (call it x or some other letter).

2. translate from Words to Algebra.  Read each sentence in the problem again, 
and express all the quantities mentioned in the problem in terms of the vari-
able you defined in Step 1. To organize this information, it is sometimes 
helpful to draw a diagram or make a table.

3. Set up the Model.  Find the crucial fact in the problem that gives a relation-
ship between the expressions you listed in Step 2. Set up an equation (or 
model) that expresses this relationship.

4. Solve the Equation and check your Answer.  Solve the equation, check your 
answer, and express it as a sentence that answers the question posed in the 
problem.

The following example illustrates how these guidelines are used to translate a “word 
problem” into the language of algebra.

ExAMplE 1 ■ Renting a car
A car rental company charges $30 a day and 15¢ a mile for renting a car. Helen rents 
a car for two days, and her bill comes to $108. How many miles did she drive?

SolutIoN Identify the variable.  We are asked to find the number of miles Helen has 
driven. So we let

x  number of miles driven

translate from words to algebra.  Now we translate all the information given in the 
prob lem into the language of algebra.

In Words In Algebra

Number of miles driven x
Mileage cost (at $0.15 per mile) 0.15x
Daily cost (at $30 per day) 21302

Set up the model.  Now we set up the model.

mileage cost   daily cost   total cost

 0.15x  2130 2  108

Solve.   Now we solve for x.

  0.15x  48     Subtract 60

  x 
48

0.15
    Divide by 0.15

  x  320     Calculator

Helen drove her rental car 320 mi.

Now try Exercise 21 ■

chEck youR ANSWER

total cost  mileage cost  daily cost

  0.151320 2  2130 2
  108 ✓
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SECTION P.9 ■ Modeling with Equations 63

In the examples and exercises that follow, we construct equations that model prob-
lems in many different real-life situations. Pay special attention to the process of trans-
lating a word problem into the language of algebra.

■ problems About Interest
When you borrow money from a bank or when a bank “borrows” your money by keep-
ing it for you in a savings account, the borrower in each case must pay for the privilege 
of using the money. The fee that is paid is called interest. The most basic type of inter-
est is simple interest, which is just an annual percentage of the total amount borrowed 
or deposited. The amount of a loan or deposit is called the principal P. The annual 
percentage paid for the use of this money is the interest rate r. We will use the vari-
able t to stand for the number of years that the money is on deposit and the variable I 
to stand for the total interest earned. The following simple interest formula gives the 
amount of interest I earned when a principal P is deposited for t years at an interest 
rate r. 

I  Prt

When using this formula, remember to convert r from a percentage to a decimal. For 
example, in decimal form, 5% is 0.05. So at an interest rate of 5%, the interest paid on 
a $1000 deposit over a 3-year period is

I  Prt  100010.05 2 13 2  $150

ExAMplE 2 ■ Interest on an Investment
Mary inherits $100,000 and invests it in two certificates of deposit. One certificate 
pays 6% and the other pays 41

2% simple interest annually. If Mary’s total interest is 
$5025 per year, how much money is invested at each rate?

SolutIoN Identify the variable.  The problem asks for the amount she has invested 
at each rate. So we let

x  the amount invested at 6%

dIScoVERy pRojEct

Equations through the Ages

Equations have always been important in solving real-world problems. Very old 
manuscripts from Babylon, Egypt, India, and China show that ancient peoples 
used equations to solve real-world problems that they encountered. In this proj-
ect we discover that they also solved equations just for fun or for practice. You 
can find the project at www.stewartmath.com.
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translate from words to algebra.  Since Mary’s total inheritance is $100,000, it fol-
lows that she invested 100,000  x at 4 

1
2%. We translate all the information given 

into the language of algebra.

In Words In Algebra

Amount invested at 6% x
Amount invested at 4 

1
2% 100,000  x

Interest earned at 6% 0.06x
Interest earned at 4 

1
2% 0.0451100,000  x 2

Set up the model.  We use the fact that Mary’s total interest is $5025 to set up the 
model.

interest at 6%   interest at 4 
1
2%   total interest

  0.06x  0.0451100,000  x 2  5025

Solve.  Now we solve for x.

  0.06x  4500  0.045x  5025  Multiply

  0.015x  4500  5025  Combine the x-terms

  0.015x  525  Subtract 4500

  x 
525

0.015
 Divide by 0.015

   35,000

So Mary has invested $35,000 at 6% and the remaining $65,000 at 4 
1
2%.

chEck youR ANSWER

 total interest  6% of $35,000  4 
1
2% of $65,000

  0.061$35,000 2  0.0451$65,000 2
  $2100  $2925  $5025 ✓

Now try Exercise 25 ■

■ problems About Area or length
When we use algebra to model a physical situation, we must sometimes use basic for-
mulas from geometry. For example, we may need a formula for an area or a perimeter, 
or the formula that relates the sides of similar triangles, or the Pythagorean Theorem. 
Most of these formulas are listed on the inside front cover of this book. The next two 
examples use these geometric formulas to solve some real-world problems.

ExAMplE 3 ■ dimensions of a garden
A square garden has a walkway 3 ft wide around its outer edge, as shown in  
Figure 2 on following page. If the area of the entire garden, including the walkway,  
is 18,000 ft2, what are the dimensions of the planted area?

SolutIoN Identify the variable.  We are asked to find the length and width of the 
planted area. So we let

x  the length of the planted area

BhaSkara (born 1114) was an Indian 
mathematician, astronomer, and astrolo
ger. Among his many accomplishments 
was an ingenious proof of the Pythago
rean Theorem. (See Focus on Problem 
Solving 5, Problem 12, at the book com
panion website www.stewartmath.
com.) His important mathematical book 
Lilavati [The Beautiful] consists of alge
bra problems posed in the form of stories 
to his daughter Lilavati. Many of the 
problems begin “Oh beautiful maiden, 
suppose . . .”  The story is told that using 
astrology, Bhaskara had determined that 
great misfortune would befall his daugh
ter if she married at any time other than 
at a certain hour of a certain day. On her 
wedding day, as she was anxiously 
watching the water clock, a pearl fell 
unnoticed from her headdress. It stopped 
the flow of water in the clock, causing 
her to miss the opportune moment for 
marriage. Bhaskara’s Lilavati was written 
to console her.
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translate from words to algebra.  Next, translate the information from Figure 1 into 
the language of algebra.

In Words In Algebra

Length of planted area x
Length of entire garden x  6
Area of entire garden 1x  622

Set up the model.  We now set up the model.

area of entire garden 18,000 ft2  

  1x  6 2 2  18,000

Solve.  Now we solve for x.

  x  6  !18,000     Take square roots

  x  !18,000  6    Subtract 6

  x  128

The planted area of the garden is about 128 ft by 128 ft.

Now try Exercise 43 ■

ExAMplE 4 ■  determining the height of a Building  
using Similar triangles

A man who is 6 ft tall wishes to find the height of a certain four-story building. He 
measures its shadow and finds it to be 28 ft long, while his own shadow is 31

2 ft long. 
How tall is the building?

SolutIoN Identify the variable.  The problem asks for the height of the building. So let

h  the height of the building

translate from words to algebra.  We use the fact that the triangles in Figure 2 are 
similar. Recall that for any pair of similar triangles the ratios of corresponding sides are 
equal. Now we translate these observations into the language of algebra.

In Words In Algebra

Height of building h

Ratio of height to base in large triangle h
28

Ratio of height to base in small triangle 6
3.5

FIguRE 2

h

3    ft1
2

28 ft

6 ft

x

3 ft

3 ft

FIguRE 1
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Set up the model.  Since the large and small triangles are similar, we get the equation

 ratio of height to 
base in large triangle

 
 

ratio of height to 
base in small triangle

  
h

28


6

3.5
    Multiply by 28

Solve.  Now we solve for h.

  h 
6 # 28

3.5
 48    Multiply by 28

So the building is 48 ft tall.

Now try Exercise 45 ■

■ problems About Mixtures
Many real-world problems involve mixing different types of substances. For example, 
construction workers may mix cement, gravel, and sand; fruit juice from concentrate 
may involve mixing different types of juices. Problems involving mixtures and concen-
trations make use of the fact that if an amount x of a substance is dissolved in a solution 
with volume V, then the concentration C of the substance is given by

C 
x

V

So if 10 g of sugar is dissolved in 5 L of water, then the sugar concentration is C  10/5  
 2 g/L. Solving a mixture problem usually requires us to analyze the amount x of the 
substance that is in the solution. When we solve for x in this equation, we see that x  CV. 
Note that in many mixture problems the concentration C is expressed as a percentage, as 
in the next example.

ExAMplE 5 ■ Mixtures and concentration
A manufacturer of soft drinks advertises their orange soda as “naturally flavored,” 
although it contains only 5% orange juice. A new federal regulation stipulates that to 
be called “natural,” a drink must contain at least 10% fruit juice. How much pure 
orange juice must this manufacturer add to 900 gal of orange soda to conform to the 
new regulation?

SolutIoN Identify the variable.  The problem asks for the amount of pure orange 
juice to be added. So let

x  the amount 1 in gallons 2  of pure orange juice to be added

translate from words to algebra.  In any problem of this type—in which two differ-
ent substances are to be mixed—drawing a diagram helps us to organize the given 
information (see Figure 3).

We now translate the information in the figure into the language of algebra.

In Words In Algebra

Amount of orange juice to be added x
Amount of the mixture 900  x
Amount of orange juice in the first vat 0.051900 2  45
Amount of orange juice in the second vat 1 # x  x
Amount of orange juice in the mixture 0.101900  x 2
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� �
100% juice5% juice

10% juice

Volume

Amount of
orange juice

900 gallons

5% of 900 gallons
=45 gallons

 x gallons

 100% of x gallons
=x gallons 

900+x gallons

10% of (900+x)	gallons
=0.1(900+x)	gallons 

FIguRE 3

Set up the model.  To set up the model, we use the fact that the total amount of orange 
juice in the mixture is equal to the orange juice in the first two vats.

amount of  
orange juice 
in first vat

 


 amount of 

orange juice 
in second vat

 


 amount of 

orange juice 
in mixture

  45  x  0.11900  x 2  From Figure 3

Solve.  Now we solve for x.

 45  x  90  0.1x    Distributive Property

 0.9x  45     Subtract 0.1x and 45

 x 
45

0.9
 50     Divide by 0.9

The manufacturer should add 50 gal of pure orange juice to the soda.

chEck youR ANSWER

 amount of juice before mixing  5% of 900 gal  50 gal pure juice

  45 gal  50 gal  95 gal

 amount of juice after mixing  10% of 950 gal  95 gal

Amounts are equal. ✓

Now try Exercise 47 ■

■ problems About the time Needed to do a job
When solving a problem that involves determining how long it takes several workers to 
complete a job, we use the fact that if a person or machine takes H time units to com-
plete the task, then in one time unit the fraction of the task that has been completed is 
1/H. For example, if a worker takes 5 hours to mow a lawn, then in 1 hour the worker 
will mow 1/5 of the lawn.
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ExAMplE 6 ■ time Needed to do a job
Because of an anticipated heavy rainstorm, the water level in a reservoir must be low-
ered by 1 ft. Opening spillway A lowers the level by this amount in 4 hours, whereas 
opening the smaller spillway B does the job in 6 hours. How long will it take to lower 
the water level by 1 ft if both spillways are opened?

SolutIoN Identify the variable.  We are asked to find the time needed to lower the 
level by 1 ft if both spillways are open. So let

 x  the time 1 in hours 2  it takes to lower the water level
 by 1 ft if both spillways are open

translate from words to algebra.  Finding an equation relating x to the other quantities 
in this problem is not easy. Certainly x is not simply 4  6, because that would mean 
that together the two spillways require longer to lower the water level than either spill-
way alone. Instead, we look at the fraction of the job that can be done in 1 hour by 
each spillway.

In Words In Algebra

Time it takes to lower level 1 ft with A and B together x h

Distance A lowers level in 1 h 1
4 ft

Distance B lowers level in 1 h 1
6 ft

Distance A and B together lower levels in 1 h 1
x  ft

Set up the model.  Now we set up the model.

fraction done by A   fraction done by B   fraction done by both

  
1

4


1

6


1
x

Solve.  Now we solve for x.

 3x  2x  12    Multiply by the LCD, 12x

 5x  12    Add

 x 
12

5
    Divide by 5

It will take 2 
2
5 hours, or 2 h 24 min, to lower the water level by 1 ft if both spillways 

are open.

Now try Exercise 55 ■

■ problems About distance, Rate, and time
The next example deals with distance, rate (speed), and time. The formula to keep in 
mind here is

distance  rate  time

where the rate is either the constant speed or average speed of a moving object. For 
example, driving at 60 mi/h for 4 hours takes you a distance of 60 # 4  240 mi.

A
B
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ExAMplE 7 ■ distance, Speed, and time
Bill left his house at 2:00 p.m. and rode his bicycle down Main Street at a speed of  
12 mi/h. When his friend Mary arrived at his house at 2:10 p.m., Bill’s mother told her 
the direction in which Bill had gone, and Mary cycled after him at a speed of 16 mi/h. 
At what time did Mary catch up with Bill?

SolutIoN Identify the variable.  We are asked to find the time that it took Mary to 
catch up with Bill. Let

t  the time 1 in hours 2  it took Mary to catch up with Bill

translate from words to algebra.  In problems involving motion, it is often helpful  
to organize the information in a table, using the formula distance  rate  time. First 
we fill in the “Speed” column in the table, since we are told the speeds at which Mary 
and Bill cycled. Then we fill in the “Time” column. (Because Bill had a 10-minute,  
or 1

6-hour head start, he cycled for t  1
6 hours.) Finally, we multiply these columns to 

calculate the entries in the “Distance” column.

Distance (mi) Speed (mi/h) Time (h)

Mary
Bill

16t
12At  1

6 B
16
12

t
t  1

6

Set up the model.  At the instant when Mary caught up with Bill, they had both 
cycled the same distance. We use this fact to set up the model for this problem.

distance traveled by Mary   distance traveled by Bill

 16t  12At  1
6B    From table

Solve.  Now we solve for t.

 16t  12t  2    Distributive Property

 4t  2     Subtract 12t

 t  1
2     Divide by 4

Mary caught up with Bill after cycling for half an hour, that is, at 2:40 p.m.

chEck youR ANSWER

Bill traveled for 1
2  1

6  2
3 h, so

 distance Bill traveled  12 mi/h  2
3 h  8 mi

 distance Mary traveled  16 mi/h  1
2 h  8 mi

Distances are equal. ✓

Now try Exercise 59 ■

coNcEptS
 1. Explain in your own words what it means for an equation to 

model a real-world situation, and give an example.
 2. In the formula I  Prt for simple interest, P stands for 

     , r for    , and t for    .

p.9 ExERcISES
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 3. Give a formula for the area of the geometric figure.

(a) A square of side x:  A     .

(b) A rectangle of length l and width „:  A     .

(c) A circle of radius r:  A     .

 4. Balsamic vinegar contains 5% acetic acid, so a 32-oz bottle 

  of balsamic vinegar contains   ounces of acetic 
acid. 

 5. A painter paints a wall in x hours, so the fraction of the wall 

  that she paints in 1 hour is    .

 6. The formula d  rt models the distance d traveled by an 
object moving at the constant rate r in time t. Find formulas 
for the following quantities.

r       t   

SkIllS
7–20 ■ using Variables  Express the given quantity in terms of 
the indicated variable.

 7. The sum of three consecutive integers;  n  first integer of 
the three

 8. The sum of three consecutive integers;  n  middle integer 
of the three

 9. The sum of three consecutive even integers;  n  first inte-
ger of the three

 10. The sum of the squares of two consecutive integers;   
n  first integer of the two

 11. The average of three test scores if the first two scores are  
78 and 82;  s  third test score

 12. The average of four quiz scores if each of the first three 
scores is 8;  q   fourth quiz score

 13. The interest obtained after one year on an investment at 2 
1
2% 

simple interest per year;  x  number of dollars  invested

 14. The total rent paid for an apartment if the rent is $795 a 
month;  n  number of months

 15. The area (in ft2) of a rectangle that is four times as long as it 
is wide;  „  width of the rectangle (in ft)

 16. The perimeter (in cm) of a rectangle that is 4 cm longer than 
it is wide;  „  width of the rectangle (in cm)

17. The time (in hours) it takes to travel a given distance at  
55 mi/h;  d  given distance (in mi)

 18. The distance (in mi) that a car travels in 45 min;  s  speed 
of the car (in mi/h)

19. The concentration (in oz/gal) of salt in a mixture of 3 gal of 
brine containing 25 oz of salt to which some pure water has 
been added;  x  volume of pure water added (in gal)

20. The value (in cents) of the change in a purse that contains 
twice as many nickels as pennies, four more dimes than  
nickels, and as many quarters as dimes and nickels com-
bined;  p  number of pennies 

ApplIcAtIoNS
 21. Renting a truck  A rental company charges $65 a day and 

20 cents a mile for renting a truck. Michael rents a truck for  
3 days, and his bill comes to $275. How many miles did he 
drive? 

 22. cell phone costs  A cell phone company charges a monthly 
fee of $10 for the first 1000 text messages and 10 cents for 
each additional text message. Miriam’s bill for text messages 
for the month of June is $38.50. How many text messages 
did she send that month?

 23. Average  Linh has obtained scores of 82, 75, and 71 on her 
midterm algebra exams. If the final exam counts twice as 
much as a midterm, what score must she make on her final 
exam to get an average score of 80? (Assume that the maxi-
mum possible score on each test is 100.)

 24. Average  In a class of 25 students, the average score is 84.  
Six students in the class each received a maximum score of 
100, and three students each received a score of 60. What is 
the average score of the remaining students?

 25. Investments  Phyllis invested $12,000, a portion earning a sim-
ple interest rate of 4 

1
2% per year and the rest earning a rate of 

4% per year. After 1 year the total interest earned on these invest-
ments was $525. How much money did she invest at each rate?

 26. Investments  If Ben invests $4000 at 4% interest per year, 
how much additional money must he invest at 5 

1
2% annual 

interest to ensure that the interest he receives each year is  
4 

1
2% of the total amount invested?

 27. Investments  What annual rate of interest would you have to 
earn on an investment of $3500 to ensure receiving $262.50 
interest after 1 year?

 28. Investments  Jack invests $1000 at a certain annual interest 
rate, and he invests another $2000 at an annual rate that is 
one-half percent higher. If he receives a total of $190 interest 
in 1 year, at what rate is the $1000 invested?

 29. Salaries  An executive in an engineering firm earns a 
monthly salary plus a Christmas bonus of $8500. If she earns 
a total of $97,300 per year, what is her monthly salary?

 30. Salaries  A woman earns 15% more than her husband. 
Together they make $69,875 per year. What is the husband’s 
annual salary?

 31. overtime pay  Helen earns $7.50 an hour at her job, but if 
she works more than 35 hours in a week, she is paid 1 

1
2  times 

her regular salary for the overtime hours worked. One week 
her gross pay was $352.50. How many overtime hours did 
she work that week?

 32. labor costs  A plumber and his assistant work together to 
replace the pipes in an old house. The plumber charges $45 an 
hour for his own labor and $25 an hour for his assistant’s 
labor. The plumber works twice as long as his assistant on this 
job, and the labor charge on the final bill is $4025. How long 
did the plumber and his assistant work on this job?

 33. A Riddle  A movie star, unwilling to give his age, posed the 
following riddle to a gossip columnist: “Seven years ago, I 
was eleven times as old as my daughter. Now I am four times 
as old as she is.” How old is the movie star?
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 34. career home Runs  During his major league career, Hank 
Aaron hit 41 more home runs than Babe Ruth hit during his 
career. Together they hit 1469 home runs. How many home 
runs did Babe Ruth hit?

 35. Value of coins  A change purse contains an equal number of 
pennies, nickels, and dimes. The total value of the coins is 
$1.44. How many coins of each type does the purse contain?

 36. Value of coins  Mary has $3.00 in nickels, dimes, and quarters. 
If she has twice as many dimes as quarters and five more nick-
els than dimes, how many coins of each type does she have?

 37. length of a garden  A rectangular garden is 25 ft wide. If its 
area is 1125 ft 2, what is the length of the garden?

25 ft
x ft

 38. Width of a pasture  A pasture is twice as long as it is wide. 
Its area is 115,200 ft 2. How wide is the pasture?

 39. dimensions of a lot  A square plot of land has a building  
60 ft long and 40 ft wide at one corner. The rest of the land out-
side the building forms a parking lot. If the parking lot has area 
12,000 ft2, what are the dimensions of the entire plot of land?

 40. dimensions of a lot  A half-acre building lot is five times as 
long as it is wide. What are its dimensions?  
[Note: 1 acre  43,560 ft 2.]

 41. geometry  Find the length y in the figure if the shaded area 
is 120 in2.

y

area=120 in2

yy

 

 42. geometry  Find the length x in the figure if the shaded area 
is 144 cm2.

x

x

6 cm
10 cm

area=144 cm2

 43. Framing a painting  Ali paints with watercolors on a sheet of 
paper 20 in. wide by 15 in. high. He then places this sheet on 
a mat so that a uniformly wide strip of the mat shows all 
around the picture. The perimeter of the mat is 102 in. How 
wide is the strip of the mat showing around the picture?

.

.x

20 in

15 in

 44. dimensions of a poster  A poster has a rectangular printed 
area 100 cm by 140 cm and a blank strip of uniform width 
around the edges. The perimeter of the poster is 11

2 times the 
perimeter of the printed area. What is the width of the blank 
strip?

100 cm

140 cm

x

x

 45. length of a Shadow  A man is walking away from  
a lamppost with a light source 6 m above the ground. The 
man is 2 m tall. How long is the man’s shadow when he is 
10 m from the lamppost?  [Hint: Use similar triangles.]

6 m

2 m

x10 m

 46. height of a tree  A woodcutter determines the height of a 
tall tree by first measuring a smaller one 125 ft away, then 
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moving so that his eyes are in the line of sight along the tops 
of the trees and measuring how far he is standing from the 
small tree (see the figure). Suppose the small tree is 20 ft tall, 
the man is 25 ft from the small tree, and his eye level is 5 ft 
above the ground. How tall is the taller tree?

25 ft 125 ft

5 ft

20 ft

  

 47. Mixture problem  What amount of a 60% acid solution must 
be mixed with a 30% solution to produce 300 mL of a 50% 
solution?

 48. Mixture problem  What amount of pure acid must be added 
to 300 mL of a 50% acid solution to produce a 60% acid 
 solution?

 49. Mixture problem  A jeweler has five rings, each weighing  
18 g, made of an alloy of 10% silver and 90% gold. She 
decides to melt down the rings and add enough silver to reduce 
the gold content to 75%. How much silver should she add?

 50. Mixture problem  A pot contains 6 L of brine at a concentra-
tion of 120 g/L. How much of the water should be boiled off 
to increase the concentration to 200 g/L?

 51. Mixture problem  The radiator in a car is filled with a solu-
tion of 60% antifreeze and 40% water. The manufacturer of 
the antifreeze suggests that for summer driving, optimal cool-
ing of the engine is obtained with only 50% antifreeze. If the 
capacity of the radiator is 3.6 L, how much coolant should be 
drained and replaced with water to reduce the antifreeze con-
centration to the recommended level?

 52. Mixture problem  A health clinic uses a solution of bleach to 
sterilize petri dishes in which cultures are grown. The steril-
ization tank contains 100 gal of a solution of 2% ordinary 
household bleach mixed with pure distilled water. New 
research indicates that the concentration of bleach should be 
5% for complete sterilization. How much of the solution 
should be drained and replaced with bleach to increase the 
bleach content to the recommended level?

 53. Mixture problem  A bottle contains 750 mL of fruit punch 
with a concentration of 50% pure fruit juice. Jill drinks  
100 mL of the punch and then refills the bottle with an equal 
amount of a cheaper brand of punch. If the concentration of 
juice in the bottle is now reduced to 48%, what was the con-
centration in the punch that Jill added?

 54. Mixture problem  A merchant blends tea that sells for $3.00 
an ounce with tea that sells for $2.75 an ounce to produce  

80 oz of a mixture that sells for $2.90 an ounce. How many 
ounces of each type of tea does the merchant use in the blend?

 55. Sharing a job  Candy and Tim share a paper route. It takes 
Candy 70 min to deliver all the papers, and it takes Tim 80 min. 
How long does it take the two when they work  together?

 56. Sharing a job  Stan and Hilda can mow the lawn in  
40 min if they work together. If Hilda works twice as fast as 
Stan, how long does it take Stan to mow the lawn alone?

 57. Sharing a job  Betty and Karen have been hired to paint the 
houses in a new development. Working together, the women 
can paint a house in two-thirds the time that it takes Karen 
working alone. Betty takes 6 h to paint a house alone. How 
long does it take Karen to paint a house working alone?

 58. Sharing a job  Next-door neighbors Bob and Jim use hoses 
from both houses to fill Bob’s swimming pool. They know that 
it takes 18 h using both hoses. They also know that Bob’s hose, 
used alone, takes 20% less time than Jim’s hose alone. How 
much time is required to fill the pool by each hose alone?

 59. distance, Speed, and time  Wendy took a trip from Daven-
port to Omaha, a distance of 300 mi. She traveled part of the 
way by bus, which arrived at the train station just in time for 
Wendy to complete her journey by train. The bus averaged  
40 mi/h, and the train averaged 60 mi/h. The entire trip took 
5 1

2 h. How long did Wendy spend on the train?

 60. distance, Speed, and time  Two cyclists, 90 mi apart, start 
riding toward each other at the same time. One cycles twice 
as fast as the other. If they meet 2 h later, at what average 
speed is each cyclist traveling?

 61. distance, Speed, and time  A pilot flew a jet from Montreal 
to Los Angeles, a distance of 2500 mi. On the return trip, the 
average speed was 20% faster than the outbound speed. The 
round-trip took 9 h 10 min. What was the speed from Mon-
treal to Los Angeles?

 62. distance, Speed, and time  A woman driving a car 14 ft long 
is passing a truck 30 ft long. The truck is traveling at 50 mi/h. 
How fast must the woman drive her car so that she can pass 
the truck completely in 6 s, from the position shown in figure 
(a) to the position shown in figure (b)?  [Hint: Use feet and 
seconds instead of miles and hours.]

50 mi/h

(a)

50 mi/h

(b)
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SECTION P.9 ■ Modeling with Equations 73

63. law of the lever  The figure shows a lever system, similar  
to a seesaw that you might find in a children’s playground. 
For the system to balance, the product of the weight and its 
distance from the fulcrum must be the same on each side; 
that is,

 „1x1  „2 
x

 2

  This equation is called the law of the lever and was first dis-
covered by Archimedes (see page 831).

    A woman and her son are playing on a seesaw. The boy is 
at one end, 8 ft from the fulcrum. If the son weighs 100 lb 
and the mother weighs 125 lb, where should the woman sit 
so that the seesaw is balanced?

„⁄
„¤

x⁄ x¤

 64. law of the lever  A plank 30 ft long rests on top of a flat-
roofed building, with 5 ft of the plank projecting over the 
edge, as shown in the figure. A worker weighing 240 lb sits 
on one end of the plank. What is the largest weight that can 
be hung on the projecting end of the plank if it is to remain 
in balance? (Use the law of the lever stated in Exercise 63.)

5 ft

65. dimensions of a lot  A rectangular parcel of land is  
50 ft wide. The length of a diagonal between opposite cor-
ners is 10 ft more than the length of the parcel. What is the 
length of the parcel?

 66. dimensions of a track  A running track has the shape shown 
in the figure, with straight sides and semicircular ends. If the 
length of the track is 440 yd and the two straight parts are 
each 110 yd long, what is the radius of the semicircular parts 
(to the nearest yard)?

110 yd

r

 67. dimensions of a Structure  A storage bin for corn consists of 
a cylindrical section made of wire mesh, surmounted by a 
conical tin roof, as shown in the figure. The height of the roof 
is one-third the height of the entire structure. If the total vol-
ume of the structure is 1400p ft 3 and its radius is 10 ft, what 
is its height?  [Hint: Use the volume formulas listed on the 
inside front cover of this book.]

h

10 ft

h

1
3

 68. An Ancient chinese problem  This problem is taken from a 
Chinese mathematics textbook called Chui-chang suan-shu, 
or Nine Chapters on the Mathematical Art, which was writ-
ten about 250 b.c.

A 10-ft-long stem of bamboo is broken in such a way 
that its tip touches the ground 3 ft from the base of the 
stem, as shown in the figure. What is the height of the 
break?

[Hint: Use the Pythagorean Theorem.]

3 ft

dIScuSS ■ dIScoVER ■ pRoVE ■ WRItE
69. WRItE: historical Research  Read the biographical notes on 

Pythagoras (page 277), Euclid (page 57), and Archimedes  
(page 831). Choose one of these mathematicians, and find out 
more about him from the library or on the Internet. Write a 
short essay on your findings. Include both biographical infor-
mation and a description of the mathematics for which he is 
famous.
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 70. WRItE: Real-world Equations  In this section we learned how 
to translate words into algebra. In this exercise we try to find 
real-world situations that could correspond to an algebraic 
equation. For instance, the equation A  1x  y 2 /2 could 
model the average amount of money in two bank accounts, 
where x represents the amount in one account and y the amount 

in the other. Write a story that could correspond to the given 
equation, stating what the variables represent.

(a) C  20,000  4.50x

(b) A  „ 1„  10 2
(c) C  10.50x  11.75y

properties of Real Numbers (p. 8)
Commutative:  a  b  b  a

 ab  ba

Associative: 1a  b 2  c  a  1b  c 2
 1ab 2c  a1bc 2
Distributive:  a1b  c 2  ab  ac

Absolute Value (pp. 13–14)

0 a 0  ea if a  0

a if a  0

0 ab 0  0 a 0 0 b 0

` a
b
` 
0 a 0
0 b 0

Distance between a and b:

d1a, b 2  0 b  a 0
Exponents (p. 19)
aman  amn

am

an  amn

1am 2 n  amn

1ab 2 n  anbn

a a

b
b

n


an

bn

Radicals (pp. 25–27)
"n

a  b means bn  a

"n
ab  "n

a "n
b

Å
n a

b


"n
a

"n
b

"m !n a  !mn
a

am/n  "n
am

If n is odd, then "n
an  a.

If n is even, then "n
an  0  a 0 .

Special product Formulas (p. 34)
Product of sum and difference of same terms:

1A  B2 1A  B2  A2  B2

Square of a sum or difference:

1A  B2 2  A2  2AB  B2

1A  B2 2  A2  2AB  B2

Cube of a sum or difference:

1A  B2 3  A3  3A2B  3AB2  B3

1A  B2 3  A3  3A2B  3AB2  B3

Special Factoring Formulas (p. 39)
Difference of squares:

A2  B2  1A  B2 1A  B2
Perfect squares:

A2  2AB  B2  1A  B2 2
A2  2AB  B2  1A  B2 2

Sum or difference of cubes:

A3  B3  1A  B2 1A2  AB  B22
A3  B3  1A  B2 1A2  AB  B22

Rational Expressions (pp. 45–46)
We can cancel common factors:

AC

BC


A

B

To multiply two fractions, we multiply their numerators together 
and their denominators together:

A

B


C

D


AC

BD

To divide fractions, we invert the divisor and multiply:

A

B
4

C

D


A

B


D

C

To add fractions, we find a common denominator:

A

C


B

C


A  B

C

■ pRopERtIES ANd FoRMulAS

chAptER p ■ REVIEW
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properties of Equality (p. 54)
A  B 3 A  C  B  C

A  B 3 CA  CB 1C ? 0 2
linear Equations (p. 54)
A linear equation is an equation of the form ax  b  0

power Equations (p. 56)
The power equation X n  a has the solution X  !n a if n is 
odd and X  6!n a if n is even and a  0.

■ coNcEpt chEck

 1. What is an algebra model for a real-world situation? If  
Shellie’s wages are $12 an hour, find a model for the amount 
W that Shellie earns after working x hours.

 2. (a)  What does the set of natural numbers consist of? What 
does the set of integers consist of? Give an example of 
an integer that is not a natural number.

(b) What does the set of rational numbers consist of? Give 
an example of a rational number that is not an integer.

(c) What does the set of irrational numbers consist of? Give 
an example of an irrational number.

(d) What does the set of real numbers consist of? 

 3. A property of real numbers is given. State the property and 
give an example in which the property is used.

 (i) Commutative Property

 (ii) Associative Property

 (iii) Distributive Property

 4. Explain the difference between the open interval 1a, b 2  and 
the closed interval 3a, b 4 . Give an example of an interval that 
is neither open nor closed.

 5. Give the formula for finding the distance between two real 
numbers a and b. Use the formula to find the distance 
between 103 and 52.

 6. Suppose a ? 0 is any real number.

(a) In the expression an, which is the base and which is the 
exponent?

(b) What does an mean if n is a positive integer? What does 
65 mean?

(c) What does an mean if n is a positive integer? What 
does 32 mean?

(d) What does an mean if n is zero? 

(e) If m and n are positive integers, what does am/n mean? 
What does 43/2 mean?

 7. State the first five Laws of Exponents. Give examples in 
which you would use each law.

 8. When you multiply two powers of the same number, what 
should you do with the exponents? When you raise a power 
to a new power, what should you do with the exponents? 

 9. (a) What does !n a  b mean? 

(b) Is it true that "a2 is equal to 0  a 0 ? Try values for a that 
are positive and negative.

(c) How many real nth roots does a positive real number 
have if n is even? If n is odd?

(d) Is !4 2 a real number? Is !3
2 a real number? Explain 

why or why not.

 10. Explain the steps involved in rationalizing a denominator. 
What is the logical first step in rationalizing the denominator 

of the expression 
5

!3
?

 11. Explain the difference between expanding an expression and 
factoring an expression. 

 12. State the Special Product Formulas used for expanding the 
given expression. 

 (i) 1a  b 2 2 (ii) 1a  b 2 2 (iii) 1a  b 2 3
 (iv) 1a  b 2 3 (v) 1a  b 2 1a  b 2
  Use the appropriate formula to expand 1x  5 2 2 and 
1x  5 2 1x  5 2 .

 13. State the following Special Factoring Formulas. 

 (i) Difference of Squares

 (ii) Perfect Square

 (iii) Sum of Cubes

  Use the appropriate formula to factor x2  9.

 14. If the numerator and the denominator of a rational expression 
have a common factor, how would you simplify the expres-

sion? Simplify the expression 
x2  x

x  1
.

 15. Explain the following.

(a) How to multiply and divide rational expressions. 

(b) How to add and subtract rational expressions. 

(c) What LCD do we use to perform the addition in the 

 expression 
3

x  1


5

x  2
?

 16. What is the logical first step in rationalizing the denominator 

of 
3

1  !x
?

 17. What is the difference between an algebraic expression and 
an equation? Give examples.

 18. Consider the equation 5x  7  10  3x.

(a) Determine whether x  1 is a solution to the equation.

(b) Show how to use the rules of algebra to solve the 
equation.

 19. (a) Give some examples of power equations.

(b) Find all real solutions to the power equation x2  15.

(c) Find all real solutions to the power equation x3  15.

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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1–2 ■ Making and Using a Model  Make and use an algebra 
model to solve the problem.

 1. Elena regularly takes a multivitamin and mineral supplement. 
She purchases a bottle of 250 tablets and takes two tablets 
every day.

(a)  Find a formula for the number of tablets T that are left in 
the bottle after she has been taking the tablets for x days.

(b) How many tablets are left after 30 days?

(c) How many days will it take for her to run out of tablets?

 2. Alonzo’s Delivery is having a sale on calzones. Each calzone 
costs $2, and there is a $3 delivery charge for phone-in 
orders.

(a)  Find a formula for the total cost C of ordering x calzones 
for delivery.

(b) How much would it cost to have 4 calzones delivered?

(c) If you have $15, how many calzones can you order?

3–4 ■ Rational or Irrational?  Determine whether each number 
is rational or irrational. If it is rational, determine whether it is a 
natural number, an integer, or neither.

 3. (a) 16 (b) 16 (c) !16 (d) !2

  (e) 8
3  (f )   

8
2

 4. (a) 5 (b)  
25
6  (c) !25 (d) 3p

  (e) 24
16  (f ) 1020

5–8 ■ Properties of Real Numbers  State the property of real 
numbers being used.

 5. 3  2x  2x  3

 6. 1a  b2 1a  b2  1a  b2 1a  b2
 7. 41a  b 2  4a  4b

 8. 1A  12 1x  y2  1A  12x  1A  12y

9–12 ■ Evaluate  Evaluate each expression. Express your 
answer as a  fraction in lowest terms.

 9. (a) 
5

6


2

3
 (b) 

5

6


2

3

 10. (a) 
7

10


11

15
 (b) 

7

10


11

15

 11. (a) 
15

8
# 12

5
 (b) 

15

8
4

12

5

 12. (a) 
30

7
4

12

35
 (b) 

30

7
# 12

35

13–16 ■ Intervals  Express the interval in terms of inequalities, 
and then graph the interval.

 13. 32, 62 14. 10, 10 4
 15. 1` , 4 4 	 16. 32,  ` 2

17–20 ■ Intervals  Express the inequality in interval notation, 
and then graph the corresponding interval.

 17. x  5 18. x  3

 19. 1  x  5  20. 0  x  1
2

21–24 ■ Unions and Intersections  The sets A, B, C, and D are 
defined as follows:

A  51, 0, 1, 2, 36 B  E12, 1, 4F
C  5x 0  0  x  26  D  11, 14

Find each of the following sets.

 21. (a) A < B (b) A > B

 22. (a) C < D (b) C > D

 23. (a) A > C (b) B > D

 24. (a) A > D (b) B > C

25–32 ■ Evaluate  Evaluate the expression.

 25. 0  7  10 0  26. @  3  0 9 0 @
 27. 21/281/2 28. 23  32

 29. 2161/3 30. 642/3

31. 
!242

!2
 32. !2 !50

33–34 ■ Distance on the Real Line  Express the distance 
between the given numbers on the real line using an absolute 
value. Then evaluate this distance.

 33. (a) 3 and 5 (b) 3 and 5

 34. (a) 0 and 4 (b) 4 and 4

35–38 ■ Rational Exponents  Express the radical as a power 
with a rational exponent.

 35. (a) "3 7 (b) "5 74 36. (a) "3 57 (b) A!4 5B3
37. (a) "6 x5 (b) A!xB9 38. (a) "y3 (b) A"8 yB2

39–46 ■ Radicals and Exponents  Simplify the expression.

 39. 12x3y2213x1y22 40. 1a2231a3b22 1b32 4

41. 
x413x 2 2

x3  42. a r2s4/3

r1/3s
b

6

 43. "3 1x3y 2 2y4 44. "x2y4

 45. 
8r1/2s3

2r2s4  46. a ab2c3

2a2b4 b
2

47–50 ■ Scientific Notation  These exercises involve scientific 
notation.

47. Write the number 78,250,000,000 in scientific notation.

48. Write the number 2.08  108 in decimal notation.

■ ExERcISES
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49. If a  0.00000293, b  1.582  1014, and c  2.8064  1012, 
use a calculator to approximate the number ab/c.

50. If your heart beats 80 times per minute and you live to be  
90 years old, estimate the number of times your heart beats  
during your lifetime. State your answer in scientific notation.

51–68 ■ Factoring  Factor the expression completely.

 51. 2x2y  6xy2 52. 12x2y4  3xy5  9x3y2

53. x2  5x  14  54. x4  x2  2

 55. 3x2  2x  1 56. 6x2  x  12

 57. 4t2  13t  12 58. x4  2x2  1

59. 16  4t2 60. 2y6  32y2

 61. x6  1 62. a4b2  ab5

 63. x3  27 64. 3y3  81x3

 65. 4x3  8x2  3x  6 66. 3x3  2x2  18x  12

 67. 1x  y 2 2  71x  y 2  6 68. 1a  b 2 2  31a  b 2  10

69–86 ■ operations with Algebraic Expressions  Perform the  
indicated operations.

69. 12y  72 12y  72 
70. 11  x2 12  x2  13  x2 13  x2

71. x21x  22  x1x  222 72. 
x3  2x2  3x

x

73. !x1!x  1 2 12!x  1 2  74. 12x  123

 75. 
x2  2x  3

2x2  5x  3
 76. 

t 
3  1

t 
2  1

77. 
x2  2x  3

x2  8x  16
# 3x  12

x  1
 78. 

x2  2x  15

x2  6x  5
4

x2  x  12

x2  1

79. x 
1

x  1
 80. 

1

x  1


x

x2  1

81. 
2
x


1

x  2


3

1x  2 2 2

82. 
1

x  2


1

x2  4


2

x2  x  2

83. 

1
x


1

2

x  2
 84. 

1
x


1

x  1

1
x


1

x  1

85. 
31x  h 2 2  51x  h 2  13x2  5x 2

h

86. 
!x  h  !x

h
  (rationalize the numerator)

87–92 ■ Rationalizing  Rationalize the denominator, and 
simplify.

87. 
1

!11
 88. 

3

"6

 89. 
10

!2  1
  90. 

14

3  "2

  91. 
x

2  "x
    92. 

!x  2

!x  2

93–96 ■ domain  Find the domain of the algebraic expression.

 93. 
x  5

x  10
  94. 

2x

x2  9

 95. 
!x

x2  3x  4
  96. 

!x  3

x2  4x  4

97–102 ■ Is the Equation true?  State whether the given equa-
tion is true for all values of the variables. (Disregard any value 
that makes a  denominator 0.)

 97. 1x  y23  x3  y3 98. 
1  !a

1  a


1

1  !a

 99. 
12  y

y


12
y

 1 100. "3 a  b  "3 a  "3 b

 101. "a2  a 102. 
1

x  4


1
x


1

4

103–124 ■ Solving Basic Equations  Find all real solutions of 
the equation.

103. 3x  12  24 104. 5x  7  42

105. 7x  6  4x  9 106. 8  2x  14  x

107. 1
3 x  1

2  2 108. 2
3 x  3

5  1
5  2x

109. 21x  3 2  41x  5 2  8  5x

 110. 
x  5

2


2x  5

3


5

6

 111. 
x  1

x  1


2x  1

2x  1
 112. 

x

x  2
 3 

1

x  2

 113. 
x  1

x  1


3x

3x  6
 114. 1x  2 2 2  1x  4 2 2

 115. x2  144 116. 4x2  49

 117. x3  27  0 118. 6x4  15  0

 119. 1x  1 2 3  64 120. 1x  2 2 2  2  0

 121. !3 x  3 122. x2/3  4  0

 123. 4x3/4  500  0 124. 1x  2 2 1/5  2

125–128 ■ Solving for a Variable  Solve the equation for the 
indicated variable.

 125. A 
x  y

2
;  solve for x 

 126. V  xy  yz  xz;  solve for y

 127. J 
1

t


1

2t


1

3t
;  solve for t

 128. F  k 

q1q2

r2 ;  solve for r
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78 CHAPTER P ■ Prerequisites

 129. Mixtures  The owner of a store sells raisins for $3.20 per 
pound and nuts for $2.40 per pound. He decides to mix the 
raisins and nuts and sell 50 lb of the mixture for $2.72 per 
pound. What quantities of raisins and nuts should he use?

 130. distance and time  Anthony leaves Kingstown at 2:00 p.m. 
and drives to Queensville, 160 mi distant, at 45 mi/h. At  
2:15 p.m. Helen leaves Queensville and drives to Kingstown 
at 40 mi/h. At what time do they pass each other on the 
road?

 131. Investment  Luc invests $7000 in two bank accounts. One 
earns 1.5% simple interest per year, and the other earns 
2.5% simple interest per year. After one year the total inter-
est earned on these investments is $120.25.  How much 
money did he invest in each account?

 132. Investment  Shania invests $6000 at 3% simple interest per 
year. How much additional money must she invest at 1.25% 
simple interest per year to ensure that the interest she 
receives each year is $300?

 133. doing the job  Abbie paints twice as fast as Beth and three 
times as fast as Cathie. If it takes them 60 min to paint a liv-
ing room with all three working together, how long would it 
take Abbie if she worked alone?

 134. dimensions of a Swimming pool  A rectangular swimming 
pool is 8 ft deep everywhere and twice as long as it is wide. 
If the pool holds 8464 ft3 of water, what are its dimensions?

chAptER p
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 1. A pizzeria charges $9 for a medium plain cheese pizza plus $1.50 for each extra topping.

(a) Find a formula that models the cost C of a medium pizza with x toppings.

(b)  Use your model from part (a) to find the cost of a medium pizza with the following extra 
toppings: anchovies, ham, sausage, and pineapple.

 2. Determine whether each number is rational or irrational. If it is rational, determine whether it 
is a natural number, an integer, or neither.

(a) 5 (b) !5 (c)  
9
3  (d) 1,000,000

 3. Let A  52, 0, 1, 3, 56 and B  50, 1
2, 1, 5, 76. Find each of the following sets.

(a) A  B (b) A  B

 4. (a) Graph the intervals 34, 22 and 30, 34 on a real line.

(b)  Find the intersection and the union of the intervals in part (a), and graph each of them on 
a real line.

(c)  Use an absolute value to express the distance between 4 and 2 on the real line, and then 
evaluate this distance. 

 5. Evaluate each expression.

(a) 26 (b) 1226 (c) 26 (d) 
710

712

(e) a 3

2
b

2

 (f ) 
!5 32

!16
 (g) Å

4 38

216  (h) 813/4

 6. Write each number in scientific notation.

(a) 186,000,000,000 (b) 0.0000003965

 7. Simplify each expression. Write your final answer without negative exponents.

(a) 
a3b2

ab3   (b) 12x3y2 22 (c) 12x1/2y2 2 13x1/4y1 2 2

(d) !20  !125 (e)  "18x3y4 (f) a 2x2y

x3y1/2
b

2

 8. Perform the indicated operations, and simplify.

(a) 31x  62  412x  52 (b) 1x  32 14x  52 (c) 1!a  !b 2 1!a  !b 2
(d) 12x  322 (e)  1x  223 (f ) x21x  32 1x  32

 9. Factor each expression completely.

  (a) 4x2  25 (b) 2x2  5x  12 (c) x3 3x2  4x  12

  (d) x4  27x (e) 12x  y 2 2  1012x  y 2  25 (f ) x3y  4xy

 10. Simplify the rational expression.

(a) 
x2  3x  2

x2  x  2
 (b) 

2x2  x  1

x2  9
# x  3

2x  1

(c) 
x2

x2  4


x  1

x  2 
(d) 

y

x


x

y

1
y


1
x

 11. Rationalize the denominator, and simplify.

 (a) 
6

"3 4
 (b) 

!10

"5  2
 (c) 

1

1  !x

chAptER p tESt
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80 CHAPTER P ■ Test

 12. Find all real solutions of each equation.

  (a) 4x  3  2x  7 (b) 8x3  125

  (c) x2/3  64  0 (d) 
x

2x  5


x  3

2x  1

  (e) 31x  1 2 2  18  0

 13. Einstein’s famous equation E  mc2 gives the relationship between energy E and mass m.  
In this equation c represents the speed of light. Solve the equation to express c in terms of E  
and m.

 14. Natasha drove from Bedingfield to Portsmouth at an average speed of 100 km/h to attend  
a job interview. On the way back she decided to slow down to enjoy the scenery, so she 
drove at just 75 km/h. Her trip involved a total of 3.5 h of driving time. What is the dis-
tance between Bedingfield and Portsmouth?

FocuS oN ModElINg
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When you buy a car, subscribe to a cell phone plan, or put an addition on your house, 
you need to make decisions. Such decisions are usually difficult because they require 
you to choose between several good alternatives. For example, there are many good car 
models, but which one has the optimal combination of features for the amount of money 
you want to spend? In this Focus on Modeling we explore how to construct and use 
algebraic models of real-life situations to help make the best (or optimal) decisions.

ExAMplE 1 ■ Buying a car
Ben wants to buy a car, and he has narrowed his choices to two models.

Model A sells for $12,500, gets 25 mi/gal, and costs $350 a year for insurance.

Model B sells for $21,000, gets 48 mi/gal, and costs $425 a year for insurance.

Ben drives about 36,000 miles a year, and gas costs about $4.00 a gallon.

(a) Find a formula for the total cost of owning Model A for any number of years.

(b) Find a formula for the total cost of owning Model B for any number of years.

(c)  Make a table of the total cost of owning each model from 1 year to 6 years, in  
1-year increments.

(d)  If Ben expects to keep the car for 3 years, which model is more economical? 
What if he expects to keep it for 5 years?

thINkINg ABout thE pRoBlEM

Model A has a smaller initial price and costs less in insurance per year but is more 
costly to operate (uses more gas) than Model B. Model B has a larger initial price 
and costs more to insure but is cheaper to operate (uses less gas) than Model A. If 
Ben drives a lot, then what he will save in gas with Model B could make up for the 
initial cost of buying the car and the higher yearly insurance premiums. So how 
many years of driving does it take before the gas savings make up for the initial 
higher price? To find out, we must write formulas for the total cost for each car:

cost  purchase price  insurance cost  gas cost

The insurance costs and gas costs depend on the number of years Ben drives the car.

SolutIoN  The cost of operating each model depends on the number of years of 
ownership. So let

n  number of years Ben expects to own the car

(a) For Model A we have the following:

In Words In Algebra

Price of car 12,500
Insurance cost for n years 350n
Cost of gas per year 136,000/25 2  $4.00  $5760
Cost of gas for n years 5760n

 Let C represent the cost of owning model A for n years. Then

cost of 
ownership

 


 
initial cost

 


 
insurance 

cost

 


 
gas cost

 C  12,500  350n  5760n

 C  12,500  6110n

Making the Best decisions FocuS oN ModElINg
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82 Focus on Modeling

(b) For Model B we have the following:

In Words In Algebra

Price of car 21,000
Insurance cost for n years 425n
Cost of gas per year 136,000/48 2  $4.00  $3000
Cost of gas for n years 3000n

  Let C represent the cost of owning model B for n years. Then

cost of 
ownership

 
 initial cost

 
 

insurance 
cost

 
 gas cost

 C  21,000  425n  3000n

 C  21,000  3425n

(c)  If Ben keeps the car for 2 years, the cost of ownership can be calculated from the 
formulas we found by substituting 2 for n.

For Model A: C  12,500  611012 2  24,720

For Model B: C  21,000  342512 2  27,850

 The other entries in the table are calculated similarly.

Years
Cost of ownership 

Model A
Cost of ownership 

Model B

1 18,610 24,425
2 24,720 27,850
3 30,830 31,275
4 36,940 34,700
5 43,050 38,125
6 49,160 41,550

(d)  If Ben intends to keep the car 3 years, then Model A is a better buy (see the 
table), but if he intends to keep the car 5 years, Model B is the better buy. ■

ExAMplE 2 ■ Equal ownership cost
Find the number of years of ownership for which the cost to Ben (from Example 1)  
of owning Model A equals the cost of owning Model B.

thINkINg ABout thE pRoBlEM

We see from the table that the cost of owning Model A starts lower but then  
exceeds that for Model B. We want to find the value of n for which the two 
costs are equal.

SolutIoN  We equate the cost of owning Model A to that of Model B and solve for n.

 12,500  6110n  21,000  3425n    Set the two costs equal

 2685n  8500     Subtract 12,500 and 3425n

 n  3.17     Divide by 2685

If Ben keeps the car for about 3.17 years, the cost of owning either model would be 
the same. ■
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  Making the Best Decisions 83

ExAMplE 3 ■ dividing Assets Fairly
When high-tech Company A goes bankrupt, it owes $120 million to Company B and 
$480 million to Company C. Unfortunately, Company A has only $300 million in as-
sets. How should the court divide these assets between Companies B and C? Explore 
the following methods, and determine which are fair.

(a) Companies B and C divide the assets equally.

(b) The two companies share the losses equally.

(c) The two companies get an amount that is proportional to the amount they are owed.

thINkINg ABout thE pRoBlEM

It might seem fair for Companies B and C to divide the assets equally between 
them. Or it might seem fair that they share the loss equally between them. To be 
certain of the fairness of each plan, we should calculate how much each com-
pany loses under each plan.

SolutIoN

(a)  Under this method, Company B gets $150 million and Company C gets $150 mil-
lion. Because B is owed only $120 million, it will get $30 million more than it is 
owed. This doesn’t seem fair to C, which will still lose $330 million.

(b)  We want Companies B and C to each lose the same amount. Let x be the amount 
of money Company B gets. Then Company C would get the rest 1300  x 2 . We 
can organize the information as follows.

In Words In Algebra

Amount B gets x
Amount C gets 300  x
Amount B loses 120  x
Amount C loses 480  1300  x 2  180  x

 Because we want Companies B and C to lose equal amounts, we must have

 180  x  120  x    Amounts B and C lose are equal

 2x  60     Add x, subtract 180

 x  30     Divide by 2

  Thus Company B gets 30 million dollars. The negative sign means that B must 
give up an additional $30 million and pay it to C. So Company C gets all of the 
$300 million plus $30 million from B for a total of $330 million. Doing this 
would ensure that the two companies lose the same amount (see Check Your 
Answer). This method is clearly not fair.

(c)  The claims total $120 million  $480 million  $600 million. The assets total  
$300 million. Because Company B is owed $120 million out of the total claim of  
$600 million, it would get

120 million

600 million
 300 million  $60 million

 Because Company C is owed 480 million, it would get

480 million

600 million
 300 million  $240 million

 This seems like the fairest alternative. ■

chEck youR ANSWER

B loses 120  30  150 million

C loses 480  330  150 million

They lose equal amounts. ✓
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84 Focus on Modeling

pRoBlEMS
 1.  Renting Versus Buying a photocopier  A certain office can purchase a photocopier 

for $5800 with a maintenance fee of $25 a month. On the other hand, they can rent the 
photocopier for $95 a month (including maintenance). If they purchase the photocopier, 
each copy would cost 3¢; if they rent, the cost is 6¢ per copy. The office estimates that they 
make 8000 copies a month.

(a) Find a formula for the cost C of purchasing and using the copier for n months.

(b)  Find a formula for the cost C of renting and using the copier for n months.

(c)  Make a table of the cost of each method for 1 year to 6 years of use, in 1-year  
increments.

(d) After how many months of use would the cost be the same for each method?

 2.  car Rental  A businessman intends to rent a car for a 3-day business trip. The rental is 
$65 a day and 15¢ per mile (Plan 1) or $90 a day with unlimited mileage (Plan 2). He is 
not sure how many miles he will drive but estimates that it will be between 400 and  
800 mi.

(a)  For each plan, find a formula for the cost C in terms of the number x of miles driven.

(b)  Which rental plan is cheaper if the businessman drives 400 miles? 800 miles?

(c)  At what mileage do the two plans cost the same?

 3.  cost and Revenue  A tire company determines that to manufacture a certain type  
of tire, it costs $8000 to set up the production process. Each tire that is produced costs 
$22 in material and labor. The company sells this tire to wholesale distributors for  
$49 each.

(a) Find a formula for the total cost C of producing x tires.

(b) Find a formula for the revenue R from selling x tires.

(c) Find a formula for the profit P from selling x tires.

(d) How many tires must the company sell to break even?

 4.  Enlarging a Field  A farmer has a rectangular cow pasture with width 100 ft and length 
180 ft. An increase in the number of cows requires the farmer to increase the area of her 
pasture. She has two options:

   Option 1: Increase the length of the field.

   Option 2: Increase the width of the field.

  It costs $10 per foot to install new fence. Moving the old fence costs $6 per linear foot of 
fence to be moved.

(a) For each option, find a formula for A, the area gained, in terms of the cost C.

(b) Complete the table for the area gained in terms of the cost for each option.

(c)  If the farmer has $1200 for this project, which option gives her the greatest gain in 
area for her money? What if she had $2000 for the project?

profit  revenue  cost

Cost
Area gain 
(Option 1)

Area gain 
(Option 2)

$1100 2500 ft2 180 ft2

$1200

$1500

$2000

$2500

$3000
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 5.  Edging a planter  A woman wants to make a small planter and surround it with edging  
material. She is deciding between two designs.

   Design 1: A square planter

   Design 2: A circular planter

  Edging material costs $3 a foot for the straight variety, which she would use for Design 1, 
and $4 a foot for the flexible variety, which she would use for Design 2.

(a)  If she decides on a perimeter of 24 ft, which design would give her the larger planting 
area?

(b)  If she decides to spend $120 on edging material, which design would give her the 
larger planting area?

 6.  planting crops  A farmer is considering two plans of crop rotation on his 100-acre farm.

   Plan A: Plant tomatoes every season.

   Plan B: Alternate between soybeans and tomatoes each season.

  The revenue from tomatoes is $1600 an acre, and the revenue from soybeans is $1200 an 
acre. Tomatoes require fertilizing the land, which costs about $300 an acre. Soybeans do 
not require fertilizer; moreover, they add nitrogen to the soil so tomatoes can be planted the 
following season without fertilizing.

(a) Find a formula for the profit if Plan A is used for n years.

(b)  Find a formula for the profit if Plan B is used for 2n years (starting with soybeans).

(c)  If the farmer intends to plant these crops for 10 years, which plan is more profitable?

 7. cell phone plans  Gwendolyn is mulling over the three cell phone plans shown in the 
table.

Gigabytes (GB) 
of data included Monthly cost

Each additional 100 
megabytes (MB)

Plan A 1 $25.00 $2.00
Plan B 1 $40.00 $1.50
Plan C 1 $60.00 $1.00

  From past experience, Gwendolyn knows that she will always use more than 1 GB of cell 
phone data every month.

(a)  Make a table of values that shows the cost of each plan for 1 GB to 4 GB, in 500 MB 
increments.

(b)  Find formulas that give Gwendolyn’s monthly cost for each plan, assuming that she 
uses x gigabytes of data per month (where x  1).

(c) What is the charge from each plan when Gwendolyn uses 2.2 GB? 3.7 GB? 4.9 GB?

(d) Use your formulas from part (b) to determine the number of gigabytes of data usage 
for which:

 (i) Plan A and Plan B give the same cost.
 (ii) Plan A and Plan C give the same cost.
 (iii) Plan B and Plan C give the same cost.

 8. profit Sharing  To form a new enterprise, Company A invests $1.4 million and Company  
B invests $2.6 million. The enterprise is sold a year later for $6.4 million. Explore the  
following methods of dividing the $6.4 million, and comment on their fairness.

(a)  Companies A and B divide the $6.4 million equally.

(b)  Companies A and B get their original investment back and share the profit equally.

(c)  Each company gets a fraction of the $6.4 million proportional to the amount it 
invested.

profit  revenue  cost
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In this chapter  we study the coordinate plane and how to graph two-
variable equations in the coordinate plane. We also study how to solve 
quadratic and other types of equations and how the solutions of equations 
relate to their graphs. 

Many real-world situations can be modeled with equations. These 
models can help us predict how such situations will change. Governments 
and businesses are continually planning for the future. Will our freeways 
be able to handle the traffic ten years from now? How many air-
conditioning units should a manufacturer produce for next summer? What 
will the average global temperature be two or three decades from now? In 
each case, a graph of the relevant data may reveal long-term trends that 
can be modeled by equations. We can then use the models to predict future 
conditions. For example, available data show a warming trend in global 
temperature. A significant increase in global temperature could have 
drastic consequences for the survival of many species, including the 
penguins pictured here. In the Focus on Modeling at the end of the chapter, 
we learn how to find linear equations that model trends in data and how 
these trends allow us to make reasonable predictions about the future. 

87

Equations and Graphs1
 1.1 The Coordinate Plane
 1.2 Graphs of Equations in 

Two Variables; Circles
 1.3 Lines
 1.4 Solving Quadratic 

Equations
 1.5 Complex Numbers 
 1.6 Solving Other Types of 

Equations
 1.7 Solving Inequalities
 1.8 Solving Absolute Value 

Equations and 
Inequalities

 1.9 Solving Equations and 
Inequalities Graphically

1.10 Modeling Variation

FOCuS ON MOdELING
 Fitting Lines to data
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88 CHAPTER 1 ■ Equations and Graphs

1.1 ThE COOrdINATE PLANE
■ The Coordinate Plane ■ The distance Formula ■ The Midpoint Formula

The coordinate plane is the link between algebra and geometry. In the coordinate plane 
we can draw graphs of algebraic equations. The graphs, in turn, allow us to “see” the 
relationship between the variables in the equation. In this section we study the coordinate 
plane.

■ The Coordinate Plane
Just as points on a line can be identified with real numbers to form the coordinate 
line, points in a plane can be identified with ordered pairs of numbers to form the 
coordinate plane or Cartesian plane. To do this, we draw two perpendicular real 
lines that intersect at 0 on each line. Usually, one line is horizontal with positive 
direction to the right and is called the x-axis; the other line is vertical with positive 
direction upward and is called the y-axis. The point of intersection of the x-axis and 
the y-axis is the origin O, and the two axes divide the plane into four quadrants, 
labeled I, II, III, and IV in Figure 1. (The points on the coordinate axes are not as-
signed to any quadrant.)

y

x

P (a, b)

O

b

a

II

III

I

IV
FIGurE 1

1

1

y

x0

)

)(_2, 2)

(5, 0)

(1, 3)

(2, _4)

(_3, _2)

FIGurE 2

Any point P in the coordinate plane can be located by a unique ordered pair of 
numbers 1a,  b 2 , as shown in Figure 1. The first number a is called the x-coordinate of 
P; the second number b is called the y-coordinate of P. We can think of the coordinates 
of P as its “address,” because they specify its location in the plane. Several points are 
labeled with their coordinates in Figure 2.

ExAMPLE 1 ■ Graphing regions in the Coordinate Plane
Describe and sketch the regions given by each set.

(a) 5 1x,  y 2  0  x  06       (b) 5 1x,  y 2  0  y  16       (c) 5 1x,  y 2  0  1  y  16
SOLuTION

(a)  The points whose x-coordinates are 0 or positive lie on the y-axis or to the right 
of it, as shown in Figure 3(a).

(b)  The set of all points with y-coordinate 1 is a horizontal line one unit above the  
x-axis, as shown in Figure 3(b).

The Cartesian plane is named in honor 
of the French mathematician René  
Descartes (1596–1650), although  
another Frenchman, Pierre Fermat 
(1601–1665), also invented the princi-
ples of coordinate geometry at the 
same time. (See their biographies on 
pages 237 and 154.)

Although the notation for a point 1a,  b 2
is the same as the notation for an open 
interval 1a,  b 2 , the context should make 
clear which meaning is intended.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.1 ■ The Coordinate Plane 89

(c)  The given region consists of those points in the plane whose y-coordinates lie 
between 1 and 1. Thus the region consists of all points that lie between (but not 
on) the horizontal lines y  1 and y  1. These lines are shown as broken lines in 
Figure 3(c) to indicate that the points on these lines are not in the set.

y

x0

(a)  x≥0

y

x0

(b)  y=1

y

x0

y=1

y=_1

(c)  _1<y <1

FIGurE 3

Now Try Exercises 9, 11, and 13 ■

■ The distance Formula
We now find a formula for the distance d1A, B 2  between two points A1x1,  y1 2  and 
B1x2,  y2 2  in the plane. Recall from Section P.2 that the distance between points a  
and b on a number line is d1a, b 2  0  b  a 0 . So from Figure 4 we see that the  
distance between the points A1x1,  y1 2  and C1x2,  y1 2  on a horizontal line must be 
0  x2  x1 0 , and the distance between B1x2,  y2 2  and C1x2,  y1 2  on a vertical line must 

be 0  y2  y1 0 .

| y¤-y⁄ |

| x¤-x⁄ |
A(x⁄, y⁄)

B(x¤, y¤)

d (A, B)

C(x¤, y⁄)

y

x0 x⁄ x

y⁄

y¤

FIGurE 4

Since triangle ABC is a right triangle, the Pythagorean Theorem gives

d1A, B 2  " 0  x2  x1 0 2  0  y2  y1 0 2  "1x2  x1 2 2  1y2  y1 2 2

Coordinates as Addresses
The coordinates of a point in the  
xy-plane uniquely determine its location. 
We can think of the coordinates as the 
“address” of the point. In Salt Lake City, 
Utah, the addresses of most buildings are 
in fact expressed as coordinates. The city 
is divided into quadrants with Main 
Street as the vertical (North-South) axis 
and S. Temple Street as the horizontal 
(East-West) axis. An address such as

1760 W 2100 S

indicates a location 17.6 blocks west  
of Main Street and 21 blocks south of  
S. Temple Street. (This is the address of 
the main post office in Salt Lake City.) 
With this logical system it is possible for 
someone unfamiliar with the city to 
locate any address immediately, as easily 
as one locates a point in the coordinate 
plane.

S. Temple St.

9th South St.

13th South St.

17th South St.

21st South St.

Post Office
1760 W 2100 S

500 North St.
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dISCOVEry PrOjECT

Visualizing data

When scientists analyze data, they look for a trend or pattern from which they 
can draw a conclusion about the process they are studying. It is difficult to find 
hidden patterns in lists of numbers. But a graph of the data can efficiently reveal 
any hidden pattern. In this project we examine data obtained by a biologist on 
the levels of three different enzymes in blood samples taken from expectant 
mothers. You can find the project at www.stewartmath.com.
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dISTANCE FOrMuLA

The distance between the points A1x1,  y1 2  and B1x2,  y2 2  in the plane is

d1A, B 2  "1x2  x1 2 2  1y2  y1 2 2

ExAMPLE 2 ■ Finding the distance Between Two Points
Find the distance between the points A12, 5 2  and B14, 1 2 .
SOLuTION  Using the Distance Formula, we have

 d1A, B 2  "14  2 2 2  11  5 2 2

  "22  16 2 2
  !4  36  !40  6.32

See Figure 5.

Now Try Exercise 25(b) ■

ExAMPLE 3 ■ Applying the distance Formula
Which of the points P11,  2 2  or Q18,  9 2  is closer to the point A15,  3 2 ?
SOLuTION  By the Distance Formula we have

 d1P, A 2  "15  1 2 2  33  12 2 4 2  "42  52  !41

 d1Q, A 2  "15  8 2 2  13  9 2 2  "13 2 2  16 2 2  !45

This shows that d1P, A 2  d1Q, A 2 , so P is closer to A (see Figure 6).

Now Try Exercise 35 ■

■ The Midpoint Formula
Now let’s find the coordinates 1x,  y 2  of the midpoint M of the line segment that joins the 
point A1x1,  y1 2  to the point B1x2,  y2 2 . In Figure 7, notice that triangles APM and MQB 
are congruent because d1A, M 2  d1M, B 2  and the corresponding angles are equal.

y

x0

x-x⁄

x¤-xA(x⁄, y⁄)

M(x, y)

B(x¤, y¤)

P

Q

Midpoint

FIGurE 7

It follows that d1A, P 2  d1M, Q 2 , so

x  x1  x2  x

Solving this equation for x, we get 2x  x1  x2, so x 
x1  x2

2
. Similarly, 

y 
y1  y2

2
.

y

x0

2

4 8

4

6

8

_2

Q(8, 9)

P(1, _2)

A(5, 3)

FIGurE 6

A(2, 5)

B(4, _1)

d(A, B)Å6.32

5

y

x0 1

1

2 3 4

2
3
4
5

_1

FIGurE 5
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SECTION 1.1 ■ The Coordinate Plane 91

MIdPOINT FOrMuLA

The midpoint of the line segment from A1x1,  y1 2  to B1x2,  y2 2  is

a x1  x2

2
, 

y1  y2

2
b

ExAMPLE 4 ■ Finding the Midpoint
Find the midpoint of the line segment that joins 12, 1 2  and 14, 5 2 .
SOLuTION  By the Midpoint Formula, the midpoint (see Figure 8) is

a2  4

2
, 

1  5

2
b  11, 3 2

Now Try Exercise 25(c) ■

ExAMPLE 5 ■ Applying the Midpoint Formula
Show that the quadrilateral with vertices P11,  2 2 , Q14,  4 2 , R15,  9 2 , and S12,  7 2  is a 
parallelogram by proving that its two diagonals bisect each other.

SOLuTION  If the two diagonals have the same midpoint, then they must bisect each 
other. The midpoint of the diagonal PR is

a 1  5

2
, 

2  9

2
b  a 3, 

11

2
b

and the midpoint of the diagonal QS is

a 4  2

2
, 

4  7

2
b  a 3, 

11

2
b

so each diagonal bisects the other, as shown in Figure 9. (A theorem from elementary 
geometry states that the quadrilateral is therefore a parallelogram.)

Now Try Exercise 49 ■
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FIGurE 9
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(_2, 1)

FIGurE 8

CONCEPTS
 1. The point that is 2 units to the left of the y-axis and 

  4 units above the x-axis has coordinates 1   ,   2  .
 2. If x is positive and y is negative, then the point 1x, y 2  is 

  in Quadrant    .

 3. The distance between the points 1a, b2 and 1c, d2 is 

     . So the distance between 11, 22 
  and 17, 102 is    .

 4. The point midway between 1a, b2 and 1c, d2 
  is    . 

  So the point midway between 11, 22 and 17, 102 
  is    . 

SkILLS
5–6 ■ Points in a Coordinate Plane  Refer to the following figure.

y

x0

B
A

C

D

E

G

F

H

1

1

 5. Find the coordinates of the points shown.

 6. List the points that lie in Quadrants I and III.

1.1 ExErCISES
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92 CHAPTER 1 ■ Equations and Graphs

7–8 ■ Points in a Coordinate Plane  Plot the given points in a 
coordinate plane.

 7. 10, 5 2 , 11, 0 2 , 11, 2 2 , A12, 23 B
 8. 15, 0 2 , 12, 0 2 , 12.6, 1.3 2 , 12.5, 3.5 2

9–20 ■ regions in a Coordinate Plane  Sketch the region given 
by the set.

 9. 5 1x, y 2  0  x  26  10. 5 1x, y 2  0  y  26
 11. 5 1x, y 2  0  x  46  12. 5 1x, y 2  0  y  36
 13. 5 1x, y 2  0  3  x  36  14. 5 1x, y 2  0  0  y  26
 15. 5 1x, y 2  0  xy  06  16. 5 1x, y 2  0  xy  06
 17. 5 1x, y 2  0  x  1 and y  36
 18. 5 1x, y 2  0  x  2 and y  16
 19. 5 1x, y 2  0  1  x  1 and 2  y  26
 20. 5 1x, y 2  0  3  x  3 and 1  y  16

21–24 ■ distance and Midpoint  A pair of points is graphed.  
(a) Find the distance between them. (b) Find the midpoint of the 
segment that joins them.

 21. 

0

y

x1

1

 22. 

0

y

x1

1

 23. 

0

y

x1

2

 24. 

0

y

x

1

1

25–30 ■ distance and Midpoint  A pair of points is given. (a) Plot 
the points in a coordinate plane. (b) Find the distance between them. 
(c) Find the midpoint of the segment that joins them.

 25. 10,  8 2 , 16,  16 2  26. 12,  5 2 , 110,  0 2
 27. 13, 2 2 , 14, 5 2  28. 11, 1 2 , 16, 3 2
29. 16,  2 2 , 16,  2 2  30. 10,  6 2 , 15,  0 2
31–34 ■ Area  In these exercises we find the areas of plane  
figures.

31. Draw the rectangle with vertices A11, 3 2 , B15,  3 2 , C11,  3 2 , 
and D15,  3 2  on a coordinate plane. Find the area of the  
rectangle.

32. Draw the parallelogram with vertices A11,  2 2 , B15,  2 2 , 
C13,  6 2 , and D17,  6 2  on a coordinate plane. Find the area  
of the parallelogram.

33. Plot the points A11,  0 2 , B15,  0 2 , C14,  3 2 , and D12,  3 2  on  
a coordinate plane. Draw the segments AB, BC, CD, and  
DA. What kind of quadrilateral is ABCD, and what is its 
area?

34. Plot the points P15,  1 2 , Q10,  6 2 , and R15,  1 2  on a coordi-
nate plane. Where must the point S be located so that the 
quadrilateral PQRS is a square? Find the area of this square.

35–39 ■ distance Formula  In these exercises we use the  
Distance Formula.

35. Which of the points A16,  7 2  or B15,  8 2  is closer to the 
 origin?

36. Which of the points C16,  3 2  or D13,  0 2  is closer to the 
point E12,  1 2 ?

37. Which of the points P13,  1 2  or Q11,  3 2  is closer to the 
point R11,  1 2 ?

38. (a)  Show that the points 17,  3 2  and 13,  7 2  are the same  
distance from the origin.

(b) Show that the points 1a,  b 2  and 1b,  a 2  are the same  
distance from the origin.

39. Show that the triangle with vertices A10,  2 2 , B13,  1 2 , and 
C14,  3 2  is isosceles.

40. Area of Triangle  Find the area of the triangle shown in the 
figure.

y

x0 2

2

4 6 8

4

_2

_2

C

BA

41–42 ■ Pythagorean Theorem  In these exercises we use the 
converse of the Pythagorean Theorem (see page 277) to show that 
the given triangle is a right triangle.

41. Refer to triangle ABC in the figure below.

(a)  Show that triangle ABC is a right triangle by using the 
converse of the Pythagorean Theorem.

(b) Find the area of triangle ABC.

y

x0 2

2

4 6_2_4

_2
B

A

C

42. Show that the triangle with vertices A16,  7 2 , B111,  3 2 , 
and C12,  2 2  is a right triangle by using the converse of the 
Pythagorean Theorem. Find the area of the triangle.
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SECTION 1.1 ■ The Coordinate Plane 93

43–45 ■ distance Formula  In these exercises we use the  
Distance Formula.

43. Show that the points A12,  9 2 , B14,  6 2 , C11,  0 2 , and 
D15,  3 2  are the vertices of a square.

44. Show that the points A11,  3 2 , B13,  11 2 , and C15,  15 2  are 
collinear by showing that d1A, B 2  d1B, C 2  d1A, C 2 .

45. Find a point on the y-axis that is equidistant from the points 
15,  5 2  and 11,  1 2 .

46–50 ■ distance and Midpoint Formulas  In these exercises we 
use the Distance Formula and the Midpoint Formula.

46. Find the lengths of the medians of the triangle with vertices 
A11,  0 2 , B13,  6 2 , and C18,  2 2 . (A median is a line segment 
from a vertex to the midpoint of the opposite side.)

47. Plot the points P11,  4 2 , Q11,  1 2 , and R14,  2 2  on a  
coordinate plane. Where should the point S be located so  
that the figure PQRS is a parallelogram?

48. If M16,  8 2  is the midpoint of the line segment AB and if A 
has coordinates 12,  3 2 , find the coordinates of B.

49. (a)  Sketch the parallelogram with vertices A12,  1 2 , 
B14,  2 2 , C17,  7 2 , and D11, 4 2 .

(b)  Find the midpoints of the diagonals of this parallelogram.

(c) From part (b) show that the diagonals bisect each other.

50. The point M in the figure is the midpoint of the line segment AB. 
Show that M is equidistant from the vertices of triangle ABC.

y

xC(0, 0) A(a, 0)

M

B(0, b)

SkILLS Plus
 51. Shifting the Coordinate Plane  Suppose that each point in 

the coordinate plane is shifted 3 units to the right and 2 units 
upward.

(a) The point 15,  3 2  is shifted to what new point?

(b) The point 1a, b 2  is shifted to what new point?

(c) What point is shifted to 13,  4 2 ?
(d) Triangle ABC in the figure has been shifted to triangle 

ABC. Find the coordinates of the points A, B, and C.

A'

B'
C '

0

y

x
A(_5, _1)

C(2, 1)

B(_3, 2)

 52. reflecting in the Coordinate Plane  Suppose that the  
y-axis acts as a mirror that reflects each point to the right  
of it into a point to the left of it.

(a) The point 13,  7 2  is reflected to what point?

(b) The point 1a, b 2  is reflected to what point?

(c) What point is reflected to 14,  1 2 ?
(d) Triangle ABC in the figure is reflected to triangle ABC. 

Find the coordinates of the points A, B, and C.

A'

B'

C '

0

y

x

A(3, 3)

C(1, _4)

B(6, 1)

APPLICATIONS
 53.  distances in a City  A city has streets that run north and south 

and avenues that run east and west, all equally spaced. Streets 
and avenues are numbered sequentially, as shown in the figure. 
The walking distance between points A and B is 7 blocks—
that is, 3 blocks east and 4 blocks north. To find the straight-
line distance d, we must use the Distance Formula.

(a) Find the straight-line distance (in blocks) between A and B.

(b) Find the walking distance and the straight-line distance 
between the corner of 4th St. and 2nd Ave. and the cor-
ner of 11th St. and 26th Ave.

(c) What must be true about the points P and Q if the walk-
ing distance between P and Q equals the straight-line 
distance between P and Q?
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4th Ave.

3rd Ave.

2nd Ave.
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1s
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2n
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.
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.

B

A
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4 
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N

S
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54.  halfway Point  Two friends live in the city described in  
Exercise 53, one at the corner of 3rd St. and 7th Ave. and the 
other at the corner of 27th St. and 17th Ave. They frequently 
meet at a coffee shop halfway between their homes.

(a) At what intersection is the coffee shop located?

(b)  How far must each of them walk to get to the coffee shop?
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94 CHAPTER 1 ■ Equations and Graphs

55. Pressure and depth  The graph shows the pressure experi-
enced by an ocean diver at two different depths. Find and 
interpret the midpoint of the line segment shown in the graph.
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dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
56. WrITE: Completing a Line Segment  Plot the points M16,  8 2  

and A12,  3 2  on a coordinate plane. If M is the midpoint of the 
line segment AB, find the coordinates of B. Write a brief 
description of the steps you took to find B and your reasons 
for taking them.

57. WrITE: Completing a Parallelogram  Plot the points P10, 3 2 ,  
Q 12, 2 2 , and R15, 3 2  on a coordinate plane. Where should 
the point S be located so that the figure PQRS is a parallel-
ogram? Write a brief description of the steps you took and 
your reasons for taking them.

1.2 GrAPhS OF EQuATIONS IN TWO VArIABLES; CIrCLES
■ Graphing Equations by Plotting Points ■ Intercepts ■ Circles ■ Symmetry

An equation in two variables, such as y  x2  1, expresses a relationship between 
two quantities. A point 1x,  y 2  satisfies the equation if it makes the equation true when 
the values for x and y are substituted into the equation. For example, the point 13,  10 2  
satisfies the equation y  x2  1 because 10  32  1, but the point 11,  3 2  does not, 
because 3 ? 12  1.

ThE GrAPh OF AN EQuATION

The graph of an equation in x and y is the set of all points 1x,  y 2  in the coordi-
nate plane that satisfy the equation.

■ Graphing Equations by Plotting Points
The graph of an equation is a curve, so to graph an equation, we plot as many points as 
we can, then connect them by a smooth curve.

ExAMPLE 1 ■ Sketching a Graph by Plotting Points
Sketch the graph of the equation 2x  y  3.

SOLuTION  We first solve the given equation for y to get

y  2x  3

This helps us calculate the y-coordinates in the following table.

x y  2x  3 xx, yc

1 5 11,  5 2
  0 3 10,  3 2
  1 1 11,  1 2
  2    1 12,  1 2
  3    3 13,  3 2
  4    5 14,  5 2

Of course, there are infinitely many points on the graph, and it is impossible to plot 
all of them. But the more points we plot, the better we can imagine what the graph 
represented by the equation looks like. We plot the points we found in Figure 1; they 

Fundamental Principle  
of Analytic Geometry
A point 1x,  y 2  lies on the graph of an 
equation if and only if its coordinates 
satisfy the equation.

y

x0 4

y=2x-3

4

FIGurE 1
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SECTION 1.2 ■ Graphs of Equations in Two Variables; Circles 95

appear to lie on a line. So we complete the graph by joining the points by a line. (In 
Section 1.3 we verify that the graph of an equation of this type is indeed a line.)

Now Try Exercise 19 ■

ExAMPLE 2 ■ Sketching a Graph by Plotting Points
Sketch the graph of the equation y  x2  2.

SOLuTION  We find some of the points that satisfy the equation in the following table. 
In Figure 2 we plot these points and then connect them by a smooth curve. A curve 
with this shape is called a parabola.

x y  x2  2 xx, yc

3   7 13,  7 2
2   2 12,  2 2
1 1 11,  1 2

0 2 10,  2 2
1 1 11,  1 2
2   2 12,  2 2
3 7 13,  7 2

Now Try Exercise 23 ■

ExAMPLE 3 ■ Graphing an Absolute Value Equation
Sketch the graph of the equation y  0  x 0 .
SOLuTION  We make a table of values.

x y  0 x 0 xx, yc

3 3 13,  3 2
2 2 12,  2 2
1 1 11,  1 2

0 0 10,  0 2
1 1 11,  1 2
2 2 12,  2 2
3 3 13,  3 2

In Figure 3 we plot these points and use them to sketch the graph of the equation.

Now Try Exercise 33 ■

We can use a graphing calculator to graph equations. A graphing calculator draws 
the graph of an equation by plotting points, just as we would do by hand. 

ExAMPLE 4 ■ Graphing an Equation with a Graphing Calculator
Use a graphing calculator to graph the following equation in the viewing rectangle 
35,  5 4  by 31,  2 4 .

y 
1

1  x2

SOLuTION  The graph is shown in Figure 4.

Now Try Exercise 45 ■

A detailed discussion of parabolas and 
their geometric properties is presented 
in Chapter 12.

See Appendix C, Graphing with a 
Graphing Calculator, for general 
guidelines on using a graphing  
calculator. See Appendix D, Using the 
TI-83/84 Graphing Calculator, for  
specific graphing instructions. 
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96 CHAPTER 1 ■ Equations and Graphs

■ Intercepts
The x-coordinates of the points where a graph intersects the x-axis are called the 
x-intercepts of the graph and are obtained by setting y  0 in the equation of the graph. 
The y-coordinates of the points where a graph intersects the y-axis are called the 
y-intercepts of the graph and are obtained by setting x  0 in the equation of the  
graph.

dEFINITION OF INTErCEPTS

Intercepts How to find them Where they are on the graph

x-intercepts:  

The x-coordinates of points where the  Set y  0 and  
y

x0

 
graph of an equation intersects the x-axis solve for x

y-intercepts:

The y-coordinates of points where the  Set x  0 and  

y

x0

 
graph of an equation intersects the y-axis solve for y

ExAMPLE 5 ■ Finding Intercepts
Find the x- and y-intercepts of the graph of the equation y  x2  2.

SOLuTION  To find the x-intercepts, we set y  0 and solve for x. Thus

 0  x2  2  Set y  0

 x2  2   Add 2 to each side

 x  !2   Take the square root

The x-intercepts are !2 and !2.
To find the y-intercepts, we set x  0 and solve for y. Thus

 y  02  2  Set x  0

 y  2

The y-intercept is 2.
The graph of this equation was sketched in Example 2. It is repeated in Figure 5 

with the x- and y-intercepts labeled.

Now Try Exercise 49 ■

ExAMPLE 6 ■ Finding Intercepts
Find the x- and y-intercepts of the graph of the following equation:

x2

9


y2

4
 1

y

x2_2 0

_2

2

y=≈-2

y-intercept

x-intercepts

FIGurE 5
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SOLuTION  To find the x-intercepts, we set y  0 and solve for x.

 
x2

9
 1     Set y  0

 x2  9     Multiply by 9

 x  3    Solve for x

So the x-intercepts are 3 and 3. To find the y-intercepts, we set x  0 and solve  
for y.

 
y2

4
 1     Set x  0

 y2  4     Multiply by 4

 y  2    Solve for y

So the y-intercepts are 2 and 2. A graph of the equation is shown in Figure 6. The 
shape of the graph is an ellipse. Ellipses are studied in more detail in Section 12.2.

Now Try Exercise 55 ■

ExAMPLE 7 ■ Finding Intercepts Graphically
Consider the equation y  x3  3x2  x  3.

(a)  Graph the equation in the viewing rectangle 35, 3 4  by 35, 5 4 . 
(b) Find the x- and y-intercepts from the graph.

(c) Verify your answers to part (b) algebraically.

SOLuTION  

(a) The graph is shown in Figure 7. 

(b)  From the graph we see that there are three x-intercepts: 3, 1, and 1. There is one  
y-intercept: 3. 

(c)  Setting x  0 in the equation we get y  3, so 3 is a y-intercept. Setting 
x  3 in the equation, we get y  0, so 3 is an x-intercept. We can similarly 
verify that 1, and 1 are x-intercepts.

 y  13 2 3  313 2 2  13 2  3  0    Set x  3

 y  11 2 3  311 2 2  11 2  3  0    Set x  1

 y  11 2 3  311 2 2  11 2  3  0     Set x  1

Now Try Exercise 61 ■

■ Circles
So far, we have discussed how to find the graph of an equation in x and y. The converse 
problem is to find an equation of a graph, that is, an equation that represents a given 
curve in the xy-plane. Such an equation is satisfied by the coordinates of the points on 
the curve and by no other point. This is the other half of the fundamental principle of 
analytic geometry as formulated by Descartes and Fermat. The idea is that if a geomet-
ric curve can be represented by an algebraic equation, then the rules of algebra can be 
used to analyze the curve.

As an example of this type of problem, let’s find the equation of a circle with  
radius r and center 1h, k 2 . By definition the circle is the set of all points P1x, y 2  whose 

FIGurE 7 Graph of 
y  x3  3x2  x  3

5

_5

_5 3

FIGurE 6 Graph of 
x2

9


y2

4
 1

y-intercepts

x-intercepts

y

x0

1

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



98 CHAPTER 1 ■ Equations and Graphs

distance from the center C1h, k 2  is r (see Figure 8). Thus P is on the circle if and only 
if d1P, C 2  r. From the distance formula we have

"1x  h 2 2  1 y  k 2 2  r

 1x  h 2 2  1 y  k 2 2  r2    Square each side

This is the desired equation.

EQuATION OF A CIrCLE

An equation of the circle with center 1h, k 2  and radius r is

1x  h 2 2  1 y  k 2 2  r2

This is called the standard form for the equation of the circle. If the center of 
the circle is the origin 10, 0 2 , then the equation is

x2  y2  r2

ExAMPLE 8 ■ Graphing a Circle
Graph each equation.

(a) x2  y2  25      (b) 1x  2 2 2  1 y  1 2 2  25

SOLuTION

(a)  Rewriting the equation as x2  y2  52, we see that this is an equation of the  
circle of radius 5 centered at the origin. Its graph is shown in Figure 9.

(b)  Rewriting the equation as 1x  2 2 2  1 y  1 2 2  52, we see that this is an equa-
tion of the circle of radius 5 centered at 12, 1 2 . Its graph is shown in Figure 10.

5

5

y

x

≈+¥=25

0
(2, _1)

y

x

(x-2)™+(y+1)™=25

0

FIGurE 9 FIGurE 10

Now Try Exercises 67 and 69 ■

ExAMPLE 9 ■ Finding an Equation of a Circle
(a) Find an equation of the circle with radius 3 and center 12,  5 2 .
(b)  Find an equation of the circle that has the points P11,  8 2  and Q15,  6 2  as the  

endpoints of a diameter.

SOLuTION

(a) Using the equation of a circle with r  3, h  2, and k  5, we obtain

1x  2 2 2  1 y  5 2 2  9

  The graph is shown in Figure 11.

r

y

x0

C(h, k)

P(x, y)

FIGurE 8

(x-2)™+(y+5)™=9

y

x20

(2, _5)

_2

FIGurE 11
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SECTION 1.2 ■ Graphs of Equations in Two Variables; Circles 99

(b)  We first observe that the center is the midpoint of the diameter PQ, so by the  
Midpoint Formula the center is

a 1  5

2
, 

8  6

2
b  13, 1 2

  The radius r is the distance from P to the center, so by the Distance Formula

r2  13  1 2 2  11  8 2 2  22  17 2 2  53

  Therefore the equation of the circle is

1x  3 2 2  1 y  1 2 2  53

  The graph is shown in Figure 12.

Now Try Exercises 73 and 77 ■

Let’s expand the equation of the circle in the preceding example.

 1x  3 2 2  1 y  1 2 2  53    Standard form

x2  6x  9  y2  2y  1  53    Expand the squares

 x2  6x  y2  2y  43    Subtract 10 to get expanded form

Suppose we are given the equation of a circle in expanded form. Then to find its center 
and radius, we must put the equation back in standard form. That means that we must 
reverse the steps in the preceding calculation, and to do that we need to know what to add 
to an expression like x2  6x to make it a perfect square—that is, we need to “complete 
the square.” To complete the square, we must add the square of half the coefficient of x. 
For example, to complete the square for x2  6x, we add the square of half of 6: 

x2  6x  A12 16 2B 2  x2  6x  9  1x  3 2 2
In general, to make X 2  bX  a perfect square, add 1b/2 2 2.

ExAMPLE 10 ■ Identifying an Equation of a Circle
Show that the equation x2  y2  2x  6y  7  0 represents a circle, and find the 
center and radius of the circle.

SOLuTION  We first group the x-terms and y-terms. Then we complete the square 
within each grouping. That is, we complete the square for x2  2x by adding 
A12 # 2B2  1, and we complete the square for y2  6y by adding C12 # 16 2 D 2  9.

 1x2  2x 2  1 y2  6y 2  7  Group terms

1x2  2x  1 2  1 y2  6y  9 2  7  1  9 
 Complete the square by  
adding 1 and 9 to each side

 1x  1 2 2  1 y  3 2 2  3  Factor and simplify

Comparing this equation with the standard equation of a circle, we see that h  1,  
k  3, and r  !3, so the given equation represents a circle with center 11, 3 2  and 
radius !3.

Now Try Exercise 83 ■

■ Symmetry
Figure 13 shows the graph of y  x2. Notice that the part of the graph to the left of the 
y-axis is the mirror image of the part to the right of the y-axis. The reason is that if the 
point 1x, y 2  is on the graph, then so is 1x, y 2 , and these points are reflections of each 
other about the y-axis. In this situation we say that the graph is symmetric with respect 
to the y-axis. Similarly, we say that a graph is symmetric with respect to the x-axis 

Completing the square is used in many 
contexts in algebra. In Section 1.4 we 
use completing the square to solve  
quadratic equations.

 We must add the same numbers to 
each side to maintain equality.

(x-3)™+(y-1)™=53

P(1, 8)

Q(5, _6)

(3, 1)

y

x0

FIGurE 12

(x, y)(_x, y)

y

x10

1

y=≈

FIGurE 13
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100 CHAPTER 1 ■ Equations and Graphs

if whenever the point 1x, y 2  is on the graph, then so is 1x, y 2 . A graph is symmetric 
with respect to the origin if whenever 1x, y 2  is on the graph, so is 1x, y 2 . (We 
often say symmetric “about” instead of “with respect to.”)

TyPES OF SyMMETry

Symmetry Test  Graph Property of Graph

With respect  Replace y by y. The   Graph is unchanged  
to the x-axis resulting equation is   when reflected about the  
 equivalent to the original  x-axis. See Figures 6,  
 one.  9, 14, and 15.

With respect  Replace x by x. The   Graph is unchanged  
to the y-axis resulting equation is   when reflected about the  
 equivalent to the original  y-axis. See Figures 2, 
 one.  3, 5, 6, 9, 13, and 15.

With respect  Replace x by x and y   Graph is unchanged  
to the origin by y. The resulting   when rotated 180  
 equation is equivalent to  about the origin. 
 the original one.   See Figures 6, 9,  

and 15.

(x, y)

(x, _y)

y

x0

(x, y)(_x, y)

y

x0

(x, y)

(_x, _y)

y

x
0

The remaining examples in this section show how symmetry helps us to sketch the 
graphs of equations.

ExAMPLE 11 ■ using Symmetry to Sketch a Graph
Test the equation x  y2 for symmetry and sketch the graph.

SOLuTION  If y is replaced by y in the equation x  y2, we get

x  1y 2 2    Replace y by y

x  y2     Simplify

and so the equation is equivalent to the original one. Therefore the graph is symmetric 
about the x-axis. But changing x to x gives the equation x  y2, which is not 
equivalent to the original equation, so the graph is not symmetric about the y-axis.

We use the symmetry about the x-axis to sketch the graph by first plotting points 
just for y  0 and then reflecting the graph about the x-axis, as shown in Figure 14.

y

x4

x=¥

(9, 3)

(0, 0)

4 (4, 2)
(1, 1)

FIGurE 14

y x  y2 xx, yc

0 0 10,  0 2
1 1 11,  1 2
2 4 14,  2 2
3 9 19,  3 2

Now Try Exercises 95 and 101 ■
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SECTION 1.2 ■ Graphs of Equations in Two Variables; Circles 101

ExAMPLE 12 ■ Testing an Equation for Symmetry
Test the equation y  x3  9x for symmetry.

SOLuTION  If we replace x by x and y by y in the equation, we get

y  1x 2 3  91x 2     Replace x by x and y by y

y  x3  9x     Simplify

 y  x3  9x     Multiply by 1

and so the equation is equivalent to the original one. This means that the graph is 
symmetric with respect to the origin.

Now Try Exercise 97 ■

ExAMPLE 13 ■ A Circle That has All Three Types of Symmetry
Test the equation of the circle x2  y2  4 for symmetry.

SOLuTION  The equation x2  y2  4 is equivalent to the original one when x is 
replaced by x and y is replaced by y, since 1x 2 2  x 

2 and 1y 2 2  y 
2, so the 

circle exhibits all three types of symmetry. It is symmetric with respect to the x-axis, 
the y-axis, and the origin, as shown in Figure 15.

Now Try Exercise 99 ■

≈+¥=4

(x, y)

(x, _y)

(_x, y)

(_x, _y)

2

2

y

0 x

FIGurE 15

CONCEPTS
 1. If the point 12,  3 2  is on the graph of an equation in x and y, 

then the equation is satisfied when we replace x by

    and y by    . Is the point 12,  3 2  on the 
graph of the equation 2y  x  1? Complete the table, and 
sketch a graph.

x y xx, yc

2
1

0
1

2

y

x0 1

1

 2. To find the x-intercept(s) of the graph of an equation, we 

  set   equal to 0 and solve for    . So the 

  x-intercept of 2y  x  1 is    .

 3. To find the y-intercept(s) of the graph of an equation, we 

  set   equal to 0 and solve for    . So the 

  y-intercept of 2y  x  1 is    .

 4. The graph of the equation 1x 122  1y  222  9 is a circle 

  with center (   ,  2 and radius    .

 5. (a)  If a graph is symmetric with respect to the x-axis and 

    1a, b2 is on the graph, then 1   ,  2 is also on the 
graph.

(b)  If a graph is symmetric with respect to the y-axis and 

    1a, b2 is on the graph, then 1   ,  2 is also on the 
graph.

(c)  If a graph is symmetric about the origin and 1a, b2 is on 

   the graph, then 1   ,  2 is also on the graph.

 6. The graph of an equation is shown below.

(a)  The x-intercept(s) are    , and the y-intercept(s) 

   are    .

(b)  The graph is symmetric about the   (x-axis/ 
y-axis/origin).

y

x0

1

1

1.2 ExErCISES
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102 CHAPTER 1 ■ Equations and Graphs

7–8 ■ Yes or No? If No, give a reason.

 7. If the graph of an equation is symmetric with respect to both 
the x- and y-axes, is it necessarily symmetric with respect to 
the origin?

 8. If the graph of an equation is symmetric with respect to the 
origin, is it necessarily symmetric with respect to the x- or 
y-axes?

SkILLS
9–14 ■ Points on a Graph?  Determine whether the given points 
are on the graph of the equation.

 9. y  3  4x;  10, 3 2 , 14, 0 2 , 11, 1 2
 10. y  !1  x;  12, 1 2 , 13, 2 2 , 10, 1 2
 11. x  2y  1  0;  10, 0 2 , 11, 0 2 , 11, 1 2
 12. y1x2  1 2  1; 11, 1 2 , A1, 12 B, A1, 12 B
 13. x2  2xy  y2  1;  10, 1 2 , 12, 1 2 , 12, 3 2

14. x2  y2  1;  10, 1 2 , a 1

!2
, 

1

!2
b , a !3

2
, 

1

2
b

15–40 ■ Graphing Equations  Make a table of values, and 
sketch a graph of the equation.

15. y  3x 16. y  2x

17. y  2  x 18. y  2x  3

 19. 2x  y  6 20. x  4y  8

21. y  1  x2 22. y  x2  2

 23. y  x2  2 24. y  x2  4

25. 9y  x2 26. 4y  x2

27. x  y2  4 28. xy  2

29. y  !x 30. y  2  !x

31. y  "9  x2 32. y  "9  x2

 33. y   0  x 0  34. x  0  y 0
35. y  4  0  x 0  36. y   0  4  x 0
37. x  y3 38. y  x3  1

39. y  x4 40. y  16  x4

41–46 ■ Graphing Equations  Use a graphing calculator to 
graph the equation in the given viewing rectangle.

41. y  0.01x3  x2  5;  3100, 150 4  by 32000, 2000 4
42. y  0.03x2  1.7x  3;  3100, 50 4  by 350, 100 4
43. y  !12x  17;  31, 10 4  by 31, 20 4
44. y  "4 256  x2;  320, 20 4  by 32, 6 4

 45. y 
x

x2  25
;  350, 50 4  by 30.2, 0.2 4

46. y  x4  4x3;  34, 6 4  by 350, 100 4
47–56 ■ Intercepts  Find the x- and y-intercepts of the graph of 
the equation.

47. y  x  6 48. 2x  5y  40

49. y  x2  5 50. y2  9  x2

51. y  2xy  2x  1 52. x2  xy  y  1

53. y  !x  1 54. xy  5

 55. 4x2  25y2  100 56. 25x2  y2  100

57–60 ■ Intercepts  An equation and its graph are given. Find 
the x- and y-intercepts.

57. y  4x  x2 58. 
x2

9


y2

4
 1

y

x0

1

1

 

y

x0

1

1

59. x4  y2  xy  16 60. x2  y3  x2y2  64

y

x0
1

1

 

y

x0
2

2

61–66 ■ Graphing Equations  An equation is given. (a) Use a 
graphing calculator to graph the equation in the given viewing 
rectangle. (b) Find the x- and y-intercepts from the graph. (c) Ver-
ify your answers to part (b) algebraically (from the equation).

61. y  x3  x2;  32, 2 4  by 31, 1 4
62. y  x4  2x3;  32, 3 4  by 33, 3 4

63. y   

2

x2  1
;  35, 5 4  by 33, 1 4

64. y 
x

x2  1
;  35, 5 4  by 32, 2 4

65. y  !3 x;  35, 5 4  by 32, 2 4
66. y  "3 1  x2;  35, 5 4  by 35, 3 4

67–72 ■ Graphing Circles  Find the center and radius of the  
circle, and sketch its graph.

67. x2  y2  9 68. x2  y2  5

69. 1 x  3 2 2  y2  16 70. x2  1 y  2 2 2  4

71. 1 x  3 2 2  1 y  4 2 2  25 72. 1 x  1 2 2  1 y  2 2 2  36

73–80 ■ Equations of Circles  Find an equation of the circle that 
satisfies the given conditions.

73. Center 13, 2 2 , radius 5 74. Center 11, 3 2 , radius 3

 75. Center at the origin;  passes through 14,  7 2
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SECTION 1.2 ■ Graphs of Equations in Two Variables; Circles 103

 76. Center 11, 5 2 ;  passes through 14, 6 2
 77. Endpoints of a diameter are P11,  1 2  and Q15,  9 2
 78. Endpoints of a diameter are P11, 3 2  and Q17, 5 2
 79. Center 17,  3 2 ;  tangent to the x-axis

 80. Circle lies in the first quadrant, tangent to both x- and 
y-axes;  radius 5

81–82 ■ Equations of Circles  Find the equation of the circle 
shown in the figure.

 81. y

x0

2

2_2

  82. y

x0

2

2_2

83–90 ■ Equations of Circles  Show that the equation represents 
a circle, and find the center and radius of the circle.

 83. x2  y2  2x  4y  1  0

 84. x2  y2  2x  2y  2

 85. x2  y2  4x  10y  13  0

 86. x2  y2  6y  2  0

 87. x2  y2  x  0 88. x2  y2  2x  y  1  0

 89. x2  y2  1
2 x  1

2 y  1
8  90. x2  y2  1

2 x  2y  1
16  0

91–94 ■ Graphing Circles  Sketch the graph of the equation.

 91. x2  y2  4x  10y  21 92. 4x2  4y2  2x  0

 93. x2  y2  6x  12y  45  0

 94. x2  y2  16x  12y  200  0

95–100 ■ Symmetry  Test the equation for symmetry.

 95. y  x4  x2  96. x  y4  y2

 97. y  x3  10x  98. y  x2  0  x 0
 99. x4y4  x2y2  1 100. x2y2  xy  1

101–104 ■ Symmetry  Complete the graph using the given sym-
metry property.

101. Symmetric with respect  102. Symmetric with respect  
to the y-axis  to the x-axis

  

y= 1
1+≈

y

x0

 

¥-≈=1

y

x0

103. Symmetric with respect 104. Symmetric with respect  
to the origin  to the origin

  

y= x
1+≈

y

x0

  

y= 1
x£

y

x0

SkILLS Plus
105–106 ■ Graphing regions  Sketch the region given by  
the set.

105. 5 1x, y 2  0  x2  y2  16
106. 5 1x, y 2  0  x2  y2  46
107. Area of a region  Find the area of the region that lies out-

side the circle x2  y2  4 but inside the circle

x2  y2  4y  12  0

108. Area of a region  Sketch the region in the coordinate plane 
that satisfies both the inequalities x2  y2  9 and y  0  x 0 . 
What is the area of this region?

109. Shifting the Coordinate Plane  Suppose that each point  
in the coordinate plane is shifted 3 units to the right and  
2 units upward.

(a) The point 15,  3 2  is shifted to what new point?

(b) The point 1a, b 2  is shifted to what new point?

110. Making a Graph Symmetric  The graph shown in the 
figure is not symmetric about the x-axis, the y-axis, or the 
origin. Add more line segments to the graph so that it 
exhibits the indicated symmetry. In each case, add as little 
as possible.

(a) Symmetry about the x-axis

(b) Symmetry about the y-axis

(c) Symmetry about the origin

y

x0

1

1

APPLICATIONS
 111. u.S. Inflation rates  The following graph shows the annual 

inflation rate in the United States from 1975 to 2003.

(a)  Estimate the inflation rates in 1980, 1991, and 1999 to 
the nearest percent.
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104 CHAPTER 1 ■ Equations and Graphs

(b)  For which years in this period did the inflation rate  
exceed 6%?

(c)  Did the inflation rate generally increase or decrease in 
the years from 1980 to 1985? What about from 1987 to 
1992?

(d)  Estimate the highest and lowest inflation rates in this 
time period to the nearest percent.

2
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%
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 112. Orbit of a Satellite  A satellite is in orbit around the moon. 
A coordinate plane containing the orbit is set up with the 
center of the moon at the origin, as shown in the following 
graph, with distances measured in megameters (Mm). 
The equation of the satellite’s orbit is

1x  3 2 2
25


y2

16
 1

(a)  From the graph, determine the closest to and the far-
thest from the center of the moon that the satellite gets.

(b) There are two points in the orbit with y-coordinates 2.  
Find the x-coordinates of these points, and determine 
their distances to the center of the moon.

2

y

x2

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 113. dISCOVEr: Circle, Point, or Empty Set?  Complete the squares 

in the general equation x2  ax  y2  by  c  0, and sim-
plify the result as much as possible. Under what conditions on 
the coefficients a, b, and c does this equation represent a cir-
cle? A single point? The empty set? In the case in which the 
equation does represent a circle, find its center and  radius.

114. dISCOVEr ■ WrITE: do the Circles Intersect?
(a)  Find the radius of each circle in the pair and the dis-

tance between their centers; then use this information to 
determine whether the circles intersect.

 (i)  1x  2 2 2  1 y  1 2 2  9;

  1x  6 2 2  1 y  4 2 2  16

 (ii)  x2  1 y  2 2 2  4;

  1x  5 2 2  1 y  14 2 2  9

 (iii) 1x  3 2 2  1 y  1 2 2  1;

  1x  2 2 2  1 y  2 2 2  25

(b) How can you tell, just by knowing the radii of two cir-
cles and the distance between their centers, whether the 
circles intersect? Write a short paragraph describing 
how you would decide this, and draw graphs to illus-
trate your answer.

1.3 LINES
■ The Slope of a Line ■ Point-Slope Form of the Equation of a Line ■ Slope-Intercept  
Form of the Equation of a Line ■ Vertical and horizontal Lines ■ General Equation  
of a Line ■ Parallel and Perpendicular Lines

In this section we find equations for straight lines lying in a coordinate plane. The equations 
will depend on how the line is inclined, so we begin by discussing the concept of slope.

■ The Slope of a Line
We first need a way to measure the “steepness” of a line, or how quickly it rises  
(or falls) as we move from left to right. We define run to be the distance we move to the 
right and rise to be the corresponding distance that the line rises (or falls). The slope of 
a line is the ratio of rise to run:

slope 
rise
run
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SECTION 1.3 ■ Lines 105

Figure 1 shows situations in which slope is important. Carpenters use the term pitch for 
the slope of a roof or a staircase; the term grade is used for the slope of a road.

100

8
1

3
1

12

Slope of a ramp Pitch of a roof Grade of a road

Slope= 1
12

Slope=1
3

Slope= 8
100FIGurE 1

If a line lies in a coordinate plane, then the run is the change in the x-coordinate and 
the rise is the corresponding change in the y-coordinate between any two points on the 
line (see Figure 2). This gives us the following definition of slope.

y

x
0

1

2

Rise:

Run

y

x
0

1

2

Rise:

Run

change in
y-coordinate
(negative)

change in
y-coordinate
(positive)

FIGurE 2  

SLOPE OF A LINE

The slope m of a nonvertical line that passes through the points A1x1, y1 2  and 
B1x2, y2 2  is

 m 
rise
run


y2  y1

x2  x1

The slope of a vertical line is not defined.

The slope is independent of which two points are chosen on the line. We can see that 
this is true from the similar triangles in Figure 3.

y2  y1

x2  x1


y r2  y r1
x r2  x r1

y

x0

A'(x'⁄, y'⁄) y'¤-y'⁄

x'¤-x'⁄

A(x⁄, y⁄)
y¤-y⁄ (rise)

x¤-x⁄ (run)

B(x¤, y¤)

B'(x'¤, y'¤)

FIGurE 3
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106 CHAPTER 1 ■ Equations and Graphs

The figures in the box below show several lines labeled with their slopes. Notice that 
lines with positive slope slant upward to the right, whereas lines with negative slope 
slant downward to the right. The steepest lines are those for which the absolute value 
of the slope is the largest; a horizontal line has slope 0. The slope of a vertical line is 
undefined (it has a 0 denominator), so we say that a vertical line has no slope.

SLOPE OF A LINE

Positive Slope Negative Slope Zero Slope No Slope

y

x0

y

0 x

y

x0

y

x0

ExAMPLE 1 ■  Finding the Slope of a Line Through Two Points
Find the slope of the line that passes through the points P12,  1 2  and Q18,  5 2 .
SOLuTION  Since any two different points determine a line, only one line passes 
through these two points. From the definition the slope is

m 
y2  y1

x2  x1


5  1

8  2


4

6


2

3

This says that for every 3 units we move to the right, the line rises 2 units. The line is 
drawn in Figure 4.

x

y

(

Q

P 2, 1

(8, 5)

)

FIGurE 4

Now Try Exercise 9 ■

■ Point-Slope Form of the Equation of a Line
Now let’s find the equation of the line that passes through a given point P1x1,  y1 2  and 
has slope m. A point P1x, y 2  with x ? x1 lies on this line if and only if the slope of the 
line through P1 and P is equal to m (see Figure 5), that is,

y  y1

x  x1
 m

This equation can be rewritten in the form y  y1  m1x  x1 2 ; note that the equa-
tion is also satisfied when x  x1 and y  y1. Therefore it is an equation of the given 
line.

Run x – x⁄

Rise
y – y⁄

0 x

y

P⁄(x⁄, y⁄)

P(x, y)

FIGurE 5
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SECTION 1.3 ■ Lines 107

POINT-SLOPE FOrM OF ThE EQuATION OF A LINE

An equation of the line that passes through the point 1x1, y1 2  and has slope m is

y  y1  m1x  x1 2

ExAMPLE 2 ■  Finding an Equation of a Line with Given Point and Slope
(a) Find an equation of the line through 11,  3 2  with slope  

1
2.

(b) Sketch the line.

SOLuTION

(a)  Using the point-slope form with m  1
2, x1  1, and y1  3, we obtain an  

equation of the line as

 y  3  1
2 1x  1 2   Slope m  1

2, point 11, 3 2
 2y  6  x  1   Multiply by 2

 x  2y  5  0   Rearrange

(b)  The fact that the slope is 1
2 tells us that when we move to the right 2 units, the  

line drops 1 unit. This enables us to sketch the line in Figure 6.

Now Try Exercise 25 ■

ExAMPLE 3 ■  Finding an Equation of a Line Through Two Given Points
Find an equation of the line through the points 11,  2 2  and 13,  4 2 .
SOLuTION  The slope of the line is

m 
4  2

3  11 2   

6

4
  

3

2

Using the point-slope form with x1  1 and y1  2, we obtain

 y  2  3
2 1x  1 2   Slope m  3

2, point 11, 2 2
 2y  4  3x  3   Multiply by 2

 3x  2y  1  0   Rearrange

Now Try Exercise 29 ■

■ Slope-Intercept Form of the Equation of a Line

Suppose a nonvertical line has slope m and y-intercept b (see Figure 7). This means that 
the line intersects the y-axis at the point 10,  b 2 , so the point-slope form of the equation 
of the line, with x  0 and y  b, becomes

y  b  m1x  0 2
This simplifies to y  mx  b, which is called the slope-intercept form of the equation 
of a line.

SLOPE-INTErCEPT FOrM OF ThE EQuATION OF A LINE

An equation of the line that has slope m and y-intercept b is

y  mx  b

We can use either point, 11,  2 2  or 
13,  4 2 , in the point-slope equation. 
We will end up with the same final 
 answer.

0 x

y

(1, _3)

3

1

Run=2

Rise=_1

FIGurE 6

(0, b)

y=mx+b

0 x

y

FIGurE 7
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108 CHAPTER 1 ■ Equations and Graphs

ExAMPLE 4 ■ Lines in Slope-Intercept Form
(a) Find an equation of the line with slope 3 and y-intercept 2.

(b) Find the slope and y-intercept of the line 3y  2x  1.

SOLuTION

(a)  Since m  3 and b  2, from the slope-intercept form of the equation of a line  
we get

y  3x  2

(b) We first write the equation in the form y  mx  b.

 3y  2x  1   Given equation

 3y  2x  1  Add 2x

 y  2
3 x  1

3   Divide by 3

   From the slope-intercept form of the equation of a line, we see that the slope is 
m  2

3 and the y-intercept is b  1
3.

Now Try Exercises 23 and 61 ■

■ Vertical and horizontal Lines
If a line is horizontal, its slope is m  0, so its equation is y  b, where b is the  
y-intercept (see Figure 8). A vertical line does not have a slope, but we can write its 
equation as x  a, where a is the x-intercept, because the x-coordinate of every point 
on the line is a.

VErTICAL ANd hOrIzONTAL LINES
■ An equation of the vertical line through 1a,  b 2  is x  a.
■ An equation of the horizontal line through 1a,  b 2  is y  b.

ExAMPLE 5 ■ Vertical and horizontal Lines
(a) An equation for the vertical line through 13, 5 2  is x  3.

(b) The graph of the equation x  3 is a vertical line with x-intercept 3.

(c) An equation for the horizontal line through 18, 2 2  is y  2.

(d) The graph of the equation y  2 is a horizontal line with y-intercept 2.

The lines are graphed in Figure 9.

Now Try Exercises 35, 37, 63, and 65 ■

■ General Equation of a Line
A linear equation in the variables x and y is an equation of the form

Ax  By  C  0

where A, B, and C are constants and A and B are not both 0. An equation of a line is a 
linear equation:

■ A nonvertical line has the equation y  mx  b or mx  y  b  0, which is a  
linear equation with A  m, B  1, and C  b.

■ A vertical line has the equation x  a or x  a  0, which is a linear equation 
with A  1, B  0, and C  a.

 Conversely, the graph of a linear equation is a line.

y  2
3 x  1

3

Slope y-intercept

b y=b

0

x=a

(a, b)

a x

y

FIGurE 8

y

x2

x=3

0

2

4_2

y=_2

FIGurE 9
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■ If B ? 0, the equation becomes

y   

A

B
 x 

C

B
    Divide by B

  and this is the slope-intercept form of the equation of a line (with m  A/B and  
b  C/B).

■ If B  0, the equation becomes

Ax  C  0    Set B = 0

 or x  C/A, which represents a vertical line.

We have proved the following.

GENErAL EQuATION OF A LINE

The graph of every linear equation

Ax  By  C  0    (A, B not both zero)

is a line. Conversely, every line is the graph of a linear equation.

ExAMPLE 6 ■ Graphing a Linear Equation
Sketch the graph of the equation 2x  3y  12  0.

SOLuTION 1  Since the equation is linear, its graph is a line. To draw the graph, it is 
enough to find any two points on the line. The intercepts are the easiest points to find.

x-intercept: Substitute y  0, to get 2x  12  0, so x  6

y-intercept: Substitute x  0, to get 3y  12  0, so y  4

With these points we can sketch the graph in Figure 10.

SOLuTION 2  We write the equation in slope-intercept form.

 2x  3y  12  0   Given equation

 2x  3y  12   Add 12

 3y  2x  12  Subtract 2x

 y  2
3 x  4   Divide by –3

This equation is in the form y  mx  b, so the slope is m  2
3 and the y-intercept is  

b  4. To sketch the graph, we plot the y-intercept and then move 3 units to the 
right and 2 units up as shown in Figure 11.

FIGurE 10

y

x

2x-3y-12=0

0

(0, _4)

(6, 0)1

1
2x-3y-12=0

y

x0

(0, _4)

1

1

3

2

FIGurE 11

Now Try Exercise 67 ■
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110 CHAPTER 1 ■ Equations and Graphs

■ Parallel and Perpendicular Lines
Since slope measures the steepness of a line, it seems reasonable that parallel lines 
should have the same slope. In fact, we can prove this.

PArALLEL LINES

Two nonvertical lines are parallel if and only if they have the same slope.

Proof  Let the lines l1 and l2 in Figure 12 have slopes m1 and m2. If the lines are par-
allel, then the right triangles ABC and DEF are similar, so

m1 
d1B, C 2
d1A, C 2 

d1E, F 2
d1D, F 2  m2

Conversely, if the slopes are equal, then the triangles will be similar, so  
BAC EDF and the lines are parallel. ■

ExAMPLE 7 ■  Finding an Equation of a Line Parallel  
to a Given Line

Find an equation of the line through the point 15,  2 2  that is parallel to the line 
4x  6y  5  0.

SOLuTION  First we write the equation of the given line in slope-intercept form.

 4x  6y  5  0   Given equation

 6y  4x  5  Subtract 4x + 5

 y  2
3 x  5

6   Divide by 6

So the line has slope m   
2
3. Since the required line is parallel to the given line, it 

also has slope m   
2
3. From the point-slope form of the equation of a line we get

 y  2  2
3 1x  5 2   Slope m = 2

3 , point 15,  2 2
 3y  6  2x  10   Multiply by 3

 2x  3y  16  0   Rearrange

Thus an equation of the required line is 2x  3y  16  0.

Now Try Exercise 43 ■

The condition for perpendicular lines is not as obvious as that for parallel lines.

PErPENdICuLAr LINES

Two lines with slopes m1 and m2 are perpendicular if and only if m1m2  1, 
that is, their slopes are negative reciprocals:

m2   

1
m1

Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope).

l¤

l⁄

y

x

D F

E

A
C

B

FIGurE 12
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SECTION 1.3 ■ Lines 111

Proof  In Figure 13 we show two lines intersecting at the origin. (If the lines inter-
sect at some other point, we consider lines parallel to these that intersect at the origin. 
These lines have the same slopes as the original lines.)

If the lines l1 and l2 have slopes m1 and m2, then their equations are y  m1x and  
y  m2x. Notice that A11,  m1 2  lies on l1 and B11,  m2 2  lies on l2. By the Pythagorean 
Theorem and its converse (see page 277) OA  OB if and only if

3d1O, A 2 4 2  3d1O, B 2 4 2  3d1A, B 2 4 2
By the Distance Formula this becomes

  112  m2
1 2  112  m2

2 2  11  1 2 2  1m2  m1 2 2
  2  m2

1  m2
2  m2

2  2m1m2  m2
1

  2  2m1m2

  m1m2  1  ■

ExAMPLE 8 ■ Perpendicular Lines
Show that the points P13,  3 2 , Q18,  17 2 , and R111,  5 2  are the vertices of a right triangle.

SOLuTION  The slopes of the lines containing PR and QR are, respectively,

m1 
5  3

11  3


1

4
  and  m2 

5  17

11  8
 4

Since m1m2  1, these lines are perpendicular, so PQR is a right triangle. It is 
sketched in Figure 14.

Now Try Exercise 81 ■

ExAMPLE 9 ■  Finding an Equation of a Line Perpendicular  
to a Given Line

Find an equation of the line that is perpendicular to the line 4x  6y  5  0 and 
passes through the origin.

SOLuTION  In Example 7 we found that the slope of the line 4x  6y  5  0 is  
 

2
3. Thus the slope of a perpendicular line is the negative reciprocal, that is, 3

2. Since 
the required line passes through 10,  0 2 , the point-slope form gives

  y  0  3
2 1x  0 2     Slope m = 3

2 , point 10,  0 2
  y  3

2 x     Simplify

Now Try Exercise 47 ■

ExAMPLE 10 ■ Graphing a Family of Lines
Use a graphing calculator to graph the family of lines

y  0.5x  b

for b  2, 1, 0, 1, 2. What property do the lines share?

SOLuTION  We use a graphing calculator to graph the lines in the viewing rectangle 
36,  6 4  by 36,  6 4 . The graphs are shown in Figure 15. The lines all have the same 
slope, so they are parallel.

Now Try Exercise 53 ■

y

x0

3
5
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3 8 11

R

Q

P

FIGurE 14

6
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x
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112 CHAPTER 1 ■ Equations and Graphs

concepts
 1. We find the “steepness,” or slope, of a line passing through 

two points by dividing the difference in the  -coordinates 

of these points by the difference in the  -coordinates. So 
the line passing through the points 10, 12 and 12, 52 has slope 

   .

 2. A line has the equation y 5 3x 1 2.

(a) This line has slope    .

(b) Any line parallel to this line has slope    .

(c) Any line perpendicular to this line has slope  

   .

 3. The point-slope form of the equation of the line with slope 

  3 passing through the point 11, 22 is    .

 4. For the linear equation 2x 1 3y 2 12 5 0, the x-intercept is 

    and the y-intercept is    . The equation in 

  slope-intercept form is y 5    . The slope 

  of the graph of this equation is    .

 5. The slope of a horizontal line is    . The equation 

  of the horizontal line passing through 12, 32 is    .

 6. The slope of a vertical line is    . The equation of 

  the vertical line passing through 12, 32 is    .

 7. Yes or No? If No, give a reason.

(a) Is the graph of y 5 23 a horizontal line?

(b) Is the graph of x 5 23 a vertical line?

(c) Does a line perpendicular to a horizontal line have  
slope 0?

(d) Does a line perpendicular to a vertical line have slope 0?

 8. Sketch a graph of the lines y 5 23 and x 5 23. Are the 
lines perpendicular?

skills
9–16 ■ slope  Find the slope of the line through P and Q.

 9. P121, 2 2 , Q10, 0 2
 10. P10, 0 2 , Q13, 21 2
 11. P12, 22 2 , Q17, 21 2
 12. P125, 1 2 , Q13, 22 2
 13. P15, 4 2 , Q10, 4 2
 14. P14, 3 2 , Q11, 21 2
 15. P110, 22 2 , Q16, 25 2
 16. P13, 22 2 , Q16, 22 2
 17. slope  Find the slopes of the lines l1, l2, l3, and l4 in the 

figure below.

l‹

l¤l⁄

l›

x

y

0

_2

_2 2

1

1.3 exercises

example 11 ■ application: interpreting slope
A swimming pool is being filled with a hose. The water depth y (in feet) in the pool t 
hours after the hose is turned on is given by 

y 5 1.5t 1 2

(a) Find the slope and y-intercept of the graph of this equation.

(b) What do the slope and y-intercept represent?

solUtion

(a) This is the equation of a line with slope 1.5 and y-intercept 2. 

(b) The slope represents an increase of 1.5 ft. in water depth for every hour. The  
y-intercept indicates that the water depth was 2 ft. at the time the hose was  
turned on.

now try exercise 87 ■
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SECTION 1.3 ■ Lines 113

18. Slope
(a) Sketch lines through 10,  0 2  with slopes 1, 0, 1

2 , 2,  
and 1.

(b) Sketch lines through 10,  0 2  with slopes 1
3, 12,  

1
3 , and 3.

19–22 ■ Equations of Lines  Find an equation for the line whose 
graph is sketched.

19. 

0 1 3 5
_2

1

3

x

y  20. 

x

y

0 2_3

3

21. 

x

y

0 1 3

_3

1

 22. 

_ x

y

0 14

_3

1

23–50 ■ Finding Equations of Lines  Find an equation of the 
line that satisfies the given conditions.

23. Slope 3;  y-intercept 2

24. Slope 2
5;  y-intercept 4

 25. Through 12,  3 2 ;  slope 5

26. Through 12,  4 2 ;  slope 1

27. Through 11,  7 2 ;  slope 2
3

28. Through 13,  5 2 ;  slope  
7
2

29. Through 12,  1 2  and 11,  6 2
30. Through 11,  2 2  and 14,  3 2
31. Through 12, 5 2  and 11, 3 2
32. Through 11, 7 2  and 14, 7 2
33. x-intercept 1;  y-intercept 3

34. x-intercept 8;  y-intercept 6

35. Through 11,  3 2 ;  slope 0

36. Through 11,  4 2 ;  slope undefined

37. Through 12,  1 2 ;  slope undefined

38. Through 15,  1 2 ;  slope 0

39. Through 11, 2 2 ;  parallel to the line y  3x  5

40. Through 13, 2 2 ;  perpendicular to the line y  1
2 x  7

41. Through 14,  5 2 ;  parallel to the x-axis

42. Through 14,  5 2 ;  parallel to the y-axis

43. Through 11,  6 2 ;  parallel to the line x  2y  6

44. y-intercept 6;  parallel to the line 2x  3y  4  0

45. Through 11,  2 2 ;  parallel to the line x  5

46. Through 12,  6 2 ;  perpendicular to the line y  1

 47. Through 11,  2 2 ;  perpendicular to the line  
2x  5y  8  0

48. Through A12,   
2
3 B ;  perpendicular to the line 4x  8y  1

49. Through 11,  7 2 ;  parallel to the line passing through 12,  5 2  
and 12,  1 2

50. Through 12,  11 2 ;  perpendicular to the line passing 
through 11,  1 2  and 15,  1 2

51. Finding Equations of Lines and Graphing  
(a) Sketch the line with slope 3

2 that passes through the point 
12,  1 2 .

(b) Find an equation for this line.

52. Finding Equations of Lines and Graphing  
(a) Sketch the line with slope 2 that passes through the 

point 14,  1 2 .
(b) Find an equation for this line.

53–56 ■ Families of Lines  Use a graphing device to graph the 
given family of lines in the same viewing rectangle. What do the 
lines have in common?

53. y  2x  b  for b  0, 1, 3, 6

54. y  mx  3  for m  0, 0.25, 0.75, 1.5

55. y  m1x  3 2   for m  0, 0.25, 0.75, 1.5

56. y  2  m1x  3 2   for m  0, 0.5, 1, 2, 6

57–66 ■ using Slopes and y-Intercepts to Graph Lines  Find the 
slope and y-intercept of the line, and draw its graph.

57. y  3  x 58. y  2
3 x  2

59. 2x  y  7 60. 2x  5y  0

 61. 4x  5y  10 62. 3x  4y  12

63. y  4 64. x  5

 65. x  3 66. y  2

67–72 ■ using x- and y-Intercepts to Graph Lines  Find the x- 
and y-intercepts of the line, and draw its graph.

 67. 5x  2y  10  0

 68. 6x  7y  42  0

69. 1
2 x  1

3 y  1  0

 70. 1
3 x  1

5 y  2  0

71. y  6x  4

 72. y  4x  10

73–78 ■ Parallel and Perpendicular Lines  The equations of two 
lines are given. Determine whether the lines are parallel, perpen-
dicular, or neither.

73. y  2x  3;  2y  4x  5  0

74. y  1
2 x  4;  2x  4y  1
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114 CHAPTER 1 ■ Equations and Graphs

75. 3x  4y  4;  4x  3y  5

76. 2x  3y  10;  3y  2x  7  0

77. 7x  3y  2;  9y  21x  1

78. 6y  2x  5;  2y  6x  1

SkILLS Plus
79–82 ■ using Slopes  Verify the given geometric property.

79. Use slopes to show that A11,  1 2 , B17,  4 2 , C15,  10 2 , and 
D11,  7 2  are vertices of a parallelogram.

80. Use slopes to show that A13,  1 2 , B13,  3 2 , and C19,  8 2   
are vertices of a right triangle.

81. Use slopes to show that A11,  1 2 , B111,  3 2 , C110,  8 2 , and 
D10,  6 2  are vertices of a rectangle.

82. Use slopes to determine whether the given points are collin-
ear (lie on a line).

(a) 11,  1 2 , 13,   9 2 , 16,  21 2  (b) 11,  3 2 , 11,  7 2 , 14,  15 2
83. Perpendicular Bisector  Find an equation of the perpendicu-

lar bisector of the line segment joining the points A11,  4 2  and 
B17,  2 2 .

84. Area of a Triangle  Find the area of the triangle formed by 
the coordinate axes and the line

2y  3x  6  0

85. Two-Intercept Form
(a) Show that if the x- and y-intercepts of a line are nonzero 

numbers a and b, then the equation of the line can be 
written in the form

x

a


y

b
 1

 This is called the two-intercept form of the equation of 
a line.

(b)  Use part (a) to find an equation of the line whose  
x-intercept is 6 and whose y-intercept is 8.

86. Tangent Line to a Circle
(a) Find an equation for the line tangent to the circle  

x2  y2  25 at the point 13,  4 2 . (See the figure.)

(b) At what other point on the circle will a tangent line be  
parallel to the tangent line in part (a)?

(3, _4)

0 x

y

APPLICATIONS
87. Global Warming  Some scientists believe that the average 

surface temperature of the world has been rising steadily. The 
average surface temperature can be modeled by

T  0.02t  15.0

  where T is temperature in C and t is years since 1950.

(a) What do the slope and T-intercept represent?

(b) Use the equation to predict the average global surface  
temperature in 2050.

88. drug dosages  If the recommended adult dosage for a drug 
is D (in mg), then to determine the appropriate dosage c for a 
child of age a, pharmacists use the equation

c  0.0417D1a  1 2
  Suppose the dosage for an adult is 200 mg.

(a) Find the slope. What does it represent?

(b) What is the dosage for a newborn?

89. Flea Market  The manager of a weekend flea market knows 
from past experience that if she charges x dollars for a rental 
space at the flea market, then the number y of spaces she can 
rent is given by the equation y  200  4x.

(a) Sketch a graph of this linear equation. (Remember that 
the rental charge per space and the number of spaces 
rented must both be nonnegative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of 
the graph represent?

90. Production Cost  A small-appliance manufacturer finds that 
if he produces x toaster ovens in a month, his production cost 
is given by the equation

y  6x  3000

  (where y is measured in dollars).

(a) Sketch a graph of this linear equation.

(b) What do the slope and y-intercept of the graph represent?

91. Temperature Scales  The relationship between the  
Fahrenheit (F ) and Celsius (C ) temperature scales is given  
by the equation F  9

5 C  32.

(a) Complete the table to compare the two scales at the 
given values.

(b) Find the temperature at which the scales agree.  
[Hint: Suppose that a is the temperature at which  
the scales agree. Set F  a and C  a. Then solve  
for a.]

C F

30
20
10
   0

50
68
86

1.4 SOLVING QuAdrATIC EQuATIONS
■ Solving Quadratic Equations by Factoring ■ Solving Quadratic Equations by  
Completing the Square ■ The Quadratic Formula ■ The discriminant ■ Modeling  
with Quadratic Equations

In Section P.8 we learned how to solve linear equations, which are first-degree equa-
tions such as 2x  1  5 or 4  3x  2. In this section we learn how to solve qua-
dratic equations, which are second-degree equations such as x2  2x  3  0 or 
2x2  3  5x. We will also see that many real-life problems can be modeled by using 
quadratic equations.

QuAdrATIC EQuATIONS

A quadratic equation is an equation of the form

ax2  bx  c  0

where a, b, and c are real numbers with a ? 0.

■ Solving Quadratic Equations by Factoring
Some quadratic equations can be solved by factoring and using the following basic 
property of real numbers.

Linear Equations

 4x  7

 6x  8  21

 2  3x  1
2  3

4 x

Quadratic Equations

 x2  2x  8  0

 3x  10  4x2

 12 x2  1
3 x  1

6  0
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92. Crickets and Temperature  Biologists have observed that the 
chirping rate of crickets of a certain species is related to tem-
perature, and the relationship appears to be very nearly  
linear. A cricket produces 120 chirps per minute at 70 F and 
168 chirps per minute at 80 F.

(a) Find the linear equation that relates the temperature t and 
the number of chirps per minute n.

(b) If the crickets are chirping at 150 chirps per minute,  
estimate the temperature.

93. depreciation  A small business buys a computer for 
$4000. After 4 years the value of the computer is expected 
to be $200. For accounting purposes the business uses lin-
ear depreciation to assess the value of the computer at a 
given time. This means that if V is the value of the com-
puter at time t, then a linear equation is used to relate V 
and t.

(a) Find a linear equation that relates V and t.

(b) Sketch a graph of this linear equation.

(c) What do the slope and V-intercept of the graph  
represent?

(d) Find the depreciated value of the computer 3 years from 
the date of purchase.

94. Pressure and depth  At the surface of the ocean the water 
pressure is the same as the air pressure above the water,  
15 lb/in2. Below the surface the water pressure increases by 
4.34 lb/in2 for every 10 ft of descent.

(a) Find an equation for the relationship between pressure 
and depth below the ocean surface.

(b) Sketch a graph of this linear equation.

(c) What do the slope and y-intercept of the graph represent?

(d) At what depth is the pressure 100 lb/in2?

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
95. dISCuSS: What does the Slope Mean?  Suppose that the 

graph of the outdoor temperature over a certain period of 
time is a line. How is the weather changing if the slope of the 
line is positive? If it is negative? If it is zero?

96. dISCuSS: Collinear Points  Suppose that you are given the 
coordinates of three points in the plane and you want to see 
whether they lie on the same line. How can you do this using 
slopes? Using the Distance Formula? Can you think of another 
method? 

1.4 SOLVING QuAdrATIC EQuATIONS
■ Solving Quadratic Equations by Factoring ■ Solving Quadratic Equations by  
Completing the Square ■ The Quadratic Formula ■ The discriminant ■ Modeling  
with Quadratic Equations

In Section P.8 we learned how to solve linear equations, which are first-degree equa-
tions such as 2x  1  5 or 4  3x  2. In this section we learn how to solve qua-
dratic equations, which are second-degree equations such as x2  2x  3  0 or 
2x2  3  5x. We will also see that many real-life problems can be modeled by using 
quadratic equations.

QuAdrATIC EQuATIONS

A quadratic equation is an equation of the form

ax2  bx  c  0

where a, b, and c are real numbers with a ? 0.

■ Solving Quadratic Equations by Factoring
Some quadratic equations can be solved by factoring and using the following basic 
property of real numbers.

Linear Equations

 4x  7

 6x  8  21

 2  3x  1
2  3

4 x

Quadratic Equations

 x2  2x  8  0

 3x  10  4x2

 12 x2  1
3 x  1

6  0
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zErO-PrOduCT PrOPErTy

AB  0  if and only if  A  0 or B  0

This means that if we can factor the left-hand side of a quadratic (or other) equation, 
then we can solve it by setting each factor equal to 0 in turn. This method works only 
when the right-hand side of the equation is 0.

ExAMPLE 1 ■ Solving a Quadratic Equation by Factoring
Find all real solutions of the equation x2  5x  24.

SOLuTION  We must first rewrite the equation so that the right-hand side is 0.

 x2  5x  24 Given equation

 x2  5x  24  0 Subtract 24

 1x  3 2 1x  8 2  0 Factor

 x  3  0  or   x  8  0  Zero-Product Property

 x  3    x  8 Solve

The solutions are x  3 and x  8.

Now Try Exercise 7 ■

Do you see why one side of the equation must be 0 in Example 1? Factoring the 
equation as x1x  5 2  24 does not help us find the solutions, since 24 can be factored 
in infinitely many ways, such as 6 # 4, 12 # 48, A 

2
5B # 160 2 , and so on.

■ Solving Quadratic Equations by Completing  
the Square

As we saw in Section P.8, Example 5(b), if a quadratic equation is of the form 
1x  a 2 2  c, then we can solve it by taking the square root of each side. In an equation 
of this form, the left-hand side is a perfect square: the square of a linear expression in x. 
So if a quadratic equation does not factor readily, then we can solve it by completing the 
square.

COMPLETING ThE SQuArE

To make x2  bx a perfect square, add a b

2
b

2

, the square of half the coefficient  
of x. This gives the perfect square

x2  bx  a b

2
b

2

 a x 
b

2
b

2

To complete the square, we add a constant to a quadratic expression to make it a 
perfect square. For example, to make

x 
2  6x

a perfect square, we must add A62B2  9. Then

x 
2  6x  9  1x  3 2 2

ChECk yOur ANSWErS

x  3:

13 2 2  513 2  9  15  24 ✓

x  8:

18 2 2  518 2  64  40  24 ✓

Completing the Square

The area of the blue region is

x2  2 a b

2
b x  x2  bx

Add a small square of area 1b/2 2 2 to 
“complete” the square.

x

x

b
2

b
2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.4 ■ Solving Quadratic Equations 117

is a perfect square. The table gives some more examples of completing the square.

Expression Add Complete the square

x2  8x a 8

2
b

2

 16 x2  8x  16  1x  4 2 2

x2  12x a 

12

2
b

2

 36 x2  12x  36  1x  6 2 2

x2  3x a 3

2
b

2


9

4
x2  3x 

9

4
 a x 

3

2
b

2

x2  !3x a 

!3

2
b

2


3

4
x2  !3x 

3

4
 a x 

!3

2
b

2

ExAMPLE 2 ■ Solving Quadratic Equations by Completing the Square
Find all real solutions of each equation.

(a) x2  8x  13  0        

(b) 3x2  12x  6  0

SOLuTION

(a)  x2  8x  13  0  Given equation

   x2  8x  13  Subtract 13

   x2  8x  16  13  16 Complete the square: add a8

2
b

2

 16

   1x  4 2 2  3  Perfect square

   x  4   !3  Take square root

   x  4  !3  Add 4

(b)  After subtracting 6 from each side of the equation, we must factor the coefficient 
of x2 (the 3) from the left side to put the equation in the correct form for complet-
ing the square.

 3x2  12x  6  0     Given equation

 3x2  12x  6    Subtract 6

 31x2  4x 2  6    Factor 3 from LHS

   Now we complete the square by adding 12 2 2  4 inside the parentheses. Since 
everything inside the parentheses is multiplied by 3, this means that we are actu-
ally adding 3 # 4  12 to the left side of the equation. Thus we must add 12 to the 
right side as well.

 31x2  4x  4 2  6  3 # 4    Complete the square: add 4

 31x  2 2 2  6     Perfect square

 1x  2 2 2  2     Divide by 3

 x  2  !2     Take square root

 x  2  !2     Add 2

Now Try Exercises 17 and 25 ■

■ The Quadratic Formula
We can use the technique of completing the square to derive a formula for the roots of 
the general quadratic equation ax2  bx  c  0.

See page 40 for how to recognize when 
a quadratic expression is a perfect 
square.

 When completing the square, 
make sure the coefficient of x 2 is 1. If 
it isn’t, you must factor this coefficient 
from both terms that contain x:

ax2  bx  a a x2 
b

a
 x b

Then complete the square inside the 
parentheses. Remember that the term 
added inside the parentheses is multi-
plied by a.
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118 CHAPTER 1 ■ Equations and Graphs

ThE QuAdrATIC FOrMuLA

The roots of the quadratic equation ax2  bx  c  0, where a ? 0, are

x 
b  "b2  4ac

2a

Proof  First, we divide each side of the equation by a and move the constant to the 
right side, giving

x2 
b
a

 x   

c
a

    Divide by a

We now complete the square by adding 1b/2a 2 2 to each side of the equation.

 x2 
b
a

 x  a b

2a
b

2

  

c
a

 a b

2a
b

2

    Complete the square: Add a b

2a
b

2

 a x 
b

2a
b

2


4ac  b2

4a2     Perfect square

 x 
b

2a
  

"b2  4ac

2a
    Take square root

 x 
b  "b2  4ac

2a
    Subtract 

b

2a
 

■

The Quadratic Formula could be used to solve the equations in Examples 1 and 2. 
You should carry out the details of these calculations.

ExAMPLE 3 ■ using the Quadratic Formula
Find all real solutions of each equation.

(a) 3x2  5x  1  0      (b) 4x2  12x  9  0      (c) x2  2x  2  0

SOLuTION

(a) In this quadratic equation a  3, b  5, and c  1:

 b  5

3x2  5x  1  0

      

  By the Quadratic Formula,

x 
15 2  "15 2 2  413 2 11 2

213 2 
5  !37

6

  If approximations are desired, we can use a calculator to obtain

x 
5  !37

6
 1.8471  and  x 

5  !37

6
 0.1805

(b) Using the Quadratic Formula with a  4, b  12, and c  9 gives

x 
12  "112 2 2  4 # 4 # 9

2 # 4


12  0

8
  

3

2

  This equation has only one solution, x   
3
2.

a  3 c  1

Another Method

 4x2  12x  9  0
 12x  3 2 2  0

 2x  3  0
 x   

3
2
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SECTION 1.4 ■ Solving Quadratic Equations 119

(c) Using the Quadratic Formula with a  1, b  2, and c  2 gives

x 
2  "22  4 # 2

2


2  !4

2


2  2!1

2
 1  !1

   Since the square of any real number is nonnegative, !1 is undefined in the real 
number system. The equation has no real solution.

Now Try Exercises 35, 37, and 41 ■

In the next section we study the complex number system, in which the square roots 
of negative numbers do exist. The equation in Example 3(c) does have solutions in the 
complex number system.

■ The discriminant
The quantity b2  4ac that appears under the square root sign in the Quadratic Formula 
is called the discriminant of the equation ax2  bx  c  0 and is given the symbol 
D. If D  0, then "b2  4ac is undefined, and the quadratic equation has no real solu-
tion, as in Example 3(c). If D  0, then the equation has only one real solution, as in 
Example 3(b). Finally, if D  0, then the equation has two distinct real solutions, as in 
Example 3(a). The following box summarizes these observations.

ThE dISCrIMINANT

The discriminant of the quadratic equation ax2  bx  c  0  1a ? 0 2  is  
D  b2  4ac.

1. If D  0, then the equation has two distinct real solutions.

2. If D  0, then the equation has exactly one real solution.

3. If D  0, then the equation has no real solution.

ExAMPLE 4 ■ using the discriminant
Use the discriminant to determine how many real solutions each equation has.

(a) x2  4x  1  0      (b) 4x2  12x  9  0      (c) 1
3 x2  2x  4  0

SOLuTION

(a)  The discriminant is D  42  411 2 11 2  20  0, so the equation has two dis-
tinct real solutions.

(b)  The discriminant is D  112 2 2  4 # 4 # 9  0, so the equation has exactly one 
real solution.

(c)  The discriminant is D  12 2 2  4A13B4   
4
3  0, so the equation has no real  

solution.

Now Try Exercises 57, 59, and 61 ■

■ Modeling with Quadratic Equations
Let’s look at some real-life problems that can be modeled by quadratic equations. The 
principles discussed in Section P.9 for setting up equations as models are useful here  
as well.

Li
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FrANçoIS VIèTe (1540–1603) had a suc-
cessful political career before taking up 
mathematics late in life. He became one of 
the most famous French mathematicians 
of the 16th century. Viète introduced a 
new level of abstraction in algebra by 
using letters to stand for known quantities 
in an equation. Before Viète’s time, each 
equation had to be solved on its own. For 
instance, the quadratic equations

 3x 2  2x  8  0

 5x 2  6x  4  0

had to be solved separately by complet-
ing the square. Viète’s idea was to con-
sider all quadratic equations at once by 
writing

ax2  bx  c  0

where a, b, and c are known quantities. 
Thus he made it possible to write a for-
mula (in this case the quadratic formula) 
involving a, b, and c that can be used to 
solve all such equations in one fell 
swoop.

Viète’s mathematical genius proved 
quite valuable during a war between 
France and Spain. To communicate with 
their troops, the Spaniards used a compli-
cated code that Viète managed to deci-
pher. Unaware of Viète’s accomplishment, 
the Spanish king, Philip II, protested to the 
Pope, claiming that the French were using 
witchcraft to read his messages.
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ExAMPLE 5 ■ dimensions of a Building Lot
A rectangular building lot is 8 ft longer than it is wide and has an area of 2900 ft2. 
Find the dimensions of the lot.

SOLuTION Identify the variable.  We are asked to find the width and length of the 
lot. So let

„  width of lot

Translate from words to algebra.  Then we translate the information given in the 
problem into the language of algebra (see Figure 1):

In Words  In Algebra

Width of lot „
Length of lot „  8

Set up the model.  Now we set up the model.

width 
of lot   

length 
of lot   

area 
of lot

  „ 1„  8 2  2900

Solve.  Now we solve for „.

 „ 2  8„  2900    Expand

 „ 2  8„  2900  0     Subtract 2900

 1„  50 2 1„  58 2  0     Factor

 „  50  or  „  58     Zero-Product Property

Since the width of the lot must be a positive number, we conclude that „  50 ft.  
The length of the lot is „  8  50  8  58 ft.

Now Try Exercise 69 ■

ExAMPLE 6 ■ A distance-Speed-Time Problem
A jet flew from New York to Los Angeles, a distance of 4200 km. The speed for the 
return trip was 100 km/h faster than the outbound speed. If the total trip took 
13 hours, what was the jet’s speed from New York to Los Angeles?

SOLuTION Identify the variable.  We are asked for the speed of the jet from New York 
to Los Angeles. So let

  s  speed from New York to Los Angeles

Then  s  100  speed from Los Angeles to New York

Translate from words to algebra.  Now we organize the information in a table. We 
fill in the “Distance” column first, since we know that the cities are 4200 km apart. 
Then we fill in the “Speed” column, since we have expressed both speeds (rates) in 
terms of the variable s. Finally, we calculate the entries for the “Time” column, 
using

time 
distance

rate

„

„+8

FIGurE 1
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SECTION 1.4 ■ Solving Quadratic Equations 121

Distance (km) Speed (km/h) Time (h)

N.Y. to L.A. 4200 s
4200

s

L.A. to N.Y. 4200 s  100
4200

s  100

Set up the model.  The total trip took 13 hours, so we have the model

time from 
N.Y. to L.A.

 
 

time from 
L.A. to N.Y.

 
 

total 
time

  
4200

s


4200

s  100
 13

Solve.  Multiplying by the common denominator, s1s  100 2 , we get

 42001s  100 2  4200s  13s1s  100 2
 8400s  420,000  13s2  1300s

 0  13s2  7100s  420,000

Although this equation does factor, with numbers this large it is probably quicker to 
use the Quadratic Formula and a calculator.

 s 
7100  "17100 2 2  4113 2 1420,000 2

2113 2

  
7100  8500

26

 s  600  or  s 
1400

26
 53.8

Since s represents speed, we reject the negative answer and conclude that the jet’s 
speed from New York to Los Angeles was 600 km/h.

Now Try Exercise 79 ■

ExAMPLE 7 ■ The Path of a Projectile
An object thrown or fired straight upward at an initial speed of √0 ft/s will reach a 
height of h feet after t seconds, where h and t are related by the formula

h  16t2  √0t

Suppose that a bullet is shot straight upward with an initial speed of 800 ft/s. Its path 
is shown in Figure 2.

(a) When does the bullet fall back to ground level?

(b) When does it reach a height of 6400 ft?

(c) When does it reach a height of 2 mi?

(d) How high is the highest point the bullet reaches?

SOLuTION  Since the initial speed in this case is √0  800 ft/s, the formula is

h  16t2  800t

This formula depends on the fact that 
acceleration due to gravity is constant 
near the earth’s surface. Here we 
neglect the effect of air resistance.

h

descent

ascent

FIGurE 2
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122 CHAPTER 1 ■ Equations and Graphs

(a) Ground level corresponds to h  0, so we must solve the equation

 0  16t2  800t  Set h  0

 0  16t1 t  50 2   Factor

   Thus t  0 or t  50. This means the bullet starts 1 t  0 2  at ground level and 
returns to ground level after 50 s.

(b) Setting h  6400 gives the equation

 6400  16t2  800t    Set h  6400

 16t2  800t  6400  0     All terms to LHS

 t2  50t  400  0     Divide by 16

 1 t  10 2 1 t  40 2  0     Factor

 t  10  or  t  40 Solve

   The bullet reaches 6400 ft after 10 s (on its ascent) and again after 40 s (on its  
descent to earth).

(c) Two miles is 2  5280  10,560 ft.

 10,560  16t2  800t    Set h  10,560

 16t2  800t  10,560  0     All terms to LHS

 t2  50t  660  0     Divide by 16

   The discriminant of this equation is D  150 2 2  41660 2  140, which is  
negative. Thus the equation has no real solution. The bullet never reaches a height  
of 2 mi.

(d)  Each height that the bullet reaches is attained twice: once on its ascent and once 
on its descent. The only exception is the highest point of its path, which is 
reached only once. This means that for the highest value of h, the following equa-
tion has only one solution for t.

 h  16t2  800t

 16t2  800t  h  0     All terms to LHS

  This in turn means that the discriminant D of the equation is 0, so

 D  1800 2 2  4116 2h  0

 640,000  64h  0

 h  10,000

  The maximum height reached is 10,000 ft.

Now Try Exercise 85 ■

6400 ft

2 mi

10,000 ft

CONCEPTS
 1. The Quadratic Formula gives us the solutions of the equation 

ax2  bx  c  0.

  (a) State the Quadratic Formula: x     .

  (b)  In the equation 1
2 x2  x  4  0, a     , 

   b     , and c   . So the solution of 

   the equation is x     .

 2. Explain how you would use each method to solve the equa-
tion x2  4x  5  0.

  (a) By factoring:  

  (b) By completing the square:  

  (c) By using the Quadratic Formula:  

1.4 ExErCISES
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SECTION 1.4 ■ Solving Quadratic Equations 123

 3. For the quadratic equation ax2  bx  c  0 the discriminant 

  is D     . The discriminant tells us how many real  
solutions a quadratic equation has.

If D  0, the equation has   real solution(s).

If D  0, the equation has   real solution(s).

If D  0, the equation has   real solution(s).

 4. Make up quadratic equations that have the following number 
of solutions: 

Two solutions:  

One solution:  

No solution:  

SkILLS
5–16 ■ Solving by Factoring  Find all real solutions of the equa-
tion by factoring.

 5. x2  8x  15  0  6. x2  5x  6  0

 7. x2  x  6  8. x2  4x  21

 9. 5x2  9x  2  0 10. 6x2  x  12  0

 11. 2s2  5s  3 12. 4y2  9y  28

13. 12z2  44z  45 14. 4„2  4„  3

 15. x2  51x  100 2  16. 6x1x  1 2  21  x

17–28 ■ Completing the Square  Find all real solutions of the 
equation by completing the square.

 17. x2  8x  1  0 18. x2  6x  2  0

 19. x2  6x  11  0 20. x2  3x  7
4  0

 21. x2  x  3
4  0 22. x2  5x  1  0

 23. x2  22x  21  0 24. x2  18x  19

 25. 5x2  10x  7  0 26. 2x2  16x  5  0

 27. 2x2  7x  4  0 28. 4x2  5x  8  0

29–46 ■ Solving Quadratic Equations  Find all real solutions of 
the equation.

29. x2  8x  12  0 30. x2  3x  18  0

31. x2  8x  20  0 32. 10x2  9x  7  0

 33. 2x2  x  3  0 34. 3x2  7x  4  0

 35. 3x2  6x  5  0 36. x2  6x  1  0

 37. x2  4
3 
x  4

9  0 38. 2x2  3x  1
2  0

 39. 4x2  16x  9  0 40. 0  x2  4x  1

 41. „ 
2  31„  1 2  42. 3  5z  z2  0

 43. 10y2  16y  5  0 44. 25x2  70x  49  0

 45. 3x2  2x  2  0 46. 5x2  7x  5  0

47–50 ■ Quadratic Formula  Use the Quadratic Formula and a 
calculator to find all real solutions, rounded to three decimals.

 47. x2  0.011x  0.064  0 48. x2  2.450x  1.500  0

 49. x2  2.450x  1.501  0 50. x2  1.800x  0.810  0

51–56 ■ Solving for a Variable  Solve the equation for the indi-
cated variable.

 51. h  1
2 gt2  √0t; for t 52. S 

n1n  1 2
2

; for n

 53. A  2x2  4xh;  for x 54. A  2pr2  2prh;  for r

 55. 
1

s  a


1

s  b


1
c

 ; for s 

56. 
1
r


2

1  r


4

r2 ; for r

57–62 ■ discriminant  Use the discriminant to determine the 
number of real solutions of the equation. Do not solve the 
equation.

 57. x2  6x  1  0 58. x2  6x  9

 59. x2  2.20x  1.21  0 60. x 2  2.21x  1.21  0

 61. 4x2  5x  13
8  0

 62. x2  rx  s  0  1s  02

SkILLS Plus
63–64 ■ Solving Quadratic Equations  Solve the equation for x.

 63. a2x2  2ax  1  0 1a ? 02
 64. ax2  12a  1 2x  1a  1 2  0 1a ? 0 2

65–66 ■ Quadratic Equations with One Solution  Find all values 
of k that ensure that the given equation has exactly one solution.

 65. 4x2  kx  25  0 66. kx2  36x  k  0

APPLICATIONS
 67. Number Problem  Find two numbers whose sum is 55 and 

whose product is 684.

 68. Number Problem  The sum of the squares of two con-
secutive even integers is 1252. Find the integers.

69. dimensions of a Garden  A rectangular garden is 10 ft longer 
than it is wide. Its area is 875 ft2. What are its dimensions?

 70. dimensions of a room  A rectangular bedroom is 7 ft longer 
than it is wide. Its area is 228 ft2. What is the width of the 
room?

 71. dimensions of a Garden  A farmer has a rectangular garden 
plot surrounded by 200 ft of fence. Find the length and width 
of the garden if its area is 2400 ft2.

perimeter=200 ft
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124 CHAPTER 1 ■ Equations and Graphs

 72. Geometry  Find the length x if the shaded area is 160 in2.

x

x

13 in.

14 in.

area=160 in2

 73. Geometry  Find the length x if the shaded area is 1200 cm2.

x

x

1 cm

area=1200 cm2

 74. Profit  A small-appliance manufacturer finds that the profit P 
(in dollars) generated by producing x microwave ovens per 
week is given by the formula P  1

10 x 1300  x 2  provided 
that 0  x  200. How many ovens must be manufactured in 
a given week to generate a profit of $1250?

 75. dimensions of a Box  A box with a square base and no top  
is to be made from a square piece of cardboard by cutting  
4-in. squares from each corner and folding up the sides, as 
shown in the figure. The box is to hold 100 in3. How big a 
piece of cardboard is needed?

4 in.

4 in.

 76. dimensions of a Can  A cylindrical can has a volume of  
40p cm3 and is 10 cm tall. What is its diameter?  [Hint: Use 
the volume formula listed on the inside front cover of this 
book.]

10 cm

 77. dimensions of a Lot  A parcel of land is 6 ft longer than  
it is wide. Each diagonal from one corner to the opposite 
 corner is 174 ft long. What are the dimensions of the 
parcel?

 78. height of a Flagpole  A flagpole is secured on opposite sides 
by two guy wires, each of which is 5 ft longer than the pole. 
The distance between the points where the wires are fixed to 
the ground is equal to the length of one guy wire. How tall is 
the flagpole (to the nearest inch)?

79. distance, Speed, and Time  A salesman drives from Ajax  
to Barrington, a distance of 120 mi, at a steady speed. He 
then increases his speed by 10 mi/h to drive the 150 mi from 
Barrington to Collins. If the second leg of his trip took 6 min 
more time than the first leg, how fast was he driving between 
Ajax and Barrington?

 80. distance, Speed, and Time  Kiran drove from Tortula  
to Cactus, a distance of 250 mi. She increased her speed by  
 10 mi/h for the 360-mi trip from Cactus to Dry Junction.  
If the total trip took 11 h, what was her speed from Tortula to 
Cactus?

 81. distance, Speed, and Time  It took a crew 2 h 40 min to row 
6 km upstream and back again. If the rate of flow of the 
stream was 3 km/h, what was the rowing speed of the crew in 
still  water?

 82. Speed of a Boat  Two fishing boats depart a harbor at the 
same time, one traveling east, the other south. The eastbound 
boat travels at a speed 3 mi/h faster than the southbound 
boat. After two hours the boats are 30 mi apart. Find the 
speed of the southbound boat.

N

30 m
i

S
EW
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SECTION 1.4 ■ Solving Quadratic Equations 125

83–84 ■ Falling-Body Problems  Suppose an object is dropped 
from a height h0 above the ground. Then its height after  
t seconds is given by h  16t2  h0, where h is measured in 
feet. Use this information to solve the problem.

 83. If a ball is dropped from 288 ft above the ground, how long 
does it take to reach ground level?

 84. A ball is dropped from the top of a building 96 ft tall.

(a)  How long will it take to fall half the distance to ground 
level?

(b) How long will it take to fall to ground level?

85–86 ■ Falling-Body Problems  Use the formula  
h  16t2  √0t discussed in Example 7.

85. A ball is thrown straight upward at an initial speed of  
√0  40 ft/s.

(a) When does the ball reach a height of 24 ft?

(b) When does it reach a height of 48 ft?

(c) What is the greatest height reached by the ball?

(d)  When does the ball reach the highest point of its path?

(e) When does the ball hit the ground?

 86.  How fast would a ball have to be thrown upward to reach a 
maximum height of 100 ft?  [Hint: Use the discriminant of 
the equation 16t2  √0t  h  0.]

87.  Fish Population  The fish population in a certain lake rises 
and falls according to the formula

F  1000130  17t  t 
2 2

  Here F is the number of fish at time t, where t is measured in 
years since January 1, 2002, when the fish population was 
first estimated.

(a)  On what date will the fish population again be the same 
as it was on January 1, 2002?

(b)  By what date will all the fish in the lake have died?

 88.  Comparing Areas  A wire 360 in. long is cut into two  
pieces. One piece is formed into a square, and the other is  
formed into a circle. If the two figures have the same area, what 
are the lengths of the two pieces of wire (to the nearest tenth of 
an inch)?

 89.  Width of a Lawn  A factory is to be built on a lot measuring 
180 ft by 240 ft. A local building code specifies that a lawn 
of uniform width and equal in area to the factory must sur-
round the factory. What must the width of this lawn be, and 
what are the dimensions of the factory?

 90.  reach of a Ladder  A 19 
1
2-ft ladder leans against a building. 

The base of the ladder is 7 
1
2  ft from the building. How high 

up the building does the ladder reach?

19 ft2
1

7 ft2
1

 91.  Sharing a job  Henry and Irene working together can wash 
all the windows of their house in 1 h 48 min. Working alone,  
it takes Henry 1 

1
2  h more than Irene to do the job. How long 

does it take each person working alone to wash all the 
windows?

 92.  Sharing a job  Jack, Kay, and Lynn deliver advertising flyers 
in a small town. If each person works alone, it takes Jack 4 h 
to deliver all the flyers, and it takes Lynn 1 h longer than it 
takes Kay. Working together, they can deliver all the flyers in 
40% of the time it takes Kay working alone. How long does it 
take Kay to deliver all the flyers alone?

 93. Gravity  If an imaginary line segment is drawn between the 
centers of the earth and the moon, then the net gravitational 
force F acting on an object situated on this line segment is

F 
K

x2 
0.012K

1239  x 2 2
  where K  0 is a constant and x is the distance of the object 

from the center of the earth, measured in thousands of miles. 
How far from the center of the earth is the “dead spot” where 
no net gravitational force acts upon the object? (Express your 
answer to the nearest thousand miles.)

x

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 94.  dISCOVEr ■ PrOVE: relationship Between roots and 

Coefficients  The Quadratic Formula gives us the roots of a 
quadratic equation from its coefficients. We can also obtain 
the coefficients from the roots. For example, find the roots  
of the equation x2  9x  20  0 and show that the product 
of the roots is the constant term 20 and the sum of the roots is 
9, the neg ative of the co efficient of x. Show that the same 
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126 CHAPTER 1 ■ Equations and Graphs

relationship between roots and coefficients holds for the fol-
lowing equations:

 x2  2x  8  0

 x2  4x  2  0

  Use the Quadratic Formula to prove that in general, if the 
equation x2  bx  c  0 has roots r1 and r2, then c  r1r2

and b  1r1  r2 2 .
95. dISCuSS: A Babylonian Quadratic Equation  The ancient 

Babylonians knew how to solve quadratic equations. Here is 

a problem from a cuneiform tablet found in a Babylonian 
school dating back to about 2000 b.c.

I have a reed, I know not its length. I broke from it one 
cubit, and it fit 60 times along the length of my field. I 
restored to the reed what I had broken off, and it fit  
30 times along the width of my field. The area of my  
field is 375 square nindas. What was the original length  
of the reed?

 Solve this problem. Use the fact that 1 ninda  12 cubits.

1.5 COMPLEx NuMBErS
■ Arithmetic Operations on Complex Numbers ■ Square roots of Negative Numbers  
■ Complex Solutions of Quadratic Equations

In Section 1.4 we saw that if the discriminant of a quadratic equation is negative, the 
equation has no real solution. For example, the equation

x2  4  0

has no real solution. If we try to solve this equation, we get x2  4, so

x  !4

But this is impossible, since the square of any real number is positive. [For example, 
12 2 2  4, a positive number.] Thus negative numbers don’t have real square roots.

To make it possible to solve all quadratic equations, mathematicians invented an 
expanded number system, called the complex number system. First they defined the new 
number

i  !1

This means that i2  1. A complex number is then a number of the form a  bi, 
where a and b are real numbers.

dEFINITION OF COMPLEx NuMBErS

A complex number is an expression of the form

a  bi

where a and b are real numbers and i2  1. The real part of this complex 
number is a, and the imaginary part is b. Two complex numbers are equal if 
and only if their real parts are equal and their imaginary parts are equal.

Note that both the real and imaginary parts of a complex number are real numbers.

ExAMPLE 1 ■ Complex Numbers
The following are examples of complex numbers.

 3  4i Real part 3, imaginary part 4

 1
2  2

3i Real part 1
2, imaginary part  

2
3

 6i Real part 0, imaginary part 6

 7 Real part 7, imaginary part 0

Now Try Exercises 7 and 11 ■

See the note on Cardano (page 328) for 
an example of how complex numbers 
are used to find real solutions of poly-
nomial equations.
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SECTION 1.5 ■ Complex Numbers 127

A number such as 6i, which has real part 0, is called a pure imaginary number. A 
real number such as 7 can be thought of as a complex number with imaginary part 0.

In the complex number system every quadratic equation has solutions. The numbers 
2i and 2i are solutions of x2  4 because

12i 2 2  22i 2  411 2  4  and  12i 2 2  12 2 2i 2  411 2  4

Although we use the term imaginary in this context, imaginary numbers should not be 
thought of as any less “real” (in the ordinary rather than the mathematical sense of that word) 
than negative numbers or irrational numbers. All numbers (except possibly the positive in-
tegers) are creations of the human mind—the numbers 1 and !2 as well as the number i. 
We study complex numbers because they complete, in a useful and elegant fashion, our study 
of the solutions of equations. In fact, imaginary numbers are useful not only in algebra and 
mathematics, but in the other sciences as well. To give just one example, in electrical theory 
the reactance of a circuit is a quantity whose measure is an imaginary number.

■ Arithmetic Operations on Complex Numbers
Complex numbers are added, subtracted, multiplied, and divided just as we would any 
number of the form a  b !c. The only difference that we need to keep in mind is that  
i2  1. Thus the following calculations are valid.

  1a  bi 2 1c  di 2  ac  1ad  bc 2 i  bdi 2  Multiply and collect like terms

   ac  1ad  bc 2 i  bd11 2  i2  1

   1ac  bd 2  1ad  bc 2 i  Combine real and imaginary parts

We therefore define the sum, difference, and product of complex numbers as follows.

AddING, SuBTrACTING, ANd MuLTIPLyING COMPLEx NuMBErS

Definition Description

Addition
1a  bi 2  1c  di 2  1a  c 2  1b  d 2 i  To add complex numbers, add the real parts and add 

the imaginary parts.

Subtraction
1a  bi 2  1c  di 2  1a  c 2  1b  d 2 i  To subtract complex numbers, subtract the real 

parts and subtract the imaginary parts.

Multiplication
1a  bi 2 # 1c  di 2  1ac  bd 2  1ad  bc 2 i  Multiply complex numbers like binomials, using  

i2  1.

ExAMPLE 2 ■  Adding, Subtracting, and Multiplying Complex Numbers
Express the following in the form a  bi.

(a) 13  5i 2  14  2i 2  (b) 13  5i 2  14  2i 2
(c) 13  5i 2 14  2i 2  (d) i23

SOLuTION

(a)  According to the definition, we add the real parts and we add the imaginary parts:

13  5i 2  14  2i 2  13  4 2  15  2 2 i  7  3i

(b) 13  5i 2  14  2i 2  13  4 2  35  12 2 4 i  1  7i

(c) 13  5i 2 14  2i 2  33 # 4  512 2 4  3312 2  5 # 4 4 i  22  14i

(d) i 23  i 221  1 i 2 2 11i  11 2 11i  11 2 i  i

Now Try Exercises 19, 23, 29, and 47 ■

Graphing calculators can perform arith-
metic operations on complex numbers. 
See Appendix D, Using the TI-83/84 
Graphing Calculator.

(3+5i)+(4-2i)
7+3i

(3+5i)*(4-2i)
22+14i
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128 CHAPTER 1 ■ Equations and Graphs

Division of complex numbers is much like rationalizing the denominator of a radi cal 
expression, which we considered in Section P.7. For the complex number z  a  bi 
we define its complex conjugate to be z  a  bi. Note that

z # z  1a  bi 2 1a  bi 2  a2  b2

So the product of a complex number and its conjugate is always a nonnegative real 
number. We use this property to divide complex numbers.

dIVIdING COMPLEx NuMBErS

To simplify the quotient 
a  bi

c  di
, multiply the numerator and the denominator 

by the complex conjugate of the denominator:

a  bi

c  di
 a a  bi

c  di
b a c  di

c  di
b 

1ac  bd 2  1bc  ad 2 i
c2  d2

Rather than memorizing this entire formula, it is easier to just remember the first step 
and then multiply out the numerator and the denominator as usual.

ExAMPLE 3 ■ dividing Complex Numbers
Express the following in the form a  bi.

(a) 
3  5i

1  2i
        (b) 

7  3i

4i

SOLuTION  We multiply both the numerator and denominator by the complex con-
jugate of the denominator to make the new denominator a real number.

(a) The complex conjugate of 1  2i is 1  2i  1  2i. Therefore

3  5i

1  2i
 a 3  5i

1  2i
b a 1  2i

1  2i
b 

7  11i

5
  

7

5


11

5
  i

(b) The complex conjugate of 4i is 4i. Therefore

7  3i

4i
 a 7  3i

4i
b a4i

4i
b 

12  28i

16


3

4


7

4
  i

Now Try Exercises 39 and 43 ■

■ Square roots of Negative Numbers
Just as every positive real number r has two square roots 1!r and !r2, every nega-
tive number has two square roots as well. If r is a negative number, then its square 
roots are i !r, because 1 i !r 2 2  i 2r  r and 1i !r 2 2  11 2 2i 2r  r.

SQuArE rOOTS OF NEGATIVE NuMBErS

If r is negative, then the principal square root of r is

!r  i !r

The two square roots of r are i !r and i !r.

We usually write i !b instead of !b i to avoid confusion with !bi.

Complex Conjugates

Number Conjugate

3  2i 3  2i
1  i 1  i

4i 4i
5 5
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SECTION 1.5 ■ Complex Numbers 129

ExAMPLE 4 ■ Square roots of Negative Numbers
(a) !1  i !1  i      (b) !16  i !16  4i      (c) !3  i !3

Now Try Exercises 53 and 55 ■

Special care must be taken in performing calculations that involve square roots of 
negative numbers. Although !a # !b  !ab when a and b are positive, this is not 
true when both are negative. For example,

!2 # !3  i !2 # i !3  i2
 !6  !6

but !12 2 13 2  !6

so !2 # !3  !12 2 13 2
When multiplying radicals of negative numbers, express them first in the form i!r 
(where r  0) to avoid possible errors of this type.

ExAMPLE 5 ■ using Square roots of Negative Numbers
Evaluate 1!12  !3 2 13  !4 2 , and express the result in the form a  bi.

SOLuTION

 1!12  !3 2 13  !4 2  1!12  i !3 2 13  i !4 2
  12 !3  i !3 2 13  2i 2
  16 !3  2 !3 2  i12 # 2 !3  3 !3 2
  8 !3  i !3

Now Try Exercise 57 ■

■ Complex Solutions of Quadratic Equations
We have already seen that if a ? 0, then the solutions of the quadratic equation  
ax2  bx  c  0 are

x 
b  "b2  4ac

2a

If b2  4ac  0, then the equation has no real solution. But in the complex number 
system this equation will always have solutions, because negative numbers have square 
roots in this expanded setting.

ExAMPLE 6 ■ Quadratic Equations with Complex Solutions
Solve each equation.

(a) x2  9  0        (b) x2  4x  5  0

SOLuTION

(a) The equation x2  9  0 means x2  9, so

x  !9  i !9  3i

  The solutions are therefore 3i and 3i.
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(b) By the Quadratic Formula we have

 x 
4  "42  4 # 5

2

  
4  !4

2

  
4  2i

2
 2  i

  So the solutions are 2  i and 2  i.

Now Try Exercises 61 and 63 ■

We see from Example 6 that if a quadratic equation with real coefficients has com-
plex solutions, then these solutions are complex conjugates of each other. So if a  bi 
is a solution, then a  bi is also a solution.

ExAMPLE 7 ■  Complex Conjugates as Solutions of a Quadratic
Show that the solutions of the equation

4x2  24x  37  0

are complex conjugates of each other.

SOLuTION  We use the Quadratic Formula to get

 x 
24  "124 2 2  414 2 137 2

214 2

  
24  !16

8

  
24  4i

8
 3 

1

2
 i

So the solutions are 3  1
2 i and 3  1

2 i, and these are complex conjugates.

Now Try Exercise 69 ■

CONCEPTS
 1. The imaginary number i has the property that i2     .

 2. For the complex number 3  4i the real part is    , 

  and the imaginary part is    .

 3. (a) The complex conjugate of 3  4i is 3  4i     .

(b) 13  4i 2 13  4i 2     .

 4. If 3  4i is a solution of a quadratic equation with real

  coefficients, then   is also a solution of the equation.

5–6 ■ Yes or No? If No, give a reason.

 5. Is every real number also a complex number?

 6. Is the sum of a complex number and its complex conjugate a 
real number?

SkILLS
7–16 ■ real and Imaginary Parts  Find the real and imaginary 
parts of the complex number.

 7. 5  7i  8. 6  4i

1.5 ExErCISES
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LeoNHArD euLer (1707–1783) was 
born in Basel, Switzerland, the son of 
a pastor. When Euler was 13, his 
father sent him to the University at 
Basel to study theology, but Euler 
soon decided to devote himself to the 
sci ences. Besides theology he studied 
mathematics, medicine, astronomy, 
physics, and Asian languages. It is 
said that Euler could calculate as 
effortlessly as “men breathe or as 
eagles fly.” One hundred years before 
Euler, Fermat (see page 154) had con-
jectured that 2 2 n

 1  is a prime num-
ber for all n. The first five of these 
numbers are 5, 17, 257, 65537, and 
4,294,967,297. It is easy to show that 
the first four are prime. The fifth was 
also thought to be prime until Euler, 
with his phenomenal calculating abil-
ity, showed that it is the product 
641  6,700,417 and so is not prime. 
Euler published more than any other 
mathematician in history. His col-
lected works comprise 75 large vol-
umes. Although he was blind for the 
last 17 years of his life, he continued 
to work and publish. In his writings 
he popularized the use of the sym-
bols p, e, and i, which you will find in 
this textbook. One of Euler’s most 
lasting contributions is his develop-
ment of complex numbers.
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 9. 
2  5i

3
 10. 

4  7i

2

 11. 3  12.  
1
2

 13.  
2
3 i 14. i !3

 15. !3  !4 16. 2  !5

17–26 ■ Sums and differences  Evaluate the sum or difference, 
and write the result in the form a  bi.

17. 13  2i 2  5i 18. 3i  12  3i 2
 19. 15  3i 2  14  7i 2  20. 13  4i 2  12  5i 2  
 21. 16  6i 2  19  i 2  22. 13  2i 2  A5  1

3 iB
 23. A7  1

2 iB  A5  3
2 iB  24. 14  i 2  12  5i 2

 25. 112  8i 2  17  4i 2  26. 6i  14  i 2

27–36 ■ Products  Evaluate the product, and write the result in 
the form a  bi.

 27. 411  2i 2  28. 213  4i 2
 29. 17  i 2 14  2i 2  30. 15  3i 2 11  i 2
 31. 16  5i 2 12  3i 2  32. 12  i 2 13  7i 2
33. 12  5i 2 12  5i 2  34. 13  7i 2 13  7i 2  
35. 12  5i 2 2 36. 13  7i 2 2 

37–46 ■ Quotients  Evaluate the quotient, and write the result 
in the form a  bi.

 37. 
1

i
  38. 

1

1  i

 39. 
2  3i

1  2i
 40. 

5  i

3  4i

 41. 
10i

1  2i
 42. 12  3i 21  

 43. 
4  6i

3i
 44. 

3  5i

15i

 45. 
1

1  i


1

1  i
 46. 

11  2i 2 13  i 2
2  i

47–52 ■ Powers  Evaluate the power, and write the result in the 
form a  bi.

47. i 3  48. i 10

 49. 13i 2 5 50. 12i 2 4

 51. i 1000 52. i 1002

53–60 ■ radical Expressions  Evaluate the radical expression, 
and express the result in the form a  bi.

 53. !49 54. Ä
81

16

 55. !3 !12

 56. "1
3 !27

 57. 13  !5 2 11  !1 2  
58. 1!3  !4 2 1!6  !8 2

59. 
2  !8

1  !2
 60. 

!36

!2 !9

61–72 ■ Quadratic Equations  Find all solutions of the equation 
and express them in the form a  bi.

 61. x2  49  0 62. 3x2  1  0

 63. x2  x  2  0  64. x2  2x  2  0

 65. x2  3x  7  0  66. x2  6x  10  0

 67. x2  x  1  0 68. x2  3x  3  0

 69. 2x2  2x  1  0 70. t  3 
3

t
 0

 71. 6x2  12x  7  0 72. x 
2  1

2  x  1  0

SkILLS Plus
73–76 ■ Conjugates  Evaluate the given expression for 
z  3  4i and „  5  2i.

73. z  „ 74. z  „

75. z # z  76. z # „

77–84 ■ Conjugates  Recall that the symbol z represents the 
complex conjugate of z. If z  a  bi and „  c  di, show that 
each statement is true.

 77. z  „  z  „

 78. z„  z # „

 79. 1z 2 2  z2

 80. z  z

 81. z  z is a real number.

 82. z  z is a pure imaginary number.

83. z # z is a real number.

 84. z  z if and only if z is real.

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 85. PrOVE: Complex Conjugate roots  Suppose that the equa-

tion ax2  bx  c  0 has real coefficients and complex 
roots. Why must the roots be complex conjugates of each 
other? [Hint: Think about how you would find the roots 
using the Quadratic Formula.]

 86. dISCuSS: Powers of i  Calculate the first 12 powers of i, that 
is, i, i2, i3, . . . , i12. Do you notice a pattern? Explain how you 
would calculate any whole number power of i, using the pat-
tern that you have discovered. Use this procedure to calculate 
i4446.
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132 CHAPTER 1 ■ Equations and Graphs

1.6 SOLVING OThEr TyPES OF EQuATIONS
■ Polynomial Equations ■ Equations Involving radicals ■ Equations of Quadratic Type  
■ Applications

So far, we have learned how to solve linear and quadratic equations. In this section we 
study other types of equations, including those that involve higher powers, fractional 
expressions, and radicals.

■ Polynomial Equations
Some equations can be solved by factoring and using the Zero-Product Property, which 
says that if a product equals 0, then at least one of the factors must equal 0.

ExAMPLE 1 ■ Solving an Equation by Factoring
Solve the equation x5  9x3.

SOLuTION  We bring all terms to one side and then factor:

 x5  9x3  0     Subtract 9x3

 x31x2  9 2  0     Factor x3

 x31x  3 2 1x  3 2  0     Difference of squares

 x3  0  or  x  3  0  or   x  3  0     Zero-Product Property

 x  0  x  3   x  3    Solve

The solutions are x  0, x  3, and x  3. You should check that each of these 
satisfies the original equation.

Now Try Exercise 5 ■

To divide each side of the equation in Example 1 by the common factor x3 would be 
wrong, because in doing so, we would lose the solution x  0. Never divide both sides 
of an equation by an expression that contains the variable unless you know that the 
expression cannot equal 0.

ExAMPLE 2 ■ Factoring by Grouping
Solve the equation x3  3x2  4x  12  0.

SOLuTION  The left-hand side of the equation can be factored by grouping the terms 
in pairs:

 1x3  3x2 2  14x  12 2  0     Group terms

 x21x  3 2  41x  3 2  0     Factor x2 and 4

 1x2  4 2 1x  3 2  0     Factor x  3

 1x  2 2 1x  2 2 1x  3 2  0     Difference of squares

 x  2  0  or   x  2  0  or   x  3  0     Zero-Product Property

 x  2  x  2  x  3    Solve

The solutions are x  2, 2, and 3.

Now Try Exercise 21 ■
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SECTION 1.6 ■ Solving Other Types of Equations 133

ExAMPLE 3 ■  An Equation Involving Fractional Expressions

Solve the equation 
3
x


2

x  3


12

x2  9
.

SOLuTION  We eliminate the denominators by multiplying each side by the lowest 
common denominator. 

 a 3
x


2

x  3
b x 1x2  9 2 

12

x2  9
 x 1x2  9 2  Multiply by LCD,  x1x2  9 2

 31x2  9 2  2x1x  3 2  12x  Expand

 3x2  27  2x2  6x  12x  Expand LHS

 x2  6x  27  12x  Add like terms on LHS

 x2  6x  27  0  Add 12x

 1x  3 2 1x  9 2  0  Factor

 x  3  0  or   x  9  0  Zero-Product Property

 x  3       x  9 Solve

We must check our answer because multiplying by an expression that contains the 
variable can introduce extraneous solutions. From Check Your Answers we see that the 
only solution is x  9.

Now Try Exercise 27 ■

■ Equations Involving radicals
When you solve an equation that involves radicals, you must be especially careful to 
check your final answers. The next example demonstrates why.

ExAMPLE 4 ■ An Equation Involving a radical
Solve the equation 2x  1  !2  x.

SOLuTION  To eliminate the square root, we first isolate it on one side of the equal 
sign, then square:

 2x  1   !2  x Subtract 1

 12x  1 2 2  2  x  Square each side

 4x2  4x  1  2  x  Expand LHS

 4x2  3x  1  0  Add 2  x

 14x  1 2 1x  1 2  0  Factor

 4x  1  0  or   x  1  0 Zero-Product Property

 x   
1
4    x  1 Solve

The values x   
1
4 and x  1 are only potential solutions. We must check them to 

see whether they satisfy the original equation. From Check Your Answers we see that 
x   

1
4 is a solution but x  1 is not. The only solution is x   

1
4.

Now Try Exercise 43 ■

When we solve an equation, we may end up with one or more extraneous solutions, that 
is, potential solutions that do not satisfy the original equation. In Example 3 the value x  3 
is an extraneous solution, and in Example 4 the value x  1 is an extraneous solution. In 

ChECk yOur ANSWErS

x  3:

 LHS 
3

3


2

3  3
 undefined

 RHS 
12

32  9
 undefined.  ✗

x  9:

 LHS 
3

9


2

9  3
  

1

6

 RHS 
12

19 2 2  9
  

1

6

 LHS  RHS ✓

ChECk yOur ANSWErS

x   
1
4 :

   LHS  2A 
1
4 B   

1
2

   RHS  1  "2  A 
1
4 B

    1  " 9 

4

    1  3
2   

1
2

   LHS  RHS ✓

x  1:

  
 LHS  211 2  2

   RHS  1  !2  1

    1  1  0

   LHS ? RHS  ✗
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134 CHAPTER 1 ■ Equations and Graphs

the case of equations involving fractional expressions, potential solutions may result in 
undefined expressions when substituted into the original equation and hence are extra-
neous solutions. In the case of equations involving radicals, extraneous solutions may 
be introduced when we square each side of an equation because the operation of squar-
ing can turn a false equation into a true one. For example, 1 ? 1, but 11 2 2  12. 
Thus the squared equation may be true for more values of the variable than the original 
equation. That is why you must always check your answers to make sure that each sat-
is fies the original equation.

■ Equations of Quadratic Type
An equation of the form aW 2  bW  c  0, where W is an algebraic expression, is an 
equation of quadratic type. We solve equations of quadratic type by substituting for 
the algebraic expression, as we see in the next two examples.

ExAMPLE 5 ■ A Fourth-degree Equation of Quadratic Type
Find all solutions of the equation x4  8x2  8  0.

SOLuTION  If we set W  x2, then we get a quadratic equation in the new variable W.

 1x2 2 2  8x2  8  0     Write x4 as 1x2 2 2
 W 2  8W  8  0     Let W  x2

 W 
18 2  "18 2 2  4 # 8

2
 4  2!2    Quadratic Formula

 x2  4  2 !2     W  x2

 x   "4  2 !2     Take square roots

So there are four solutions:

"4  2 !2      "4  2 !2       "4  2 !2       "4  2 !2

Using a calculator, we obtain the approximations x  2.61, 1.08, 2.61, 1.08.

Now Try Exercise 49 ■

ExAMPLE 6 ■ An Equation of Quadratic Type

Solve the equation a 1 
1
x
b

2

 6 a 1 
1
x
b  8  0.

SOLuTION  We could solve this equation by multiplying it out first. But it’s easier to 
think of the expression 1  1

x  as the unknown in this equation and give it a new name, 
W. This turns the equation into a quadratic equation in the new variable W.

 a 1 
1
x
b

2

 6 a 1 
1
x
b  8  0  Given equation

 W 
2  6W  8  0  Let W  1 

1
x

 1W  4 2 1W  2 2  0  Factor

 W  4  0  or  W  2  0  Zero-Product Property

 W  4 W  2 Solve
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SECTION 1.6 ■ Solving Other Types of Equations 135

Now we change these values of W back into the corresponding values of x.

 1 
1
x

 4     1 
1
x

 2  W  1 
1
x

 
1
x

 3     
1
x

 1  Subtract 1

 x 
1

3
     x  1  Take reciprocals

The solutions are x  1
3 and x  1.

Now Try Exercise 57 ■

ExAMPLE 7 ■ An Equation Involving Fractional Powers
Find all solutions of the equation x1/3  x1/6  2  0.

SOLuTION  This equation is of quadratic type because if we let W  x1/6, then 
W 2  1x1/6 2 2  x1/3:

 x1/3  x1/6  2  0 Given equation

 W 2  W  2  0 Let W  x1/6

 1W  1 2 1W  2 2  0 Factor

 W  1  0  or   W  2  0  Zero-Product Property

 W  1    W  2  Solve

 x1/6  1    x1/6  2  W  x1/6

 x  16  1    x  12 2 6  64 Take the 6th power

From Check Your Answers we see that x  1 is a solution but x  64 is not. The only 
solution is x  1.

ChECk yOur ANSWErS

x  1: x  64:

   LHS  11/3  11/6  2  0    LHS  641/3  641/6  2

     4  2  2  4

   RHS  0     RHS  0

   LHS  RHS ✓    LHS ? RHS  ✗

Now Try Exercise 59 ■

■ Applications
Many real-life problems can be modeled with the types of equations that we have stud-
ied in this section.

ExAMPLE 8 ■ dividing a Lottery jackpot
A group of people come forward to claim a $1,000,000 lottery jackpot, which the 
winners are to share equally. Before the jackpot is divided, three more winning ticket 
holders show up. As a result, the share of each of the original winners is reduced by 
$75,000. How many winners were in the original group?

For help in setting up equations that 
model real-life applications, see the 
Guidelines for Modeling with Equa-
tions, Section P.9, page 62.
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136 CHAPTER 1 ■ Equations and Graphs

SOLuTION Identify the variable.  We are asked for the number of people in the origi-
nal group. So let

x  number of winners in the original group

Translate from words to algebra.  We translate the information in the problem as  
follows:

In Words In Algebra

Number of winners in original group x
Number of winners in final group x  3

Winnings per person, originally
1,000,000

x

Winnings per person, finally
1,000,000

x  3

Set up the model.  Now we set up the model.

 winnings per 
person, originally

 
 $75,000

 
 

winnings per 
person, finally

 
  

1,000,000
x

 75,000 
1,000,000

x  3

Solve.  We now solve for x.

 1,000,0001x  3 2  75,000x1x  3 2  1,000,000x Multiply by LCD x(x  3)

 401x  3 2  3x1x  3 2  40x  Divide by 25,000

 x2  3x  40  0  
Expand, simplify, and 
divide by 3

 1x  8 2 1x  5 2  0  Factor

  x  8  0  or   x  5  0 Zero-Product Property

  x  8  x  5 Solve

Since we can’t have a negative number of people, we conclude that there were five 
winners in the original group.

error-Correcting  
Codes
The pictures sent back by the 
Pathfinder spacecraft from 
the surface of Mars on July 4, 
1997, were astoundingly clear. 
But few viewing these pic-
tures were aware of the com-
plex mathematics used to 
accomplish that feat. The dis-

tance to Mars is enormous, and the background noise (or static) is many 
times stronger than the original signal emitted by the spacecraft. So when 
scientists receive the signal, it is full of errors. To get a clear picture, the 
errors must be found and corrected. This same problem of errors is routinely 
encountered in transmitting bank records when you use an ATM machine 
or voice when you are talking on the telephone.

To understand how errors are found and corrected, we must first 
understand that to transmit pictures, sound, or text, we transform them 
into bits (the digits 0 or 1; see page 40). To help the receiver recognize 

Mathematics in the Modern World

errors, the message is “coded” by inserting additional bits. For example, 
suppose you want to transmit the message “10100.” A very simple-
minded code is as follows: Send each digit a million times. The person 
receiving the message reads it in blocks of a million digits. If the first block 
is mostly 1’s, he concludes that you are probably trying to transmit a 1, 
and so on. To say that this code is not efficient is a bit of an understate-
ment; it requires sending a million times more data than the original mes-
sage. Another method inserts “check digits.” For example, for each block 
of eight digits insert a ninth digit; the inserted digit is 0 if there is an even 
number of 1’s in the block and 1 if there is an odd number. So if a single 
digit is wrong (a 0 changed to a 1 or vice versa), the check digits allow us 
to recognize that an error has occurred. This method does not tell us 
where the error is, so we can’t correct it. Modern error-correcting codes 
use interesting mathematical algorithms that require inserting relatively 
few digits but that allow the receiver to not only recognize, but also cor-
rect, errors. The first error-correcting code was developed in the 1940s by 
Richard Hamming at MIT. It is interesting to note that the English lan-
guage has a built-in error correcting mechanism; to test it, try reading this 
error-laden sentence:  Gve mo libty ox giv ne deth.

Co
ur

te
sy

 o
f N

AS
A
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ChECk yOur ANSWErS

winnings per person, originally 
$1,000,000

5
 $200,000

 winnings per person, finally 
$1,000,000

8
 $125,000

 $200,000  $75,000  $125,000 ✓

Now Try Exercise 79 ■

ExAMPLE 9 ■ Energy Expended in Bird Flight
Ornithologists have determined that some species of birds tend to avoid flights over 
large bodies of water during daylight hours, because air generally rises over land and 
falls over water in the daytime, so flying over water requires more energy. A bird is 
released from point A on an island, 5 mi from point B, the nearest point on a straight 
shoreline. The bird flies to a point C on the shoreline and then flies along the shoreline 
to its nesting area at point D, as shown in Figure 1. Suppose the bird has 170 kcal of 
energy reserves. It uses 10 kcal/mi flying over land and 14 kcal/mi flying over water.

(a)  Where should the point C be located so that the bird uses exactly 170 kcal of  
energy during its flight?

(b) Does the bird have enough energy reserves to fly directly from A to D?

SOLuTION

(a) Identify the variable.  We are asked to find the location of C. So let

x  distance from B to C

  Translate from words to algebra.  From the figure and from the fact that

energy used  energy per mile  miles flown

  we determine the following:

In Words In Algebra

Distance from B to C x
Distance flown over water (from A to C ) "x2  25    Pythagorean Theorem
Distance flown over land (from C to D ) 12  x
Energy used over water 14"x2  25
Energy used over land 10112  x 2

  Set up the model.  Now we set up the model.

total energy 
used

 
 

energy used 
over water

 
 

energy used 
over land

170  14"x2  25  10112  x 2
   Solve.  To solve this equation, we eliminate the square root by first bringing all 

other terms to the left of the equal sign and then squaring each side.

 170  10112  x 2  14"x2  25   
Isolate square root 
term on RHS

 50  10x  14"x2  25   Simplify LHS

 150  10x 2 2  114 2 21x2  25 2   Square each side

 2500  1000x  100x2  196x2  4900   Expand

 0  96x2  1000x  2400  All terms to RHS

C D

island

5 mi

nesting
area

B

12 mi

A

x

FIGurE 1
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138 CHAPTER 1 ■ Equations and Graphs

   This equation could be factored, but because the numbers are so large, it is easier 
to use the Quadratic Formula and a calculator.

 x 
1000  "11000 2 2  4196 2 12400 2

2196 2 
1000  280

192

x  6 
2
3  or  x  3 

3
4

   Point C should be either 6 
2
3 mi or 3 

3
4 mi from point B so that the bird uses exactly 

170 kcal of energy during its flight.

(b)  By the Pythagorean Theorem (see page 277) the length of the route directly from 

  A to D is "52  122  13 mi, so the energy the bird requires for that route is  
14  13  182 kcal. This is more energy than the bird has available, so it can’t 
use this route.

Now Try Exercise 87 ■

We were able to solve all the equations in this section algebraically; however, not all 
equations can be solved this way. If our model leads to an equation that cannot be 
solved algebraically, we can solve it graphically as described in Section 1.9.

CONCEPTS
 1. (a)  To solve the equation x3  4x2  0  , we   the 

left-hand side.

  (b)  The solutions of the equation x21x  4 2  0 are    .

 2. Solve the equation !2x  x  0 by doing the following steps.

  (a) Isolate the radical:    .

  (b) Square both sides:    .

  (c)  The solutions of the resulting quadratic equation are  

      .

  (d)  The solution(s) that satisfy the original equation are 

      .

 3. The equation 1x  1 2 2  51x  1 2  6  0 is of   

  type. To solve the equation, we set W     . The result-

  ing quadratic equation is    .

 4. The equation x6  7x3  8  0 is of   type. To 

  solve the equation, we set W     . The resulting 

  quadratic equation is    .

SkILLS
5–24 ■ Polynomial Equations  Find all real solutions of the 
equation.

 5. x2  x  0  6. 3x3  6x2  0

 7. x3  25x  8. x5  5x3

 9. x5  3x2  0 10. 6x5  24x  0

 11. 4z5  10z2  0 12. 125t10  2t7  0

 13. x5  8x2  0 14. x4  64x  0

 15. x3  5x2  6x  0 16. x4  x3  6x2  0

 17. x4  4x3  2x2  0 18. y5  8y4  4y3  0

19. 13x  5 2 4  13x  5 2 3  0

20. 1x  5 2 4  161x  5 2 2  0

 21. x3  5x2  2x  10  0 22. 2x3  x2  18x  9  0

 23. x3  x2  x  1  x2  1

 24. 7x3  x  1  x3  3x2  x

25–36 ■ Equations Involving rational Expressions  Find all real 
solutions of the equation.

25. z 
4

z  1
 3 26. 

10

m  5
 15  3m

 27. 
1

x  1


1

x  2


5

4
 28. 

10
x


12

x  3
 4  0

 29. 
x2

x  100
 50 30. 

2x

x2  1
 1

 31. 1 
1

1x  1 2 1x  2 2 
2

x  1


1

x  2

 32. 
x

x  3


2

x  3


1

x2  9

 33. 
x

2x  7


x  1

x  3
 1

 
34. 

1

x  1


2

x2  0

 35. 
x 

2
x

3 
4
x

 5x 36. 
3 

1
x

2 
4
x

 x

1.6 ExErCISES
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37–48 ■ Equations Involving radicals  Find all real solutions of 
the equation.

 37. 5  !4x  3 38. !8x  1  3

 39. !2x  1  !3x  5 40. !3  x  "x2  1

 41. !x  2  x 42. !4  6x  2x

 43. !2x  1  1  x 44. x  !9  3x  0

 45. x  !x  1  3 46. !3  x  2  1  x

47. !3x  1  2  !x  1 48. !1  x  !1  x  2

49–58 ■ Equations of Quadratic Type  Find all real solutions of 
the equation.

49. x4  4x2  3  0 50. x4  5x2  6  0

 51. 2x4  4x2  1  0 52. x6  2x3  3  0

 53. x6  26x3  27  0 54. x8  15x4  16

 55. 1x  5 2 2  31x  5 2  10  0

 56. a x  1
x
b

2

 4 a x  1
x
b  3  0

 57. a 1

x  1
b

2

 2 a 1

x  1
b  8  0

 58. a x

x  2
b

2


4x

x  2
 4

59–66 ■ Equations Involving Fractional Exponents  Find all real 
solutions of the equation.

 59. x4/3  5x2/3  6  0

 60. !x  3!4 x  4  0

 61. 41x  1 2 1/2  51x  1 2 3/2  1x  1 2 5/2  0

 62. 21x  4 2 7/3  1x  4 2 4/3  1x  4 2 1/3  0

 63. x3/2  10x1/2  25x1/2  0

64. x1/2  x1/2  6x3/2  0

 65. x1/2  3x1/3  3x1/6  9

 66. x  5!x  6  0

SkILLS Plus
67–74 ■ More on Solving Equations  Find all real solutions of 
the equation.

 67. 
1

x3 
4

x2 
4
x

 0 68. 4x4  16x2  4  0

 69. "!x  5  x  5

 70. "3 4x2  4x  x

 71. x2!x  3  1x  3 2 3/2

 72. "11  x2 
2

"11  x2
 1

 73. "x  !x  2  2

 74. #1  "x  !2x  1  "5  !x

75–78 ■ More on Solving Equations  Solve the equation for the 
variable x. The constants a and b represent positive real numbers.

 75. x4  5ax2  4a2  0 76. a3x3  b3  0

 77. !x  a  !x  a  !2!x  6

 78. !x  a!3 x  b!6 x  ab  0

APPLICATIONS
 79. Chartering a Bus  A social club charters a bus at a cost of 

$900 to take a group of members on an excursion to Atlantic 
City. At the last minute, five people in the group decide not 
to go. This raises the transportation cost per person by $2. 
How many people originally intended to take the trip?

 80. Buying a Cottage  A group of friends decides to buy a vaca-
tion home for $120,000, sharing the cost equally. If they can 
find one more person to join them, each person’s contribution 
will drop by $6000. How many people are in the group?

 81. Fish Population  A large pond is stocked with fish.  
The fish population P is modeled by the formula 
P  3t  10 !t  140, where t is the number of days since 
the fish were first introduced into the pond. How many days 
will it take for the fish  population to reach 500?

 82. The Lens Equation  If F is the focal length of a convex lens 
and an object is placed at a distance x from the lens, then its 
image will be at a distance y from the lens, where F, x, and y 
are related by the lens equation

  
1

F


1
x


1
y

  Suppose that a lens has a focal length of 4.8 cm and that the 
image of an object is 4 cm closer to the lens than the object 
itself. How far from the lens is the object?

 83. Volume of Grain  Grain is falling from a chute onto the 
ground, forming a conical pile whose diameter is always 
three times its height. How high is the pile (to the nearest 
hundredth of a foot) when it contains 1000 ft3 of grain?

 84. radius of a Tank  A spherical tank has a capacity of  
750 gallons. Using the fact that 1 gallon is about 0.1337 ft3, 
find the radius of the tank (to the nearest hundredth of a foot).

 85. radius of a Sphere  A jeweler has three small solid spheres 
made of gold, of radius 2 mm, 3 mm, and 4 mm. He decides 
to melt these down and make just one sphere out of them. 
What will the radius of this larger sphere be?
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140 CHAPTER 1 ■ Equations and Graphs

 86. dimensions of a Box  A large plywood box has a volume of 
180 ft3. Its length is 9 ft greater than its height, and its width is 
4 ft less than its height. What are the dimensions of the box?

x+9

x

x-4

 87. Construction Costs  The town of Foxton lies 10 mi north of 
an abandoned east-west road that runs through Grimley,  
as shown in the figure. The point on the abandoned road clos-
est to Foxton is 40 mi from Grimley. County officials are 
about to build a new road connecting the two towns. They 
have  determined that restoring the old road would cost 
$100,000 per mile, while building a new road would cost 
$200,000 per mile. How much of the abandoned road should 
be used (as indicated in the figure) if the officials intend to 
spend exactly $6.8 million? Would it cost less than this 
amount to build a new road connecting the towns directly?

Abandoned road
40 mi

Grimley

New
road 10 mi

oxtonF

 88. distance, Speed, and Time  A boardwalk is parallel to and 
210 ft inland from a straight shoreline. A sandy beach lies 
between the boardwalk and the shoreline. A man is standing 
on the boardwalk, exactly 750 ft across the sand from his 
beach umbrella, which is right at the shoreline. The man 
walks 4 ft/s on the boardwalk and 2 ft/s on the sand. How far 
should he walk on the boardwalk before veering off onto the 
sand if he wishes to reach his umbrella in exactly 4 min 45 s?

210 ft

boardwalk

750 ft

 89. dimensions of a Lot  A city lot has the shape of a right triangle 
whose hypotenuse is 7 ft longer than one of the other sides. The 
perimeter of the lot is 392 ft. How long is each side of the lot?

90. Computer Monitors  Two computer monitors sitting side by 
side on a shelf in an appliance store have the same screen 

height. One has a screen that is 7 in. wider than it is high.  The 
other has a wider screen that is 1.8 times as wide as it is high.  
The diagonal measure of the wider screen is 3 in. more than the 
diagonal measure of the smaller screen.  What is the height of 
the screens, correct to the nearest 0.1 in.?

 91. depth of a Well  One method for determining the depth of  
a well is to drop a stone into it and then measure the time it 
takes until the splash is heard. If d is the depth of the well (in 
feet) and t1 the time (in seconds) it takes for the stone to fall, 
then d  16t1

2, so t1  !d/4. Now if t2 is the time it takes for 
the sound to travel back up, then d  1090t2 because the speed 
of sound is 1090 ft/s. So t2  d/1090. Thus the total time 
elapsed between dropping the stone and hearing the splash is 

t1  t2 
!d

4


d

1090

  How deep is the well if this total time is 3 s? (See the follow-
ing figure.)

t¤= d
1090

Time
sound
rises:

Time
stone
falls:

t⁄=œ∑d
4

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 92. dISCuSS: Solving an Equation in different Ways  We have 

learned several different ways to solve an equation in this 
section. Some equations can be tackled by more than one 
method. For example, the equation x  !x  2  0 is of 
quadratic type: We can solve it by letting !x  u and  
x  u2 and factoring. Or we could solve for !x, square each 
side, and then solve the resulting quadratic equation. Solve 
the following equations using both methods indicated, and 
show that you get the same final answers.

(a)  x  !x  2  0     Quadratic type; solve for the  
radical, and square

(b) 
12

1x  3 2 2 
10

x  3
 1  0     Quadratic type;  

multiply by LCD

1.7 SOLVING INEQuALITIES
■ Solving Linear Inequalities ■ Solving Nonlinear Inequalities  

■ Modeling with Inequalities

Some problems in algebra lead to inequalities instead of equations. An inequality looks 
just like an equation, except that in the place of the equal sign is one of the symbols, , 
, , or . Here is an example of an inequality:

4x  7  19

The table in the margin shows that some numbers satisfy the inequality and some num-
bers don’t.

To solve an inequality that contains a variable means to find all values of the variable 
that make the inequality true. Unlike an equation, an inequality generally has infinitely 
many solutions, which form an interval or a union of intervals on the real line. The fol-
lowing illustration shows how an inequality differs from its corre sponding equation:

 Solution Graph

Equation: 4x  7  19 x  3 
0 3

0 3
Inequality: 4x  7  19 x  3

To solve inequalities, we use the following rules to isolate the variable on one side 
of the inequality sign. These rules tell us when two inequalities are equivalent (the 
symbol 3 means “is equivalent to”). In these rules the symbols A, B, and C stand for 
real numbers or algebraic expressions. Here we state the rules for inequalities involving 
the symbol , but they apply to all four inequality symbols.

ruLES FOr INEQuALITIES

rule Description

1. A  B 3 A  C  B  C  Adding the same quantity to each side of an inequality gives 
an equivalent inequality.

2. A  B 3 A  C  B  C  Subtracting the same quantity from each side of an inequal-
ity gives an equivalent inequality.

3. If C  0,  then  A  B 3 CA  CB  Multiplying each side of an inequality by the same positive 
quantity gives an equivalent inequality.

4. If C  0,  then  A  B 3 CA  CB  Multiplying each side of an inequality by the same negative 
quantity reverses the direction of the inequality.

5. If A  0  and  B  0,  Taking reciprocals of each side of an inequality involving 

then  A  B 3 
1

A


1

B
 

positive quantities reverses the direction of the inequality.

6. If A  B  and  C  D, Inequalities can be added. 
then  A  C  B  D

7. If A  B and B  C, then A  C Inequality is transitive.

Pay special attention to Rules 3 and 4. Rule 3 says that we can multiply (or divide) 
each side of an inequality by a positive number, but Rule 4 says that if we multiply each 
side of an inequality by a negative number, then we reverse the direction of the inequal-
ity. For example, if we start with the inequality

3  5

x 4x  7 " 19

1 11  19  ✓
2 15  19  ✓
3 19  19  ✓
4 23  19  ✗
5 27  19  ✗
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1.7 SOLVING INEQuALITIES
■ Solving Linear Inequalities ■ Solving Nonlinear Inequalities  

■ Modeling with Inequalities

Some problems in algebra lead to inequalities instead of equations. An inequality looks 
just like an equation, except that in the place of the equal sign is one of the symbols, , 
, , or . Here is an example of an inequality:

4x  7  19

The table in the margin shows that some numbers satisfy the inequality and some num-
bers don’t.

To solve an inequality that contains a variable means to find all values of the variable 
that make the inequality true. Unlike an equation, an inequality generally has infinitely 
many solutions, which form an interval or a union of intervals on the real line. The fol-
lowing illustration shows how an inequality differs from its corre sponding equation:

 Solution Graph

Equation: 4x  7  19 x  3 
0 3

0 3
Inequality: 4x  7  19 x  3

To solve inequalities, we use the following rules to isolate the variable on one side 
of the inequality sign. These rules tell us when two inequalities are equivalent (the 
symbol 3 means “is equivalent to”). In these rules the symbols A, B, and C stand for 
real numbers or algebraic expressions. Here we state the rules for inequalities involving 
the symbol , but they apply to all four inequality symbols.

ruLES FOr INEQuALITIES

rule Description

1. A  B 3 A  C  B  C  Adding the same quantity to each side of an inequality gives 
an equivalent inequality.

2. A  B 3 A  C  B  C  Subtracting the same quantity from each side of an inequal-
ity gives an equivalent inequality.

3. If C  0,  then  A  B 3 CA  CB  Multiplying each side of an inequality by the same positive 
quantity gives an equivalent inequality.

4. If C  0,  then  A  B 3 CA  CB  Multiplying each side of an inequality by the same negative 
quantity reverses the direction of the inequality.

5. If A  0  and  B  0,  Taking reciprocals of each side of an inequality involving 

then  A  B 3 
1

A


1

B
 

positive quantities reverses the direction of the inequality.

6. If A  B  and  C  D, Inequalities can be added. 
then  A  C  B  D

7. If A  B and B  C, then A  C Inequality is transitive.

Pay special attention to Rules 3 and 4. Rule 3 says that we can multiply (or divide) 
each side of an inequality by a positive number, but Rule 4 says that if we multiply each 
side of an inequality by a negative number, then we reverse the direction of the inequal-
ity. For example, if we start with the inequality

3  5

x 4x  7 " 19

1 11  19  ✓
2 15  19  ✓
3 19  19  ✓
4 23  19  ✗
5 27  19  ✗
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and multiply by 2, we get

6  10

but if we multiply by 2, we get

6  10

■ Solving Linear Inequalities
An inequality is linear if each term is constant or a multiple of the variable. To solve a 
linear inequality, we isolate the variable on one side of the inequality sign.

ExAMPLE 1 ■ Solving a Linear Inequality
Solve the inequality 3x  9x  4, and sketch the solution set.

SOLuTION

 3x  9x  4  Given inequality

 3x  9x  9x  4  9x Subtract 9x

 6x  4  Simplify

 1 
1
6B 16x 2  A 

1
6B 14 2     Multiply by  

1
6  and reverse inequality

 x   
2
3  Simplify

The solution set consists of all numbers greater than  
2
3. In other words the solution 

of the inequality is the interval A 
2
3, ` B . It is graphed in Figure 1.

Now Try Exercise 19 ■

ExAMPLE 2 ■ Solving a Pair of Simultaneous Inequalities
Solve the inequalities 4  3x  2  13.

SOLuTION  The solution set consists of all values of x that satisfy both of the inequal-
ities 4  3x  2 and 3x  2  13. Using Rules 1 and 3, we see that the following 
inequalities are equivalent:

4  3x  2  13 Given inequality

6  3x  15 Add 2

2  x  5 Divide by 3

Therefore the solution set is 32,  5 2 , as shown in Figure 2.

Now Try Exercise 27 ■

■ Solving Nonlinear Inequalities
To solve inequalities involving squares and other powers of the variable, we use factor-
ing, together with the following principle.

ThE SIGN OF A PrOduCT Or QuOTIENT
■ If a product or a quotient has an even number of negative factors, then its 

value is positive.
■ If a product or a quotient has an odd number of negative factors, then its 

value is negative.

Multiplying by the negative number 
1

6 reverses the direction of the 
inequality.

0_ 2
3

FIGurE 1

FIGurE 2

0 2 5
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For example, to solve the inequality x2  5x  6, we first move all terms to the 
left-hand side and factor to get

1x  2 2 1x  3 2  0

This form of the inequality says that the product 1x  2 2 1x  3 2  must be negative or 
zero, so to solve the inequality, we must determine where each factor is negative or 
positive (because the sign of a product depends on the sign of the factors). The details 
are explained in Example 3, in which we use the following guidelines.

GuIdELINES FOr SOLVING NONLINEAr INEQuALITIES

1.  Move All Terms to One Side.  If necessary, rewrite the inequality so that all 
nonzero terms appear on one side of the inequality sign. If the nonzero side 
of the inequality involves quotients, bring them to a common  denominator.

2. Factor.  Factor the nonzero side of the inequality.

3.  Find the Intervals.  Determine the values for which each factor is zero. 
These numbers will divide the real line into intervals. List the intervals that 
are determined by these numbers.

4.  Make a Table or diagram.  Use test values to make a table or diagram of the 
signs of each factor on each interval. In the last row of the table determine 
the sign of the product (or quotient) of these factors.

5.  Solve.  Use the sign table to find the intervals on which the inequality is sat-
isfied.  Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)

The factoring technique that is described in these guidelines works only if all non-
zero terms appear on one side of the inequality symbol. If the inequality is not written 
in this form, first rewrite it, as indicated in Step 1.

ExAMPLE 3 ■ Solving a Quadratic Inequality
Solve the inequality x2  5x  6.

SOLuTION  We will follow the guidelines given above.

Move all terms to one side.  We move all the terms to the left-hand side.

 x2  5x  6    Given inequality

 x2  5x  6  0     Subtract 5x, add 6

Factor.  Factoring the left-hand side of the inequality, we get

 1x  2 2 1x  3 2  0    Factor

Find the intervals.  The factors of the left-hand side are x  2 and x  3. These 
factors are zero when x is 2 and 3, respectively. As shown in Figure 3, the numbers 2 
and 3 divide the real line into the three intervals

1`, 2 2 , 12, 3 2 , 13, ` 2
The factors x  2 and x  3 change sign only at 2 and 3, respectively. So these fac-
tors maintain their sign on each of these three intervals.

Make a table or diagram.  To determine the sign of each factor on each of the inter-
vals that we found, we use test values. We choose a number inside each interval and 
check the sign of the factors x  2 and x  3 at the number we chose. For the interval 

0 3

(_`, 2) (2, 3) (3, `)

2

FIGurE 3
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1`, 2 2 , let’s choose the test value 1 (see Figure 4). Substituting 1 for x in the factors  
x  2 and x  3, we get

x  2  1  2  1  0

x  3  1  3  2  0

So both factors are negative on this interval. Notice that we need to check only one 
test value for each interval because the factors x  2 and x  3 do not change sign on 
any of the three intervals we found.

Using the test values x  2 
1
2 and x  4 for the intervals 12, 3 2  and 13, ` 2  (see  

Figure 4), respectively, we construct the following sign table. The final row of the table is 
obtained from the fact that the expression in the last row is the product of the two factors.

Interval x`, 2c x2, 3c x3, `c

Sign of x  2
Sign of x  3










Sign of xx  2c xx  3c   

If you prefer, you can represent this information on a real line, as in the following 
sign diagram. The vertical lines indicate the points at which the real line is divided into 
intervals:

Sign of x-2

Sign of x-3

Sign of (x-2)(x-3)

2 3

+

-

-

-

-

+

+

+

+

Solve.  We read from the table or the diagram that 1x  2 2 1x  3 2  is negative on the 
interval 12, 3 2 . You can check that the endpoints 2 and 3 satisfy the inequality, so the 
solution is

5x 0  2  x  36  32, 3 4
The solution is illustrated in Figure 5.

Now Try Exercise 37 ■

ExAMPLE 4 ■ Solving an Inequality
Solve the inequality 2x2  x  1.

SOLuTION  We will follow the guidelines on page 143.

Move all terms to one side.  We move all the terms to the left-hand side.

 2x2  x  1    Given inequality

 2x2  x  1  0    Subtract 1

Factor.  Factoring the left-hand side of the inequality, we get

 12x  1 2 1x  1 2  0    Factor

Find the intervals.  The factors of the left-hand side are 2x  1 and x  1. These 
factors are zero when x is  

1
2 and 1. These numbers divide the real line into the 

intervals

A`,  
1
2B, A 

1
2, 1B, A1, ` B

FIGurE 4

20 3

Test value
x = 1

Test value
x = 4

Test value
x=2 1

2

FIGurE 5

20 3
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Make a diagram.  We make the following diagram, using test points to determine the 
sign of each factor in each interval:

Sign of 2x+1 

Sign of x-1 

Sign of (2x+1)(x-1)

1
2 1

+-

-

+

-

+

-

-

+

+

Solve.  From the diagram we see that 12x  1 2 1x  1 2  0 for x in the interval 
A`,  

1
2B  or for x in 11, ` 2 . Since this inequality involves , the endpoints of the 

intervals do not satisfy the inequality. So the solution set is the union of these two 
intervals:

A`,  
1
2B < 11, ` 2

The solution set is graphed in Figure 6.

Now Try Exercise 39 ■

ExAMPLE 5 ■ Solving an Inequality with repeated Factors
Solve the inequality x1x  1 2 21x  3 2  0.

SOLuTION  All nonzero terms are already on one side of the inequality, and the non-
zero side of the inequality is already factored. So we begin by finding the intervals for 
this inequality.

Find the intervals.  The factors of the left-hand side are x, 1x  1 2 2, and x  3. These 
are zero when x  0, 1, and 3. These numbers divide the real line into the intervals

1`, 0 2 , 10, 1 2 , 11, 3 2 , 13, ` 2
Make a diagram.  We make the following diagram, using test points to determine the 
sign of each factor in each interval.

Sign of x

Sign of (x-1)2

Sign of (x-3) 

Sign of x(x-1)2(x-3)

0

+

+

-

-

-

+

-

+

+

-

-

3

+

+

+

+

+

1

Solve.  From the diagram we see that the inequality is satisfied on the intervals 10, 1 2  
and 11, 3 2 . Since this inequality involves , the endpoints of the intervals do not sat-
isfy the inequality. So the solution set is the union of these two intervals:

10, 1 2 < 11, 3 2
The solution set is graphed in Figure 7.

Now Try Exercise 51 ■

ExAMPLE 6 ■ Solving an Inequality Involving a Quotient

Solve the inequality 
1  x

1  x
 1.

FIGurE 6

_ 1
2

10

FIGurE 7

3 1 0
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SOLuTION Move all terms to one side.  We move the terms to the left-hand side and 
simplify using a common denominator.

 
1  x

1  x
 1    Given inequality

 
1  x

1  x
 1  0    Subtract 1

 
1  x

1  x


1  x

1  x
 0    Common denominator 1 – x

 
1  x  1  x

1  x
 0    Combine the fractions

 
2x

1  x
 0    Simplify

Find the intervals.  The factors of the left-hand side are 2x and 1  x. These are 
zero when x is 0 and 1. These numbers divide the real line into the intervals

1`, 0 2 , 10, 1 2 , 11, ` 2
Make a diagram.  We make the following diagram using test points to determine the 
sign of each factor in each interval.

Sign of 2x

Sign of 1-x

Sign of 

0 1

+-

+

-

+

-

-

+

+2x
1-x

Solve.  From the diagram we see that the inequality is satisfied on the interval 10, 1 2 . 
Checking the endpoints, we see that 0 satisfies the inequality but 1 does not (because 
the quotient in the inequality is not defined at 1). So the solution set is the interval

30, 1 2
The solution set is graphed in Figure 8.

Now Try Exercise 59 ■

Example 6 shows that we should always check the endpoints of the solution set to 
see whether they satisfy the original inequality.

■ Modeling with Inequalities
Modeling real-life problems frequently leads to inequalities because we are often inter-
ested in determining when one quantity is more (or less) than another.

ExAMPLE 7 ■ Carnival Tickets
A carnival has two plans for tickets.

Plan A:  $5 entrance fee and 25¢ each ride

Plan B:  $2 entrance fee and 50¢ each ride

How many rides would you have to take for Plan A to be less expensive than Plan B?

 It is tempting to simply multiply 
both sides of the inequality by 1  x 
(as you would if this were an equa-
tion). But this  doesn’t work because we 
don’t know whether 1  x is positive 
or negative, so we can’t tell whether 
the inequality needs to be reversed. 
(See Exercise 95.)

FIGurE 8

0 1
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SOLuTION Identify the variable.  We are asked for the number of rides for which 
Plan A is less expensive than Plan B. So let

x  number of rides

Translate from words to algebra.  The information in the problem may be  
organized as follows.

In Words In Algebra

Number of rides x
Cost with Plan A 5  0.25x
Cost with Plan B 2  0.50x

Set up the model.  Now we set up the model.

cost with 
Plan A

 
 cost with 

Plan B

 

 5  0.25x  2  0.50x

Solve.  Now we solve for x.

 3  0.25x  0.50x    Subtract 2

 3  0.25x    Subtract 0.25x

 12  x     Divide by 0.25

So if you plan to take more than 12 rides, Plan A is less expensive.

Now Try Exercise 81 ■

ExAMPLE 8 ■  relationship Between Fahrenheit  
and Celsius Scales

The instructions on a bottle of medicine indicate that the bottle should be stored at a 
temperature between 5 °C and 30 °C. What range of temperatures does this correspond 
to on the Fahrenheit scale?

SOLuTION  The relationship between degrees Celsius (C) and degrees Fahrenheit (F) 
is given by the equation C  5

9 
1F  32 2 . Expressing the statement on the bottle in 

terms of inequalities, we have

5  C  30

So the corresponding Fahrenheit temperatures satisfy the inequalities

 5  5
9 
1F  32 2  30  Substitute C  5

9 1F  32 2
 95 # 5  F  32  9

5
# 30   Multiply by 9

5

 9  F  32  54   Simplify

 9  32  F  54  32   Add 32

 41  F  86   Simplify

The medicine should be stored at a temperature between 41 °F and 86 °F.

Now Try Exercise 79 ■

C

5

30

F

41

86

* *
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CONCEPTS
 1. Fill in the blank with an appropriate inequality symbol.

(a) If x  5, then x  3   2.

(b) If x  5, then 3x   15.

(c) If x  2, then 3x   6.

(d) If x  2, then x   2.

 2. To solve the nonlinear inequality 
x  1

x  2
 0, we first observe 

  that the numbers   and   are zeros of the numerator 
and denominator. These numbers divide the real line into 
three intervals. Complete the table.

Interval

Sign of x  1
Sign of x  2

Sign of xx  1c/xx  2c

  Do any of the endpoints fail to satisfy the inequality? If so, 

  which one(s)?    . The solution of the inequality is 

     .

 3. Yes or No? If No, give an example.

(a) If x1x  1 2  0, does it follow that x is positive? 

(b) If x1x  1 2  5, does it follow that x  5? 

 4. What is the logical first step in solving the inequality?

(a) 3x  7   (b) 5x  2  1

SkILLS
5–10 ■ Solutions?  Let S  55, 1, 0, 23, 56, 1, !5, 3, 56 . 
Determine which elements of S satisfy the inequality.

 5. 2  3x  1
3  6. 1  2x  5x

 7. 1  2x  4  7  8. 2  3  x  2

 9. 
1
x


1

2
 10. x2  2  4

11–32 ■ Linear Inequalities  Solve the linear inequality. Express 
the solution using interval notation and graph the solution set.

 11. 5x  6 12. 2x  8

13. 2x  5  3 14. 3x  11  5

 15. 2  3x  8 16. 1  5  2x

 17. 2x  1  0 18. 0  5  2x

19. 1  4x  5  2x 20. 5  3x  2  9x

21. 1
2 x  2

3  2 22. 2
3  1

2 x  1
6  x

23. 4  3x  11  8x 2  24. 217x  3 2  12x  16

25. 2  x  5  4 26. 5  3x  4  14

27. 6  3x  7  8 28. 8  5x  4  5

29. 2  8  2x  1 30. 3  3x  7  1
2

31. 
2

3


2x  3

12


1

6
 32.  

1

2


4  3x

5


1

4

33–54 ■ Nonlinear Inequalities  Solve the nonlinear inequality. 
Express the solution using interval notation, and graph the solu-
tion set.

33. 1x  2 2 1x  3 2  0 34. 1x  5 2 1x  4 2  0

35. x12x  7 2  0 36. x12  3x 2  0

37. x2  3x  18  0 38. x2  5x  6  0

39. 2x2  x  1 40. x2  x  2

41. 3x2  3x  2x2  4 42. 5x2  3x  3x2  2

43. x2  31x  6 2  44. x2  2x  3

45. x2  4 46. x2  9

47. 1x  2 2 1x  1 2 1x  3 2  0

 48. 1x  5 2 1x  2 2 1x  1 2  0

 49. 1x  4 2 1x  2 2 2  0 50. 1x  3 2 21x  1 2  0

 51. 1x  2 2 21x  3 2 1x  1 2  0

 52. x21x2  1 2  0

53. x3  4x  0 54. 16x  x3

55–72 ■ Inequalities Involving Quotients  Solve the nonlinear 
inequality. Express the solution using interval notation, and graph 
the solution set.

 55. 
x  3

2x  1
 0 56. 

4  x

x  4
 0

 57. 
4x

2x  3
 2 58. 2 

x  1

x  3

 59. 
2x  1

x  5
 3 60. 

3  x

3  x
 1

 61. 
4
x

 x 62. 
x

x  1
 3x

 63. 1 
2

x  1


2
x

 64. 
3

x  1


4
x

 1

 65. 
6

x  1


6
x

 1 66. 
x

2


5

x  1
 4

 67. 
x  2

x  3


x  1

x  2
 68. 

1

x  1


1

x  2
 0

 69. 
1x  1 2 1x  2 2
1x  2 2 2  0 70. 

12x  1 2 1x  3 2 2
x  4

 0

 71. x4  x2 72. x5  x2

73–76 ■ domain  Determine the values of the variable for 
which the expression is defined as a real number.

 73. "16  9x 
2 74. "3x 

2  5x  2

 75. a 1

x 
2  5x  14

b
1/2

 76. Å
4 1  x

2  x

1.7 ExErCISES
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SkILLS Plus
77–78 ■ Inequalities  Solve the inequality for x, assuming that 
a, b, and c are positive constants.

77. a1bx  c 2  bc 78. a  bx  c  2a

APPLICATIONS
 79. Temperature Scales  Use the relationship between C and F 

given in Example 8 to find the interval on the Fahrenheit scale 
corresponding to the temperature range 20  C  30.

 80. Temperature Scales  What interval on the Celsius scale cor-
responds to the temperature range 50  F  95?

 81. Car rental Cost  A car rental company offers two plans for 
renting a car.

  Plan A:  $30 per day and 10¢ per mile
  Plan B:  $50 per day with free unlimited mileage

  For what range of miles will Plan B save you money?

 82. Long-distance Cost  A telephone company offers two long-
distance plans:

  Plan A:  $25 per month and 5¢ per minute
  Plan B:  $5 per month and 12¢ per minute

  For how many minutes of long-distance calls would Plan B 
be financially advantageous?

 83. driving Cost  It is estimated that the annual cost of  
driving a certain new car is given by the formula

C  0.35m  2200

  where m represents the number of miles driven per year and 
C is the cost in dollars. Jane has purchased such a car and 
decides to budget between $6400 and $7100 for next year’s 
driving costs. What is the corresponding range of miles that 
she can drive her new car?

 84. Air Temperature  As dry air moves upward, it expands and, 
in so doing, cools at a rate of about 1°C for each  
100-meter rise, up to about 12 km.

(a)  If the ground temperature is 20 °C, write a formula for 
the temperature at height h.

(b)  What range of temperatures can be expected if an air-
plane takes off and reaches a maximum height of 5 km?

 85. Airline Ticket Price  A charter airline finds that on its 
 Saturday flights from Philadelphia to London all 120 seats 
will be sold if the ticket price is $200. However, for each  
$3 increase in ticket price, the number of seats sold decreases 
by one.

(a)  Find a formula for the number of seats sold if the ticket 
price is P dollars.

(b)  Over a certain period the number of seats sold for this 
flight ranged between 90 and 115. What was the corre-
sponding range of ticket prices?

 86. Accuracy of a Scale  A coffee merchant sells a customer  
3 lb of Hawaiian Kona at $6.50 per pound. The merchant’s 
scale is accurate to within 0.03 lb. By how much could the 
customer have been overcharged or undercharged because of 
possible inaccuracy in the scale? 

 87. Gravity  The gravitational force F exerted by the earth on an 
object having a mass of 100 kg is given by the equation

F 
4,000,000

d2

   where d is the distance (in km) of the object from the center 
of the earth, and the force F is measured in newtons (N). For 
what distances will the gravitational force exerted by the earth 
on this object be between 0.0004 N and 0.01 N?

 88. Bonfire Temperature  In the vicinity of a bonfire the 
 temperature T in C at a distance of x meters from the center 
of the fire was given by

T 
600,000

x 
2  300

  At what range of distances from the fire’s center was the tem-
perature less than 500 C?

 89. Falling Ball  Using calculus, it can be shown that if a ball is 
thrown upward with an initial velocity of 16 ft/s from the top 
of a building 128 ft high, then its height h above the ground t 
seconds later will be

h  128  16t  16t 
2

  During what time interval will the ball be at least 32 ft above 
the ground?

90. Gas Mileage  The gas mileage g (measured in mi/gal) for  
a particular vehicle, driven at √ mi/h, is given by the formula  
g  10  0.9√  0.01√ 2, as long as √ is between 10 mi/h and 
75 mi/h. For what range of speeds is the vehicle’s mileage 30 
mi/gal or better?

 91. Stopping distance  For a certain model of car the distance d 
required to stop the vehicle if it is traveling at √ mi/h is given 
by the formula

d  √ 
√2

20

  where d is measured in feet. Kerry wants her stopping dis-
tance not to exceed 240 ft. At what range of speeds can she 
travel?

240 ft
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 92. Manufacturer’s Profit  If a manufacturer sells x units of a cer-
tain product, revenue R and cost C (in dollars) are given by

 R  20x

 C  2000  8x  0.0025x 
2

  Use the fact that

profit  revenue  cost

  to determine how many units the manufacturer should sell to 
enjoy a profit of at least $2400.

 93. Fencing a Garden  A determined gardener has 120 ft of deer-
resistant fence. She wants to enclose a rectangular vegetable 
garden in her backyard, and she wants the area that is 
enclosed to be at least 800 ft2. What range of values is possi-
ble for the length of her garden?

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 94. dISCuSS ■ dISCOVEr: do Powers Preserve Order?  If  

a  b, is a2  b2? (Check both positive and negative values 
for a and b.) If a  b, is a3  b3? On the basis of your obser-
vations, state a general rule about the relationship between an 
and bn when a  b and n is a positive integer.

 95. dISCuSS ■ dISCOVEr: What’s Wrong here?  It is tempting 
to try to solve an inequality as if it were an equation. For 
instance, we might try to solve 1  3/x by multiplying both 
sides by x, to get x  3, so the solution would be 1`,  3 2 . 
But that’s wrong; for example, x  1 lies in this interval 
but does not satisfy the original inequality. Explain why this 
method doesn’t work (think about the sign of x). Then solve 
the inequality correctly.

96–97 ■ PrOVE: Inequalities  Use the rules of inequalities to 
prove the following inequalities.

 96. Rule 6 for Inequalities: If a, b, c, and d are any real numbers 
such that a  b and c  d, then a  c  b  d. 
[Hint: Use Rule 1 to show that a  c  b  c and 
b  c  b  d. Use Rule 7.]

 97. If a, b, c, and d are positive numbers such that 
a

b


c

d
, then 

  
a

b


a  c

b  d


c

d
. [Hint: Show that 

ad

b
 a  c  a and 

  a  c 
cb

d
 c.]

1.8 SOLVING ABSOLuTE VALuE EQuATIONS ANd INEQuALITIES
■ Absolute Value Equations ■ Absolute Value Inequalities

Recall from Section P.2 that the absolute value of a number a is given by

0  a 0  ea if a  0

a if a  0

and that it represents the distance from a to the origin on the real number line (see  
Figure 1). More generally, 0  x  a 0  is the distance between x and a on the real number 
line. Figure 2 illustrates the fact that the distance between 2 and 5 is 3.

■ Absolute Value Equations
We use the following property to solve equations that involve absolute value.

0  x 0  C  is equivalent to  x  C

This property says that to solve an absolute value equation, we must solve two separate 
equations. For example, the equation 0  x 0  5 is equivalent to the two equations x  5 
and x  5.

ExAMPLE 1 ■ Solving an Absolute Value Equation
Solve the equation 0  2x  5 0  3.

| _5|=5 | 5|=5

_5 0 5

| 5-2 |=| 2-5|=3

0 2 5

FIGurE 1

FIGurE 2
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SOLuTION  The equation 0  2x  5 0  3 is equivalent to two equations:

 2x  5  3  or   2x  5  3

 2x  8  2x  2     Add 5

 x  4  x  1     Divide by 2

The solutions are 1 and 4.

Now Try Exercise 13 ■

ExAMPLE 2 ■ Solving an Absolute Value Equation
Solve the equation 3 0  x  7 0  5  14.

SOLuTION  We first isolate the absolute value on one side of the equal sign.

  3 0  x  7 0  5  14 Given equation

  3 0  x  7 0  9  Subtract 5

  0  x  7 0  3  Divide by 3

 x  7  3     or     x  7  3 Take cases

 x  10  x  4  Add 7

The solutions are 4 and 10.

Now Try Exercise 17 ■

■ Absolute Value Inequalities
We use the following properties to solve inequalities that involve absolute value.

PrOPErTIES OF ABSOLuTE VALuE INEQuALITIES

Inequality equivalent form Graph

1. 0  x  0   c c  x  c 
0_c c

0_c c

0_c c

0_c c

2. 0  x  0   c c  x  c

3. 0  x  0   c x  c  or  c  x

4. 0  x  0   c x  c  or  c  x

These properties can be proved by using the definition of absolute value. To prove  
Property 1, for example, note that the inequality 0  x 0  c says that the distance from x 
to 0 is less than c, and from Figure 3 you can see that this is true if and only if x is 
between c and c.

ExAMPLE 3 ■ Solving an Absolute Value Inequality
Solve the inequality 0  x  5 0  2.

SOLuTION 1  The inequality 0  x  5 0  2 is equivalent to

 2  x  5  2    Property 1

 3  x  7     Add 5

The solution set is the open interval 13,  7 2 .

These properties hold when x is 
replaced by any algebraic expression. 
(In the graphs we assume that c  0.)

ChECk yOur ANSWErS

x  1:

 LHS  0  2 # 1  5 0
  0  3 0  3  RHS ✓

x  4:

 LHS  0  2 # 4  5 0
  0  3 0  3  RHS ✓

_c 0x c

c c

| x |

FIGurE 3
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152 CHAPTER 1 ■ Equations and Graphs

SOLuTION 2  Geometrically, the solution set consists of all numbers x whose distance 
from 5 is less than 2. From Figure 4 we see that this is the interval 13,  7 2 .

Now Try Exercise 27 ■

ExAMPLE 4 ■ Solving an Absolute Value Inequality
Solve the inequality 0  3x  2 0  4.

SOLuTION  By Property 4 the inequality 0  3x  2 0  4 is equivalent to

 3x  2  4  or   3x  2  4

 3x  2  3x  6    Subtract 2

 x  2
3  x  2    Divide by 3

So the solution set is

Ex 0  x  2 or x  2
3F  1`,  2 4 < C23,  ` 2

The solution set is graphed in Figure 5.

Now Try Exercise 31 ■

ExAMPLE 5 ■ Piston Tolerances
The specifications for a car engine indicate that the pistons have diameter 3.8745 in. 
with a tolerance of 0.0015 in. This means that the diameters can vary from the indi-
cated specification by as much as 0.0015 in. and still be acceptable.

(a)  Find an inequality involving absolute values that describes the range of possible  
diameters for the pistons.

(b) Solve the inequality.

SOLuTION

(a)  Let d represent the actual diameter of a piston. Since the difference between the 
actual diameter (d) and the specified diameter (3.8745) is less than 0.0015, we have

0 d  3.8745 0  0.0015

(b) The inequality is equivalent to

0.0015  d  3.8745  0.0015 Property 1

 3.8730  d  3.8760 Add 3.8745

  Acceptable piston diameters may vary between 3.8730 in. and 3.8760 in.

Now Try Exercise 57 ■

d

0

2

3 5 7

2

FIGurE 4

0_2 2
3

FIGurE 5

CONCEPTS
 1. The equation 0  x 0  3 has the two solutions   and 

     .

 2. (a)  The solution of the inequality 0  x 0  3 is the interval 

   .

  (b) The solution of the inequality 0  x 0  3 is a union of two 

   intervals  <    .

 3. (a)  The set of all points on the real line whose distance from 
zero is less than 3 can be described by the absolute value 

   inequality 0  x 0     .

1.8 ExErCISES
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  (b)  The set of all points on the real line whose distance from 
zero is greater than 3 can be described by the absolute 

   value inequality 0  x 0     .

 4. (a)  What is the logical first step in solving the equation 
0  2x  1 0  5?

  (b)  What is the logical first step in solving the inequality 
0  3x  2 0  8?

SkILLS
5–22 ■ Absolute Value Equations  Solve the equation.

 5. 0  5x 0  20  6. 0  3x 0  10

 7. 5 0  x 0  3  28  8. 1
2 
0  x 0  7  2

 9. 0  x  3 0  2 10. 0  2x  3 0  7

 11. 0  x  4 0  0.5 12. 0  x  4 0  3

 13. 0  2x  3 0  11 14. 0  2  x 0  11

 15. 4  0  3x  6 0  1 16. 0  5  2x 0  6  14

 17. 3 0  x  5 0  6  15 18. 20  0  2x  4 0  15

 19. 8  5 0  13 x  5
6 0  33 20. 0  35 x  2 0  1

2  4

 21. 0  x  1 0  0  3x  2 0  22. 0  x  3 0  0  2x  1 0

23–48 ■ Absolute Value Inequalities  Solve the inequality. 
Express the answer using interval notation.

 23. 0  x 0  5 24. 0  2x 0  20

 25. 0  2x 0  7 26. 1
2 
0  x 0  1

 27. 0  x  4 0  10 28. 0  x  3 0  9

 29. 0  x  1 0  1 30. 0  x  4 0  0

 31. 0  2x  1 0  3 32. 0  3x  2 0  7

 33. 0  2x  3 0  0.4 34. 0  5x  2 0  6

 35. ` x  2

3
`  2 36. ` x  1

2
`  4

 37. 0  x  6 0  0.001 38. 0  x  a 0  d

 39. 4 0  x  2 0  3  13 40. 3  0  2x  4 0  1

 41. 8  0  2x  1 0  6 42. 7 0  x  2 0  5  4

 43. 1
2 
0  4x  1

3 0  5
6 44. 2 0  12 x  3 0  3  51

45. 1  0  x 0  4 46. 0  0  x  5 0  1
2

47. 
1

0  x  7 0  2 48. 
1

0  2x  3 0  5

49–52 ■ Words to Algebra  A phrase that describes a set of real 
numbers is given.  Express the phrase as an inequality involving 
an absolute value.

 49. All real numbers x less than 3 units from 0

 50. All real numbers x more than 2 units from 0

 51. All real numbers x at least 5 units from 7

 52. All real numbers x at most 4 units from 2

53–56 ■ Algebraic description of a Set  A set of real numbers is 
graphed. Find an inequality involving an absolute value that 
describes the set.

 53. 
0 1 3 52 4_3_4_5 _2 _1

 54. 
0 1 3 52 4_3_4_5 _2 _1

 55. 0 1 3 52 4_3_4_5 _2 _1

 56. 
0 1 3 52 4_3_4_5 _2 _1

APPLICATIONS
 57. Thickness of a Laminate  A company manufactures  

industrial laminates (thin nylon-based sheets) of thickness  
0.020 in., with a tolerance of 0.003 in.

(a)  Find an inequality involving absolute values that 
 describes the range of possible thickness for the 
laminate.

(b)  Solve the inequality that you found in part (a).

0.020 in.

 58. range of height  The average height of adult males is  
68.2 in., and 95% of adult males have height h that satisfies 
the inequality

`  h  68.2

2.9
 `  2

  Solve the inequality to find the range of heights.

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
 59. dISCuSS ■ dISCOVEr: using distances to Solve Absolute 

Value Inequalities  Recall that 0  a  b 0  is the distance 
between a and b on the number line. For any number x, what 
do 0  x  1 0  and 0  x  3 0  represent? Use this interpretation 
to solve the inequality 0  x  1 0  0  x  3 0  geometrically. In 
general, if a  b, what is the solution of the inequality 
0  x  a 0  0  x  b 0 ?
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1.9 SOLVING EQuATIONS ANd INEQuALITIES GrAPhICALLy
■ Solving Equations Graphically ■ Solving Inequalities Graphically

In Sections P.8, 1.4, and 1.6 we learned how to solve equations by the algebraic 
method. In this method we view x as an unknown and then use the rules of algebra to 
“hunt it down,” by isolating it on one side of the equation. In Section 1.7 we solved 
inequalities by this same method. 

Sometimes an equation or inequality may be difficult or impossible to solve algebra-
ically. In this case we use the graphical method. In this method we view x as a variable 
and sketch an appropriate graph. We can then obtain an approximate solution from the 
graph. 

■ Solving Equations Graphically
To solve a one-variable equation such as 3x  5  0 graphically, we first draw a graph 
of the two-variable equation y  3x  5 obtained by setting the nonzero side of the 
equation equal to a variable y. The solutions of the given equation are the values of x 
for which y is equal to zero. That is, the solutions are the x-intercepts of the graph. The 
following describes the method.

SOLVING AN EQuATION

Algebraic Method Graphical Method

Use the rules of algebra to isolate  Move all terms to one side, and set equal 
the unknown x on one side of the to y. Graph the resulting equation, and
equation. find the x-intercepts.

Example:  3x  4  1 Example:  3x  4  1

   3x  5     Add 4   3x  5  0    Subtract 1

   x  5
3     Divide by 3 Set y  3x  5 and graph. From the

The solution is x  5
3. 

graph we see that the solution is x  1.7

y

x10

2

xÅ1.7Solution:  

The advantage of the algebraic method is that it gives exact answers. Also, the proc-
ess of unraveling the equation to arrive at the answer helps us to understand the alge-
braic structure of the equation. On the other hand, for many equations it is difficult or 
impossible to isolate x.

PIerre De FerMAT (1601–1665) 
was a French lawyer who became 
interested in mathematics at the age 
of 30. Because of his job as a magis-
trate, Fermat had little time to write 
complete proofs of his discoveries 
and  often wrote them in the margin 
of whatever book he was reading at 
the time. After his death his copy  
of Diophantus’ Arithmetica (see 
page 47) was found to contain a par-

ticularly tantalizing comment. Where Diophantus discusses the solutions 
of x 2  y 2  z 2  Ófor example, x   3, y  4, and z  5Ô, Fermat states in 

Be
ttm

an
n/

Co
rb

is

the margin that for n  3 there are no natural number solutions to the 
equation x n  y n  z n. In other words, it’s impossible for a cube to 
equal the sum of two cubes, a fourth power to equal the sum of two 
fourth powers, and so on. Fermat writes, “I have discovered a truly won-
derful proof for this but the margin is too small to contain it.” All the 
other margin comments in Fermat’s copy of Arithmetica have been 
proved. This one, however, remained unproved, and it came to be known 
as “Fermat’s Last Theorem.”

In 1994, Andrew Wiles of Princeton University announced a proof of  
Fermat’s Last Theorem, an astounding 350 years after it was conjectured.  
His proof is one of the most widely reported mathematical results in the 
popular press.

“Algebra is a merry science,” Uncle 
Jakob would say. “We go hunting for a 
little animal whose name we don’t 
know, so we call it x. When we bag our 
game we pounce on it and give it its 
right name.”

Albert Einstein
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The graphical method gives a numerical approximation to the answer. This is an ad-
vantage when a numerical answer is desired. (For example, an engineer might find an 
answer expressed as x  2.6 more immediately useful than x  !7.) Also, graphing an 
equation helps us to visualize how the solution is related to other values of the variable.

ExAMPLE 1 ■  Solving a Quadratic Equation Algebraically  
and Graphically

Find all real solutions of the quadratic equation. Use the algebraic method and the 
graphical method.

(a) x2  4x  2  0      (b) x2  4x  4  0      (c) x2  4x  6  0

SOLuTION 1: Algebraic
You can check that the Quadratic Formula gives the following solutions.

(a) There are two real solutions, x  2  !2 and x  2  !2.

(b) There is one real solution, x  2.

(c)  There is no real solution. (The two complex solutions are x  2  !2i and 
x  2  !2i.)

SOLuTION 2: Graphical
We use a graphing calculator to graph the equations y  x2  4x  2, 
y  x2  4x  4, and y  x2  4x  6 in Figure 1. By determining the x-intercepts 
of the graphs, we find the following solutions.

(a) The two x-intercepts give the two solutions x  0.6 and x  3.4. 

(b) The one x-intercept gives the one solution x  2.

(c) There is no x-intercept, so the equation has no real solutions.

10

_5

_1 5

(a) y=≈-4x+2 (b) y=≈-4x+4 (c) y=≈-4x+6

10

_5

_1 5

10

_5

_1 5

FIGurE 1

Now Try Exercises 9, 11, and 15 ■

The graphs in Figure 1 show visually why a quadratic equation may have two solu-
tions, one solution, or no real solution. We proved this fact algebraically in Section 1.4 
when we studied the discriminant.

ALAN TurING (1912–1954) was at the center of 
two pivotal events of the 20th century: World 
War II and the invention of computers. At the age 
of 23 Turing made his mark on mathematics by 
solving an important problem in the foundations 
of mathematics that had been posed by David 
Hilbert at the 1928 International Congress of 
Mathematicians (see page 804). In this research 
he invented a theoretical machine, now called a  
Turing machine, which was the inspiration for Sc

ie
nc

e 
So

ur
ce

modern digital computers. During World War II Turing was in charge of the 
British effort to decipher secret German codes. His complete success in this 
endeavor played a decisive role in the Allies’ victory. To carry out the numer-
ous logical steps that are required to break a coded message, Turing devel-
oped decision procedures similar to modern computer programs. After the 
war he helped to develop the first electronic computers in Britain. He also 
did pioneering work on artificial intelligence and computer models of bio-
logical processes. At the age of 42 Turing died of poisoning after eating an 
apple that had mysteriously been laced with cyanide.

The Discovery Project referenced on 
page 312 describes a numerical method 
for solving equations.

The Quadratic Formula is discussed on 
page 118.

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions.
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156 CHAPTER 1 ■ Equations and Graphs

ExAMPLE 2 ■ Another Graphical Method
Solve the equation algebraically and graphically:  5  3x  8x  20

SOLuTION 1: Algebraic

 5  3x  8x  20   Given equation

 3x  8x  25   Subtract 5

 11x  25   Subtract 8x

 x 
25

11
 2 

3
11  Divide by –11 and simplify

SOLuTION 2: Graphical
We could move all terms to one side of the equal sign, set the result equal to y, and 
graph the resulting equation. But to avoid all this algebra, we use a graphing calculator 
to graph the two equations instead:

y1  5  3x  and  y2  8x  20

The solution of the original equation will be the value of x that makes y1 equal to y2; 
that is, the solution is the x-coordinate of the intersection point of the two graphs. 
Using the trace  feature or the intersect command on a graphing calculator, we 
see from Figure 2 that the solution is x  2.27.

Now Try Exercise 5 ■

In the next example we use the graphical method to solve an equation that is ex-
tremely difficult to solve algebraically.

ExAMPLE 3 ■ Solving an Equation in an Interval
Solve the equation

x3  6x2  9x  !x

in the interval 31,  6 4 .
SOLuTION  We are asked to find all solutions x that satisfy 1  x  6, so we use a 
graphing calculator to graph the equation in a viewing rectangle for which the  
x-values are restricted to this interval.

  x3  6x2  9x  !x    Given equation

  x3  6x2  9x  !x  0     Subtract !x

Figure 3 shows the graph of the equation y  x3  6x2  9x  !x in the viewing 
rectangle 31, 64 by 35, 54. There are two x-intercepts in this viewing rectangle; zoom-
ing in, we see that the solutions are x  2.18 and x  3.72.

(a) (b)

5

_5

1 6

Zero
X=3.7200502   Y=0

5

_5

1 6

Zero
X=2.1767162   Y=0

FIGurE 3

Now Try Exercise 17 ■

We can also use the zero command  
to find the solutions, as shown in  
Figures 3(a) and 3(b).

10

_25

_1 3
y⁄=5-3x

y¤=8x-20
Intersection
X=2.2727723   Y=-1.818182

FIGurE 2
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SECTION 1.9 ■ Solving Equations and Inequalities Graphically 157

The equation in Example 3 actually has four solutions. You are asked to find the 
other two in Exercise 46.

■ Solving Inequalities Graphically
To solve a one-variable inequality such as 3x  5  0 graphically, we first draw a 
graph of the two-variable equation y  3x  5 obtained by setting the nonzero side of 
the inequality equal to a variable y. The solutions of the given inequality are the values 
of x for which y is greater than or equal to 0. That is, the solutions are the values of x 
for which the graph is above the x-axis.

SOLVING AN INEQuALITy

Algebraic Method Graphical Method

Use the rules of algebra to isolate  Move all terms to one side, and set equal 
the unknown x on one side of the to y. Graph the resulting equation, and
inequality.  find the values of x where the graph is  

Example:  3x  4  1
 above or on the x-axis.

   3x  5     Add 4 Example:  3x  4  1

   x  5
3     Divide by 3   3x  5  0    Subtract 1

  The solution is C53, ` B . Set y  3x  5 and graph. From the graph

  
we see that the solution is 31.7, ` 2 .

y

x10

2

[1.7, `)Solution:  

ExAMPLE 4 ■ Solving an Inequality Graphically
Solve the inequality x2  5x  6  0 graphically.

SOLuTION  This inequality was solved algebraically in Example 3 of Section 1.7. To 
solve the inequality graphically, we use a graphing calculator to draw the graph of 

y  x2  5x  6

Our goal is to find those values of x for which y  0. These are simply the x-values 
for which the graph lies below the x-axis. From the graph in Figure 4 we see that the 
solution of the inequality is the interval 32, 3 4 .

Now Try Exercise 33 ■

ExAMPLE 5 ■ Solving an Inequality Graphically
Solve the inequality 3.7x2  1.3x  1.9  2.0  1.4x.

SOLuTION  We use a graphing calculator to graph the equations

y1  3.7x2  1.3x  1.9  and  y2  2.0  1.4x

The graphs are shown in Figure 5. We are interested in those values of x for which  
y1  y2; these are points for which the graph of y2 lies on or above the graph of y1. To 
determine the appropriate interval, we look for the x-coordinates of points where the 
graphs intersect. We conclude that the solution is (approximately) the interval 
31.45, 0.72 4 .

Now Try Exercise 35 ■

ExAMPLE 6 ■ Solving an Inequality Graphically
Solve the inequality x3  5x2  8.

10

_2

_1 5

FIGurE 4

5

_3

_3 3

y⁄

y¤

FIGurE 5
y1  3.7x2  1.3x  1.9
y2  2.0  1.4x
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158 CHAPTER 1 ■ Equations and Graphs

SOLuTION  We write the inequality as

x3  5x2  8  0

and then graph the equation

y  x3  5x2  8

in the viewing rectangle 36, 6 4  by 315, 15 4 , as shown in Figure 6. The solution  
of the inequality consists of those intervals on which the graph lies on or above the  
x-axis. By moving the cursor to the x-intercepts, we find that, rounded to one decimal 
place, the solution is 31.1, 1.5 4 < 34.6. ` 2 .

Now Try Exercise 37 ■

15

_15

_6 6

FIGurE 6 x 3  5x 2  8  0

CONCEPTS
 1. The solutions of the equation x2  2x  3  0 are the 

   -intercepts of the graph of y  x2  2x  3.

 2. The solutions of the inequality x2  2x  3  0 are the 
x-coordinates of the points on the graph of y  x2  2x  3 

  that lie   the x-axis.

 3. The figure shows a graph of y  x4  3x3  x2  3x. 
Use the graph to do the following.

(a) Find the solutions of the equation x4  3x3  x2  3x  0.

(b) Find the solutions of the inequality x4  3x3  x2  3x  0.

4321-1-2

y
8
6
4
2

-2
-4
-6
-8

x

 

y=x4-3x3-x2+3x

 4. The figure shows the graphs of y  5x   x2 and y  4. Use 
the graphs to do the following.

(a) Find the solutions of the equation 5x  x2  4.

(b) Find the solutions of the inequality 5x  x2  4.

654321-1

y

7
6
5
4
3
2
1

-1
-2

x

y=5x-x2

y=4

SkILLS
5–16 ■ Solving Equations Algebraically and Graphically  Solve 
the equation both algebraically and graphically.

 5. x  4  5x  12  6. 1
2 x  3  6  2x

 7. 
2
x


1

2x
 7  8. 

4

x  2


6

2x


5

2x  4

 9. x2  32  0 10. x3  16  0

11. x2  9  0 12. x2  3  2x

13. 16x4  625 14. 2x5  243  0

15. 1x  5 2 4  80  0 16. 61x  2 2 5  64

17–24 ■ Solving Equations Graphically  Solve the equation 
graphically in the given interval. State each answer rounded to 
two decimals.

17. x2  7x  12  0;  30, 64
18. x2  0.75x  0.125  0;  32, 24
19. x3  6x2  11x  6  0;  3 1, 44
20. 16x3  16x2  x  1;  32, 24
21. x  !x  1  0;  31, 54
22. 1  !x  "1  x2;  31, 54
23. x1/3  x  0;  3 3, 34
24. x1/2  x1/3  x  0;  31, 54

25–28 ■ Solving Equations Graphically  Use the graphical 
method to solve the equation in the indicated exercise from  
Section 1.6.

25. Exercise 43. 26. Exercise 46.

27. Exercise 51. 28. Exercise 52.

29–32 ■ Solving Equations Graphically  Find all real solutions 
of the equation, rounded to two decimals.

29. x3  2x2  x  1  0 30. x4  8x2  2  0

31. x1x  1 2 1x  2 2  1
6 x 32. x4  16  x3

1.9 ExErCISES

1.10 MOdELING VArIATION
■ direct Variation ■ Inverse Variation ■ Combining different Types of Variation 

When scientists talk about a mathematical model for a real-world phenomenon, they 
often mean a function that describes the dependence of one physical quantity on an-
other. For instance, the model may describe the population of an animal species as a 
function of time or the pressure of a gas as a function of its volume. In this section we 
study a kind of modeling that occurs frequently in the sciences, called variation.

■ direct Variation
One type of variation is called direct variation; it occurs when one quantity is a con-
stant multiple of the other. We use a function of the form f 1x 2  kx to model this  
dependence.
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SECTION 1.10 ■ Modeling Variation 159

33–40 ■ Solving Inequalities Graphically  Find the solutions of 
the inequality by drawing appropriate graphs. State each answer 
rounded to two decimals.

33. x2  3x  10 34. 0.5x2  0.875x  0.25

35. x3  11x  6x2  6 36. 16x3  24x2  9x  1

37. x1/3  x 38. "0.5x2  1  2 0  x 0
39. 1x  1 2 2  1x  1 2 2 40. 1x  1 2 2  x3

41–44 ■ Solving Inequalities Graphically  Use the graphical 
method to solve the inequality in the indicated exercise from  
Section 1.7.

41. Exercise 41. 42. Exercise 42.

43. Exercise 51. 44. Exercise 52.

SkILLS Plus
45. Another Graphical Method  In Example 2 we solved the 

equation 5  3x  8x  20 by drawing graphs of two equa-
tions.  Solve the equation by drawing a graph of only one 
equation. Compare your answer to the one obtained in  
Example 2.

46. Finding More Solutions  In Example 3 we found two solu-
tions of the equation x3  6x2  9x  !x in the interval 
31, 6 4 . Find two more solutions, rounded to two decimals.

APPLICATIONS
47. Estimating Profit  An appliance manufacturer estimates that 

the profit y (in dollars) generated by producing x cooktops 
per month is given by the equation

y  10x  0.5x2  0.001x3  5000

  where 0  x  450.

(a) Graph the equation.

(b) How many cooktops must be produced to begin  
generating a profit?

(c) For what range of values of x is the company’s profit 
greater than $15,000?

48. how Far Can you See?  If you stand on a ship in a calm sea, 
then your height x (in ft) above sea level is related to the far-
thest distance y (in mi) that you can see by the equation

y  Å1.5x  a x

5280
b

2

(a) Graph the equation for 0  x  100.

(b) How high up do you have to be to be able to see 10 mi?

x

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE
49. WrITE: Algebraic and Graphical Solution Methods  Write a 

short essay comparing the algebraic and graphical methods 
for solving equations. Make up your own examples to illus-
trate the advantages and disadvantages of each method.

50. dISCuSS: Enter Equations Carefully  A student wishes to 
graph the equations

y  x1/3  and  y 
x

x  4

  on the same screen, so he enters the following information 
into his calculator:

Y1  X^1/3   Y2  X/X4

  The calculator graphs two lines instead of the equations he 
wanted. What went wrong?

1.10 MOdELING VArIATION
■ direct Variation ■ Inverse Variation ■ Combining different Types of Variation 

When scientists talk about a mathematical model for a real-world phenomenon, they 
often mean a function that describes the dependence of one physical quantity on an-
other. For instance, the model may describe the population of an animal species as a 
function of time or the pressure of a gas as a function of its volume. In this section we 
study a kind of modeling that occurs frequently in the sciences, called variation.

■ direct Variation
One type of variation is called direct variation; it occurs when one quantity is a con-
stant multiple of the other. We use a function of the form f 1x 2  kx to model this  
dependence.
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160 CHAPTER 1 ■ Equations and Graphs

dIrECT VArIATION

If the quantities x and y are related by an equation

 y  kx

for some constant k ? 0, we say that y varies directly as x, or y is directly 
proportional to x, or simply y is proportional to x. The constant k is called the 
constant of proportionality.

Recall that the graph of an equation of the form y  mx  b is a line with slope m 
and y-intercept b. So the graph of an equation y  kx that describes direct variation is 
a line with slope k and y-intercept 0 (see Figure 1).

ExAMPLE 1 ■ direct Variation
During a thunderstorm you see the lightning before you hear the thunder because 
light travels much faster than sound. The distance between you and the storm varies 
directly as the time interval between the lightning and the thunder.

(a)  Suppose that the thunder from a storm 5400 ft away takes 5 s to reach you.  
Determine the constant of proportionality, and write the equation for the 
variation.

(b)  Sketch the graph of this equation. What does the constant of proportionality 
represent?

(c)  If the time interval between the lightning and thunder is now 8 s, how far away is 
the storm?

SOLuTION

(a)  Let d be the distance from you to the storm, and let t be the length of the time 
interval. We are given that d varies directly as t, so

d  kt

   where k is a constant. To find k, we use the fact that t  5 when d  5400.  
Substituting these values in the equation, we get

 5400  k15 2   Substitute

 k 
5400

5
 1080  Solve for k

  Substituting this value of k in the equation for d, we obtain

d  1080t

  as the equation for d as a function of t.

(b)  The graph of the equation d  1080t is a line through the origin with slope 1080  
and is shown in Figure 2. The constant k  1080 is the approximate speed of 
sound (in ft/s).

(c) When t  8, we have

d  1080 # 8  8640

  So the storm is 8640 ft  1.6 mi away.

Now Try Exercises 19 and 35 ■

0

k

1

y=kx
(k>0)

y

x

FIGurE 1

t

d

0

1000

1

(5, 5400)

(8, 8640)

y=1080t

FIGurE 2
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SECTION 1.10 ■ Modeling Variation 161

■ Inverse Variation
Another function that is frequently used in mathematical modeling is f (x)  k /x, where 
k is a constant.

INVErSE VArIATION

If the quantities x and y are related by the equation

y 
k
x

for some constant k ? 0, we say that y is inversely proportional to x or y var-
ies inversely as x. The constant k is called the constant of proportionality.

The graph of y  k /x for x  0 is shown in Figure 3 for the case k  0. It gives a 
picture of what happens when y is inversely proportional to x.

ExAMPLE 2 ■ Inverse Variation
Boyle’s Law states that when a sample of gas is compressed at a constant tempera-
ture, the pressure of the gas is inversely proportional to the volume of the gas.

(a)  Suppose the pressure of a sample of air that occupies 0.106 m3 at 25C is 50 kPa. 
Find the constant of proportionality, and write the equation that expresses the 
inverse proportionality. Sketch a graph of this equation.

(b) If the sample expands to a volume of 0.3 m3, find the new pressure.

SOLuTION

(a)  Let P be the pressure of the sample of gas, and let V be its volume. Then, by the 
definition of inverse proportionality, we have

P 
k

V

   where k is a constant. To find k, we use the fact that P  50 when V  0.106.  
Substituting these values in the equation, we get

  50 
k

0.106
  Substitute

  k  150 2 10.106 2  5.3  Solve for k

  Putting this value of k in the equation for P, we have

P 
5.3

V

   Since V represents volume (which is never negative), we sketch the part of the 
graph for which V  0 only. The graph is shown in Figure 4.

(b) When V  0.3, we have

P 
5.3

0.3
 17.7

  So the new pressure is about 17.7 kPa.

Now Try Exercises 21 and 43 ■

0

y=

(k>0)

k
x

y

x

FIGurE 3 Inverse variation

V

P

0

10

0.1 1.0

P=

(0.106, 50)

5.3
V

(0.3, 17.7)

FIGurE 4
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162 CHAPTER 1 ■ Equations and Graphs

■ Combining different Types of Variation
In the sciences, relationships between three or more variables are common, and any 
combination of the different types of proportionality that we have discussed is possible. 
For example, if the quantities x, y, and z are related by the equation 

z  kxy

then we say that z is proportional to the product of x and y. We can also express this 
relationship by saying that z varies jointly as x and y or that z is jointly proportional 
to x and y. If the quantities x, y, and z are related by the equation 

z  k 

x
y

we say that z is proportional to x and inversely proportional to y or that z varies 
directly as x and inversely as y.

ExAMPLE 3 ■ Combining Variations
The apparent brightness B of a light source (measured in W/m2) is directly  
proportional to the luminosity L (measured in W) of the light source and inversely 
proportional to the square of the distance d from the light source (measured in 
meters). 

(a) Write an equation that expresses this variation.

(b) If the distance is doubled, by what factor will the brightness change? 

(c)  If the distance is cut in half and the luminosity is tripled, by what factor will the 
brightness change? 

SOLuTION

(a)  Since B is directly proportional to L and inversely proportional to d2, we have 

B  k 

L

d 
2     Brightness at distance d and luminosity L

  where k is a constant.

(b)  To obtain the brightness at double the distance, we replace d by 2d  in the equa-
tion we obtained in part (a).

B  k 

L

12d 2 2 
1

4
a k 

L

d 
2 b     Brightness at distance 2d

   Comparing this expression with that obtained in part (a), we see that the bright-
ness is 1

4 of the original brightness.

dISCOVEry PrOjECT

Proportionality: Shape and Size

Many real-world quantities are related by proportionalities. We use the propor-
tionality symbol ~ to express proportionalities in the natural world. For exam-
ple, for animals of the same shape, the skin area and volume are proportional, 
in different ways, to the length of the animal. In one situation we use propor-
tionality to determine how a frog’s size relates to its sensitivity to pollutants in 
the environment. You can find the project at www.stewartmath.com.
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SECTION 1.10 ■ Modeling Variation 163

(c)  To obtain the brightness at half the distance d and triple the luminosity L, we 
replace d by d/2 and L by 3L in the equation we obtained in part (a).

B  k 

3L

A12  dB2 
3
1
4

a k 

L

d 
2 b  12 a k 

L

d 
2 b     Brightness at distance 1

2 d  and luminosity 3L

   Comparing this expression with that obtained in part (a), we see that the bright-
ness is 12 times the original brightness.

Now Try Exercises 23 and 45 ■

The relationship between apparent brightness, actual brightness (or luminosity), and 
distance is used in estimating distances to stars (see Exercise 56).

ExAMPLE 4 ■ Newton’s Law of Gravity
Newton’s Law of Gravity says that two objects with masses m1 and m2 attract each 
other with a force F that is jointly proportional to their masses and inversely propor-
tional to the square of the distance r between the objects. Express Newton’s Law of 
Gravity as an equation.

SOLuTION  Using the definitions of joint and inverse variation and the traditional  
notation G for the gravitational constant of proportionality, we have

F  G  

m1m2

r 
2

Now Try Exercises 31 and 37 ■

If m1 and m2 are fixed masses, then the gravitational force between them is F  C/r2 
(where C  Gm1m2 is a constant). Figure 5 shows the graph of this equation for r  0 
with C  1. Observe how the gravitational attraction decreases with increasing dis tance.

Like the Law of Gravity, many laws of nature are inverse square laws. There is a 
geometric reason for this. Imagine a force or energy originating from a point source and 
spreading its influence equally in all directions, just like the light source in Example 3 
or the gravitational force exerted by a planet in Example 4. The influence of the force or 
energy at a distance r from the source is spread out over the surface of a sphere of radius 
r, which has area A  4pr2 (see Figure 6). So the intensity I at a distance r from the 
source is the source strength S divided by the area A of the sphere:

I 
S

4pr2 
k

r2

where k is the constant S/ 14p 2 . Thus point sources of light, sound, gravity, electromag-
netic fields, and radiation must all obey inverse square laws, simply because of the 
geometry of space.

FIGurE 6 Energy from a point source S

S

r = 2

r = 3

r = 1

1.5

0 5

FIGurE 5 Graph of F 
1

r 
2
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CONCEPTS
 1. If the quantities x and y are related by the equation y  3x,

  then we say that y is     

  to x and the constant of   is 3.

 2. If the quantities x and y are related by the equation y 
3
x

, 

  then we say that y is     

  to x and the constant of   is 3.

 3. If the quantities x, y, and z are related by the equation z  3  

x

y
, 

  then we say that z is     

  to x and     to y.

 4. If z is directly proportional to the product of x and y and if  
z is 10 when x is 4 and y is 5, then x, y, and z are related by 

the equation z     .

5–6 ■ In each equation, is y directly proportional, inversely  
proportional, or not proportional to x?

 5. (a) y  3x (b) y  3x  1

 6. (a) y 
3

x  1
 (b) y 

3
x

SkILLS
7–18 ■ Equations of Proportionality  Write an equation that 
expresses the statement.

 7. T varies directly as x.

 8. P is directly proportional to „.

 9. √ is inversely proportional to z.

 10. „ is proportional to the product of m and n.

 11. y is proportional to s and inversely proportional to t.

 12. P varies inversely as T.

 13. z is proportional to the square root of y.

 14. A is proportional to the square of x and inversely proportional 
to the cube of t.

 15. V is proportional to the product of l, „, and h.

16. S is proportional to the product of the squares of r and u.

17. R is proportional to the product of the squares of P and t and 
inversely proportional to the cube of b.

18. A is jointly proportional to the square roots of x and y.

19–30 ■ Constants of Proportionality  Express the statement as 
an equation. Use the given information to find the constant of 
proportionality.

19. y is directly proportional to x. If x  6, then y  42.

20. „ is inversely proportional to t. If t  8, then „  3.

 21. A varies inversely as r. If r  3, then A  7.

 22. P is directly proportional to T. If T  300, then P  20.

23. A is directly proportional to x and inversely proportional to t. 
If x  7 and t  3, then A  42.

24. S is proportional to the product of p and q. If p  4 and  
q  5, then S  180.

25. W is inversely proportional to the square of r. If r  6, then  
W  10.

26. t is proportional to the product of x and y and inversely pro-
portional to r. If x  2, y  3, and r  12, then t  25.

27. C is jointly proportional to l, „, and h. If l  „  h  2, 
then C  128.

28. H is jointly proportional to the squares of l and „. If l  2 
and „  1

3, then H  36.

29. R is inversely proportional to the square root of x. If 
x  121, then R  2.5.

30. M is jointly proportional to a, b, and c and inversely propor-
tional to d. If a and d have the same value and if b and c are 
both 2, then M  128.

31–34 ■ Proportionality  A statement describing the relation-
ship between the variables x, y, and z is given. (a) Express the 
statement as an equation of proportionality. (b) If x is tripled and 
y is doubled, by what factor does z change? (See Example 3.)

31. z varies directly as the cube of x and inversely as the square of y.

32. z is directly proportional to the square of x and inversely pro-
portional to the fourth power of y. 

33. z is jointly proportional to the cube of x and the fifth power of y.

34. z is inversely proportional to the square of x and the cube of y.

APPLICATIONS
35. hooke’s Law  Hooke’s Law states that the force needed to 

keep a spring stretched x units beyond its natural length is  
directly proportional to x. Here the constant of proportional-
ity is called the spring constant.

(a) Write Hooke’s Law as an equation.

(b) If a spring has a natural length of 5 cm and a force of  
30 N is required to maintain the spring stretched to a 
length of 9 cm, find the spring constant.

(c) What force is needed to keep the spring stretched to a 
length of 11 cm?

5 cm

1.10 ExErCISES
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36. Printing Costs  The cost C of printing a magazine is jointly 
proportional to the number of pages p in the magazine and 
the number of magazines printed m.

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if the printing cost is 
$60,000 for 4000 copies of a 120-page magazine.

(c) How much would the printing cost be for 5000 copies of 
a 92-page magazine?

37. Power from a Windmill  The power P that can be obtained 
from a windmill is directly proportional to the cube of the 
wind speed s.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality for a windmill that 
produces 96 watts of power when the wind is blowing at 
20 mi/h.

(c) How much power will this windmill produce if the wind 
speed increases to 30 mi/h?

38. Power Needed to Propel a Boat  The power P (measured in 
horsepower, hp) needed to propel a boat is directly propor-
tional to the cube of the speed s.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality for a boat that needs 
an 80-hp engine to propel the boat at 10 knots.

(c) How much power is needed to drive this boat at 15 knots?

39. Stopping distance  The stopping distance D of a car after 
the brakes have been applied varies directly as the square of 
the speed s. A certain car traveling at 40 mi/h can stop in  
150 ft. What is the maximum speed it can be traveling if it 
needs to stop in 200 ft?

40. Aerodynamic Lift  The lift L on an airplane wing at takeoff 
varies jointly as the square of the speed s of the plane and the 
area A of its wings. A plane with a wing area of 500 ft2  
traveling at 50 mi/h experiences a lift of 1700 lb. How much 
lift would a plane with a wing area of 600 ft2 traveling at  
40 mi/h experience?

Lift

41. drag Force on a Boat  The drag force F on a boat is jointly pro-
portional to the wetted surface area A on the hull and the square 

of the speed s of the boat. A boat experiences a drag force of 
220 lb when traveling at 5 mi/h with a wetted surface area of  
40 ft2. How fast must a boat be traveling if it has 28 ft2 of  
wetted surface area and is experiencing a drag force of 175 lb?

42. kepler’s Third Law  Kepler’s Third Law of planetary motion 
states that the square of the period T of a planet (the time it 
takes for the planet to make a complete revolution about the 
sun) is directly proportional to the cube of its average dis-
tance d from the sun.

(a) Express Kepler’s Third Law as an equation.

(b) Find the constant of proportionality by using the fact that 
for our planet the period is about 365 days and the aver-
age distance is about 93 million miles.

(c) The planet Neptune is about 2.79  109 mi from the sun. 
Find the period of Neptune.

 43. Ideal Gas Law  The pressure P of a sample of gas is directly 
proportional to the temperature T and inversely proportional 
to the volume V.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality if 100 L of gas exerts 
a pressure of 33.2 kPa at a temperature of 400 K (abso-
lute temperature measured on the Kelvin scale).

(c) If the temperature is increased to 500 K and the volume 
is decreased to 80 L, what is the pressure of the gas?

44. Skidding in a Curve  A car is traveling on a curve that forms 
a circular arc. The force F needed to keep the car from skid-
ding is jointly proportional to the weight „ of the car and the 
square of its speed s and is inversely proportional to the 
radius r of the curve.

(a) Write an equation that expresses this variation.

(b) A car weighing 1600 lb travels around a curve at  
60 mi/h. The next car to round this curve weighs 2500 lb 
and requires the same force as the first car to keep from 
skidding. How fast is the second car traveling?

45. Loudness of Sound  The loudness L of a sound (measured in 
decibels, dB) is inversely proportional to the square of the 
distance d from the source of the sound.

(a) Write an equation that expresses this variation.

(b) Find the constant of proportionality if a person 10 ft 
from a lawn mower experiences a sound level of 70 dB.

(c) If the distance in part (b) is doubled, by what factor is 
the loudness changed?

(d) If the distance in part (b) is cut in half, by what factor is 
the loudness changed?
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46. A jet of Water  The power P of a jet of water is jointly pro-
portional to the cross-sectional area A of the jet and to the 
cube of the velocity √.  

(a) Write an equation that expresses this variation.

(b) If the velocity is doubled and the cross-sectional area is 
halved, by what factor is the power changed?

(c) If the velocity is halved and the cross-sectional area is 
tripled, by what factor is the power changed?

 47. Electrical resistance  The resistance R of a wire varies  
directly as its length L and inversely as the square of its  
diameter d.

(a) Write an equation that expresses this joint variation.

(b) Find the constant of proportionality if a wire 1.2 m  
long and 0.005 m in diameter has a resistance of  
140 ohms.

(c) Find the resistance of a wire made of the same material 
that is 3 m long and has a diameter of 0.008 m.

(d) If the diameter is doubled and the length is tripled, by 
what factor is the resistance changed?

48. Growing Cabbages  In the short growing season of the 
Canadian arctic territory of Nunavut, some gardeners find it 
possible to grow gigantic cabbages in the midnight sun.  
Assume that the final size of a cabbage is proportional to  
the amount of nutrients it receives and inversely proportional  
to the number of other cabbages surrounding it. A cabbage 
that received 20 oz of nutrients and had 12 other cabbages 
around it grew to 30 lb. What size would it grow to if it  
received 10 oz of nutrients and had only 5 cabbage  
“neighbors”?

49. radiation Energy  The total radiation energy E emitted  
by a heated surface per unit area varies as the fourth  
power of its absolute temperature T. The temperature is  
6000 K at the surface of the sun and 300 K at the surface  
of the earth.

(a) How many times more radiation energy per unit area is 
produced by the sun than by the earth?

(b) The radius of the earth is 3960 mi, and the radius of the 
sun is 435,000 mi. How many times more total radiation 
does the sun emit than the earth?

50. Value of a Lot  The value of a building lot on Galiano Island 
is jointly proportional to its area and the quantity of water pro-
duced by a well on the property. A 200 ft by 300 ft lot has a 
well producing 10 gal of water per minute and is valued at 
$48,000. What is the value of a 400 ft by 400 ft lot if the well 
on the lot produces 4 gal of water per minute?

51. Law of the Pendulum  The period of a pendulum (the time 
elapsed during one complete swing of the pendulum) varies 
directly with the square root of the length of the pendulum.

(a) Express this relationship by writing an equation.

(b) To double the period, how would we have to change the 
length l?

l

52. heat of a Campfire  The heat experienced by a hiker at a 
campfire is proportional to the amount of wood on the fire 
and inversely proportional to the cube of his distance from 
the fire. If the hiker is 20 ft from the fire and someone dou-
bles the amount of wood burning, how far from the fire 
would he have to be so that he feels the same heat as  
before?

x

53. Frequency of Vibration  The frequency f of vibration of a 
violin string is inversely proportional to its length L. The  
constant of proportionality k is positive and depends on the  
tension and density of the string.

(a) Write an equation that represents this variation.

(b) What effect does doubling the length of the string have 
on the frequency of its vibration?

54. Spread of a disease  The rate r at which a disease spreads  
in a population of size P is jointly proportional to the number x 
of infected people and the number P  x who are not infected. 
An infection erupts in a small town that has population  
P  5000.

(a) Write an equation that expresses r as a function of x.

(b) Compare the rate of spread of this infection when  
10 people are infected to the rate of spread when  
1000 people are infected. Which rate is larger? By  
what factor?

(c) Calculate the rate of spread when the entire population is 
infected. Why does this answer make intuitive sense?
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55–56 ■ Combining Variations  Solve the problem using the 
relationship between brightness B, luminosity L, and distance d 
derived in Example 3. The proportionality constant is k  0.080.

55. Brightness of a Star  The luminosity of a star is 
L  2.5  1026 W, and its distance from the earth is 
d  2.4  1019 m. How bright does the star appear on the 
earth?

56. distance to a Star  The luminosity of a star is 
L  5.8  1030 W, and its brightness as viewed from the 

earth is B  8.2  1016 W/m2. Find the distance of the star 
from the earth.

dISCuSS ■ dISCOVEr ■ PrOVE ■ WrITE

57. dISCuSS: Is Proportionality Everything?  A great many 
laws of physics and chemistry are expressible as proportion-
alities. Give at least one example of a function that occurs in 
the sciences that is not a proportionality.

The distance Formula (p. 90)
The distance between the points A1x1, y1 2  and B1x2, y2 2  is

d1A, B 2  "1x2  x1 2 2  1y2  y1 2 2
The Midpoint Formula (p. 91)
The midpoint of the line segment from A1x1, y1 2  to B1x2, y2 2  is

a x1  x2

2
, 

y1  y2

2
b

Intercepts (p. 96)
To find the x-intercepts of the graph of an equation, set y  0 
and solve for x.

To find the y-intercepts of the graph of an equation, set x  0 
and solve for y.

Circles (p. 98)
The circle with center (0, 0) and radius r has equation

x2  y2  r2

The circle with center (h, k) and radius r has equation

1x  h 2 2  1y  k 2 2  r2

Symmetry (p. 100)
The graph of an equation is symmetric with respect to the 
x-axis if the equation remains unchanged when y is replaced  
by y.

The graph of an equation is symmetric with respect to the 
y-axis if the equation remains unchanged when x is replaced  
by x.

The graph of an equation is symmetric with respect to the  
origin if the equation remains unchanged when x is replaced by 
x and y by y.

Slope of a Line (p. 105)
The slope of the nonvertical line that contains the points A1x1, y1 2  
and B1x2, y2 2  is

m 
rise

run


y2  y1

x2  x1  

Equations of Lines (pp. 106–109)
If a line has slope m, has y-intercept b, and contains the point 
1x1, y1 2 , then:

 the point-slope form of its equation is

y  y1  m1x  x1 2
 the slope-intercept form of its equation is

y  mx  b

The equation of any line can be expressed in the general form

Ax  By  C  0

(where A and B both are not 0). 

Vertical and horizontal Lines (p. 108)
The vertical line containing the point 1a, b 2  has the  
equation x  a.

The horizontal line containing the point 1a, b 2  has the  
equation y  b.

Parallel and Perpendicular Lines (p. 110)
Two lines with slopes m1 and m2 are

 parallel if and only if m1  m2

 perpendicular if and only if m1 m2  1

zero-Product Property (p. 116)
AB  0 if and only if A  0 or B  0.

Completing the Square (p. 116)

To make x2  bx a perfect square, add a b

2
b

2

. This gives the 

perfect square

x2  bx  ab

2
b

2

 ax 
b

2
b

2
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Quadratic Formula (pp. 117–119)
A quadratic equation is an equation of the form

ax2  bx  c  0

Its solutions are given by the Quadratic  Formula:

x 
b  "b2  4ac

2a

The discriminant is D  b2  4ac.

If D  0, the equation has two real solutions.

If D  0, the equation has one solution.

If D  0, the equation has two complex solutions.

Complex Numbers (pp. 126–129)
A complex number is a number of the form a  bi, where 

i  !1.

The complex conjugate of a  bi is

a  bi  a  bi

To multiply complex numbers, treat them as binomials and use 
i 2  1 to simplify the result.

To divide complex numbers, multiply numerator and denominator 
by the complex conjugate of the denominator:

a  bi

c  di
 a a  bi

c  di
b # a c  di

c  di
b 

1a  bi 2 1c  di 2
c2  d2

Inequalities (p. 141)
Adding the same quantity to each side of an inequality gives an 
equivalent inequality:

A  B 3 A  C  B  C

Multiplying each side of an inequality by the same positive 
quantity gives an equivalent inequality. Multiplying each side by 
the same negative quantity reverses the direction of the 
inequality:

If C  0, then A  B 3 CA  CB

If C  0, then A  B 3 CA  CB

Absolute Value Equations (p. 150)
To solve an absolute value equation, we use

0  x 0  C 3 x  C or x  C

Absolute Value Inequalities (p. 151)
To solve absolute value inequalities, we use

 0  x 0  C 3 C  x  C

 0  x 0  C 3 x  C or x  C

Variation (pp. 160–162)
If y is directly proportional to x, then

y  kx

If y is inversely proportional to x, then

y 
k

x

■ CONCEPT ChECk

 1. (a)  In the coordinate plane, what is the horizontal axis called 
and what is the vertical axis called?

(b) To graph an ordered pair of numbers 1x,  y 2 , you need the 
coordinate plane. For the point 12,  3 2 , which is the 
x-coordinate and which is the y-coordinate?

(c) For an equation in the variables x and y, how do you 
determine whether a given point is on the graph? Is the 
point 15,  3 2  on the graph of the equation y  2x  1?

 2. (a)  What is the formula for finding the distance between the 
points 1x1,  y1 2  and 1x2,  y2 2 ?

(b) What is the formula for finding the midpoint between 
1x1,  y1 2  and 1x2,  y2 2 ?

 3. How do you find x-intercepts and y-intercepts of a graph of 
an equation?

 4. (a)  Write an equation of the circle with center 1h,  k 2  and 
radius r. 

(b) Find the equation of the circle with center 12,  1 2  and 
radius 3.

 5. (a)  How do you test whether the graph of an equation is 
symmetric with respect to the (i) x-axis, (ii) y-axis, and 
(iii) origin?

(b) What type of symmetry does the graph of the equation
xy2  y2x2  3x have?

 6. (a)  What is the slope of a line? How do you compute the 
slope of the line through the points 11,  4 2  and 11,  2 2 ?

(b) How do you find the slope and y-intercept of the line 
6x  3y  12? 

(c) How do you write the equation for a line that has slope 3 
and passes through the point 11,  2 2 ?

 7. Give an equation of a vertical line and of a horizontal line 
that passes through the point 12,  3 2 .

 8. State the general equation of a line.

 9. Given lines with slopes m1 and m2, explain how you can tell 
whether the lines are (i) parallel, (ii) perpendicular.

 10. Write the general form of each type of equation.

 (i) Linear equation (ii) Quadratic equation

 11. What are the three ways to solve a quadratic equation? 

 12. State the Zero-Product Property. Use the property to solve the 
equation x1x  1 2  0.

 13. What do you need to add to ax2  bx  to complete the 
square? Complete the square for the expression x2  6x. 

 14. State the Quadratic Formula for the quadratic equation 
ax2  bx  c  0, and use it to solve the equation 
x2  6x  1  0.
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 15. What is the discriminant of the quadratic equation 
ax2  bx  c  0? Find the discriminant of 
2x2  3x  5  0. How many real solutions does this  
equation have?

 16. What is a complex number? Give an example of a complex 
number, and identify the real and imaginary parts.

 17. What is the complex conjugate of a complex number a  bi? 

 18. (a) How do you add complex numbers? 

(b) How do you multiply 13  5i 2 12  i 2 ? 

(c) Is 13  i 2 13  i 2  a real number? 

(d) How do you simplify the quotient 13  5i 2/ 13  i 2 ?
 19. What is the logical first step in solving the equation 

!x  1  x  3? Why is it important to check your 
answers when solving equations of this type? 

 20. Explain how to solve the given type of problem.

(a) Linear inequality: 2x  1

(b) Nonlinear inequality: 1x  1 2 1x  4 2  0

(c) Absolute value equation: 0  2x  5 0  7

(d) Absolute value inequality: 0  2x  5 0  7

 21. How do you solve an equation (i) algebraically?  
(ii) graphically? 

 22. How do you solve an inequality (i) algebraically?  
(ii) graphically? 

 23. Write an equation that expresses each relationship.

(a) y is directly proportional to x.

(b) y is inversely proportional to x.

(c) z is jointly proportional to x and y.

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

1–4 ■ Coordinate Plane  Two points P and Q are given.  
(a) Plot P and Q on a coordinate plane. (b) Find the distance 
from P to Q. (c) Find the midpoint of the segment PQ. (d) Sketch 
the line determined by P and Q, and find its equation in slope-
intercept form. (e) Sketch the circle that passes through Q and has 
center P, and find the equation of this circle.

 1. P12,  0 2 , Q15,  12 2   2. P17,  1 2 , Q12,  11 2
 3. P16, 2 2 , Q14, 14 2   4. P15, 2 2 , Q13, 6 2

5–6 ■ Graphing regions  Sketch the region given by the set.

 5. 5 1x, y 2  0  4  x  4 and 2  y  26
 6. 5 1x, y 2  0  x  4 or y  26
 7. distance Formula  Which of the points A14,  4 2  or B15,  3 2  is 

closer to the point C11,  3 2 ?

8–10 ■ Circles  In these exercises we find equations of circles.

 8. Find an equation of the circle that has center 12,  5 2  and 
radius !2.

 9. Find an equation of the circle that has center 15,  1 2  and 
passes through the origin.

 10. Find an equation of the circle that contains the points P12,  3 2  
and Q11,  8 2  and has the midpoint of the segment PQ as its 
center.

11–14 ■ Circles  (a) Complete the square to determine whether 
the equation represents a circle or a point or has no graph. (b) If 
the equation is that of a circle, find its center and radius, and 
sketch its graph.

 11. x2  y2  2x  6y  9  0

 12. 2x2  2y2  2x  8y  1
2

 13. x2  y2  72  12x

 14. x2  y2  6x  10y  34  0

15–22 ■ Graphing Equations  Sketch the graph of the equation 
by making a table and plotting points.

 15. y  2  3x 16. 2x  y  1  0

 17.  
x

2


y

7
 1 18. 

x

4


y

5
 0

 19. y  16  x2 20. 8x  y2  0

 21. x  !y 22. y  "1  x2

23–30 ■ Symmetry and Intercepts  (a) Test the equation  
for symmetry with respect to the x-axis, the y-axis, and the  
origin. (b) Find the x- and y-intercepts of the graph of the 
equation.

 23. y  9  x2 24. 6x  y2  36

 25. x2  1y  1 2 2  1 26. x4  16  y 

 27. 9x2  16y2  144 28. y 
4
x

 29. x2  4xy  y2  1 30. x3  xy2  5

31–34 ■ Graphing Equations  (a) Use a graphing device to 
graph the equation in an appropriate viewing rectangle. (b) Use 
the graph to find the x- and y-intercepts.

 31. y  x2  6x 32. y  !5  x

33. y  x3  4x2  5x 34. 
x2

4
 y2  1

35–44 ■ Lines  A description of a line is given. (a) Find an 
equation for the line in slope-intercept form. (b) Find an equation 
for the line in general form. (c) Graph the line.

35. The line that has slope 2 and y-intercept 6

36. The line that has slope  
1
2  and passes through the point  

16,  3 2

■ ExErCISES
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37. The line that passes through the points 11,  6 2  and 
12,  4 2

38. The line that has x-intercept 4 and y-intercept 12

39. The vertical line that passes through the point 13,  2 2
40. The horizontal line with y-intercept 5

41. The line that passes through the point 11, 1 2  and is parallel to 
the line 2x  5y  10

42. The line that passes through the origin and is parallel to the 
line containing 12,  4 2  and 14,  4 2

43. The line that passes through the origin and is perpendicular 
to the line y  1

2 
x  10

44. The line that passes through the point 11,  7 2  and is perpen-
dicular to the line x  3y  16  0

45-46 ■ Parallel and Perpendicular Lines  The equations of two 
lines are given. Determine whether the lines are parallel, perpen-
dicular, or neither.

45. y   
1
3 x  1; 9y  3x  3  0

46. 5x  8y  3; 10y  16x  1

47. Stretching a Spring  Hooke’s Law states that if a weight „ is 
attached to a hanging spring, then the stretched length s of 
the spring is linearly related to „. For a particular spring we 
have

s  0.3„  2.5

  where s is measured in inches and „ in pounds.

(a)  What do the slope and s-intercept in this equation  
represent?

(b)  How long is the spring when a 5-lb weight is  
attached?

48. Annual Salary  Margarita is hired by an accounting firm at a 
salary of $60,000 per year. Three years later her annual sal-
ary has increased to $70,500. Assume that her salary 
increases linearly.

(a) Find an equation that relates her annual salary S  
and the number of years t that she has worked for the 
firm.

(b) What do the slope and S-intercept of her salary equation 
represent?

(c) What will her salary be after 12 years with the firm?

49–64 ■ Solving Equations  Find all real solutions of the 
equation.

49. x2  9x  14  0 50. x2  24x  144  0

51. 2x2  x  1 52. 3x2  5x  2  0

53. 4x3  25x  0 54. x3  2x2  5x  10  0

55. 3x2  4x  1  0 56. x2  3x  9  0

 57. 
1
x


2

x  1
 3 58. 

x

x  2


1

x  2


8

x2  4

59. x4  8x2  9  0 60. x  4!x  32

61. x1/2  2x1/2  x3/2  0

62. 11  !x 2 2  211  !x 2  15  0

63. 0  x  7 0  4 64. 0  2x  5 0  9

65–68 ■ Complex Numbers  Evaluate the expression and write 
in the form a  bi.

65. (a) 12  3i 2  11  4i 2  (b) 12  i 2 13  2i 2
66. (a) 13  6i 2  16  4i 2  (b) 4iA2  1

2 iB

67. (a) 
4  2i

2  i
 (b) 11  !1 2 11  !1 2

68. (a) 
8  3i

4  3i  (b) !10 # !40

69–74 ■ real and Complex Solutions  Find all real and complex 
solutions of the equation.

69. x2  16  0 70. x2  12

71. x2  6x  10  0 72. 2x2  3x  2  0

73. x4  256  0 74. x3  2x2  4x  8  0

 75. distance and Time  A woman cycles 8 mi/h faster than she 
runs. Every morning she cycles 4 mi and runs 2 

1
2  mi, for a 

total of 1 h of exercise. How fast does she run?

 76. The approximate distance d (in feet) that drivers travel after 
noticing that they must come to a sudden stop is given by the 
following formula, where x is the speed of the car (in mi/h):

d  x 
x2

20

  If a car travels 75 ft before stopping, what was its speed 
before the brakes were applied?

 77. Geometry  The hypotenuse of a right triangle has length  
20 cm. The sum of the lengths of the other two sides is  
28 cm. Find the lengths of the other two sides of the triangle.

 78. dimensions of a Garden  A homeowner wishes to fence in 
three adjoining garden plots, one for each of her children, as 
shown in the figure. If each plot is to be 80 ft2 in area and she 
has 88 ft of fencing material at hand, what dimensions should 
each plot have?

79–92 ■ Inequalities  Solve the inequality. Express the solution 
using interval notation and graph the solution set on the real num-
ber line.

 79. 3x  2  11 80. 12  x  7x 

81. 3  x  2x  7  82. 1  2x  5  3

 83. x2  4x  12  0 84. x2  1

 85. 
2x  5

x  1
 1 86. 2x2  x  3
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 87. 
x  4

x2  4
 0 88. 

5

x3  x2  4x  4
 0

 89. 0  x  5 0  3 90. 0  x  4 0  0.02

 91. 0  2x  1 0  1 92. 0  x  1 0  0  x  3 0
[Hint: Interpret the quantities as distances.]

 93. Values of a radical Expression  For what values of x is the 
algebraic expression defined as a real number?

(a) "24  x  3x 
2 (b) 

1

"4 x  x 
4

 94. Volume of a Sphere  The volume of a sphere is given by 
V  4

3 
pr 

3, where r is the radius. Find the interval of values 
of the radius so that the  volume is between 8 ft 3 and 12 ft 3, 
inclusive.

95–100 ■ Solving Equations and Inequalities Graphically   
Graphs of the equations y  x2  4x and y  x  6 are given. 
Use the graphs to solve the equation or inequality.

y

x0 1

2

y=x+6

y=≈-4x

 95. x2  4x  x  6 96. x2  4x  0

 97. x2  4x  x  6 98. x2  4x  x  6

 99. x2  4x  0 100. x2  4x  0

101–104 ■ Solving Equations Graphically  Solve the equation 
graphically.

101. x2  4x  2x  7 102. !x  4  x 
2  5

103. x4  9x2  x  9 104. * 0  x  3 0  5  *  2

105–108 ■ Solving Inequalities Graphically  Solve the inequal-
ity graphically.

105. 4x  3  x2 106. x3  4x2  5x  2

107. x 
4  4x 

2  1
2 x  1 108. 0  x 

2  16 0  10  0

109–110 ■ Circles and Lines  Find equations for the circle and 
the line in the figure.

109. y

x0

(_5, 12)

 110. 

(8, 1 )

y

x0 5

5

111. Variation  Suppose that M varies directly as z and that  
M  120 when z  15. Write an equation that expresses 
this variation.

112. Variation  Suppose that z is inversely proportional to y and 
that z  12 when y  16. Write an equation that expresses 
z in terms of y.

113. Light Intensity  The intensity of illumination I from a light 
varies inversely as the square of the distance d from the 
light.

(a) Write this statement as an equation.

(b) Determine the constant of proportionality if it is known 
that a lamp has an intensity of 1000 candles at a dis-
tance of 8 m.

(c) What is the intensity of this lamp at a distance of 20 m?

114. Vibrating String  The frequency of a vibrating string under 
constant tension is inversely proportional to its length. If a 
violin string 12 inches long vibrates 440 times per second, 
to what length must it be shortened to vibrate 660 times per  
second?

115. Terminal Velocity  The terminal velocity of a parachutist is 
directly proportional to the square root of his weight. A 
160-lb parachutist attains a terminal velocity of 9 mi/h. 
What is the terminal velocity for a parachutist weighing  
240 lb?

116. range of a Projectile  The maximum range of a projectile 
is directly proportional to the square of its velocity. A base-
ball pitcher throws a ball at 60 mi/h, with a maximum range 
of 242 ft. What is his maximum range if he throws the ball 
at 70 mi/h?
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ChAPTEr 1 TEST

 1. (a)  Plot the points P10,  3 2 , Q13,  0 2 , and R16,  3 2  in the coordinate plane. Where must the 
point S be located so that PQRS is a square?

(b) Find the area of PQRS.

 2. (a) Sketch the graph of y  x2  4.

(b) Find the x- and y-intercepts of the graph.

(c) Is the graph symmetric about the x-axis, the y-axis, or the origin?

 3. Let P13, 1 2  and Q15, 6 2  be two points in the coordinate plane.

(a) Plot P and Q in the coordinate plane.

(b) Find the distance between P and Q.

(c) Find the midpoint of the segment PQ.

(d) Find the slope of the line that contains P and Q.

(e) Find the perpendicular bisector of the line that contains P and Q.

(f) Find an equation for the circle for which the segment PQ is a diameter.

 4. Find the center and radius of each circle, and sketch its graph.

(a) x2  y2  25 (b) 1x  2 2 2  1 y  1 2 2  9 (c) x2  6x  y2  2y  6  0

 5. Test each equation for symmetry. Find the x- and y-intercepts, and sketch a graph of the  
equation.

(a) x  4  y2 (b) y  0  x  2 0
 6. A line has the general linear equation 3x  5y  15.

(a) Find the x- and y-intercepts of the graph of this line.

(b) Graph the line. Use the intercepts that you found in part (a) to help you.

(c) Write the equation of the line in slope-intercept form.

(d) What is the slope of the line?

(e) What is the slope of any line perpendicular to the given line?

 7. Find an equation for the line with the given property.

(a) It passes through the point 13,  6 2  and is parallel to the line 3x  y  10  0.

(b) It has x-intercept 6 and y-intercept 4.

 8. A geologist measures the temperature T (in C) of the soil at various depths below the sur-
face and finds that at a depth of x cm, the temperature is given by T  0.08x  4.

(a) What is the temperature at a depth of 1 m (100 cm)?

(b) Sketch a graph of the linear equation.

(c) What do the slope, the x-intercept, and T-intercept of the graph represent?

 9. Find all real solutions.

(a) x2  x  12  0 (b) 2x2  4x  1  0 (c) 3  !x  3  x

(d) x1/2  3x1/4  2  0 (e) x4  3x2  2  0 (f) 3 0  x  4 0  10

 10. Perform the indicated operations, and write the result in the form a  bi.

(a) 13  2i 2  14  3i 2  (b) 13  2i 2  14  3i 2
(c) 13  2i 2 14  3i 2  (d) 

3  2i

4  3i

(e) i48 (f) 1!2  !2 2 1!8  !2 2
 11. Find all real and complex solutions of the equation 2x2  4x  3  0. 

 12. A rectangular parcel of land is 70 ft longer than it is wide. Each diagonal between opposite 
corners is 130 ft. What are the dimensions of the parcel?
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 13. Solve each inequality. Write the answer using interval notation, and sketch the solution on 
the real number line.

(a) 4  5  3x  17 (b) x1x  1 2 1x  2 2  0

(c) 0  x  4 0  3 (d) 
2x  3

x  1
 1

14. A bottle of medicine is to be stored at a temperature between 5C and 10C. What range 
does this correspond to on the Fahrenheit scale?  [Note: Fahrenheit (F ) and Celsius (C) 
temperatures satisfy the relation C  5

9 
1F  32 2 .]

15. For what values of x is the expression "6x  x2 defined as a real number?

16. Solve the equation and the inequality graphically.

(a) x3  9x  1  0 (b) x2  1  0  x  1 0
17. The maximum weight M that can be supported by a beam is jointly proportional to its 

width „ and the square of its height h and inversely proportional to its length L.

(a) Write an equation that expresses this proportionality.

(b) Determine the constant of proportionality if a beam 4 in. wide, 6 in. high, and 12 ft 
long can support a weight of 4800 lb.

(c) If a 10-ft beam made of the same material is 3 in. wide and 10 in. high, what is the 
maximum weight it can support?

L „
h
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A model is a representation of an object or process. For example, a toy Ferrari is a 
model of the actual car; a road map is a model of the streets in a city. A mathematical 
model is a mathematical representation (usually an equation) of an object or process. 
Once a mathematical model has been made, it can be used to obtain useful information 
or make predictions about the thing being modeled. The process is described in the 
diagram in the margin. In these Focus on Modeling sections we explore different ways 
in which mathematics is used to model real-world phenomena.

■ The Line That Best Fits the data
In Section 1.10 we used linear equations to model relationships between varying 
quantities. In practice, such relationships are discovered by collecting data. But real-
world data seldom fall into a precise line. The scatter plot in Figure 1(a) shows the 
result of a study on childhood obesity. The graph plots the body mass index (BMI) 
versus the number of hours of television watched per day for 25 adolescent subjects. 
Of course, we would not expect the data to be exactly linear as in Figure 1(b). But 
there is a linear trend indicated by the blue line in Figure 1(a): The more hours a 
subject watches TV, the higher the BMI. In this section we learn how to find the line 
that best fits the data.

h 

BMI 

0 

10 

20 

30 

1 2 3 4 5 h 

BMI 

0 

10 

20 

30 

1 2 3 4 5 

FIGurE 1

 (a) Line of best fit (b) Line fits data exactly

Table 1 gives the nationwide infant mortality rate for the period from 1950 to 2000. 
The rate is the number of infants who die before reaching their first birthday, out of 
every 1000 live births.

x 

y 

0 

10 

20 

30 

10 20 30 40 50 

FIGurE 2 U.S. infant mortality rate

TABLE 1
U.S. Infant Mortality

Year Rate

1950 29.2
1960 26.0
1970 20.0
1980 12.6
1990  9.2
2000  6.9

The scatter plot in Figure 2 shows that the data lie roughly on a straight line. We can 
try to fit a line visually to approximate the data points, but since the data aren’t exactly 

Make a model

Use the model

Model
Real
world

Fitting Lines to dataFOCuS ON MOdELING
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linear, there are many lines that might seem to work. Figure 3 shows two attempts at 
“eyeballing” a line to fit the data.

x 

y 

0 

10 

20 

30 

10 20 30 40 50 

FIGurE 3 Visual attempts to fit  
line to data

Of all the lines that run through these data points, there is one that “best” fits the 
data, in the sense that it provides the most accurate linear model for the data. We now 
describe how to find this line.

It seems reasonable that the line of best fit is the line that is as close as possible to 
all the data points. This is the line for which the sum of the vertical distances from the 
data points to the line is as small as possible (see Figure 4). For technical reasons it is 
better to use the line where the sum of the squares of these distances is smallest. This 
is called the regression line. The formula for the regression line is found by using cal-
culus, but fortunately, the formula is programmed into most graphing calculators. In 
Example 1 we see how to use a TI-83 calculator to find the regression line for the infant 
mortality data described above. (The process for other calculators is similar.)

ExAMPLE 1 ■  regression Line for u.S. Infant Mortality rates
(a) Find the regression line for the infant mortality data in Table 1.

(b) Graph the regression line on a scatter plot of the data.

(c) Use the regression line to estimate the infant mortality rates in 1995 and 2006.

SOLuTION  

(a)  To find the regression line using a TI-83 calculator, we must first enter the data 
into the lists L1 and L2, which are accessed by pressing the stat  key and select-
ing edit. Figure 5 shows the calculator screen after the data have been entered. 
(Note that we are letting x  0 correspond to the year 1950 so that x  50 corre-
sponds to 2000. This makes the equations easier to work with.) We then press the 
stat  key again and select calc, then 4:Linreg(ax+b), which  provides the 

output shown in Figure 6(a). This tells us that the regression line is

y   0.48x  29.4

 Here x represents the number of years since 1950, and y represents the corre-
sponding infant mortality rate.

(b)  The scatter plot and the regression line have been plotted on a graphing calculator 
screen in Figure 6(b).

x

y

0

FIGurE 4 Distance from the data 
points to the line

L1
0 29.2
10 26
20 20
30 12.6
40 9.2
50 6.9
-------

-------
L2

L2(7)=

L3 1

FIGurE 5 Entering the data

y=ax+b
a=-.4837142857
b=29.40952381

LinReg

30 

0 55
(b)(a) Scatter plot and regression lineOutput of the LinReg 

commandFIGurE 6
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(c)  The year 1995 is 45 years after 1950, so substituting 45 for x, we find that  
y  0.48145 2  29.4  7.8. So the infant mortality rate in 1995 was about 7.8. 
Similarly, substituting 56 for x, we find that the infant mortality rate predicted for 
2006 was about 0.48156 2  29.4  2.5. ■

An Internet search shows that the actual infant mortality rate was 7.6 in 1995 and 6.4 
in 2006. So the regression line is fairly accurate for 1995 (the actual rate was slightly 
lower than the predicted rate), but it is considerably off for 2006 (the actual rate was 
more than twice the predicted rate). The reason is that infant mortality in the United 
States stopped declining and actually started rising in 2002, for the first time in more 
than a century. This shows that we have to be very careful about extrapolating linear 
models outside the domain over which the data are spread.

■ Examples of regression Analysis
Since the modern Olympic Games began in 1896, achievements in track and field 
events have been improving steadily. One example in which the winning records have 
shown an upward linear trend is the pole vault. Pole vaulting began in the northern 
Netherlands as a practical activity: When traveling from village to village, people 
would vault across the many canals that crisscrossed the area to avoid having to go out 
of their way to find a bridge. Households maintained a supply of wooden poles of 
lengths appropriate for each member of the family. Pole vaulting for height rather than 
distance became a collegiate track and field event in the mid-1800s and was one of the 
events in the first modern Olympics. In the next example we find a linear model for the 
gold-medal-winning records in the men’s Olympic pole vault.

ExAMPLE 2 ■ regression Line for Olympic Pole Vault records
Table 2 gives the men’s Olympic pole vault records up to 2008.

(a) Find the regression line for the data.

(b)  Make a scatter plot of the data, and graph the regression line. Does the regression 
line appear to be a suitable model for the data?

(c) What does the slope of the regression line represent?

(d) Use the model to predict the winning pole vault height for the 2012 Olympics.

Renaud Lavillenie, 2012 
Olympic gold medal winner, 
men’s pole vault

Le
o 

M
as

on
 s

po
rts

 p
ho

to
s/

Al
am

y

TABLE 2
Men’s Olympic Pole Vault Records

Year x Gold medalist Height (m) Year x Gold medalist Height (m)

1896 4 William Hoyt, USA 3.30 1960 60 Don Bragg, USA 4.70
1900 0 Irving Baxter, USA 3.30 1964 64 Fred Hansen, USA 5.10
1904 4 Charles Dvorak, USA 3.50 1968 68 Bob Seagren, USA 5.40
1906 6 Fernand Gonder, France 3.50 1972 72 W. Nordwig, E. Germany 5.64
1908 8 A. Gilbert, E. Cook, USA 3.71 1976 76 Tadeusz Slusarski, Poland 5.64
1912 12 Harry Babcock, USA 3.95 1980 80 W. Kozakiewicz, Poland 5.78
1920 20 Frank Foss, USA 4.09 1984 84 Pierre Quinon, France 5.75
1924 24 Lee Barnes, USA 3.95 1988 88 Sergei Bubka, USSR 5.90
1928 28 Sabin Can, USA 4.20 1992 92 M. Tarassob, Unified Team 5.87
1932 32 William Miller, USA 4.31 1996 96 Jean Jaffione, France 5.92
1936 36 Earle Meadows, USA 4.35 2000 100 Nick Hysong, USA 5.90
1948 48 Guinn Smith, USA 4.30 2004 104 Timothy Mack, USA 5.95
1952 52 Robert Richards, USA 4.55 2008 108 Steven Hooker, Australia 5.96
1956 56 Robert Richards, USA 4.56

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



  Fitting Lines to Data 177

SOLuTION

(a)  Let x  year  1900, so 1896 corresponds to x  4, 1900 to x  0, and so on.  
Using a calculator, we find the following regression line:

y  0.0260x  3.42

(b)  The scatter plot and the regression line are shown in Figure 7. The regression line  
appears to be a good model for the data.

(c)  The slope is the average rate of increase in the pole vault record per year. So on  
average, the pole vault record increased by 0.0266 m/year.

y

4

2

20 40 60 80 1000 x

Height
(m)

Years since 1900

6

FIGurE 7 Scatter plot and regres sion line for pole vault 
data

(d) The year 2012 corresponds to x  112 in our model. The model gives

 y  0.02601112 2  3.42

  6.33

 So the model predicts that in 2012 the winning pole vault would be 6.33 m. ■

At the 2012 Olympics in London, England, the men’s Olympic gold medal in the 
pole vault was won by Renaud Lavillenie of France, with a vault of 5.97 m. Although 
this height set an Olympic record, it was considerably lower than the 6.33 m predicted 
by the model of Example 2. In Problem 10 we find a regression line for the pole vault 
data from 1972 to 2008. Do the problem to see whether this restricted set of more recent 
data provides a better predictor for the 2012 record.

Is a linear model really appropriate for the data of Example 2? In subsequent Focus 
on Modeling sections we study regression models that use other types of functions, and 
we learn how to choose the best model for a given set of data.

In the next example we see how linear regression is used in medical research to in-
vestigate potential causes of diseases such as cancer.

ExAMPLE 3 ■  regression Line for Links Between  
Asbestos and Cancer

When laboratory rats are exposed to asbestos fibers, some of the rats develop lung  
tumors. Table 3 lists the results of several experiments by different scientists.

(a) Find the regression line for the data.

(b)  Make a scatter plot and graph the regression line. Does the regression line appear 
to be a suitable model for the data?

(c) What does the y-intercept of the regression line represent?

y=ax+b
a=.0265652857
b=3.400989881

LinReg

Output of the Linreg
function on the TI-83

TABLE 3
Asbestos–Tumor Data

Asbestos 
exposure 

(fibers/mL)

Percent that 
develop 

lung tumors

  50  2
 400  6
 500  5
 900 10
1100 26
1600 42
1800 37
2000 28
3000 50
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 SOLuTION  

(a) Using a calculator, we find the following regression line (see Figure 8(a)):

y  0.0177x  0.5405

(b)  The scatter plot and regression line are graphed in Figure 8(b). The regression 
line appears to be a reasonable model for the data.

y=ax+b
a=.0177212141
b=.5404689256

LinReg

55

3100
(b)(a) Scatter plot and regression lineOutput of the LinReg command

0FIGurE 8 Linear regression for the 
asbestos–tumor data

(c)  The y-intercept is the percentage of rats that develop tumors when no asbestos 
fibers are present. In other words, this is the percentage that normally develop 
lung tumors (for reasons other than asbestos). ■

■ how Good Is the Fit? The Correlation Coefficient
For any given set of two-variable data it is always possible to find a regression line, even 
if the data points do not tend to lie on a line and even if the variables don’t seem to be re-
lated at all. Look at the three scatter plots in Figure 9. In the first scatter plot, the data points 
lie close to a line. In the second plot, there is still a linear trend but the points are more 
scattered. In the third plot there doesn’t seem to be any trend at all, linear or otherwise.

A graphing calculator can give us a regression line for each of these scatter plots. 
But how well do these lines represent or “fit” the data? To answer this question, stat-
isticians have invented the correlation coefficient, usually denoted r. The correlation 
coefficient is a number between 1 and 1 that measures how closely the data follow 
the regression line—or, in other words, how strongly the variables are correlated. 
Many graphing calculators give the value of r when they compute a regression line. 
If r is close to 1 or 1, then the variables are strongly correlated—that is, the scatter 
plot follows the regression line closely. If r is close to 0, then the variables are weakly 
correlated or not correlated at all. (The sign of r depends on the slope of the regres-
sion line.) The correlation coefficients of the scatter plots in Figure 9 are indicated on 
the graphs. For the first plot, r is close to 1 because the data are very close to linear. 
The second plot also has a relatively large r, but it is not as large as the first, because 
the data, while fairly linear, are more diffuse. The third plot has an r close to 0, since 
there is virtually no linear trend in the data.

There are no hard and fast rules for deciding what values of r are sufficient for deciding 
that a linear correlation is “significant.” The correlation coefficient is only a rough guide 
in helping us decide how much faith to put into a given regression line. In Example 1 the 
correlation coefficient is 0.99, indicating a very high level of correlation, so we can 
safely say that the drop in infant mortality rates from 1950 to 2000 was strongly linear. 
(The value of r is negative, since infant mortality trended down over this period.) In  
Example 3 the correlation coefficient is 0.92, which also indicates a strong correlation 
between the variables. So exposure to asbestos is clearly associated with the growth of 
lung tumors in rats. Does this mean that asbestos causes lung cancer?

If two variables are correlated, it does not necessarily mean that a change in one 
variable causes a change in the other. For example, the mathematician John Allen 
Paulos points out that shoe size is strongly correlated to mathematics scores among 
schoolchildren. Does this mean that big feet cause high math scores? Certainly not—
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both shoe size and math skills increase independently as children get older. So it is 
important not to jump to conclusions: Correlation and causation are not the same thing. 
You can explore this topic further in Discovery Project: Correlation and Causation at  
www.stewartmath.com. Correlation is a useful tool in bringing important cause-and-
effect relationships to light; but to prove causation, we must explain the mechanism by 
which one variable affects the other. For example, the link between smoking and lung 
cancer was observed as a correlation long before science found the mechanism through 
which smoking causes lung cancer.

PrOBLEMS
 1.  Femur Length and height  Anthropologists use a linear model that relates femur length to 

height. The model allows an anthropologist to determine the height of an individual when 
only a partial skeleton (including the femur) is found. In this problem we find the model by 
analyzing the data on femur length and height for the eight males given in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) An anthropologist finds a femur of length 58 cm. How tall was the person?

Femur length 
(cm)

Height 
(cm)

50.1 178.5
48.3 173.6
45.2 164.8
44.7 163.7
44.5 168.3
42.7 165.0
39.5 155.4
38.0 155.8

 2.  demand for Soft drinks  A convenience store manager notices that sales of soft drinks 
are higher on hotter days, so he assembles the data in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to predict soft drink sales if the temperature is 95F.

High temperature (°F) Number of cans sold

55 340
58 335
64 410
68 460
70 450
75 610
80 735
84 780

 3.  Tree diameter and Age  To estimate ages of trees, forest rangers use a linear model 
that relates tree diameter to age. The model is useful because tree diameter is much easier 
to measure than tree age (which requires special tools for extracting a representative cross 
section of the tree and counting the rings). To find the model, use the data in the table, 
which were collected for a certain variety of oaks.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to estimate the age of an oak whose diameter is 18 in.

Femur

Diameter (in.) Age (years)

 2.5 15
 4.0 24
 6.0 32
 8.0 56
 9.0 49
 9.5 76
12.5 90
15.5 89
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 4. Carbon dioxide Levels  The Mauna Loa Observatory, located on the island of Hawaii, 
has been monitoring carbon dioxide (CO2) levels in the atmosphere since 1958. The table 
lists the average annual CO2 levels measured in parts per million (ppm) from 1990 to 2012.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line. 

(c) Use the linear model in part (b) to estimate the CO2 level in the atmosphere in 2011. 
Compare your answer with the actual CO2 level of 391.6 that was measured in 2011.

Year CO2 level (ppm)

1990 354.4
1992 356.4
1994 358.8
1996 362.6
1998 366.7
2000 369.5
2002 373.2
2004 377.5
2006 381.9
2008 385.6
2010 389.9
2012 393.8

Source: Mauna Loa Observatory

 5. Temperature and Chirping Crickets  Biologists have observed that the chirping rate of 
crickets of a certain species appears to be related to temperature. The table in the margin 
shows the chirping rates for various temperatures.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the chirping rate at 100F.

 6. Extent of Arctic Sea Ice  The National Snow and Ice Data Center monitors the amount 
of ice in the Arctic year round. The table below gives approximate values for the sea ice 
extent in millions of square kilometers from 1986 to 2012, in two-year intervals.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line. 

(c) Use the linear model in part (b) to estimate the ice extent in the year 2016.

Year
Ice extent  

(million km2) Year
Ice extent  

(million km2)

1986 7.5 2000 6.3
1988 7.5 2002 6.0
1990 6.2 2004 6.0
1992 7.5 2006 5.9
1994 7.2 2008 4.7
1996 7.9 2010 4.9
1998 6.6 2012 3.6

Source: National Snow and Ice Data Center

 7. Mosquito Prevalence  The table in the margin lists the relative abundance of mosqui-
toes (as measured by the mosquito positive rate) versus the flow rate (measured as a per-
centage of maximum flow) of canal networks in Saga City, Japan.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the mosquito positive rate if the canal flow 
is 70% of maximum.

Temperature 
(°F)

Chirping rate 
(chirps/min)

50  20
55  46
60  79
65  91
70 113
75 140
80 173
85 198
90 211

Flow rate  
(%)

Mosquito positive 
rate (%)

  0 22
 10 16
 40 12
 60 11
 90  6
100  2
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 8. Noise and Intelligibility  Audiologists study the intelligibility of spoken sentences un-
der different noise levels. Intelligibility, the MRT score, is measured as the percent of a 
spoken sentence that the listener can decipher at a certain noise level in decibels (dB). The 
table shows the results of one such test.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Find the correlation coefficient. Is a linear model appropriate?

(d)  Use the linear model in part (b) to estimate the intelligibility of a sentence at a 94-dB 
noise level.

 9. Life Expectancy  The average life expectancy in the United States has been rising 
steadily over the past few decades, as shown in the table.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c)  Use the linear model you found in part (b) to predict the life expectancy in the year  
2006.

(d)  Search the Internet or your campus library to find the actual 2006 average life expec-
tancy. Compare to your answer in part (c).

 10. Olympic Pole Vault  The graph in Figure 7 indicates that in recent years the winning 
Olympic men’s pole vault height has fallen below the value predicted by the regression line 
in Example 2. This might have occurred because when the pole vault was a new event, 
there was much room for improvement in vaulters’ performances, whereas now even the 
best training can produce only incremental advances. Let’s see whether concentrating on 
more recent results gives a better predictor of future records.

(a)  Use the data in Table 2 (page 176) to complete the table of winning pole vault heights 
shown in the margin. (Note that we are using x  0 to correspond to the year 1972, 
where this restricted data set  begins.)

(b) Find the regression line for the data in part (a).

(c)  Plot the data and the regression line on the same axes. Does the regression line seem to 
provide a good model for the data?

(d)  What does the regression line predict as the winning pole vault height for the 2012 
Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, 
as described on page 177. Has this new regression line provided a better prediction 
than the line in Example 2?

Year x Height (m)

1972 0 5.64

1976 4

1980 8

1984

1988

1992

1996

2000

2004

2008

Noise level  
(dB)

MRT score  
(%)

 80 99
 84 91
 88 84
 92 70
 96 47
100 23
104 11

Year Life expectancy

1920 54.1
1930 59.7
1940 62.9
1950 68.2
1960 69.7
1970 70.8
1980 73.7
1990 75.4
2000 76.9
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 11. Shoe Size and height  Do you think that shoe size and height are correlated? Find out 
by surveying the shoe sizes and heights of people in your class. (Of course, the data for 
men and women should be separate.) Find the correlation coefficient.

 12. demand for Candy Bars  In this problem you will determine a linear demand equation 
that describes the demand for candy bars in your class. Survey your classmates to deter-
mine what price they would be willing to pay for a candy bar. Your survey form might look 
like the sample to the left.

(a) Make a table of the number of respondents who answered “yes” at each price level.

(b) Make a scatter plot of your data.

(c)  Find and graph the regression line y  mp  b, which gives the number of responents 
y who would buy a candy bar if the price were p cents. This is the demand equation. 
Why is the slope m negative?

(d)  What is the p-intercept of the demand equation? What does this intercept tell you 
about pricing candy bars?
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A function is a rule  that describes how one quantity depends on another. 
Many real-world situations follow precise rules, so they can be modeled 
by functions. For example, there is a rule that relates the distance a 
skydiver falls to the time he or she has been falling. So the distance 
traveled by the skydiver is a function of time. Knowing this function 
model allows skydivers to determine when to open their parachute. In this 
chapter we study functions and their graphs, as well as many real-world 
applications of functions. In the Focus on Modeling at the end of the 
chapter we explore different real-world situations that can be modeled by 
functions.

183
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2.1 FunCTIOns
■ Functions All Around us ■ definition of Function ■ evaluating a Function  
■ The domain of a Function ■ Four Ways to Represent a Function

In this section we explore the idea of a function and then give the mathematical defini-
tion of function.

■ Functions All Around us
In nearly every physical phenomenon we observe that one quantity depends on another. 
For example, your height depends on your age, the temperature depends on the date, 
the cost of mailing a package depends on its weight (see Figure 1). We use the term 
function to describe this dependence of one quantity on another. That is, we say the 
following:

■ Height is a function of age.
■ Temperature is a function of date.
■ Cost of mailing a package is a function of weight.

The U.S. Post Office uses a simple rule to determine the cost of mailing a first-class 
parcel on the basis of its weight. But it’s not so easy to describe the rule that relates 
height to age or the rule that relates temperature to date.

Temperature is a function of date. Postage is a function of weight.

Date

* F

0

40

60

80

100

5 10 15 20 25 30

„ (ounces)

0 < „≤1

4 < „≤5
5 < „≤6

3 < „≤4

1 < „≤2
2 < „≤3

2014 Postage (dollars)

0.98

1.82
2.03

1.61

1.19
1.40

Height is a function of age.

Height
(in feet)

Age (in years)
0
1
2
3
4
5
6
7

5 10 15 20 25

Daily high temperature
Columbia, MO, May 2010

FIGuRe 1

Can you think of other functions? Here are some more examples:

■ The area of a circle is a function of its radius.
■ The number of bacteria in a culture is a function of time.
■ The weight of an astronaut is a function of her elevation.
■ The price of a commodity is a function of the demand for that commodity.

The rule that describes how the area A of a circle depends on its radius r is given by 
the formula A  pr 2. Even when a precise rule or formula describing a function is not 
available, we can still describe the function by a graph. For example, when you turn on 
a hot water faucet, the temperature of the water depends on how long the water has been 
running. So we can say:

■ The temperature of water from the faucet is a function of time.

Figure 2 shows a rough graph of the temperature T of the water as a function of the time 
t that has elapsed since the faucet was turned on. The graph shows that the initial tem-
perature of the water is close to room temperature. When the water from the hot water 
tank reaches the faucet, the water’s temperature T increases quickly. In the next phase, 
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SECTION 2.1 ■ Functions 185

T is constant at the temperature of the water in the tank. When the tank is drained, T 
decreases to the temperature of the cold water supply.

50
60
70
80
90

100
110

T (°F)

0 t

FIGuRe 2 Graph of water temperature T as a  
function of time t

■ definition of Function
A function is a rule. To talk about a function, we need to give it a name. We will use 
letters such as f, g, h, . . . to represent functions. For example, we can use the letter f 
to represent a rule as follows:

“f ” is the rule “square the number”

When we write f 122, we mean “apply the rule f to the number 2.” Applying the rule gives 
f 12 2  22  4. Similarly, f 13 2  32  9, f 14 2  42  16, and in general f 1x 2  x2.

deFInITIOn OF A FunCTIOn

A function f is a rule that assigns to each element x in a set A exactly one  
element, called f 1x 2, in a set B.

We usually consider functions for which the sets A and B are sets of real numbers. 
The symbol f 1x 2 is read “f of x” or “f at x” and is called the value of f at x, or the 
image of x under f. The set A is called the domain of the function. The range of f is 
the set of all possible values of f 1x 2 as x varies throughout the domain, that is,

range of f  5f 1x 2 0  x [  A6
The symbol that represents an arbitrary number in the domain of a function f is 

called an independent variable. The symbol that represents a number in the range of 
f is called a dependent variable. So if we write y  f 1x 2, then x is the independent 
variable and y is the dependent variable.

It is helpful to think of a function as a machine (see Figure 3). If x is in the domain 
of the function f, then when x enters the machine, it is accepted as an input and the 
machine produces an output f 1x 2 according to the rule of the function. Thus we can 
think of the domain as the set of all possible inputs and the range as the set of all pos-
sible outputs.

FIGuRe 3 Machine diagram of f

fx
input

Ï
output

Another way to picture a function f  is by an arrow diagram as in Figure 4(a). Each 
arrow associates an input from A to the corresponding output in B. Since a function 

We have previously used letters to 
stand for numbers. Here we do some-
thing quite different: We use letters  
to represent rules.

The !0  key on your calculator is a 
good example of a function as a 
machine. First you input x into the  
display. Then you press the key labeled 
!0 . (On most graphing calculators 

the order of these operations is 
reversed.) If x  0, then x is not in the 
domain of this function; that is, x is not 
an acceptable input, and the calculator 
will indicate an error. If x  0, then an 
approximation to !x appears in the 
display, correct to a certain number of 
decimal places. (Thus the !0  key on 
your calculator is not quite the same as 
the exact mathematical function f 
defined by f 1x 2  !x.)
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186 CHAPTER 2 ■ Functions

associates exactly one output to each input, the diagram in Figure 4(a) represents a 
function but the diagram in Figure 4(b) does not represent a function.

FIGuRe 4 Arrow diagrams

20
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40

B

OutputsInputs
f

A

1
2
3
4

(a) Function

30
40

50

B

OutputsInputs

A

1 10
202

3
4

(b) Not a function

exAMpLe 1 ■ Analyzing a Function
A function f is defined by the formula

f 1x 2  x2  4

(a) Express in words how f acts on the input x to produce the output f 1x 2.
(b) Evaluate f 132, f 122, and f 1!5 2 .
(c) Find the domain and range of f.

(d) Draw a machine diagram for f.

sOLuTIOn

(a)  The formula tells us that f first squares the input x and then adds 4 to the result.  
So f is the function

“square, then add 4”

(b) The values of f are found by substituting for x in the formula f 1x 2  x2  4.

 f 13 2  32  4  13  Replace x by 3

 f 12 2  12 2 2  4  8  Replace x by –2

 f 1!5 2  1!5 2 2  4  9 Replace x by !5

(c)  The domain of f consists of all possible inputs for f. Since we can evaluate the 
formula f 1x 2  x2  4 for every real number x, the domain of f is the set R of 
all real numbers.

    The range of f consists of all possible outputs of f. Because x2  0 for all real 
numbers x, we have x2  4  4, so for every output of f we have f 1x 2  4. Thus  
the range of f is 5y 0  y  46  34, ` 2 .

(d) A machine diagram for f is shown in Figure 5.

now Try exercises 11, 15, 19, and 51 ■

■ evaluating a Function
In the definition of a function the independent variable x plays the role of a placeholder. 
For example, the function f 1x 2  3x2  x  5 can be thought of as

f 1jj 2  3 # jj 
2  jj  5

To evaluate f at a number, we substitute the number for the placeholder.

square and
add 4

x
input

x2+4
output

3 13

_2 8square and
add 4

square and
add 4

FIGuRe 5 Machine diagram
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exAMpLe 2 ■ evaluating a Function
Let f 1x 2  3x2  x  5. Evaluate each function value.

(a) f 122      (b) f 102      (c) f 142      (d) f A12B
sOLuTIOn  To evaluate f at a number, we substitute the number for x in the definition 
of f.

(a) f 12 2  3 # 12 2 2  12 2  5  5

(b) f 10 2  3 # 02  0  5  5

(c) f 14 2  3 # 14 2 2  4  5  47

(d) f A  1 

2 B  3 # A  1 

2 B2   1 

2  5  15
4

now Try exercise 21 ■

exAMpLe 3 ■ A piecewise defined Function
A cell phone plan costs $39 a month. The plan includes 2 gigabytes (GB) of free data 
and charges $15 per gigabyte for any additional data used. The monthly charges are a 
function of the number of gigabytes of data used, given by

C1x 2  b39 if 0  x  2

39  151x  2 2 if x  2

Find C10.5 2 , C12 2 , and C14 2 .
sOLuTIOn  Remember that a function is a rule. Here is how we apply the rule for this 
function. First we look at the value of the input, x. If 0  x  2, then the value of C1x 2  
is 39. On the other hand, if x  2, then the value of C1x 2  is 39  151x  2 2 .

Since 0.5  2, we have C10.5 2  39.

Since 2  2, we have C12 2  39.

Since 4  2, we have C14 2  39  1514  2 2  69.

Thus the plan charges $39 for 0.5 GB, $39 for 2 GB, and $69 for 4 GB.

now Try exercises 31 and 85 ■

From Examples 2 and 3 we see that the values of a function can change from one 
input to another. The net change in the value of a function f as the input changes from 
a to b (where a  b) is given by 

f 1b 2  f 1a 2

The next example illustrates this concept.

exAMpLe 4 ■ Finding net Change
Let f 1x 2  x2. Find the net change in the value of f between the given inputs. 

(a) From 1 to 3   (b) From 2 to 2

sOLuTIOn  

(a) The net change is f 13 2  f 11 2  9  1  8.

(b) The net change is f 12 2  f 12 2  4  4  0.

now Try exercise 39 ■

A piecewise defined function is 
defined by different formulas on differ-
ent parts of its domain. The function C  
of Example 3 is piecewise defined.

The values of the function in Example 
4 decrease and then increase between 
2 and 2, but the net change from 2 
to 2 is 0 because f 12 2  and f 12 2  have 
the same value. 
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exAMpLe 5 ■ evaluating a Function
If f 1x 2  2x2  3x  1, evaluate the following.

(a) f 1a 2    (b) f 1a 2    (c) f 1a  h 2    (d) 
f 1a  h 2  f 1a 2

h
, h ? 0

sOLuTIOn

(a) f 1a 2  2a2  3a  1

(b) f 1a 2  21a 2 2  31a 2  1  2a2  3a  1

(c)  f 1a  h 2  21a  h 2 2  31a  h 2  1

    21a2  2ah  h2 2  31a  h 2  1

    2a2  4ah  2h2  3a  3h  1

(d) Using the results from parts (c) and (a), we have

 
f 1a  h 2  f 1a 2

h

12a2  4ah  2h2  3a  3h  1 2  12a2  3a  1 2

h

 
4ah  2h2  3h

h
 4a  2h  3

now Try exercise 43 ■

A table of values for a function is a table with two headings, one for inputs and one 
for the corresponding outputs. A table of values helps us to analyze a function numeri-
cally, as in the next example.

exAMpLe 6 ■ The Weight of an Astronaut
If an astronaut weighs 130 lb on the surface of the earth, then her weight when she is 
h miles above the earth is given by the function

„1h 2  130 a 3960

3960  h
b

2

(a) What is her weight when she is 100 mi above the earth?

(b)  Construct a table of values for the function „ that gives her weight at heights 
from 0 to 500 mi. What do you conclude from the table?

(c)  Find the net change in the astronaut’s weight from ground level to a height of 
500 mi.

sOLuTIOn

(a)  We want the value of the function „ when h  100; that is, we must calculate „ 1100 2:

„1100 2  130 a 3960

3960  100
b

2

 123.67

  So at a height of 100 mi she weighs about 124 lb.

(b)  The table gives the astronaut’s weight, rounded to the nearest pound, at 100-mi  
increments. The values in the table are calculated as in part (a).

h „xhc

  0 130
100 124
200 118
300 112
400 107
500 102

Expressions like the one in part (d) of 
Example 5 occur frequently in calcu-
lus; they are called difference quotients,  
and they represent the average change  
in the value of f  between x  a and  
x  a  h.

The weight of an object on or near the 
earth is the gravitational force that the 
earth exerts on it. When in orbit around 
the earth, an astronaut experiences the 
sensation of “weightlessness” because 
the centripetal force that keeps her in 
orbit is exactly the same as the gravita-
tional pull of the earth.
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  The table indicates that the higher the astronaut travels, the less she
  weighs.

(c)  The net change in the astronaut’s weight from h  0 to h  500 is

„1500 2  „10 2  102  130  28

   The negative sign indicates that the astronaut’s weight decreased by about  
28 lb.

now Try exercise 79 ■

■ The domain of a Function
Recall that the domain of a function is the set of all inputs for the function. The domain 
of a function may be stated explicitly. For example, if we write

f 1x 2  x2  0  x  5

then the domain is the set of all real numbers x for which 0  x  5. If the function is 
given by an algebraic expression and the domain is not stated explicitly, then by con-
vention the domain of the function is the domain of the algebraic expression—that is, 
the set of all real numbers for which the expression is defined as a real number. For 
example, consider the functions

f 1x 2 
1

x  4
  g1x 2  !x

The function f is not defined at x  4, so its domain is 5x 0  x ? 46 . The function g is 
not defined for negative x, so its domain is 5x 0  x  06 .

exAMpLe 7 ■ Finding domains of Functions
Find the domain of each function.

(a) f 1x 2 
1

x2  x
      (b) g1x 2  "9  x2      (c) h1 t 2 

t

!t  1

sOLuTIOn

(a) A rational expression is not defined when the denominator is 0. Since

f 1x 2 
1

x2  x


1

x1x  1 2
  we see that f 1x 2 is not defined when x  0 or x  1. Thus the domain of f is

5x 0  x ? 0, x ? 16
  The domain may also be written in interval notation as

1`, 0 2 < 10, 1 2 < 11, ` 2
(b)  We can’t take the square root of a negative number, so we must have 9  x2  0.  

Using the methods of Section 1.7, we can solve this inequality to find that  
3  x  3. Thus the domain of g is

5x 0  3  x  36  33, 3 4
(c)  We can’t take the square root of a negative number, and we can’t divide by 0, so 

we must have t  1  0, that is, t   1. So the domain of h is

5t  0  t  16  11, ` 2
now Try exercises 55, 59, and 69 ■

Domains of algebraic expressions are 
discussed on page 44.
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190 CHAPTER 2 ■ Functions

■ Four Ways to Represent a Function
To help us understand what a function is, we have used machine and arrow diagrams. 
We can describe a specific function in the following four ways:

■ verbally (by a description in words)
■ algebraically (by an explicit formula)
■ visually (by a graph)
■ numerically (by a table of values)

A single function may be represented in all four ways, and it is often useful to go 
from one representation to another to gain insight into the function. However, certain 
functions are described more naturally by one method than by the others. An ex-
ample of a verbal description is the following rule for converting between tempera-
ture scales:

“To find the Fahrenheit equivalent of a Celsius temperature, 
multiply the Celsius temperature by 9

5, then add 32.”

In Example 8 we see how to describe this verbal rule or function algebraically, graphi-
cally, and numerically. A useful representation of the area of a circle as a function of its 
radius is the algebraic formula

A1r 2  pr 
2

The graph produced by a seismograph (see the box below) is a visual representation of 
the vertical acceleration function a 1t 2 of the ground during an earthquake. As a  final 
example, consider the function C 1„ 2, which is described verbally as “the cost of mailing 
a large first-class letter with weight „.” The most convenient way of describing this 
function is numerically—that is, using a table of values.

We will be using all four representations of functions throughout this book. We sum-
marize them in the following box.

FOuR WAys TO RepResenT A FunCTIOn

Verbal Using words:

 “To convert from Celsius to Fahrenheit, multiply  
the Celsius temperature by  9 

5 , then add 32.”

Relation between Celsius and Fahrenheit 
temperature scales

Algebraic Using a formula:

A1r 2  pr2

Area of a circle

Visual Using a graph:

Vertical acceleration during an earthquake

Numerical Using a table of values:

„ (ounces) Cx„ c  (dollars)

0  „  1 $0.98
1  „  2 $1.19
2  „  3 $1.40
3  „  4 $1.61
4  „  5 $1.82

o o

Cost of mailing a large first-class envelope

(cm/s2)

t (s)

Source: California Department of
Mines and Geology

5

50

�50
10 15 20 25

a

100

30
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exAMpLe 8 ■  Representing a Function Verbally, Algebraically, 
numerically, and Graphically

Let F1C 2  be the Fahrenheit temperature corresponding to the Celsius temperature C. 
(Thus F is the function that converts Celsius inputs to Fahrenheit outputs.) The box 
on page 190 gives a verbal description of this function. Find ways to represent this 
function

(a) Algebraically (using a formula)

(b) Numerically (using a table of values)

(c) Visually (using a graph)

sOLuTIOn

(a)  The verbal description tells us that we should first multiply the input C by  9 

5  and 
then add 32 to the result. So we get

F1C 2   9 

5  C  32

(b)  We use the algebraic formula for F that we found in part (a) to construct a table 
of values:

C (Celsius) F (Fahrenheit)

10  14
0  32

10  50
20  68
30  86
40 104

(c)  We use the points tabulated in part (b) to help us draw the graph of this function 
in Figure 6.

now Try exercise 73 ■

COnCepTs
 1. If f1x 2  x3  1, then

(a) the value of f at x  1 is f 1  2      .

(b) the value of f at x  2 is f 1  2     .

(c) the net change in the value of f  between x  1 and 

 x  2 is f 1  2  f 1  2     .

 2. For a function f , the set of all possible inputs is called the 

    of f , and the set of all possible outputs is called

  the   of f .

 3. (a) Which of the following functions have 5 in their domain?

f 1x 2  x2  3x      g1x 2 
x  5

x
      h1x 2  !x  10

(b)  For the functions from part (a) that do have 5 in their 
domain, find the value of the function at 5.

 4. A function is given algebraically by the formula  
f1x 2  1x  4 2 2  3. Complete these other ways to  
represent f :

(a) Verbal: “Subtract 4, then   and    .

(b) Numerical:

x fxxc

0 19
2
4
6

2.1 exeRCIses

C40

F
100

50

200

FIGuRe 6 Celsius and Fahrenheit
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192 CHAPTER 2 ■ Functions

 5. A function f  is a rule that assigns to each element x in a set A 

  exactly   element(s) called f 1x 2  in a set B. Which of 
the following tables defines y as a function of x? 

(i)   (ii) 

 
x y

1 5
2 7
3 6
4 8

 
x y

1 5
1 7
2 6
3 8

 6. Yes or No? If No, give a reason. Let f be a function. 

(a) Is it possible that f 11 2  5 and f 12 2  5?

(b) Is it possible that f 11 2  5 and f 11 2  6?

skILLs
7–10 ■ Function notation  Express the rule in function nota-
tion. (For example, the rule “square, then subtract 5” is expressed 
as the function f 1x 2  x2  5.)

 7. Multiply by 3, then subtract 5

 8. Square, then add 2

 9. Subtract 1, then square

 10. Add 1, take the square root, then divide by 6

11–14 ■ Functions in Words  Express the function (or rule) in 
words.

 11. f 1x 2  2x  3 12. g1x 2 
x  2

3

13. h1x 2  51x  1 2  14. k1x 2 
x2  4

3

15–16 ■ Machine diagram  Draw a machine diagram for the 
function.

 15. f 1x 2  !x  1 16. f 1x 2 
3

x  2

17–18 ■ Table of Values  Complete the table.

 17. f 1x 2  21x  1 2 2 18. g1x 2  0  2x  3 0

  
x fxxc

1
0
1
2
3

  
x gxxc

3
2
0
1
3

19–30 ■ evaluating Functions  Evaluate the function at the  
indicated values.

 19. f 1x 2  x2  6;  f 13 2 , f 13 2 , f 10 2 , f A12 B
 20. f 1x 2  x3  2x;  f 12 2 , f 11 2 , f 10 2 , f A 1

 2 
B

 21. f 1x 2 
1  2x

3
; 

  f 12 2 , f 12 2 , f A12 B, f 1a 2 , f 1a 2 , f 1a  1 2

22. h1x 2 
x2  4

5
; 

  h12 2 , h12 2 , h1a 2 , h1x 2 , h1a  2 2 , hA!xB
 23. f 1x 2  x2  2x; 

  f 10 2 , f 13 2 , f 13 2 , f 1a 2 , f 1x 2 , f a1
a
b

 24. h1 t 2  t 
1

t
; 

  h11 2 , h12 2 , hA  1 

2 B, h1x  1 2 , ha 1
x
b

 25. g1x 2 
1  x

1  x
; 

  g12 2 , g11 2 , gA  1 

2 B, g1a 2 , g1a  1 2 , g1x2  1 2

 26. g1 t 2 
t  2

t  2
; 

  g12 2 , g12 2 , g10 2 , g1a 2 , g1a2  2 2 , g1a  1 2
 27. k1x 2  x2  2x  3; 

  k10 2 , k12 2 , k12 2 , kA!2B, k1a  2 2 , k1x 2 , k1x2 2
28. k1x 2  2x3  3x2; 

  k10 2 , k13 2 , k13 2 , kA12 B, kAa2 B, k1x 2 , k1x3 2
 29. f 1x 2  2 0  x  1 0 ;
  f 12 2 , f 10 2 , f A 1

 2 
B, f 12 2 , f 1x  1 2 , f 1x2  2 2

 30. f 1x 2 
0  x 0
x

;

  f 12 2 , f 11 2 , f 10 2 , f 15 2 , f 1x2 2 , f a 1
x
b

31–34 ■ piecewise defined Functions  Evaluate the piecewise 
defined function at the indicated values.

31. f 1x 2  e x2 if x  0

x  1 if x  0

  f 12 2 , f 11 2 , f 10 2 , f 11 2 , f 12 2

 32. f 1x 2  e5 if x  2

2x  3 if x  2

  f 13 2 , f 10 2 , f 12 2 , f 13 2 , f 15 2

 33. f 1x 2  •
x2  2x if x  1

x if 1  x  1

1 if x  1

  f 14 2 , f A 3 

2 B, f 11 2 , f 10 2 , f 125 2

 34. f 1x 2  •
3x if x  0

x  1 if 0  x  2

1x  2 2 2 if x  2

  f 15 2 , f 10 2 , f 11 2 , f 12 2 , f 15 2
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SECTION 2.1 ■ Functions 193

35–38 ■ evaluating Functions  Use the function to evaluate the 
indicated expressions and simplify.

 35. f 1x 2  x2  1; f 1x  2 2 , f 1x 2  f 12 2
 36. f 1x 2  3x  1; f 12x 2 , 2f 1x 2
 37. f 1x 2  x  4; f 1x2 2 , 1f 1x 22 2

 38. f 1x 2  6x  18; f a x

3
b , 

f 1x 2
3

39–42 ■ net Change  Find the net change in the value of the 
function between the given inputs.

 39. f 1x 2  3x  2;  from 1 to 5

 40. f 1x 2  4  5x;  from 3 to 5

 41. g1 t 2  1  t2;  from 2 to 5

 42. h1 t 2  t2  5;  from 3 to 6

43–50 ■ difference Quotient  Find f 1a 2 , f 1a  h 2 , and the  

difference quotient 
f 1a  h 2  f 1a 2

h
, where h ? 0.

 43. f 1x 2  5  2x 44. f 1x 2  3x2  2

 45. f 1x 2  5 46. f 1x 2 
1

x  1

 47. f 1x 2 
x

x  1
 48. f 1x 2 

2x

x  1

 49. f 1x 2  3  5x  4x2 50. f 1x 2  x3

51–54 ■ domain and Range  Find the domain and range of the 
function.

 51. f 1x 2  3x 52. f 1x 2  5x2  4

 53. f 1x 2  3x, 2  x  6

54. f 1x 2  5x2  4, 0  x  2

55–72 ■ domain  Find the domain of the function.

55. f 1x 2 
1

x  3
 56. f 1x 2 

1

3x  6

 57. f 1x 2 
x  2

x2  1
 58. f 1x 2 

x4

x2  x  6

 59. f 1 t 2  !t  1 60. g 1 t 2  "t2  9

 61. f 1 t 2  !3 t  1 62. g 1x 2  !7  3x

 63. f 1x 2  !1  2x 64. g 1x 2  "x2  4

 65. g 1x 2 
!2  x

3  x
 66. g 1x 2 

!x

2x2  x  1

 67. g 1x 2  "4 x2  6x 68. g 1x 2  "x2  2x  8

 69. f 1x 2 
3

!x  4
 70. f 1x 2 

x2

!6  x

 71. f 1x 2 
1x  1 2 2
!2x  1

 72. f 1x 2 
x

"4 9  x2

73–76 ■ Four Ways to Represent a Function  A verbal descrip-
tion of a function is given. Find (a) algebraic, (b) numerical, and  
(c) graphical representations for the function.

 73. To evaluate f 1x 2 , divide the input by 3 and add  2 

3  to the result.

 74. To evaluate g 1x 2 , subtract 4 from the input and multiply the  
result by  3 

4 .

 75. Let T1x 2  be the amount of sales tax charged in Lemon 
County on a purchase of x dollars. To find the tax, take 8% of 
the purchase price.

 76. Let V1d 2  be the volume of a sphere of diameter d. To find the 
volume, take the cube of the diameter, then multiply by p 
and divide by 6.

skILLs plus
77–78 ■ domain and Range  Find the domain and range of f . 

 77. f 1x 2  b
1 if x is rational

5 if x is irrational

78. f 1x 2  b
1 if x is rational

5x if x is irrational

AppLICATIOns
 79. Torricelli’s Law  A tank holds 50 gal of water, which drains 

from a leak at the bottom, causing the tank to empty in  
20 min. The tank drains faster when it is nearly full because 
the pressure on the leak is greater. Torricelli’s Law gives the 
volume of water remaining in the tank after t minutes as

V1 t 2  50a1 
t

20
b

2

  0  t  20

(a) Find V10 2  and V120 2 .
(b) What do your answers to part (a) represent?

(c) Make a table of values of V1 t 2  for t  0, 5, 10, 15, 20.

(d)  Find the net change in the volume V as t changes from  
0 min to 20 min.

 80. Area of a sphere  The surface area S of a sphere is a func-
tion of its radius r given by

S1r 2  4pr 2

(a) Find S 122 and S 132.
(b) What do your answers in part (a) represent?
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194 CHAPTER 2 ■ Functions

 81. Relativity  According to the Theory of Relativity, the length 
L of an object is a function of its velocity √ with respect to an 
observer. For an object whose length at rest is 10 m, the func-
tion is given by

L 1√ 2  10 Å1 
√2

c2

  where c is the speed of light (300,000 km/s).

(a)  Find L10.5c 2 , L10.75c 2 , and L10.9c 2 .
(b)  How does the length of an object change as its velocity  

increases?

 82. pupil size  When the brightness x of a light source is 
increased, the eye reacts by decreasing the radius R of the 
pupil. The dependence of R on x is given by the function

R1x 2  Å
13  7x0.4

1  4x0.4

  where R is measured in millimeters and x is measured in  
appropriate units of brightness.

(a) Find R 11 2 , R 110 2 , and R 1100 2 .
(b) Make a table of values of R 1x 2 .
(c)  Find the net change in the radius R as x changes from  

10 to 100.

R

 83. Blood Flow  As blood moves through a vein or an artery, its 
velocity √ is greatest along the central axis and decreases as 
the distance r from the central axis increases (see the figure). 
The formula that gives √ as a function of r is called the law 
of laminar flow. For an artery with radius 0.5 cm, the rela-
tionship between √ (in cm/s) and r (in cm) is given by the 
function

√1r 2  18,50010.25  r 
2 2  0  r  0.5

(a) Find √10.1 2  and √10.4 2 .
(b)  What do your answers to part (a) tell you about the flow  

of blood in this artery?

(c)  Make a table of values of √1r 2  for r  0, 0.1, 0.2, 0.3,  
0.4, 0.5.

(d)  Find the net change in the velocity √  as r changes from 
0.1 cm to 0.5 cm.

0.5 cm r

 84. How Far Can you see?  Because of the curvature of the earth, 
the maximum distance D that you can see from the top of a 
tall building or from an airplane at height h is given by  
the function

D1h 2  "2rh  h2

  where r  3960 mi is the radius of the earth and D and h are 
measured in miles.

(a) Find D10.1 2  and D10.2 2 .
(b)  How far can you see from the observation deck of  

Toronto’s CN Tower, 1135 ft above the ground?

(c)  Commercial aircraft fly at an altitude of about 7 mi.  
How far can the pilot see?

(d)  Find the net change in the value of distance D as  
h changes from 1135 ft to 7 mi.

 85. Income Tax  In a certain country, income tax T is assessed  
according to the following function of income x:

T1x 2  •
0 if 0  x  10,000

0.08x if 10,000  x  20,000

1600  0.15x if 20,000  x

(a) Find T15,000 2 , T112,000 2 , and T125,000 2 .
(b) What do your answers in part (a) represent?

 86. Internet purchases  An Internet bookstore charges $15 ship-
ping for orders under $100 but provides free shipping for 
orders of $100 or more. The cost C of an order is a function 
of the total price x of the books purchased, given by

C1x 2  e x  15 if x  100

x if x  100

(a) Find C175 2 , C190 2 , C1100 2 , and C1105 2 .
(b) What do your answers in part (a) represent?

 87. Cost of a Hotel stay  A hotel chain charges $75 each night 
for the first two nights and $50 for each additional night’s 
stay. The total cost T is a function of the number of nights x 
that a guest stays.

(a)  Complete the expressions in the following piecewise  
defined function.

T1x 2  ejjjj if 0  x  2

jjjj if x  2

(b) Find T12 2 , T13 2 , and T15 2 .
(c) What do your answers in part (b) represent?

 88. speeding Tickets  In a certain state the maximum speed per-
mitted on freeways is 65 mi/h, and the minimum is 40 mi/h. 
The fine F for violating these limits is $15 for every mile 
above the maximum or below the minimum.

(a)  Complete the expressions in the following piecewise 
defined function, where x is the speed at which you are 
driving.

F1x 2  •
jjjj if 0  x  40

jjjj if 40  x  65

jjjj if x  65

(b) Find F130 2 , F150 2 , and F175 2 .
(c) What do your answers in part (b) represent?

2.2 GRApHs OF FunCTIOns
■ Graphing Functions by plotting points ■ Graphing Functions with a Graphing 
Calculator ■ Graphing piecewise defined Functions ■ The Vertical Line Test: Which Graphs 
Represent Functions? ■ Which equations Represent Functions?

The most important way to visualize a function is through its graph. In this section we 
investigate in more detail the concept of graphing functions.

■ Graphing Functions by plotting points
To graph a function f, we plot the points 1x, f 1x 22  in a coordinate plane. In other words, 
we plot the points 1x, y 2  whose x-coordinate is an input and whose y-coordinate is the 
corresponding output of the function.

THe GRApH OF A FunCTIOn

If f is a function with domain A, then the graph of f is the set of ordered pairs

5 1x, f 1x 22 0  x [ A6
plotted in a coordinate plane. In other words, the graph of f is the set of all 
points 1x, y 2  such that y  f 1x 2 ; that is, the graph of f is the graph of the equa-
tion y  f 1x 2 .

The graph of a function f gives a picture of the behavior or “life history” of the func-
tion. We can read the value of f 1x 2 from the graph as being the height of the graph above 
the point x (see Figure 1).
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 89. Height of Grass  A home owner mows the lawn every 
Wednesday afternoon. Sketch a rough graph of the height of 
the grass as a function of time over the course of a four-week 
period beginning on a Sunday.

 90. Temperature Change  You place a frozen pie in an oven and 
bake it for an hour. Then you take the pie out and let it cool 
before eating it. Sketch a rough graph of the temperature of 
the pie as a function of time.

 91. daily Temperature Change  Temperature readings T (in °F) 
were recorded every 2 hours from midnight to noon in 
Atlanta, Georgia, on March 18, 2014. The time t was mea-
sured in hours from midnight. Sketch a rough graph of T as a 
function of t.

t  0  2  4  6  8 10 12

T 58 57 53 50 51 57 61

 92. population Growth  The population P (in thousands) of  
San Jose, California, from 1980 to 2010 is shown in the 
table. (Midyear estimates are given.) Draw a rough graph of 
P as a function of time t.

t 1980 1985 1990 1995 2000 2005 2010

P 629 714 782 825 895 901 946

Source: U.S. Census Bureau

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 93. dIsCuss: examples of Functions  At the beginning of this 

section we discussed three examples of everyday, ordinary 
functions: Height is a function of age, temperature is a func-
tion of date, and postage cost is a function of weight. Give 
three other examples of functions from everyday life.

 94. dIsCuss: Four Ways to Represent a Function  In the box on 
page 190 we represented four different functions verbally, alge-
braically, visually, and numerically. Think of a function that can 
be represented in all four ways, and give the four representations.

 95. dIsCuss: piecewise defined Functions  In Exercises 85–88 
we worked with real-world situations modeled by piecewise 
defined functions. Find other examples of real-world situa-
tions that can be modeled by piecewise defined functions, 
and express the models in function notation.

2.2 GRApHs OF FunCTIOns
■ Graphing Functions by plotting points ■ Graphing Functions with a Graphing 
Calculator ■ Graphing piecewise defined Functions ■ The Vertical Line Test: Which Graphs 
Represent Functions? ■ Which equations Represent Functions?

The most important way to visualize a function is through its graph. In this section we 
investigate in more detail the concept of graphing functions.

■ Graphing Functions by plotting points
To graph a function f, we plot the points 1x, f 1x 22  in a coordinate plane. In other words, 
we plot the points 1x, y 2  whose x-coordinate is an input and whose y-coordinate is the 
corresponding output of the function.

THe GRApH OF A FunCTIOn

If f is a function with domain A, then the graph of f is the set of ordered pairs

5 1x, f 1x 22 0  x [ A6
plotted in a coordinate plane. In other words, the graph of f is the set of all 
points 1x, y 2  such that y  f 1x 2 ; that is, the graph of f is the graph of the equa-
tion y  f 1x 2 .

The graph of a function f gives a picture of the behavior or “life history” of the func-
tion. We can read the value of f 1x 2 from the graph as being the height of the graph above 
the point x (see Figure 1).

y

x

f(1)

0 2

f(2)
Ï

1 x

Óx, ÏÔ

FIGuRe 1 The height of the graph 
above the point x is the value of f 1x 2 .
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A function f of the form f 1x 2  mx  b is called a linear function because its graph  
is the graph of the equation y  mx  b, which represents a line with slope m and  
y-intercept b. A special case of a linear function occurs when the slope is m  0. The func-
tion f 1x 2  b, where b is a given number, is called a constant function because all its 
values are the same number, namely, b. Its graph is the horizontal line y  b. Figure 2 
shows the graphs of the constant function f 1x 2  3 and the linear function f 1x 2  2x  1.

The constant function Ï=3 The linear function Ï=2x+1

y

x0 1

1

y=2x+1

y

x0 2 4 6_2

2

4 y=3

FIGuRe 2

Functions of the form f 1x 2  xn are called power functions, and functions of the 
formf 1x 2  x1/n are called root functions. In the next example we graph two power 
functions and a root function.

exAMpLe 1 ■ Graphing Functions by plotting points
Sketch graphs of the following functions.

(a) f 1x 2  x2      (b) g1x 2  x3      (c) h1x 2  !x

sOLuTIOn  We first make a table of values. Then we plot the points given by the  
table and join them by a smooth curve to obtain the graph. The graphs are sketched  
in Figure 3.

x fxxc 5 x2

0 0
 1 

2
 1 

4

1 1
2 4
3 9

x gxxc 5 x3

0 0
 1 

2
1
 8 

1 1
2 8

 
 1 

2  
1
 8 

1 1
2 8

x hxxc 5 !x

0 0
1 1
2 !2
3 !3
4 2
5 !5

(a) Ï=≈

y

x0 3

3

(1, 1)

(2, 4)

(_1, 1)

(_2, 4)

!_   ,    @1
2

1
4 !   ,    @1

2
1
4

y=≈

(b) ˝=x£

y

x1

(1, 1 (1, 1)

(2, )

)

(2, 8)

(_1, _1)

(_2, _8)

2

y=x£

(c) h(x)= x

y

x1

1

0

y= x

2 (4, 2)

FIGuRe 3

now Try exercises 9, 15, and 19 ■
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SECTION 2.2 ■ Graphs of Functions 197

■ Graphing Functions with a Graphing Calculator
A convenient way to graph a function is to use a graphing calculator. To graph the func-
tion f , we use a calculator to graph the equation y  f 1x 2 .

exAMpLe 2 ■ Graphing a Function with a Graphing Calculator
Use a graphing calculator to graph the function f 1x 2  x3  8x2 in an appropriate 
viewing rectangle.

sOLuTIOn  To graph the function f 1x 2  x3  8x2, we must graph the equation 
y   x3  8x2. On the TI-83 graphing calculator the default viewing rectangle gives 
the graph in Figure 4(a). But this graph appears to spill over the top and bottom of the 
screen. We need to expand the vertical axis to get a better representation of the graph. 
The viewing rectangle 34, 104 by 3100, 1004 gives a more complete picture of the 
graph, as shown in Figure 4(b).

10

_10

100

_100

_10 10

(a)

_4 10

(b)
FIGuRe 4 Graphing the function  
f 1x 2  x3  8x2

now Try exercise 29 ■

exAMpLe 3 ■ A Family of power Functions
(a)  Graph the functions f 1x 2  xn for n  2, 4, and 6 in the viewing rectangle 32, 24  

by 31, 34.
(b)  Graph the functions f 1x 2  xn for n  1, 3, and 5 in the viewing rectangle 32, 24  

by 32, 24.
(c) What conclusions can you draw from these graphs?

sOLuTIOn  To graph the function f 1x 2  xn, we graph the equation y  xn. The 
graphs for parts (a) and (b) are shown in Figure 5.

2

�2

�2 2

x∞ x£ x3

�1

�2 2

x§ x¢ x™

(a) Even powers of x (b) Odd powers of x
FIGuRe 5 A family of power  
functions: f1x2  xn

(c)  We see that the general shape of the graph of f 1x 2  xn depends on whether n is 
even or odd.

If n is even, the graph of f 1x 2  xn is similar to the parabola y  x2.

If n is odd, the graph of f 1x 2  xn is similar to that of y  x3.

now Try exercise 69 ■

See Appendix C, Graphing with a 
Graphing Calculator, for general 
guidelines on using a graphing calcula-
tor. See Appendix D, Using the  
TI-83/84 Graphing Calculator, for  
specific instructions.
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198 CHAPTER 2 ■ Functions

Notice from Figure 5 that as n increases, the graph of y  xn becomes flatter near 0 
and steeper when x  1. When 0  x  1, the lower powers of x are the “bigger” func-
tions. But when x  1, the higher powers of x are the dominant functions.

■ Graphing piecewise defined Functions
A piecewise defined function is defined by different formulas on different parts of its 
domain. As you might expect, the graph of such a function consists of separate pieces.

exAMpLe 4 ■ Graph of a piecewise defined Function
Sketch the graph of the function

f 1x 2  e x2 if x  1

2x  1 if x  1

sOLuTIOn  If x  1, then f 1x 2  x2, so the part of the graph to the left of x  1 co incides 
with the graph of y  x2, which we sketched in Figure 3. If x  1, then f 1x 2  2x  1,  
so the part of the graph to the right of x  1 coincides with the line y  2x  1, which we 
graphed in Figure 2. This enables us to sketch the graph in Figure 6.

The solid dot at 11, 12 indicates that this point is included in the graph; the open 
dot at 11, 32 indicates that this point is excluded from the graph.

FIGuRe 6 

f 1x 2  e x2 if x  1

2x  1 if x  1

y

x0 1

1
f (x) � ≈
if x � 1

f (x) � 2x � 1
if x � 1

now Try exercise 35 ■

exAMpLe 5 ■ Graph of the Absolute Value Function
Sketch a graph of the absolute value function f 1x 2  0  x 0 .
sOLuTIOn  Recall that

0  x 0  e x if x  0

x if x  0

Using the same method as in Example 4, we note that the graph of f coincides with 
the line y  x to the right of the y-axis and coincides with the line y  x to the left 
of the y-axis (see Figure 7).

now Try exercise 23 ■

The greatest integer function is defined by

“x‘  greatest integer less than or equal to x

For example, “ 2‘  2, “2.3‘  2, “1.999‘  1, “0.002‘  0, “3.5‘  4, and  
“0.5‘  1.

On many graphing calculators the 
graph in Figure 6 can be produced by 
using the logical functions in the cal-
culator. For example, on the TI-83 the 
following equation gives the required 
graph:

Y11X1 2X21X1 2 12X1 2

5

�1

�2 2

(To avoid the extraneous vertical line 
between the two parts of the graph, put 
the calculator in Dot mode.) 

FIGuRe 7 Graph of f 1x 2  0  x 0

y

x0 1

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 2.2 ■ Graphs of Functions 199

exAMpLe 6 ■ Graph of the Greatest Integer Function
Sketch a graph of f 1x 2  “x‘.

sOLuTIOn  The table shows the values of f for some values of x. Note that f 1x 2  is 
constant between consecutive integers, so the graph between integers is a horizontal 
line segment, as shown in Figure 8.

y

x0 1

1

FIGuRe 8 The greatest integer  
function, y  “x‘

x “x‘

( (
2  x  1 2
1  x  0 1

0  x  1 0
1  x  2 1
2  x  3 2

( (

 ■

The greatest integer function is an example of a step function. The next example 
gives a real-world example of a step function.

exAMpLe 7 ■ The Cost Function for a Global data plan
A global data plan costs $25 a month for the first 100 megabytes and $20 for each 
additional 100 megabytes (or portion thereof). Draw a graph of the cost C (in dollars) 
as a function of the number of megabytes x used per month.

sOLuTIOn  Let C1x 2  be the cost of using x megabytes of data in a month. Since 
x  0, the domain of the function is 30, ` 2 . From the given information we have 

 C1x 2  25   if 0  x  100

 C1x 2  25  20  45   if 100  x  200

 C1x 2  25  2120 2  65  if 200  x  300

 C1x 2  25  3120 2  85  if 300  x  400

 (  (

The graph is shown in Figure 9.

now Try exercise 83 ■

dIsCOVeRy pROjeCT

Relations and Functions

Many real-world relationships are functions, but many are not. For example, the 
rule that assigns to each student his or her school ID number is a function. But 
what about the rule that assigns to each date those persons born in Chicago on 
that date? Do you see why this “relation” is not a function? A set of ordered 
pairs is called a relation. In this project we explore the question of which rela-
tions are functions. You can find the project at www.stewartmath.com.©
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20

FIGuRe 9 Cost of data usage 
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200 CHAPTER 2 ■ Functions

A function is called continuous if its graph has no “breaks” or “holes.” The func-
tions in Examples 1, 2, 3, and 5 are continuous; the functions in Examples 4, 6, and 7 
are not continuous.

■ The Vertical Line Test: Which Graphs Represent 
Functions?

The graph of a function is a curve in the xy-plane. But the question arises: Which curves 
in the xy-plane are graphs of functions? This is answered by the following test.

THe VeRTICAL LIne TesT

A curve in the coordinate plane is the graph of a function if and only if no ver-
tical line intersects the curve more than once.

We can see from Figure 10 why the Vertical Line Test is true. If each vertical line  
x  a intersects a curve only once at 1a, b 2, then exactly one functional value is defined 
by f 1a 2  b. But if a line x  a intersects the curve twice, at 1a, b 2 and at 1a, c 2, then 
the curve cannot represent a function because a function cannot assign two different 
values to a.

y

x0 a

x=a

(a, b)

y

x0 a

x=a

(a, b)

(a, c)

Graph of a function Not a graph of a functionFIGuRe 10 Vertical Line Test

exAMpLe 8 ■ using the Vertical Line Test
Using the Vertical Line Test, we see that the curves in parts (b) and (c) of Figure 11 
represent functions, whereas those in parts (a) and (d) do not.

(a) (b) (c) (d)

y

x0

y

x0

y

x0

y

x0

FIGuRe 11

now Try exercise 51 ■

■ Which equations Represent Functions?
Any equation in the variables x and y defines a relationship between these variables. For 
example, the equation

y  x2  0
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SECTION 2.2 ■ Graphs of Functions 201

defines a relationship between y and x. Does this equation define y as a function of x? 
To find out, we solve for y and get

y  x2    Equation form

We see that the equation defines a rule, or function, that gives one value of y for each 
value of x. We can express this rule in function notation as

f 1x 2  x2    Function form

But not every equation defines y as a function of x, as the following example shows.

exAMpLe 9 ■ equations That define Functions
Does the equation define y as a function of x?

(a) y  x2  2        (b) x2  y2  4

sOLuTIOn

(a) Solving for y in terms of x gives

 y  x2  2

 y  x2  2    Add x2

   The last equation is a rule that gives one value of y for each value of x, so it 
defines y as a function of x. We can write the function as f 1x 2  x2  2.

(b) We try to solve for y in terms of x.

 x2  y2  4     

 y2  4  x2     Subtract x2

 y  "4  x2    Take square roots

  The last equation gives two values of y for a given value of x. Thus the equation 
does not define y as a function of x.

now Try exercises 57 and 61 ■

The graphs of the equations in Example 9 are shown in Figure 12. The Vertical Line 
Test shows graphically that the equation in Example 9(a) defines a function but the 
equation in Example 9(b) does not.

(a) (b)

y

x0 1

1

y-≈=2
y

x0 1

1

≈+¥=4

FIGuRe 12
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DoNAlD KNuth was born in  
Milwaukee in 1938 and is Professor  
Emeritus of Computer Science at  
Stanford University. When Knuth was a 
high school student, he became fasci-
nated with graphs of functions and labo-
riously drew many hundreds of them 
because he wanted to see the behavior of 
a great variety of functions. (Today, of 
course, it is far easier to use computers 
and graphing calculators to do this.) 
While still a graduate student at Caltech, 
he started writing a monumental series 
of books entitled The Art of Computer 
Programming. 

Knuth is famous for his invention of 
TEX, a system of computer-assisted typeset-
ting. This system was used in the prepara-
tion of the manuscript for this textbook.

Knuth has received numerous honors, 
among them election as an associate of the 
French Academy of Sciences, and as a Fel-
low of the Royal Society. President Carter 
awarded him the National Medal of Science 
in 1979.
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202 CHAPTER 2 ■ Functions

The following box shows the graphs of some functions that you will see frequently 
in this book.

sOMe FunCTIOns And THeIR GRApHs

Linear functions

f 1x 2  mx  b

Power functions

f 1x 2  xn

Root functions

f 1x 2  !n x

Reciprocal functions

f 1x 2 
1

xn

Absolute value function Greatest integer function

f 1x 2  0  x 0  f 1x 2  “x‘

x

y

Ï=|x|

x

y

Ï=“x‘

1

1

x

y

x

y

Ï= 1
x Ï= 1

≈

x

y

x

y

Ï= 1
x¢Ï= 1

x£

Ï= x Ï= £ x Ï=¢ x Ï= ∞ x

x

y

x

y

x

y

x

y

Ï=≈ Ï=x3 Ï=x4 Ï=x5

x

y

x

y

x

y

x

y

Ï=b Ï=mx+b

b

x

y

b

x

y

COnCepTs
 1. To graph the function f , we plot the points (x,  2  in  

a coordinate plane. To graph f 1x 2  x2  2, we plot the 
  points (x,  ). So the point (3,  ) is on the 
  graph of f . The height of the graph of f  above the x-axis 

2.2 exeRCIses
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SECTION 2.2 ■ Graphs of Functions 203

  when x  3 is    . Complete the table, and sketch a 
graph of f .

y

x0 1

1

x fxxc xx, yc

2
1

0
1

2

 2. If f 14 2  10 then the point 1 4,  2  is on the graph of f .

 3. If the point 13, 7 2  is on the graph of f , then f 13 2     .

 4. Match the function with its graph.

(a) f 1x2  x2  (b) f 1x2  x3

(c) f 1x 2  !x  (d) f 1x 2  0  x 0

I y 

x 0 1 

1 

II y 

x 0 1 

1 

III y 

x 0 1 

1 

IV y 

x 0 1 

1 

skILLs
5–28 ■ Graphing Functions  Sketch a graph of the function by 
first making a table of values.

 5. f 1x 2  x  2  6. f 1x 2  4  2x

 7. f 1x 2  x  3, 3  x  3

 8. f 1x 2 
x  3

2
, 0  x  5

 9. f 1x 2  x2 10. f 1x 2  x2  4

 11. g1x 2  1x  1 2 2 12. g1x 2  x2  2x  1

 13. r 1x 2  3x4 14. r 1x 2  1  x4

 15. g1x 2  x3  8 16. g1x 2  1x  1 2 3
 17. k1x 2  !3

x 18. k1x 2   !3 x

19. f 1x 2  1  !x 20. f 1x 2  !x  2

 21. C1 t 2 
1

t2  22. C1 t 2   

1

t  1

23. H1x 2  0  2x 0  24. H1x 2  0  x  1 0
 25. G1x 2  0  x 0  x 26. G1x 2  0  x 0  x

 27. f 1x 2  0  2x  2 0  28. f 1x 2 
x

0  x 0

29–32 ■ Graphing Functions  Graph the function in each of the 
given viewing rectangles, and select the one that produces the 
most appropriate graph of the function.

29. f 1x 2  8x  x2

(a) 35, 5 4 by 35, 5 4
(b) 310, 10 4 by 310, 10 4
(c) 32, 10 4 by 35, 20 4
(d) 310, 10 4 by 3100, 100 4

 30. g1x 2  x2  x  20

(a) 32, 2 4 by 35, 5 4
(b) 310, 10 4 by 310, 10 4
(c) 37, 7 4 by 325, 20 4
(d) 310, 10 4 by 3100, 100 4

 31. h1x 2  x3  5x  4

(a) 32, 24 by 32, 24
(b) 33, 34 by 310, 104
(c) 33, 34 by 310, 54
(d) 310, 104 by 310, 104

 32. k 1x 2  1
 32 

 x4  x2  2

(a) 31, 1 4 by 31, 1 4
(b) 32, 2 4 by 32, 2 4
(c) 35, 5 4 by 35, 5 4
(d) 310, 10 4 by 310, 10 4

33–46 ■ Graphing piecewise defined Functions  Sketch a graph 
of the piecewise defined function.

 33. f 1x 2  e0 if x  2

1 if x  2

 34. f 1x 2  e1 if x  1

x  1 if x  1

35. f 1x 2  e3 if x  2

x  1 if x  2

 36. f 1x 2  e1  x if x  2

5 if x  2

 37. f 1x 2  e x if x  0

x  1 if x  0

 38. f 1x 2  e2x  3 if x  1

3  x if x  1

 39. f 1x 2  •
1 if x  1

1 if 1  x  1

1 if x  1

 40. f 1x 2  •
1 if x  1

x if 1  x  1

1 if x  1
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204 CHAPTER 2 ■ Functions

 41. f 1x 2  e2 if x  1

x2 if x  1

 42. f 1x 2  e1  x2 if x  2

x if x  2

 43. f 1x 2  b0 if 0  x 0  2

3 if 0  x 0  2

 44. f 1x 2  bx2 if 0  x 0  1

1 if 0  x 0  1

 45. f 1x 2  •
4 if x  2

x2 if 2  x  2

x  6 if x  2

 46. f 1x 2  •
x if x  0

9  x2 if 0  x  3

x  3 if x  3

47–48 ■ Graphing piecewise defined Functions  Use a graphing 
device to draw a graph of the piecewise defined function. (See the 
margin note on page 162.)

 47. f 1x 2  e x  2 if x  1

x2 if x  1

 48. f 1x 2  e2x  x2 if x  1

1x  1 2 3 if x  1

49–50 ■ Finding piecewise defined Functions  A graph of a 
piecewise defined function is given. Find a formula for the func-
tion in the indicated form.

 49. y

x
0

2

2
 f 1x 2  •

jjjj if x  2

jjjj if 2  x  2

jjjj if x  2

 50. y

x0 1

2
 f 1x 2  •

jjjj if x  1

jjjj if 1  x  2

jjjj if x  2

51–52 ■ Vertical Line Test  Use the Vertical Line Test to deter-
mine whether the curve is a graph of a function of x.

51. (a)  (b) 

(c)   (d) 

 52. (a)  (b) 

(c)   (d) 

53–56 ■ Vertical Line Test: domain and Range  Use the Vertical 
Line Test to determine whether the curve is a graph of a function 
of x. If it is, state the domain and range of the function.

 53. y

x0 2

2

 54. y

x0 3

2

 55. y

x0 3

1

 56. y

x0 2

2

57–68 ■ equations That define Functions  Determine whether 
the equation defines y as a function of x. (See Example 9.)

57. 3x  5y  7 58. 3x2  y  5

 59. x  y2 60. x2  1y  1 2 2  4

61. 2x  4y2  3 62. 2x2  4y2  3

 63. 2xy  5y2  4 64. !y  x  5

 65. 2 0  x 0  y  0 66. 2x  0  y 0  0

 67. x  y3 68. x  y4

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0

y

x0
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SECTION 2.2 ■ Graphs of Functions 205

69–74 ■ Families of Functions  A family of functions is given. 
In parts (a) and (b) graph all the given members of the family in 
the viewing rectangle indicated. In part (c) state the conclusions 
that you can make from your graphs.

 69. f 1x 2  x2  c

(a) c  0, 2, 4, 6;  35, 5 4 by 310, 10 4
(b) c  0, 2, 4, 6;  35, 5 4 by 310, 10 4
(c) How does the value of c affect the graph?

 70. f 1x 2  1x  c 2 2
(a) c  0, 1, 2, 3;  35, 5 4 by 310, 10 4
(b) c  0, 1, 2, 3;  35, 54 by 310, 104
(c) How does the value of c affect the graph?

 71. f 1x 2  1x  c 2 3
(a) c  0, 2, 4, 6;  310, 104 by 310, 104
(b) c  0, 2, 4, 6;  310, 104 by 310, 104
(c) How does the value of c affect the graph?

 72. f 1x 2  cx2

(a) c 1,  1 

2 , 2, 4;  35, 54 by 310, 104
(b) c 1, 1,   1 

2 , 2;  35, 54 by 310, 104
(c) How does the value of c affect the graph?

 73. f 1x 2  xc

(a) c   1 

2 ,  1 

4 ,  1 

6 ;  31, 44 by 31, 34
(b) c  1, 13, 15;  33, 34 by 32, 24
(c) How does the value of c affect the graph?

 74. f 1x 2 
1

xn

(a) n  1, 3;  33, 3 4 by 33, 34
(b) n  2, 4;  33, 34 by 33, 34
(c) How does the value of n affect the graph?

skILLs plus
75–78 ■ Finding Functions for Certain Curves  Find a function 
whose graph is the given curve.

 75. The line segment joining the points (2, 1) and (4, 6)

 76. The line segment joining the points (3, 2) and (6, 3)

 77. The top half of the circle x2  y2  9

 78. The bottom half of the circle x2  y2  9

AppLICATIOns
 79. Weather Balloon  As a weather balloon is inflated, the  

thickness T of its rubber skin is related to the radius of the 
balloon by

T1r 2 
0.5

r2

  where T and r are measured in centimeters. Graph the func-
tion T for values of r between 10 and 100.

 80. power from a Wind Turbine  The power produced by a  
wind turbine depends on the speed of the wind. If a windmill 

has blades 3 meters long, then the power P produced by the 
turbine is modeled by

P1√ 2  14.1√ 3

  where P is measured in watts (W) and √ is measured in 
meters per second (m/s). Graph the function P for wind 
speeds between 1 m/s and 10 m/s.

81. utility Rates  Westside Energy charges its electric customers 
a base rate of $6.00 per month, plus 10¢ per kilowatt-hour 
(kWh) for the first 300 kWh used and 6¢ per kWh for all 
usage over 300 kWh. Suppose a customer uses x kWh of 
electricity in one month.

(a)  Express the monthly cost E as a piecewise defined  
function of x.

(b) Graph the function E for 0  x  600.

 82. Taxicab Function  A taxi company charges $2.00 for the first 
mile (or part of a mile) and 20 cents for each succeeding 
tenth of a mile (or part). Express the cost C (in dollars) of a 
ride as a piecewise defined function of the distance x traveled 
(in miles) for 0  x  2, and sketch a graph of this function.

 83. postage Rates  The 2014 domestic postage rate for first-
class letters weighing 3.5 oz or less is 49 cents for the first 
ounce (or less), plus 21 cents for each additional ounce (or 
part of an ounce). Express the postage P as a piecewise  
defined function of the weight x of a letter, with 0  x  3.5, 
and sketch a graph of this function.

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 84. dIsCOVeR: When does a Graph Represent a Function?  For 

every integer n, the graph of the equation y  xn is the graph 
of a function, namely f 1x 2  xn. Explain why the graph of  
x  y2 is not the graph of a function of x. Is the graph of  
x  y3 the graph of a function of x? If so, of what function 
of x is it the graph? Determine for what integers n the graph 
of x  yn is a graph of a function of x.

 85. dIsCuss: step Functions  In Example 7 and Exercises 82 
and 83 we are given functions whose graphs consist of hori-
zontal line segments. Such functions are often called step 
functions, because their graphs look like stairs. Give some 
other examples of step functions that arise in everyday life.

 86. dIsCOVeR: stretched step Functions  Sketch graphs of the 
functions f 1x 2  “x‘, g1x 2  “2x‘, and h1x 2  “3x‘ on sepa-
rate graphs. How are the graphs related? If n is a positive 
integer, what does a graph of k1x 2  “nx‘ look like?
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206 CHAPTER 2 ■ Functions

 87. dIsCOVeR: Graph of the Absolute Value of a Function
(a)  Draw graphs of the functions

f 1x 2  x2  x  6

 and g1x 2  0 x2  x  6 0
  How are the graphs of f and g related?

(b)  Draw graphs of the functions f 1x 2  x4  6x2 and 
g1x 2  0 x4  6x2 0 . How are the graphs of f and g 
related?

(c)  In general, if g1x 2  0 f 1x 2 0 , how are the graphs of f 
and g related? Draw graphs to illustrate your answer.

2.3  GeTTInG InFORMATIOn FROM THe GRApH OF A FunCTIOn
■ Values of a Function; domain and Range ■ Comparing Function Values: solving equations 
and Inequalities Graphically ■ Increasing and decreasing Functions ■ Local Maximum  
and Minimum Values of a Function

Many properties of a function are more easily obtained from a graph than from the rule 
that describes the function. We will see in this section how a graph tells us whether the 
values of a function are increasing or decreasing and also where the maximum and 
minimum values of a function are.

■ Values of a Function; domain and Range
A complete graph of a function contains all the information about a function, because 
the graph tells us which input values correspond to which output values. To analyze the 
graph of a function, we must keep in mind that the height of the graph is the value of 
the function. So we can read off the values of a function from its graph.

exAMpLe 1 ■ Finding the Values of a Function from a Graph
The function T graphed in Figure 1 gives the temperature between noon and 6:00 p.m. 
at a certain weather station.

(a) Find T11 2 , T13 2 , and T15 2 .
(b) Which is larger, T12 2  or T14 2 ?
(c) Find the value(s) of x for which T1x 2   25.

(d) Find the value(s) of x for which T1x 2   25.

(e) Find the net change in temperature from 1 p.m. to 3 p.m.

sOLuTIOn

(a)  T11 2  is the temperature at 1:00 p.m. It is represented by the height of the graph 
above the x-axis at x  1. Thus T11 2  25. Similarly, T13 2   30 and T15 2   20.

(b)  Since the graph is higher at x  2 than at x  4, it follows that T12 2  is larger than T14 2 .
(c)  The height of the graph is 25 when x is 1 and when x is 4. In other words, the 

temperature is 25 at 1:00 p.m. and 4:00 p.m.

(d)  The graph is higher than 25 for x between 1 and 4. In other words, the tempera-
ture was 25 or greater between 1:00 p.m. and 4:00 p.m.

(e)  The net change in temperature is

T13 2  T11 2  30  25  5

  So there was a net increase of 5°F from 1 p.m. to 3 p.m.

now Try exercises 7 and 55 ■

Net change is defined on page 187.

x

T (*F) 

0

10
20
30
40

1 2 3 4 5 6
FIGuRe 1 Temperature function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 2.3 ■ Getting Information from the Graph of a Function 207

The graph of a function helps us to picture the domain and range of the function on 
the x-axis and y-axis, as shown in the box below.

dOMAIn And RAnGe FROM A GRApH

The domain and range of a function y  f 1x 2  can be obtained from a graph of 
f as shown in the figure. The domain is the set of all x-values for which f is 
defined, and the range is all the corresponding y-values.

y

x0 Domain

Range y=Ï

exAMpLe 2 ■ Finding the domain and Range from a Graph
(a)  Use a graphing calculator to draw the graph of f 1x 2  "4  x2.

(b) Find the domain and range of f.

sOLuTIOn

(a) The graph is shown in Figure 2.

FIGuRe 2 Graph of f 1x 2  "4  x2

2

Domain=[_2, 2]

0_2

Range=[0, 2]

(b) From the graph in Figure 2 we see that the domain is 32, 2 4 and the range  
is 30, 2 4.

now Try exercise 21 ■

■ Comparing Function Values: solving equations  
and Inequalities Graphically

We can compare the values of two functions f and g visually by drawing their graphs. 
The points at which the graphs intersect are the points where the values of the two func-
tions are equal. So the solutions of the equation f 1x 2  g1x 2  are the values of x at 
which the two graphs intersect. The points at which the graph of g is higher than the 
graph of f are the points where the values of g are greater than the values of f. So the 
solutions of the inequality f 1x 2  g1x 2  are the values of x at which the graph of g is 
higher than the graph of f. 

See Appendix C, Graphing with a 
Graphing Calculator, for guidelines  
on using a graphing calculator. See  
Appendix D, Using the TI-83/84  
Graphing Calculator, for specific 
graphing instructions.
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208 CHAPTER 2 ■ Functions

sOLVInG eQuATIOns And IneQuALITIes GRApHICALLy

The solution(s) of the equation f 1x 2  g1x 2  are the values of x where the 
graphs of f and g intersect. 

The solution(s) of the inequality f 1x 2  g1x 2  are the values of x where the 
graph of g is higher than the graph of f.

x0 a b

g

f

The solutions of Ï=g(x)
are the values a and b.

x0 a

y y

b

g

f

The solution of Ï<g(x)
is the interval (a, b).

We can use these observations to solve equations and inequalities graphically, as the 
next example illustrates.

exAMpLe 3 ■ solving Graphically
Solve the given equation or inequality graphically.

(a) 2x2  3  5x  6

(b) 2x2  3  5x  6

(c) 2x2  3  5x  6

sOLuTIOn  We first define functions f and g that correspond to the left-hand side and 
to the right-hand side of the equation or inequality. So we define 

f 1x 2  2x2  3  and  g1x 2  5x  6

Next, we sketch graphs of f and g on the same set of axes. 

(a)  The given equation is equivalent to f 1x 2  g1x 2 . From the graph in Figure 3(a) 
we see that the solutions of the equation are  x  0.5 and x  3.

(b)  The given inequality is equivalent to f 1x 2  g1x 2 . From the graph in Figure 3(b) 
we see that the solution is the interval 30.5, 3 4 . 

(c)  The given inequality is equivalent to f 1x 2  g1x 2 . From the graph in Figure 3(c) 
we see that the solution is 1`, 0.5 2 < 13, ` 2 .

FIGuRe 3 Graphs of f 1x 2  2x2  3 and g1x 2  5x  6

(a) Solution: x=_0.5, 3 (b) Solution: [_0.5, 3]

f(x)=2x™+3

g(x)=5x+6

y

x10

30

20

10

(c) Solution: (_`, _0.5)  (3, `)

f(x)=2x™+3

g(x)=5x+6

y

x10

30

20

10

f(x)=2x™+3

g(x)=5x+6

y

x10

30

20

10

now Try exercises 9 and 23 ■

You can also solve the equations and 
inequalities algebraically. Check that 
your solutions match the solutions we 
obtained graphically.
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To solve an equation graphically, we can first move all terms to one side of the equa-
tion and then graph the function that corresponds to the nonzero side of the equation. 
In this case the solutions of the equation are the x-intercepts of the graph. We can use 
this same method to solve inequalities graphically, as the following example shows.

exAMpLe 4 ■ solving Graphically
Solve the given equation or inequality graphically.

(a) x3  6  2x2  5x

(b) x3  6  2x2  5x

sOLuTIOn  We first move all terms to one side to obtain an equivalent equation (or 
inequality). For the equation in part (a) we obtain

x3  2x2  5x  6  0  Move terms to LHS

Then we define a function f by  

f 1x 2  x3  2x2  5x  6  Define f 

Next, we use a graphing calculator to graph f, as shown in Figure 4.  

(a)  The given equation is the same as f 1x 2  0, so the solutions are the x-intercepts 
of the graph. From Figure 4(a) we see that the solutions are x  2, x  1, and 
x  3.

(b)  The given inequality is the same as f 1x 2  0, so the solutions are the x-values at 
which the graph of f is on or above the x-axis. From Figure 4(b) we see the solu-
tion is 32, 1 4 < 33, ` 4 . 

FIGuRe 4 Graphs of 
f 1x 2  x3  2x2  5x  6 (a) Solution: x=_2, 1, 3

y

x10

10

(b) Solution: 3_2, 14  33, `4

y

x10

10

now Try exercise 27 ■

■ Increasing and decreasing Functions
It is very useful to know where the graph of a function rises and where it falls. The 
graph shown in Figure 5 rises, falls, then rises again as we move from left to right: It 
rises from A to B, falls from B to C, and rises again from C to D. The function f is said 
to be increasing when its graph rises and decreasing when its graph falls.

y

x0 a

y=Ï

b c d

A

B

C

D
f is increasing

f is increasing

f is decreasing

FIGuRe 5 f  is increasing on 1a, b 2  
and 1c, d 2 ; f  is decreasing on 1b, c 2
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210 CHAPTER 2 ■ Functions

We have the following definition.

deFInITIOn OF InCReAsInG And deCReAsInG FunCTIOns

f is increasing on an interval I if f 1x1 2  f 1x2 2  whenever x1  x2 in I.

f is decreasing on an interval I if f 1x1 2  f 1x2 2  whenever x1  x2 in I.

f(
x⁄)

x2)
x2)

f

f(x⁄)
f(

f

y

x0 x⁄ x2

f(

y

x0 x⁄ x2

f is increasing f is decreasing

exAMpLe 5 ■  Intervals on Which a Function Increases  
or decreases

The graph in Figure 6 gives the weight W of a person at age x. Determine the inter-
vals on which the function W is increasing and on which it is decreasing.

x (yr) 

W (lb) 

0

50

100

150

200

10 20 30 40 50 60 70 80

FIGuRe 6 Weight as a function of age

sOLuTIOn  The function W is increasing on 10, 25 2  and 135, 40 2 . It is decreasing on  
140, 50 2 . The function W is constant (neither increasing nor decreasing) on 125, 35 2
and 150, 80 2 . This means that the person gained weight until age 25, then gained 
weight again between ages 35 and 40. He lost weight between ages 40 and 50.

now Try exercise 57 ■

By convention we write the intervals on which a function is increasing or decreasing 
as open intervals. (It would also be true to say that the function is increasing or decreas-
ing on the corresponding closed interval. So for instance, it is also correct to say that 
the function W in Example 5 is decreasing on 340, 50 4 .)

exAMpLe 6 ■  Finding Intervals on Which a Function Increases  
or decreases

(a) Sketch a graph of the function f 1x 2  12x2  4x3  3x4.

(b) Find the domain and range of f.

(c) Find the intervals on which f is increasing and on which f is decreasing.

From the definition we see that a func-
tion increases or decreases on an inter-
val. It does not make sense to apply 
these definitions at a single point.
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sOLuTIOn

(a) We use a graphing calculator to sketch the graph in Figure 7.

(b)  The domain of f is R because f is defined for all real numbers. Using the trace  
feature on the calculator, we find that the highest value is f 12 2  32. So the range  
of f is 1`, 32 4 .

(c)  From the graph we see that f is increasing on the intervals 1`, 1 2  and 10, 2 2 
and is decreasing on 11, 02 and 12, ` 2 .

40 

�40

�2.5 3.5 

FIGuRe 7 Graph of 
f 1x 2  12x2  4x3  3x4

now Try exercise 35 ■

exAMpLe 7 ■  Finding Intervals Where a Function  
Increases and decreases

(a) Sketch the graph of the function f 1x 2  x2/3.

(b) Find the domain and range of the function.

(c) Find the intervals on which f is increasing and on which f is decreasing.

sOLuTIOn

(a) We use a graphing calculator to sketch the graph in Figure 8.

(b) From the graph we observe that the domain of f is R and the range is 30, ` 2 .
(c) From the graph we see that f is decreasing on 1`, 0 2  and increasing on 10, ` 2 .

FIGuRe 8 Graph of f 1x 2  x2/3

10

�1
�20 20

now Try exercise 41 ■

■ Local Maximum and Minimum Values of a Function
Finding the largest or smallest values of a function is important in many applications. 
For example, if a function represents revenue or profit, then we are interested in its 
maximum value. For a function that represents cost, we would want to find its minimum 
value. (See Focus on Modeling: Modeling with Functions on pages 273–280 for many 
such examples.) We can easily find these values from the graph of a function. We first 
define what we mean by a local maximum or minimum.
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212 CHAPTER 2 ■ Functions

LOCAL MAxIMA And MInIMA OF A FunCTIOn

1. The function value f 1a 2 is a local maximum value of f if 

f 1a 2  f 1x 2  when x is near a

(This means that f 1a 2  f 1x 2 for all x in some open interval  
containing a.) In this case we say that f has a local maximum  
at x  a.

2. The function value f 1a 2 is a local minimum value of f if 

f 1a 2  f 1x 2  when x is near a

(This means that f 1a 2  f 1x 2 for all x in some open interval  
containing a.) In this case we say that f has a local minimum  
at x  a.

y 

x 

f 

Local maximum point

Local minimum point

0 

We can find the local maximum and minimum values of a function using a graphing  
calculator. If there is a viewing rectangle such that the point 1a, f 1a 22 is the highest point 
on the graph of f within the viewing rectangle (not on the edge), then the number f 1a 2 
is a local maximum value of f (see Figure 9). Notice that f 1a 2  f 1x 2 for all numbers 
x that are close to a.

x

y

0 a b

Local minimum
value f(b)

Local maximum
value f(a)

FIGuRe 9

Similarly, if there is a viewing rectangle such that the point 1b, f 1b 22 is the lowest 
point on the graph of f within the viewing rectangle, then the number f 1b 2 is a local 
minimum value of f. In this case f 1b 2  f 1x 2 for all numbers x that are close to b.

exAMpLe 8 ■ Finding Local Maxima and Minima from a Graph
Find the local maximum and minimum values of the function f 1x 2  x3  8x  1, 
rounded to three decimal places.

sOLuTIOn  The graph of f is shown in Figure 10. There appears to be one local maxi-
mum between x  2 and x  1, and one local minimum between x  1 and x  2.

20

_20

_5 5

FIGuRe 10 Graph of  
f 1x 2  x3  8x  1

Let’s find the coordinates of the local maximum point first. We zoom in to enlarge 
the area near this point, as shown in Figure 11. Using the trace  feature on the 
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SECTION 2.3 ■ Getting Information from the Graph of a Function 213

graphing device, we move the cursor along the curve and observe how the y-coordinates 
change. The local maximum value of y is 9.709, and this value occurs when x is 
1.633, correct to three decimal places.

We locate the minimum value in a similar fashion. By zooming in to the viewing  
rectangle shown in Figure 12, we find that the local minimum value is about 7.709, 
and this value occurs when x  1.633.

_1.7

9.71

9.7
_1.6

1.6
_7.7

_7.71

1.7

FIGuRe 11 FIGuRe 12

now Try exercise 47 ■

The maximum and minimum commands on a TI-83 or TI-84 calculator provide an-
other method for finding extreme values of functions. We use this method in the next 
example.

exAMpLe 9 ■ A Model for Managing Traffic
A highway engineer develops a formula to estimate the number of cars that can safely 
travel a particular highway at a given speed. She assumes that each car is 17 ft long, 
travels at a speed of x mi/h, and follows the car in front of it at the safe following dis-
tance for that speed. She finds that the number N of cars that can pass a given point 
per minute is modeled by the function

N1x 2 
88x

17  17 a x

20
b

2

Graph the function in the viewing rectangle 30, 100 4  by 30, 60 4 .
(a)  Find the intervals on which the function N is increasing and on which it is  

decreasing.

(b)  Find the maximum value of N. What is the maximum carrying capacity of the 
road, and at what speed is it achieved? 

See the Discovery Project referenced in 
Chapter 3, on page 331, for how this 
model is obtained.

dIsCOVeRy pROjeCT

every Graph Tells a story

A graph can often describe a real-world “story” much more quickly and effec-
tively than many words. For example, the stock market crash of 1929 is effec-
tively described by a graph of the Dow Jones Industrial Average. No words are 
needed to convey the message in the cartoon shown here. In this project we 
describe, or tell the story that corresponds to, a given graph as well as make 
graphs that correspond to a real-world “story.” You can find the project at  
www.stewartmath.com.
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214 CHAPTER 2 ■ Functions

sOLuTIOn  The graph is shown in Figure 13(a).

(a)  From the graph we see that the function N is increasing on 10, 20 2 and decreasing 
on 120, ` 2 .

(b)  There appears to be a maximum between x  19 and x  21. Using the  
maximum command, as shown in Figure 13(b), we see that the maximum value 
of N is about 51.78, and it occurs when x is 20. So the maximum carrying capac-
ity is about 52 cars per minute at a speed of 20 mi/h.

FIGuRe 13 Highway capacity at 
speed x

100

(b)

60

100

(a)

60

00
Maximum
X=20.000004   Y=51.764706

now Try exercise 65 ■

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific  
instructions on using the maximum  
command.

COnCepTs
1–5 ■ The function f graphed below is defined by a polyno-
mial expression of degree 4. Use the graph to solve the 
exercises.

f 

0 3 

3 

x

y 

 1. To find a function value f 1a 2  from the graph of f , we find 

the height of the graph above the x-axis at x      .  

From the graph of f  we see that f 13 2    and 

f 11 2     . The net change in f  between x  1 and x  3 

is f 1  2  f 1  2     .

 2. The domain of the function f  is all the  -values of the points 

on the graph, and the range is all the corresponding  -values. 
From the graph of f  we see that the domain of f  is the interval 

  and the range of f  is the interval    .

 3. (a)  If f  is increasing on an interval, then the y-values of the 

points on the graph   as the x-values increase. 
From the graph of f  we see that f  is increasing on the 

intervals   and    .

(b)  If f  is decreasing on an interval, then the y-values of the 

points on the graph   as the x-values increase. 
From the graph of f  we see that f  is decreasing on the 

intervals   and    .

 4. (a)  A function value f 1a 2 is a local maximum value of f   

if f 1a 2  is the   value of f  on some open  
interval containing a. From the graph of f  we see that  
there are two local maximum values of f : One local  

maximum is    , and it occurs when x  2;  

the other local maximum is    , and it occurs 

when x     .

(b)  The function value f 1a 2  is a local minimum value of f  if 

f 1a 2  is the   value of f  on some open interval  
containing a. From the graph of f  we see that there is 
one local minimum value of f . The local minimum value 

is    , and it occurs when x     . 

 5. The solutions of the equation f 1x 2  0 are the  

 -intercepts of the graph of f . The solution of the 
inequality f 1x 2  0 is the set of x-values at which the  

graph of f  is on or above the  -axis. From the graph  
of f  we find that the solutions of the equation f 1x 2  0 are 

x    and x     , and the solution of the inequality 

f 1x 2  0 is    .

 6. (a)  To solve the equation 2x  1  x  4 graphically, we 

graph the functions f 1x 2    and 

g1x 2    on the same set of axes and 

2.3 exeRCIses
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SECTION 2.3 ■ Getting Information from the Graph of a Function 215

determine the values of x at which the graphs of f  and g 
intersect. Graph f  and g below, and use the graphs to 

solve the equation. The solution is x     .

1 x

y

0
1

(b)  To solve the inequality 2x  1   x  4 graphically, 

we graph the functions f 1x 2    and 

g1x 2    on the same set of axes and 
find the values of x at which the graph of g is 

  (higher/lower) than the graph of f . 
From the graphs in part (a) we see that the solution of 

the inequality is the interval 1    ,  2 .

skILLs
 7. Values of a Function  The graph of a function h is given.

(a) Find h 122, h 102, h 122, and h 132.
(b) Find the domain and range of h.

(c) Find the values of x for which h 1x 2  3.

(d) Find the values of x for which h 1x 2  3.

(e) Find the net change in h between x   3 and x   3.

_3 3 x

y

0

3 h

 8. Values of a Function  The graph of a function g is given.

(a) Find g 142, g 122, g 102, g 122, and g 142.
(b) Find the domain and range of g.

(c) Find the values of x for which g1x 2  3. 

(d) Estimate the values of x for which g1x 2  0.

(e) Find the net change in g between x  1 and x  2.

x

y

0

3g

_3 3

 9. solving equations and Inequalities Graphically  Graphs of 
the functions f  and g are given.

(a) Which is larger, f 102 or g (02?
(b) Which is larger, f 132 or g 132?
(c) For which values of x is f 1x 2  g 1x 2?
(d) Find the values of x for which f 1x 2  g1x 2 .
(e) Find the values of x for which f 1x 2  g1x 2 .

_2 2 x

y

0

2

_2

f
g

 10. solving equations and Inequalities Graphically  Graphs of 
the functions f  and g are given.

(a) Which is larger, f 16 2  or g16 2 ?
(b) Which is larger, f 13 2  or g13 2 ?
(c) Find the values of x for which f 1x 2  g1x 2 . 
(d) Find the values of x for which f 1x 2  g1x 2 .
(e) Find the values of x for which f 1x 2  g1x 2 .

1
g

0 x1

y

f

11–16 ■ domain and Range from a Graph  A function f  is 
given. (a) Sketch a graph of f . (b) Use the graph to find the 
domain and range of f .

 11. f 1x 2  2x  3 12. f 1x 2  3x  2

 13. f 1x 2  x  2, 2  x  5 

14. f 1x 2  4  2x, 1  x  4

 15. f 1x 2  x2  1, 3  x  3

 16. f 1x 2  3  x2, 3  x  3

17–22 ■ Finding domain and Range Graphically  A function f  
is given. (a) Use a graphing calculator to draw the graph of f.  
(b) Find the domain and range of f  from the graph.

 17. f 1x 2  x2  4x  3 18. f 1x 2  x2  2x  1

 19. f 1x 2  !x  1 20. f 1x 2  !x  2

 21. f 1x 2  "16  x2 22. f 1x 2  "25  x2
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216 CHAPTER 2 ■ Functions

23–26 ■ solving equations and Inequalities Graphically   
Solve the given equation or inequality graphically. 

 23. (a) x  2  4  x (b) x  2  4  x

 24. (a) 2x  3  3x  7 (b) 2x  3  3x  7

 25. (a) x2  2  x (b) x2  2  x

 26. (a) x2  3  4x (b) x2  3  4x

27–30 ■ solving equations and Inequalities Graphically  Solve 
the given equation or inequality graphically. State your answers 
rounded to two decimals.

27. (a) x3  3x2  x2  3x  7 

(b) x3  3x2  x2  3x  7

28. (a) 5x2  x3  x2  3x  4

(b) 5x2  x3  x2  3x  4

29. (a) 16x3  16x2  x  1 

(b) 16x3  16x2  x  1

30. (a) 1  !x  "x2  1 

(b) 1  !x  "x2  1

31–34 ■ Increasing and decreasing  The graph of a function f  
is given. Use the graph to estimate the following. (a) The domain 
and range of f . (b) The intervals on which f  is increasing and on 
which f  is decreasing.

 31. y

x0 1

1

 32. y

x0 1

1

 33. y

x0 1

1

 34. y

x1

1

35–42 ■ Increasing and decreasing  A function f  is given.  
(a) Use a graphing calculator to draw the graph of f . (b) Find the 
domain and range of f . (c) State approximately the intervals on 
which f  is increasing and on which f  is decreasing.

35. f 1x 2  x2  5x 

36. f 1x 2  x3  4x

 37. f 1x 2  2x3  3x2  12x 

38. f 1x 2  x4  16x2

 39. f 1x 2  x3  2x2  x  2

 40. f 1x 2  x4  4x3  2x2  4x  3

41. f 1x 2  x2/5

42. f 1x 2  4  x2/3

43–46 ■ Local Maximum and Minimum Values  The graph of  
a function f is given. Use the graph to estimate the following.  
(a) All the local maximum and minimum values of the function 
and the value of x at which each occurs. (b) The intervals on 
which the function is increasing and on which the function is 
decreasing.

 43.   44.

1

10 x

y   

1

10 x

y

 45.   46. 

1

1
0

x

y   

1

10 x

y

47–54 ■ Local Maximum and Minimum Values  A function is 
given. (a) Find all the local maximum and minimum values of the 
function and the value of x at which each occurs. State each 
answer rounded to two decimal places. (b) Find the intervals on 
which the function is increasing and on which the function is 
decreasing. State each answer rounded to two decimal places.

 47. f 1x 2  x 3  x

 48. f 1x 2  3  x  x 2  x 3

 49. g 1x 2  x4  2x 3  11x 2

 50. g 1x 2  x5  8x 3  20x

 51. U1x 2  x!6  x 

52. U1x 2  x"x  x2

 53. V1x 2 
1  x2

x3  

54. V1x 2 
1

x2  x  1

AppLICATIOns
 55. power Consumption  The figure shows the power consump-

tion in San Francisco for a day in September (P is measured 
in megawatts; t is measured in hours starting at midnight).

(a)  What was the power consumption at 6:00 a.m.?  
At 6:00 p.m.?

(b) When was the power consumption the lowest?
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SECTION 2.3 ■ Getting Information from the Graph of a Function 217

(c) When was the power consumption the highest?

(d)  Find the net change in the power consumption from  
9:00 a.m. to 7:00 p.m.

 

P (MW)

0 181512963 t (h)21

400

600

800

200

Source: Pacific Gas & Electric

 56. earthquake  The graph shows the vertical acceleration of 
the ground from the 1994 Northridge earthquake in Los 
Angeles, as measured by a seismograph. (Here t represents 
the time in seconds.)

(a)  At what time t did the earthquake first make noticeable 
movements of the earth?

(b) At what time t did the earthquake seem to end?

(c)  At what time t was the maximum intensity of the earth-
quake reached?

Source: California Department of
Mines and Geology

5

50

�50
10 15 20 25

a
(cm/s2)

t (s) 

100

30

57. Weight Function  The graph gives the weight W of a person 
at age x.

(a)  Determine the intervals on which the function W is 
increasing and those on which it is decreasing.

(b)  What do you think happened when this person was  
30 years old?

(c)  Find the net change in the person’s weight W from age 
10 to age 20.

0

150

100

50

10

200
W (lb)

20 30 40 50 60 70 x (yr)

 58. distance Function  The graph gives a sales representative’s 
distance from his home as a function of time on a certain day.

(a)  Determine the time intervals on which his distance from 
home was increasing and those on which it was 
decreasing.

(b)  Describe in words what the graph indicates about his  
travels on this day.

(c)  Find the net change in his distance from home between 
noon and 1:00 p.m.

8 A.M. 10 NOON 2 4 6 P.M.

Time (hours)

Distance
from home

(miles)

 59. Changing Water Levels  The graph shows the depth of water 
W in a reservoir over a one-year period as a function of the 
number of days x since the beginning of the year.

(a)  Determine the intervals on which the function W is 
increasing and on which it is decreasing.

(b)  At what value of x does W achieve a local maximum?  
A local minimum?

(c)  Find the net change in the depth W from 100 days to  
300 days.

x (days) 

W (ft) 

0

25

50

75

100

100 200 300

 60. population Growth and decline  The graph shows the popu-
lation P in a small industrial city from 1950 to 2000. The 
variable x represents the number of years since 1950.

(a)  Determine the intervals on which the function P is 
increasing and on which it is decreasing.

(b)  What was the maximum population, and in what year 
was it attained?

(c)  Find the net change in the population P from 1970 to 1990.

x (yr) 

P
(thousands) 

0

10
20
30
40
50

10 20 30 40 50
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218 CHAPTER 2 ■ Functions

2.4 AVeRAGe RATe OF CHAnGe OF A FunCTIOn
■ Average Rate of Change ■ Linear Functions Have Constant Rate of Change

Functions are often used to model changing quantities. In this section we learn how to 
find the rate at which the values of a function change as the input variable changes.

■ Average Rate of Change
We are all familiar with the concept of speed: If you drive a distance of 120 miles in  
2 hours, then your average speed, or rate of travel, is 120 mi

2 h  60 mi/h. Now suppose you 
take a car trip and record the distance that you travel every few minutes. The distance s 
you have traveled is a function of the time t:

s 1t 2  total distance traveled at time t

We graph the function s as shown in Figure 1. The graph shows that you have traveled 
a total of 50 miles after 1 hour, 75 miles after 2 hours, 140 miles after 3 hours, and so 
on. To find your average speed between any two points on the trip, we divide the dis-
tance traveled by the time elapsed.

s (mi)

200

100

1 2 3 40 t (h) 

3 h

150 mi

FIGuRe 1 Average speed

Let’s calculate your average speed between 1:00 p.m. and 4:00 p.m. The time 
elapsed is 4  1  3 hours. To find the distance you traveled, we subtract the distance 
at 1:00 p.m. from the distance at 4:00 p.m., that is, 200  50  150 mi. Thus your 
average speed is

average speed 
distance traveled

time elapsed


150 mi

3 h
 50 mi/h

The average speed that we have just calculated can be expressed by using function nota-
tion:

average speed 
s14 2  s11 2

4  1


200  50

3
 50 mi/h

Note that the average speed is different over different time intervals. For example, be-
tween 2:00 p.m. and 3:00 p.m. we find that

average speed 
s13 2  s12 2

3  2


140  75

1
 65 mi/h

Finding average rates of change is important in many contexts. For instance, we 
might be interested in knowing how quickly the air temperature is dropping as a storm 
 approaches or how fast revenues are increasing from the sale of a new product. So we 
need to know how to determine the average rate of change of the functions that model 

 61. Hurdle Race  Three runners compete in a 100-meter hurdle 
race. The graph depicts the distance run as a function of time 
for each runner. Describe in words what the graph tells you 
about this race. Who won the race? Did each runner finish 
the race? What do you think happened to Runner B?

100

y (m)

0 20 t (s)

A B C

 62. Gravity near the Moon  We can use Newton’s Law of  
Gravity to measure the gravitational attraction between the 
moon and an algebra student in a spaceship located a dis-
tance x above the moon’s surface:

F1x 2 
350

x2

  Here F is measured in newtons (N), and x is measured in mil-
lions of meters.

(a) Graph the function F for values of x between 0 and 10.

(b)  Use the graph to describe the behavior of the gravita-
tional attraction F as the distance x increases.

 63. Radii of stars  Astronomers infer the radii of stars using the 
Stefan Boltzmann Law:

E1T 2  15.67  108 2T 4

  where E is the energy radiated per unit of surface area  
measured in watts (W) and T is the absolute temperature 
measured in kelvins (K). 

(a)  Graph the function E for temperatures T between 100 K 
and 300 K. 

(b)  Use the graph to describe the change in energy E as the 
temperature T increases.

 64. Volume of Water  Between 0°C and 30°C, the volume V (in 
cubic centimeters) of 1 kg of water at a temperature T is 
given by the formula

V  999.87  0.06426T  0.0085043T 2  0.0000679T 3

  Find the temperature at which the volume of 1 kg of water is  
a minimum.
[Source: Physics, by D. Halliday and R. Resnick]

 65. Migrating Fish  A fish swims at a speed √ relative to the  
water, against a current of 5 mi/h. Using a mathematical 

model of energy expenditure, it can be shown that the total 
energy E required to swim a distance of 10 mi is given by

E1√ 2  2.73√3
 

10

√  5

  Biologists believe that migrating fish try to minimize the total 
energy required to swim a fixed distance. Find the value of √ 
that minimizes energy required.
[Note: This result has been verified; migrating fish swim against 
a current at a speed 50% greater than the speed of the current.]

 66. Coughing  When a foreign object that is lodged in the tra-
chea (windpipe) forces a person to cough, the diaphragm 
thrusts upward, causing an increase in pressure in the lungs. 
At the same time, the trachea contracts, causing the expelled 
air to move faster and increasing the pressure on the foreign 
object. According to a mathematical model of coughing, the 
velocity √ (in cm/s) of the airstream through an average- 
sized person’s trachea is related to the radius r of the trachea 
(in cm) by the function

√ 1r 2  3.211  r 2r2  1
2  r  1

  Determine the value of r for which √ is a maximum.

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 67. dIsCuss: Functions That Are Always Increasing or decreasing   

Sketch rough graphs of functions that are defined for all real 
numbers and that exhibit the indicated behavior (or explain 
why the behavior is impossible).

(a) f is always increasing, and f 1x 2  0 for all x

(b) f is always decreasing, and f 1x 2  0 for all x

(c) f is always increasing, and f 1x 2  0 for all x

(d) f is always decreasing, and f 1x 2  0 for all x

 68. dIsCuss: Maximum and Minimum Values  In Example 9 we 
saw a real-world situation in which the maximum value of a 
function is important. Name several other everyday situations 
in which a maximum or minimum value is important.

 69. dIsCuss ■ dIsCOVeR: Minimizing a distance  When we 
seek a minimum or maximum value of a function, it is some-
times easier to work with a simpler function instead.

(a)  Suppose 

g1x 2  !f 1x 2
 where f 1x 2   0 for all x. Explain why the local minima 

and maxima of f and g occur at the same values of x.

(b)  Let g1x 2  be the distance between the point 13, 0 2  and  
the point 1x, x2 2  on the graph of the parabola y  x2. 
Express g as a function of x.

(c)  Find the minimum value of the function g that you found 
in part (b). Use the principle described in part (a) to sim-
plify your work.
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SECTION 2.4 ■ Average Rate of Change of a Function 219

2.4 AVeRAGe RATe OF CHAnGe OF A FunCTIOn
■ Average Rate of Change ■ Linear Functions Have Constant Rate of Change

Functions are often used to model changing quantities. In this section we learn how to 
find the rate at which the values of a function change as the input variable changes.

■ Average Rate of Change
We are all familiar with the concept of speed: If you drive a distance of 120 miles in  
2 hours, then your average speed, or rate of travel, is 120 mi

2 h  60 mi/h. Now suppose you 
take a car trip and record the distance that you travel every few minutes. The distance s 
you have traveled is a function of the time t:

s 1t 2  total distance traveled at time t

We graph the function s as shown in Figure 1. The graph shows that you have traveled 
a total of 50 miles after 1 hour, 75 miles after 2 hours, 140 miles after 3 hours, and so 
on. To find your average speed between any two points on the trip, we divide the dis-
tance traveled by the time elapsed.

s (mi)

200

100

1 2 3 40 t (h) 

3 h

150 mi

FIGuRe 1 Average speed

Let’s calculate your average speed between 1:00 p.m. and 4:00 p.m. The time 
elapsed is 4  1  3 hours. To find the distance you traveled, we subtract the distance 
at 1:00 p.m. from the distance at 4:00 p.m., that is, 200  50  150 mi. Thus your 
average speed is

average speed 
distance traveled

time elapsed


150 mi

3 h
 50 mi/h

The average speed that we have just calculated can be expressed by using function nota-
tion:

average speed 
s14 2  s11 2

4  1


200  50

3
 50 mi/h

Note that the average speed is different over different time intervals. For example, be-
tween 2:00 p.m. and 3:00 p.m. we find that

average speed 
s13 2  s12 2

3  2


140  75

1
 65 mi/h

Finding average rates of change is important in many contexts. For instance, we 
might be interested in knowing how quickly the air temperature is dropping as a storm 
 approaches or how fast revenues are increasing from the sale of a new product. So we 
need to know how to determine the average rate of change of the functions that model 
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220 CHAPTER 2 ■ Functions

these quantities. In fact, the concept of average rate of change can be defined for any 
 function.

AVeRAGe RATe OF CHAnGe

The average rate of change of the function y  f 1x 2  between x  a and x  b is

average rate of change 
change in y

change in x


f 1b 2  f 1a 2
b  a

The average rate of change is the slope of the secant line between x  a and x  b 
on the graph of f, that is, the line that passes through 1a, f 1a 22  and 1b, f 1b 22 .

f(a)

y=Ï

y

x0

f(b)

a b

b-a

f(b)-f(a)

average rate of change=f(b)-f(a)
b-a

In the expression for average rate of change, the numerator f 1b 2  f 1a 2  is the net 
change in the value of f between x  a and x  b (see page 187).

exAMpLe 1 ■ Calculating the Average Rate of Change
For the function f 1x 2  1x  3 2 2, whose graph is shown in Figure 2, find the net 
change and the average rate of change between the following points:

(a) x  1 and x  3        (b) x  4 and x  7

sOLuTIOn

(a)  Net change  f 13 2  f 11 2  Definition

    13  3 2 2  11  3 2 2 Use f 1x 2  1x  3 2 2

    4  Calculate

   Average rate of change 
f 13 2  f 11 2

3  1
 Definition

   
4

2
 2  Calculate

(b)  Net change  f 17 2  f 14 2  Definition

    17  3 2 2  14  3 2 2 Use f 1x 2  1x  3 2 2

    15  Calculate

   Average rate of change 
f 17 2  f 14 2

7  4
 Definition

   
15

3
 5  Calculate

now Try exercise 15 ■

x

y

0
1

16

9

1 3 4 7

FIGuRe 2 f 1x 2  1x  3 2 2
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exAMpLe 2 ■ Average speed of a Falling Object
If an object is dropped from a high cliff or a tall building, then the distance it has 
fallen  after t seconds is given by the function d1 t 2  16t2. Find its average speed 
(average rate of change) over the following intervals:

(a) Between 1 s and 5 s        (b) Between t  a and t  a  h

sOLuTIOn

(a)  Average rate of change 
d15 2  d11 2

5  1
 Definition

   
1615 2 2  1611 2 2

5  1
 Use d1 t 2  16t2

   
400  16

4  
Calculate

    96 ft/s Calculate

(b)  Average rate of change 
d1a  h 2  d1a 2
1a  h 2  a

 Definition

   
161a  h 2 2  161a 2 2
1a  h 2  a

 Use d1 t 2  16t2

   
161a2  2ah  h2  a2 2

h
 Expand and factor 16

   
1612ah  h2 2

h
 Simplify numerator

   
16h12a  h 2

h
 Factor h

    1612a  h 2  Simplify

now Try exercise 19 ■

The average rate of change calculated in Example 2(b) is known as a difference quo-
tient. In calculus we use difference quotients to calculate instantaneous rates of change. 
An example of an instantaneous rate of change is the speed shown on the speedometer of 
your car. This changes from one instant to the next as your car’s speed changes.

The graphs in Figure 3 show that if a function is increasing on an interval, then the 
average rate of change between any two points is positive, whereas if a function is 
 decreasing on an interval, then the average rate of change between any two points is 
 negative.

y

x0 a b

Slope>0

y=Ï

ƒ increasing
Average rate of change positive

ƒ decreasing
Average rate of change negative

y

x0 a b

Slope<0

y=Ï

FIGuRe 3

d(t)=16t2

Function: In t seconds the stone
falls 16t2 ft.
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222 CHAPTER 2 ■ Functions

exAMpLe 3 ■ Average Rate of Temperature Change
The table in the margin gives the outdoor temperatures observed by a science student 
on a spring day. Draw a graph of the data, and find the average rate of change of tem-
perature between the following times:

(a) 8:00 a.m. and 9:00 a.m.

(b) 1:00 p.m. and 3:00 p.m.

(c) 4:00 p.m. and 7:00 p.m.

sOLuTIOn  A graph of the temperature data is shown in Figure 4. Let t represent time, 
measured in hours since midnight (so, for example, 2:00 p.m. corresponds to t  14). 
 Define the function F by

F 1 t 2  temperature at time t

(a) Average rate of change 
F19 2  F18 2

9  8


40  38

9  8
 2

  The average rate of change was 2°F per hour.

�F

60
50
40
30

8 100  h

70

12 14 16 18FIGuRe 4    

(b) Average rate of change 
F115 2  F113 2

15  13


67  62

2
 2.5

  The average rate of change was 2.5°F per hour.

(c) Average rate of change 
F119 2  F116 2

19  16


51  64

3
 4.3

   The average rate of change was about 4.3°F per hour during this time interval. 
The negative sign indicates that the temperature was dropping.

now Try exercise 31 ■

Time Temperature (°F)

 8:00 a.m. 38
 9:00 a.m. 40
10:00 a.m. 44
11:00 a.m. 50

12:00 noon 56
 1:00 p.m. 62
 2:00 p.m. 66
 3:00 p.m. 67
 4:00 p.m. 64
 5:00 p.m. 58
 6:00 p.m. 55
 7:00 p.m. 51 Temperature at 8:00 a.m.Temperature at 9:00 a.m.

dIsCOVeRy pROjeCT

When Rates of Change Change

In the real world, rates of change often themselves change.  A statement like 
“inflation is rising, but at a slower rate” involves a change of a rate of change. 
When you drive your car, your speed (rate of change of distance) increases 
when you accelerate and decreases when you decelerate. From Example 4 we 
see that functions whose graph is a line (linear functions) have constant rate of 
change. In this project we explore how the shape of a graph corresponds to a 
changing rate of change. You can find the project at www.stewartmath.com.©
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■ Linear Functions Have Constant Rate of Change
Recall that a function of the form f 1x 2  mx  b is a linear function (see page 196). 
Its graph is a line with slope m. On the other hand, if a function f has constant rate of 
change, then it must be a linear function. (You are asked to prove these facts in Exer-
cises 51 and 52 in Section 2.5.) In general, the average rate of change of a linear func-
tion between any two points is the constant m. In the next example we find the average 
rate of change for a particular linear function.

exAMpLe 4 ■ Linear Functions Have Constant Rate of Change
Let f 1x 2  3x  5. Find the average rate of change of f between the following 
points.

(a) x  0 and x  1      

(b) x  3 and x  7      

(c) x  a and x  a  h

What conclusion can you draw from your answers?

sOLuTIOn

(a)  Average rate of change 
f 11 2  f 10 2

1  0

13 # 1  5 2  13 # 0  5 2

1

   
12 2  15 2

1
 3

(b)  Average rate of change 
f 17 2  f 13 2

7  3

13 # 7  5 2  13 # 3  5 2

4

   
16  4

4
 3

(c)  Average rate of change 
f 1a  h 2  f 1a 2
1a  h 2  a


331a  h 2  5 4  33a  5 4

h

   
3a  3h  5  3a  5

h


3h

h
 3

It appears that the average rate of change is always 3 for this function. In fact,  
part (c) proves that the rate of change between any two arbitrary points x  a and  
x  a  h is 3.

now Try exercise 25 ■

COnCepTs
 1. If you travel 100 miles in two hours, then your average speed 

for the trip is

average speed     

 2. The average rate of change of a function f  between x  a 
and x  b is

average rate of change  

 3. The average rate of change of the function f 1x 2  x2 
between x  1 and x  5 is

average rate of change     

 4. (a)  The average rate of change of a function f  between 

x  a and x  b is the slope of the   line 
between 1a, f 1a 22  and 1b, f 1b 22 .

(b) The average rate of change of the linear function 

f 1x 2  3x  5 between any two points is    .

2.4 exeRCIses
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224 CHAPTER 2 ■ Functions

5–6 ■ Yes or No? If No, give a reason.

 5. (a)  Is the average rate of change of a function between 
x  a and x  b the slope of the secant line through 
1a, f 1a 22  and 1b, f 1b 22 ?

(b)  Is the average rate of change of a linear function the 
same for all intervals?

 6. (a)  Can the average rate of change of an increasing function 
ever be negative?

(b)  If the average rate of change of a function between 
x  a and x  b is negative, then is the function  
necessarily decreasing on the interval 1a, b 2 ?

skILLs
7–10 ■ net Change and Average Rate of Change  The graph  
of a function is given. Determine (a) the net change and (b) the 
average rate of change between the indicated points on the 
graph.

 7. y

x0 1

1

3

5

4

 8. 

2

4

y

x0 1 5

 9. y

0 x1 5

6
 10. y

0 5

2

4

_1 x

11–24 ■ net Change and Average Rate of Change  A function is 
given. Determine (a) the net change and (b) the average rate of 
change between the given values of the variable.

 11. f 1x 2  3x  2 ; x  2, x  3

 12. r 1 t 2  3  1
3 t;  t  3, t  6

 13. h1 t 2  t  3
2;  t  4, t  1

 14. g1x 2  2  2
3 
x;  x  3, x  2

 15. h1 t 2  2t2  t;  t  3, t  6

 16. f 1z 2  1  3z2 ; z  2, z  0

 17. f 1x 2  x3  4x2 ; x  0, x  10

 18. g1 t 2  t4  t3  t2; t  2, t  2

 19. f 1 t 2  5t2; t  3, t  3  h

 20. f 1x 2  1  3x2; x  2, x  2  h

 21. g 1x 2 
1
x

 ; x  1, x  a

 22. g 1x 2 
2

x  1
 ; x  0, x  h

 23. f 1 t 2 
2

t
 ; t  a, t  a  h

 24. f 1 t 2  !t ; t  a, t  a  h

25–26 ■ Average Rate of Change of a Linear Function   
A linear function is given. (a) Find the average rate of change of 
the function between x  a and x  a  h. (b) Show that the 
average rate of change is the same as the slope of the line.

25. f 1x 2  1
2 x  3 26. g1x 2  4x  2

skILLs plus
 27. Average Rate of Change  The graphs of the functions f  and 

g are shown. The function   1f or g 2  has a greater aver-
age rate of change between x  0 and x  1. The function 
  1f or g 2  has a greater average rate of change between 
x  1 and x  2. The functions f  and g have the same  

average rate of change between x     and x      .

1

10 x

y

f

g

 28. Average Rate of Change  Graphs of the functions f , g, and h 
are shown below. What can you say about the average rate of 
change of each function on the successive intervals 
30, 1 4 , 31, 2 4 , 32, 3 4 , . . .?

1

1
0

f

x 1

1
0 x 1

1
0 x

g
h

y y y

AppLICATIOns
 29. Changing Water Levels  The graph shows the depth of water W 

in a reservoir over a one-year period as a function of the num-
ber of days x since the beginning of the year. What was the 
average rate of change of W between x  100 and x  200?

x (days) 

W (ft) 

0

25
50
75

100

100 200 300
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SECTION 2.4 ■ Average Rate of Change of a Function 225

 30. population Growth and decline  The graph shows the 
 population P in a small industrial city from 1950 to 2000.  
The variable x represents the number of years since 1950.

(a)  What was the average rate of change of P between  
x  20 and x  40?

(b)  Interpret the value of the average rate of change that you 
found in part (a).

x (yr) 

P
(thousands) 

0

10
20
30
40
50

10 20 30 40 50

 31. population Growth and decline  The table gives the popula-
tion in a small coastal community for the period 1997–2006. 
Figures shown are for January 1 in each year.

(a)  What was the average rate of change of population  
between 1998 and 2001?

(b)  What was the average rate of change of population  
between 2002 and 2004?

(c) For what period of time was the population increasing?

(d) For what period of time was the population decreasing?

Year Population

1997   624
1998   856
1999 1,336
2000 1,578
2001 1,591
2002 1,483
2003   994
2004   826
2005   801
2006   745

 32. Running speed  A man is running around a circular track 
that is 200 m in circumference. An observer uses a stopwatch 
to record the runner’s time at the end of each lap, obtaining 
the data in the following table.

(a)  What was the man’s average speed (rate) between 68 s 
and 152 s?

(b)  What was the man’s average speed between 263 s and 412 s?

(c)  Calculate the man’s speed for each lap. Is he slowing 
down, speeding up, or neither?

Time (s) Distance (m)

 32  200
 68  400
108  600
152  800
203 1000
263 1200
335 1400
412 1600

 33. dVd player sales  The table shows the number of DVD play-
ers sold in a small electronics store in the years 2003–2013.

Year DVD players sold

2003 495
2004 513
2005 410
2006 402
2007 520
2008 580
2009 631
2010 719
2011 624
2012 582
2013 635

(a)  What was the average rate of change of sales between 
2003 and 2013?

(b)  What was the average rate of change of sales between 
2003 and 2004?

(c)  What was the average rate of change of sales between 
2004 and 2005?

(d)  Between which two successive years did DVD player 
sales increase most quickly? Decrease most quickly?

 34. Book Collection  Between 1980 and 2000 a rare book collec-
tor purchased books for his collection at the rate of 40 books 
per year. Use this information to complete the  following 
table. (Note that not every year is given in the table.)

Year Number of books Year Number of books

1980  420 1995
1981  460 1997
1982 1998
1985 1999
1990 2000 1220
1992

 35. Cooling soup  When a bowl of hot soup is left in a room, 
the soup eventually cools down to room temperature. The 
temperature T of the soup is a function of time t. The table 
below gives the  tempera ture (in °F) of a bowl of soup t min-
utes after it was set on the table. Find the average rate of 
change of the temperature of the soup over the first 20 min-
utes and over the next 20 minutes. During which interval did 
the soup cool off more quickly?

t (min) T (°F) t (min) T (°F)

0 200  35 94
5 172  40 89
10 150  50 81
15 133  60 77
20 119  90 72
25 108 120 70
30 100 150 70
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226 CHAPTER 2 ■ Functions

 36. Farms in the united states  The graph gives the number of 
farms in the United States from 1850 to 2000. 

(a)  Estimate the average rate of change in the number of 
farms between (i) 1860 and 1890 and (ii) 1950 and 1970.

(b)  In which decade did the number of farms experience the 
greatest average rate of decline?

y

2000
3000
4000
5000
6000
7000

1860 1900 1940 1980 x

 37. Three-Way Tie  A downhill skiing race ends in a three-way 
tie for first place. The graph shows distance as a function of 
time for each of the three winners, A, B, and C.

(a)  Find the average speed for each skier

(b)  Describe the differences between the ways in which the 
three participants skied the race.

t (s) 

d (m) 

0

50

100

5

A

C

10

B

 38. speed skating  Two speed skaters, A and B, are racing in 
a 500-m event. The graph shows the distance they have 

traveled as a function of the time from the start of the 
race.

(a)  Who won the race?

(b)  Find the average speed during the first 10 s for each  
skater.

(c)  Find the average speed during the last 15 s for each  
skater.

0 10

A

B

100

500

d (m)

t (s)

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 39. dIsCOVeR: Limiting Behavior of Average speed  An object 

is dropped from a high cliff, and the distance (in feet) it has 
fallen after t seconds is given by the function d1 t 2  16t2. 
Complete the table to find the average speed during the given 
time intervals. Use the table to determine what value the 
average speed approaches as the time intervals get smaller 
and smaller. Is it reasonable to say that this value is the speed 
of the object at the instant t  3? Explain.

t 5 a t 5 b Average speed 5
dxbc  dxac

b  a

3 3.5
3 3.1
3 3.01
3 3.001
3 3.0001

2.5  LIneAR FunCTIOns And MOdeLs
■ Linear Functions ■ slope and Rate of Change ■ Making and using Linear Models

In this section we study the simplest functions that can be expressed by an algebraic  
expression: linear functions. 

■ Linear Functions
Recall that a linear function is a function of the form f 1x 2  ax  b. So in the expres-
sion defining a linear function the variable occurs to the first power only. We can also 
express a linear function in equation form as y  ax  b. From Section 1.3 we know 
that the graph of this equation is a line with slope a and y-intercept b. 
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SECTION 2.5 ■ Linear Functions and Models 227

LIneAR FunCTIOns

A linear function is a function of the form f 1x 2  ax  b.

The graph of a linear function is a line with slope a and y-intercept b.

exAMpLe 1 ■ Identifying Linear Functions
Determine whether the given function is linear. If the function is linear, express the 
function in the form f 1x 2  ax  b.

(a) f 1x 2  2  3x (b) g1x 2  311  2x 2
(c) h1x 2  x14  3x 2   (d) k1x 2 

1  5x

4

sOLuTIOn

(a)  We have f 1x 2  2  3x  3x  2. So f is a linear function in which a is 3 and b is 2.

(b)  We have g1x 2  311  2x 2  6x  3. So g is a linear function in which a is 
6 and b is 3.

(c)  We have h1x 2  x14  3x 2  4x  3x2, which is not a linear function because 
the variable x is squared in the second term of the expression for h.

(d)  We have k1x 2 
1  5x

4
  

5

4
 x 

1

4
. So k is a linear function in which a is 5

4

 and b is 1
4.

now Try exercise 7 ■

exAMpLe 2 ■ Graphing a Linear Function
Let f  be the linear function defined by f 1x 2  3x  2.

(a) Make a table of values, and sketch a graph.

(b) What is the slope of the graph of f?

sOLuTIOn  

(a)  A table of values is shown in the margin. Since f  is a linear function, its graph is 
a line. So to obtain the graph of f , we plot any two points from the table and 
draw the straight line that contains the points. We use the points 11, 5 2  and 
14, 14 2 . The graph is the line shown in Figure 1. You can check that the other 
points in the table of values also lie on the line.

(b) Using the points given in Figure 1, we see that the slope is 

slope 
14  5

4  1
 3

  So the slope is 3.

FIGuRe 1 Graph of the linear  
function f 1x 2  3x  2

4

1

(1, 5)

(4, 14)

0 x

y

now Try exercise 15 ■

x fxxc

2 4
1 1

0 2
1 5
2 8
3 11
4 14
5 17

From the box at the top of this page, 
you can see that the slope of the graph 
of f 1x 2  3x  2 is 3.
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228 CHAPTER 2 ■ Functions

■ slope and Rate of Change
Let f 1x 2  ax  b be a linear function. If x1 and x2 are two different values for x and 
if y1  f 1x1 2  and y2  f 1x2 2 , then the points 1x1, y1 2 and 1x2, y2 2  lie on the graph of f. 
From the definitions of slope and average rate of change we have 

slope 
y2  y1

x2  x1


f 1x2 2  f 1x1 2
x2  x1

 average rate of change

From Section 1.3 we know that the slope of a linear function is the same between any 
two points. From the above equation we conclude that the average rate of change of a 
linear function is the same between any two points. Moreover, the average rate of 
change is equal to the slope (see Exercise 51). Since the average rate of change of a 
linear function is the same between any two points, it is simply called the rate of 
change.

sLOpe And RATe OF CHAnGe

For the linear function f 1x 2  ax  b, the slope of the graph of f and the rate 
of change of f are both equal to a, the coefficient of x.

a  slope of graph of f  rate of change of f

The difference between “slope” and “rate of change” is simply a difference in point 
of view. For example, to describe how a reservoir fills up over time, it is natural to talk 
about the rate at which the water level is rising, but we can also think of the slope of 
the graph of the water level (see Example 3). To describe the steepness of a staircase, it 
is natural to talk about the slope of the trim board of the staircase, but we can also think 
of the rate at which the stairs rise (see Example 5).

exAMpLe 3 ■ slope and Rate of Change
A dam is built on a river to create a reservoir. The water level f 1 t 2  in the reservoir at 
time t is given by 

f 1 t 2  4.5t  28

where t is the number of years since the dam was constructed and f 1 t 2  is measured  
in feet.

(a) Sketch a graph of f. 

(b) What is the slope of the graph?

(c) At what rate is the water level in the reservoir changing?

sOLuTIOn  

(a) A graph of f is shown in Figure 2.

(b) The graph is a line with slope 4.5, the coefficient of t.

(c)  The rate of change of f is 4.5, the coefficient of t. Since time t is measured in 
years and the water level f 1 t 2  is measured in feet, the water level in the reservoir 
is changing at the rate of 4.5 ft per year. Since this rate of change is positive, the 
water level is rising.

now Try exercises 19 and 39 ■

In Exercise 52 we prove that all func-
tions with constant rate of change are 
linear. 

FIGuRe 2 Water level as a function 
of time

y

t0

10

1

f(t)=4.5t+28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 2.5 ■ Linear Functions and Models 229

■ Making and using Linear Models
When a linear function is used to model the relationship between two quantities, the 
slope of the graph of the function is the rate of change of the one quantity with respect 
to the other. For example, the graph in Figure 3(a) gives the amount of gas in a tank that 
is being filled. The slope between the indicated points is

a 
6 gal

3 min
 2 gal/min

The slope is the rate at which the tank is being filled, 2 gal per minute. In Figure 3(b) 
the tank is being drained at the rate of 0.03 gal per minute, and the slope is 0.03. 

FIGuRe 3 Amount of gas as a function of time
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V
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6 gal

3 min
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y

x

_3 gal

100 min

(a) Tank filled at 2 gal/min
Slope of line is 2

(b) Tank drained at 0.03 gal/min
Slope of line is _0.03

In the following examples we model real-world situations using linear functions. In 
each of these examples the model involves a constant rate of change (or a constant slope).

exAMpLe 4 ■ Making a Linear Model from a Rate of Change
Water is being pumped into a swimming pool at the rate of 5 gal per min. Initially, the 
pool contains 200 gal of water. 

(a) Find a linear function V that models the volume of water in the pool at any time t.

(b)  If the pool has a capacity of 600 gal, how long does it take to completely fill the 
pool?

sOLuTIOn  

(a) We need to find a linear function 

V1 t 2  at  b

   that models the volume V1 t 2  of water in the pool after t minutes. The rate of 
change of volume is 5 gal per min, so a  5. Since the pool contains 200 gal to 
begin with, we have V10 2  a # 0  b  200, so b  200. Now that we know a 
and b, we get the model 

V1 t 2  5t  200

(b)  We want to find the time t at which V1 t 2  600. So we need to solve the equation  

600  5t  200

  Solving for t, we get t  80. So it takes 80 min to fill the pool.

now Try exercise 41 ■

There are 200 gallons of water in  
the pool at time t  0.
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230 CHAPTER 2 ■ Functions

exAMpLe 5 ■ Making a Linear Model from a slope
In Figure 4 we have placed a staircase in a coordinate plane, with the origin at the bot-
tom left corner. The red line in the figure is the edge of the trim board of the staircase.

(a) Find a linear function H that models the height of the trim board above the floor.

(b)  If the space available to build a staircase is 11 ft wide, how high does the stair-
case reach?  

sOLuTIOn  

(a) We need to find a function 

H1x 2  ax  b

   that models the red line in the figure. First we find the value of a, the slope of the 
line. From Figure 4 we see that two points on the line are 112, 16 2  and 136, 32 2 , 
so the slope is 

a 
32  16

36  12


2

3

   Another way to find the slope is to observe that each of the steps is 8 in. high (the 
rise) and 12 in. deep (the run), so the slope of the line is 8

12  2
3 . From Figure 4 

we see that the y-intercept is 8, so b  8. So the model we want is 

H1x 2  2
3 x  8

(b) Since 11 ft is 132 in., we need to evaluate the function H when x is 132.  We have 

H1132 2  2
3 1132 2  8  96

  So the staircase reaches a height of 96 in., or 8 ft. 

now Try exercise 43 ■

exAMpLe 6 ■ Making Linear Models Involving speed
John and Mary are driving westward along I-76 at constant speeds. The graphs in Fig-
ure 5 show the distance y (in miles) that they have traveled from Philadelphia at time 
x (in hours), where x  0 corresponds to noon. (Note that at noon John has already 
traveled 150 mi.)

(a)  At what speeds are John and Mary traveling? Who is traveling faster, and how 
does this show up in the graph?

(b)  Find functions that model the distances that John and Mary have traveled as func-
tions of x.

(c) How far will John and Mary have traveled at 5:00 p.m.?

(d)  For what time period is Mary behind John? Will Mary overtake John? If so, at 
what time? 

sOLuTIOn  

(a)  From the graph we see that John has traveled 250 mi at 2:00 p.m. and 350 mi at 
4:00 p.m. The speed is the rate of change of distance with respect to time. So the 
speed is the slope of the graph. Therefore John’s speed is

350 mi  250 mi

4 h  2 h
 50 mi/h    John’s speed

   Mary has traveled 150 mi at 2:00 p.m. and 300 mi at 4:00 p.m., so we calculate 
Mary’s speed to be

300 mi  150 mi

4 h  2 h
 75 mi/h    Mary’s speed

(12, 16)

12 24 36 48 60

8
16
24
32
40 (36, 32)

0 x (in.)

y (in.)

FIGuRe 4 Slope of a staircase

x

y

0

100
200
300
400

1 2 3 4

Mary

John

FIGuRe 5 John and Mary's trips
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SECTION 2.5 ■ Linear Functions and Models 231

   Mary is traveling faster than John. We can see this from the graph because Mary’s 
line is steeper (has a greater slope) than John’s line.

(b)  Let f 1x 2  be the distance John has traveled at time x. Since the speed (average rate 
of change) is constant, it follows that f is a linear function. Thus we can write f 
in the form f 1x 2  ax  b. From part (a) we know that the slope a is 50, and 
from the graph we see that the y-intercept b is 150. Thus the distance that John 
has traveled at time x is modeled by the linear function

f 1x 2  50x  150    Model for John’s distance

  Similarly, Mary is traveling at 75 mi/h, and the y-intercept of her graph is 0. Thus 
the distance she has traveled at time x is modeled by the linear function

g1x 2  75x    Model for Mary’s distance

(c)  Replacing x by 5 in the models that we obtained in part (b), we find that at  
5:00 p.m. John has traveled f 15 2  5015 2  150  400 mi and Mary has trav-
eled g15 2  7515 2  375 mi.

(d)  Mary overtakes John at the time when each has traveled the same distance, that 
is, at the time x when f 1x 2  g1x 2 . So we must solve the equation 

50x  150  75x    John's distance  Mary's distance

  Solving this equation, we get x  6. So Mary overtakes John after 6 h, that is, at 
6:00 p.m. We can confirm our solution graphically by drawing the graphs of f and 
g on a larger domain as shown in Figure 6. The graphs intersect when x  6. 
From the graph we see that the graph of Mary’s trip is below the graph of John’s 
trip from x  0 to x  6, so Mary is behind John from noon until 6:00 p.m.

now Try exercise 45 ■

COnCepTs
 1. Let f  be a function with constant rate of change. Then

(a) f  is a   function and f  is of the form 

  f 1x 2    x      .

(b) The graph of f  is a    .

 2. Let f  be the linear function f 1x 2  5x  7  .

(a) The rate of change of f  is    .

(b) The graph of f  is a   with slope   and 

  y-intercept    .

3–4 ■ A swimming pool is being filled. The graph shows the 
number of gallons y in the pool after x minutes.

10
0 1

Time (min)

Volume of
water (gal)

x

y

 3. What is the slope of the graph?

 4. At what rate is the pool being filled?

 5. If a linear function has positive rate of change, does its graph 
slope upward or downward? 

 6. Is f 1x 2  3 a linear function? If so, what are the slope and 
the rate of change?

skILLs
7–14 ■ Identifying Linear Functions  Determine whether the 
given function is linear. If the function is linear, express the func-
tion in the form f 1x 2  ax  b.

 7. f 1x 2  3  1
3 
x  8. f 1x 2  2  4x

 9. f 1x 2  x 14  x 2  10. f 1x 2  !x  1

 11. f 1x 2 
x  1

5
 12. f 1x 2 

2x  3
x

 13. f 1x 2  1x  1 2 2 14. f 1x 2  1
2 
13x  1 2

15–18 ■ Graphing Linear Functions  For the given linear func-
tion, make a table of values and sketch its graph. What is the 
slope of the graph?

 15. f 1x 2  2x  5 16. g1x 2  4  2x

 17. r 1 t 2  2
3 
t  2 18. h1 t 2  1

2  3
4 
t

2.5 exeRCIses

y

x0

100
200
300
400
500

1 2 3 4 5 6 7

John

Mary

FIGuRe 6 John and Mary’s trips
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19–26 ■ slope and Rate of Change  A linear function is given. 
(a) Sketch the graph. (b) Find the slope of the graph. (c) Find the 
rate of change of the function.

 19. f 1x 2  2x  6 20. g1z 2  3z  9

 21. h1 t 2  0.5t  2 22. s1„ 2  0.2„  6

 23. √ 1 t 2  10
3  

t  20 24. A1r 2  2
3 
r  1

 25. f 1 t 2  3
2 
t  2 26. g1x 2  5

4 
x  10

27–30 ■ Linear Functions Given Verbally  A verbal description 
of a linear function f  is given. Express the function f  in the form 
f 1x 2  ax  b.

 27. The linear function f  has rate of change 3 and initial value 1.

 28. The linear function g has rate of change 12 and initial 
value 100.

 29. The graph of the linear function h has slope 1
2 and y-intercept 3.

 30. The graph of the linear function k has slope 4
5 and  

y-intercept 2.

31–32 ■ Linear Functions Given numerically  A table of values 
for a linear function f  is given. (a) Find the rate of change of f . 
(b) Express f  in the form f 1x 2  ax  b

 31. 
x fxxc

0  7
2 10
4 13
6 16
8 19

 32. 
x fxxc

3 11
0 2
2 4
5 13
7 19

33–36 ■ Linear Functions Given Graphically  The graph of a  
linear function f  is given. (a) Find the rate of change of f .  
(b) Express f  in the form f 1x 2  ax  b.

 33. 

2

50 x1

y  34. 

2

10

y

x

 35. 

11

10

y

x

 36. 

1

20

y

x

skILLs plus
 37. Families of Linear Functions  Graph f 1x 2  ax for a  1

2, 
a  1, and a  2, all on the same set of axes. How does 

increasing the value of a affect the graph of f? What about 
the rate of change of f?

 38. Families of Linear Functions  Graph f 1x 2  x  b for 
b  1

2, b  1, and b  2, all on the same set of axes. How 
does increasing the value of b affect the graph of f? What 
about the rate of change of f?

AppLICATIOns
 39. Landfill  The amount of trash in a county landfill is modeled 

by the function 

T1x 2  150x  32,000

  where x is the number of years since 1996 and T1x 2  is mea-
sured in thousands of tons.

(a) Sketch a graph of T. 

(b) What is the slope of the graph?

(c) At what rate is the amount of trash in the landfill increas-
ing per year?

 40. Copper Mining  The amount of copper ore produced from a 
copper mine in Arizona is modeled by the function

f 1x 2  200  32x

  where x is the number of years since 2005 and f 1x 2  is mea-
sured in thousands of tons.

(a) Sketch a graph of f . 

(b) What is the slope of the graph?

(c) At what rate is the amount of ore produced changing?

 41. Weather Balloon  Weather balloons are filled with hydrogen 
and released at various sites to measure and transmit data 
about conditions such as air pressure and temperature. A 
weather balloon is filled with hydrogen at the rate of 0.5 ft3/s. 
Initially, the balloon contains 2 ft3 of hydrogen.

(a) Find a linear function V that models the volume of 
hydrogen in the balloon at any time t.

(b) If the balloon has a capacity of 15 ft3, how long does it 
take to completely fill the balloon?

 42. Filling a pond  A large koi pond is filled from a garden hose 
at the rate of 10 gal/min. Initially, the pond contains 300 gal 
of water.

(a) Find a linear function V that models the volume of water 
in the pond at any time t.

(b) If the pond has a capacity of 1300 gal, how long does it 
take to completely fill the pond?

 43. Wheelchair Ramp  A local diner must build a wheelchair 
ramp to provide handicap access to the restaurant. Federal 
building codes require that a wheelchair ramp must have a 
maximum rise of 1 in. for every horizontal distance of 12 in.  

(a) What is the maximum allowable slope for a wheelchair 
ramp? Assuming that the ramp has maximum rise, find a 
linear function H that models the height of the ramp above 
the ground as a function of the horizontal distance x.

(b) If the space available to build a ramp is 150 in. wide, 
how high does the ramp reach? 

 44. Mountain Biking  Meilin and Brianna are avid mountain  
bikers. On a spring day they cycle down straight roads with 
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SECTION 2.5 ■ Linear Functions and Models 233

steep grades. The graphs give a representation of the eleva-
tion of the road on which each of them cycles. Find the grade 
of each road. 

200
400

600
800

1000
1200

2000 6000

Brianna

Meilin

Horizontal distance (ft)

Elevation
(ft)

10,000 14,0000

y

x

 45. Commute to Work  Jade and her roommate Jari commute to 
work each morning, traveling west on I-10. One morning 
Jade left for work at 6:50 a.m., but Jari left 10 minutes later. 
Both drove at a constant speed. The following graphs show 
the distance (in miles) each of them has traveled on I-10 at 
time t (in minutes), where t  0 is 7:00 a.m.

(a) Use the graph to decide which of them is traveling 
faster. 

(b) Find the speed (in mi/h) at which each of them is 
driving.

(c) Find linear functions f and g that model the distances 
that Jade and Jari travel as functions of t (in minutes).

20

10

30

2 4 6 8

Jade

Jari

Time since 7:00 A.M. (min)

Distance
traveled (mi)

10 12

(6, 7)

(6, 16)

0 t

y

 46. distance, speed, and Time  Jacqueline leaves Detroit at  
2:00 p.m. and drives at a constant speed, traveling west  
on I-90. She passes Ann Arbor, 40 mi from Detroit, at  
2:50 p.m.

(a) Find a linear function d that models the distance (in mi) 
she has traveled after t min.

(b) Draw a graph of d. What is the slope of this line?

(c) At what speed (in mi/h) is Jacqueline traveling? 

 47. Grade of Road  West of Albuquerque, New Mexico, Route 
40 eastbound is straight and makes a steep descent toward the 
city. The highway has a 6% grade, which means that its slope 
is  6

100.  Driving on this road, you notice from elevation 
signs that you have descended a distance of 1000 ft. What is 
the change in your horizontal distance in miles?

 48. sedimentation  Devils Lake, North Dakota, has a layer of 
sedimentation at the bottom of the lake that increases every 

year. The depth of the sediment layer is modeled by the 
function

D1x 2  20  0.24x

  where x is the number of years since 1980 and D1x 2  is mea-
sured in centimeters.

(a) Sketch a graph of D.

(b) What is the slope of the graph?

(c) At what rate (in cm) is the sediment layer increasing per 
year?

 49. Cost of driving  The monthly cost of driving a car depends 
on the number of miles driven. Lynn found that in May her 
driving cost was $380 for 480 mi and in June her cost was 
$460 for 800 mi. Assume that there is a linear relationship 
between the monthly cost C of driving a car and the distance 
x driven.

(a) Find a linear function C that models the cost of driving  
x miles per month.

(b) Draw a graph of C. What is the slope of this line?

(c) At what rate does Lynn’s cost increase for every addi-
tional mile she drives?

 50. Manufacturing Cost  The manager of a furniture factory 
finds that it costs $2200 to produce 100 chairs in one day and 
$4800 to produce 300 chairs in one day.

(a) Assuming that the relationship between cost and the 
number of chairs produced is linear, find a linear func-
tion C that models the cost of producing x chairs in  
one day.

(b) Draw a graph of C. What is the slope of this line?

(c) At what rate does the factory’s cost increase for every 
additional chair produced?

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 51. pROVe: Linear Functions Have Constant Rate of Change   

Suppose that f 1x 2  ax  b is a linear function. 

(a) Use the definition of the average rate of change of a 
function to calculate the average rate of change of f  
between any two real numbers x1 and x2.

(b) Use your calculation in part (a) to show that the average 
rate of change of f  is the same as the slope a.

 52. pROVe: Functions with Constant Rate of Change Are Linear   
Suppose that the function f  has the same average rate of 
change c between any two points. 

(a) Find the average rate of change of f  between the points 
a and x to show that 

c 
f 1x 2  f 1a 2

x  a

(b) Rearrange the equation in part (a) to show that 

f 1x 2  cx  1f 1a 2  ca 2
 How does this show that f  is a linear function? What is 

the slope, and what is the y-intercept?
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234 CHAPTER 2 ■ Functions

2.6  TRAnsFORMATIOns OF FunCTIOns
■ Vertical shifting ■ Horizontal shifting ■ Reflecting Graphs ■ Vertical stretching  
and shrinking ■ Horizontal stretching and shrinking ■ even and Odd Functions

In this section we study how certain transformations of a function affect its graph. This 
will give us a better understanding of how to graph functions. The transformations that 
we study are shifting, reflecting, and stretching.

■ Vertical shifting
Adding a constant to a function shifts its graph vertically: upward if the constant is 
positive and downward if it is negative.

In general, suppose we know the graph of y  f 1x 2 . How do we obtain from it the 
graphs of

y  f 1x 2  c  and  y  f 1x 2  c  1c  0 2
The y-coordinate of each point on the graph of y  f 1x 2  c is c units above the  
y-coordinate of the corresponding point on the graph of y  f 1x 2 . So we obtain the 
graph of y  f 1x 2  c simply by shifting the graph of y  f 1x 2  upward c units. 
Similarly, we obtain the graph of y  f 1x 2  c by shifting the graph of y  f 1x 2  
downward c units.

VeRTICAL sHIFTs OF GRApHs

Suppose c  0.

To graph y  f 1x 2  c, shift the graph of y  f 1x 2  upward c units.

To graph y  f 1x 2  c, shift the graph of y  f 1x 2  downward c units.

c

y

x0

c

y

x0

y=f(x)+c

y=f(x)-c

y=f(x)

y=f(x)

exAMpLe 1 ■ Vertical shifts of Graphs
Use the graph of f 1x 2  x2 to sketch the graph of each function.

(a) g1x 2  x2  3        (b) h1x 2  x2  2

sOLuTIOn  The function f 1x 2  x2 was graphed in Example 1(a), Section 2.2. It is 
sketched again in Figure 1.

(a) Observe that

g1x 2  x2  3  f 1x 2  3

   So the y-coordinate of each point on the graph of g is 3 units above the 
correspond ing point on the graph of f. This means that to graph g, we shift the 
graph of f upward 3 units, as in Figure 1.

Recall that the graph of the function f 
is the same as the graph of the equation 
y  f 1x 2 .
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SECTION 2.6 ■ Transformations of Functions 235

(b)  Similarly, to graph h we shift the graph of f downward 2 units, as shown in  
Figure 1.

x

y

0 2

2

f (x)=≈

h(x)=≈ – 2

g(x)=≈+3

FIGuRe 1

now Try exercises 29 and 31 ■

■ Horizontal shifting
Suppose that we know the graph of y  f 1x 2 . How do we use it to obtain the graphs of

y  f 1x  c 2  and  y  f 1x  c 2  1c  0 2
The value of f 1x  c 2  at x is the same as the value of f 1x 2  at x  c. Since x  c is c 
units to the left of x, it follows that the graph of y  f 1x  c 2  is just the graph of 
y  f 1x 2  shifted to the right c units. Similar reasoning shows that the graph of 
y  f 1x  c 2  is the graph of y  f 1x 2  shifted to the left c units. The following box 
summarizes these facts.

HORIzOnTAL sHIFTs OF GRApHs

Suppose c  0.

To graph y  f 1x  c 2 , shift the graph of y  f 1x 2  to the right c units.

To graph y  f 1x  c 2 , shift the graph of y  f 1x 2  to the left c units.

y=Ï
y=f(x-c)

c

y

x0

y=Ï

y=f(x+c)

c

y

x0

exAMpLe 2 ■ Horizontal shifts of Graphs
Use the graph of f 1x 2  x2 to sketch the graph of each function.

(a) g 1x 2  1x  4 2 2   (b) h1x 2  1x  2 2 2
sOLuTIOn

(a) To graph g, we shift the graph of f to the left 4 units.

(b) To graph h, we shift the graph of f to the right 2 units.
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236 CHAPTER 2 ■ Functions

The graphs of g and h are sketched in Figure 2.

FIGuRe 2

1

y

1 x_4 0

™g(x)=(x + 4)2 h(x)=(x – 2)2f (x)=x2

now Try exercises 33 and 35 ■

exAMpLe 3 ■ Combining Horizontal and Vertical shifts
Sketch the graph of f 1x 2  !x  3  4.

sOLuTIOn  We start with the graph of y  !x (Example 1(c), Section 2.2) and shift 
it to the right 3 units to obtain the graph of y  !x  3. Then we shift the resulting 
graph upward 4 units to obtain the graph of f 1x 2  !x  3  4 shown in Figure 3.

y

x0 3

4

x – 3 + 4f (x)=

(3, 4)

x – 3y=

xy=

FIGuRe 3

now Try exercise 45 ■

■ Reflecting Graphs
Suppose we know the graph of y  f 1x 2 . How do we use it to obtain the graphs of 
y  f 1x 2  and y  f 1x 2 ? The y-coordinate of each point on the graph of y  f 1x 2  
is simply the negative of the y-coordinate of the corresponding point on the graph of 
y  f 1x 2 . So the desired graph is the reflection of the graph of y  f 1x 2  in the x-axis. 
On the other hand, the value of y  f 1x 2  at x is the same as the value of y  f 1x 2  at 

dIsCOVeRy pROjeCT

Transformation stories

If a real-world situation, or “story,” is modeled by a function, how does trans-
forming the function change the story? For example, if the distance traveled on 
a road trip is modeled by a function, then how does shifting or stretching the 
function change the story of the trip? How does changing the story of the trip 
transform the function that models the trip? In this project we explore some 
real-world stories and transformations of these stories.  You can find the project 
at www.stewartmath.com.©
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SECTION 2.6 ■ Transformations of Functions 237

x, so the desired graph here is the reflection of the graph of y  f 1x 2  in the y-axis. 
The following box summarizes these observations.

ReFLeCTInG GRApHs

To graph y  f 1x 2 , reflect the graph of y  f 1x 2  in the x-axis.

To graph y  f 1x 2 , reflect the graph of y  f 1x 2  in the y-axis.

y=Ï

y

x0

y=_Ï

y

x0

y=f(_x)

y=Ï

exAMpLe 4 ■ Reflecting Graphs
Sketch the graph of each function.

(a) f 1x 2  x2        (b) g 1x 2  !x

sOLuTIOn

(a)  We start with the graph of y  x2. The graph of f 1x 2  x2 is the graph of  
y  x2 reflected in the x-axis (see Figure 4).

(b)  We start with the graph of y  !x (Example 1(c) in Section 2.2). The graph of 
g1x 2  !x is the graph of y  !x reflected in the y-axis (see Figure 5). Note 
that the domain of the function g 1x 2  !x is 5x 0  x  06 .

FIGuRe 5

y

x

g(x)= _x

0 1

1
xy=

now Try exercises 37 and 39 ■

y

x

y=x™

f(x)=_x™

2

2

FIGuRe 4

ReNé DescARtes (1596–1650) was 
born in the town of La Haye in  
southern France. From an early age 
Descartes liked mathematics because 
of “the certainty of its results and the 
clarity of its reasoning.” He believed 
that to arrive at truth, one must begin 
by doubting everything, including 
one’s own existence; this led him to 
formulate perhaps the best-known 
sentence in all of philosophy: “I think, 

therefore I am.” In his book Discourse on Method he described what is 
now called the Cartesian plane. This idea of combining algebra and 
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geometry enabled mathematicians for the first time to graph functions 
and thus “see” the equations they were studying. The philosopher John 
Stuart Mill called this invention “the greatest single step ever made in 
the progress of the exact sciences.” Descartes liked to get up late and 
spend the morning in bed thinking and writing. He invented the coordi-
nate plane while lying in bed watching a fly crawl on the ceiling, rea-
soning that he could describe the  exact location of the fly by knowing 
its distance from two  perpendicular walls. In 1649 Descartes became 
the tutor of Queen Christina of Sweden. She liked her lessons at  
5 o’clock in the morning, when, she said, her mind was sharpest. How-
ever, the change from his usual habits and the ice-cold library where 
they studied proved too much for Descartes. In February 1650, after just 
two months of this, he caught pneumonia and died.
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■ Vertical stretching and shrinking
Suppose we know the graph of y  f 1x 2 . How do we use it to obtain the graph of 
y  cf 1x 2 ? The y-coordinate of y  cf 1x 2  at x is the same as the corresponding  

 y-coordinate of y  f 1x 2  multiplied by c. Multiplying the y-coordinates by c has the 
effect of vertically stretching or shrinking the graph by a factor of c (if c  0).

VeRTICAL sTReTCHInG And sHRInkInG OF GRApHs

To graph y  cf 1x 2 :
If c  1, stretch the graph of y  f 1x 2  vertically by a factor of c.

If 0  c  1, shrink the graph of y  f 1x 2  vertically by a factor of c.

y=Ï
y

x0
y=c Ïy=Ï

c>1 0<c<1

y

x0

y=c Ï

exAMpLe 5 ■ Vertical stretching and shrinking of Graphs
Use the graph of f 1x 2  x2 to sketch the graph of each function.

(a) g1x 2  3x2        (b) h1x 2  1
3 x2

sOLuTIOn

(a)  The graph of g is obtained by multiplying the y-coordinate of each point on the 
graph of f by 3. That is, to obtain the graph of g, we stretch the graph of f verti-
cally by a factor of 3. The result is the narrowest parabola in Figure 6.

(b)  The graph of h is obtained by multiplying the y-coordinate of each point on  
the graph of f by 1

3. That is, to obtain the graph of h, we shrink the graph of f 
 vertically by a factor of 1

3. The result is the widest parabola in Figure 6.

now Try exercises 41 and 43 ■

We illustrate the effect of combining shifts, reflections, and stretching in the follow-
ing example.

y

x0 1

4

1
3h(x)= x2

f (x)=x2

g(x)=3x2

FIGuRe 6

computers
For centuries machines have 
been designed to perform 
specific tasks. For example, a 
washing machine washes 
clothes, a weaving machine 
weaves cloth, an adding 
machine adds numbers, and 

so on. The computer has changed all that.
The computer is a machine that does nothing—until it is given 

instructions on what to do. So your computer can play games, draw pic-
tures, or calculate p to a million decimal places; it all depends on what 
program (or instructions) you give the computer. The computer can do all 

Mathematics in the Modern World

this because it is able to accept instructions and logically change those 
instructions based on incoming data. This versatility makes computers 
useful in nearly every aspect of human endeavor.

The idea of a computer was described theoretically in the 1940s by the 
mathematician Allan Turing (see page 155) in what he called a universal 
machine. In 1945 the mathematician John Von Neumann, extending  
Turing’s ideas, built one of the first electronic computers.

Mathematicians continue to develop new theoretical bases for the 
design of computers. The heart of the computer is the “chip,” which is 
capable of processing logical instructions. To get an idea of the chip’s 
complexity, consider that the Pentium chip has over 3.5 million logic 
circuits!
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SECTION 2.6 ■ Transformations of Functions 239

exAMpLe 6 ■ Combining shifting, stretching, and Reflecting
Sketch the graph of the function f 1x 2  1  21x  3 2 2.

sOLuTIOn  Starting with the graph of y  x2, we first shift to the right 3 units to get 
the graph of y  1x  3 2 2. Then we reflect in the x-axis and stretch by a factor of 2 
to get the graph of y  21x  3 2 2. Finally, we shift upward 1 unit to get the graph 
of f 1x 2  1  21x  3 2 2 shown in Figure 7.

FIGuRe 7

y

x1

1

0

(3, 1)

f (x)=1 – 2(x – 3)2

y=–2(x – 3)2

y=(x – 3)2

y=≈

now Try exercise 47 ■

■ Horizontal stretching and shrinking
Now we consider horizontal shrinking and stretching of graphs. If we know the graph 
of y  f 1x 2 , then how is the graph of y  f 1cx 2  related to it? The y-coordinate of 
y  f 1cx 2  at x is the same as the y-coordinate of y  f 1x 2  at cx. Thus the x-coordinates 
in the graph of y  f 1x 2  correspond to the x-coordinates in the graph of y  f 1cx 2  
multiplied by c. Looking at this the other way around, we see that the x-coordinates in 
the graph of y  f 1cx 2  are the x-coordinates in the graph of y  f 1x 2  multiplied by 
1/c. In other words, to change the graph of y  f 1x 2  to the graph of y  f 1cx 2 , we 
must shrink (or stretch) the graph horizontally by a factor of 1/c (if c  0), as summa-
rized in the following box.

HORIzOnTAL sHRInkInG And sTReTCHInG OF GRApHs

To graph y  f 1cx 2 :
If c  1, shrink the graph of y  f 1x 2  horizontally by a factor of 1/c.

If 0  c  1, stretch the graph of y  f 1x 2  horizontally by a factor of 1/c.

y=Ï

y

x0

y=f(cx)

y=Ï

y

x0

y=f(cx)

c>1 0<c<1

Note that the shifts and stretches follow 
the normal order of operations when 
evaluating the function. In particular, 
the upward shift must be performed 
last.
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exAMpLe 7 ■ Horizontal stretching and shrinking of Graphs
The graph of y  f 1x 2  is shown in Figure 8. Sketch the graph of each function.

(a) y  f 12x 2         (b) y  f A12 xB

FIGuRe 8 y  f 1x 2

y

x0 1

1

sOLuTIOn  Using the principles described on page 239, we (a) shrink the graph hori-
zontally by the factor 1

2 to obtain the graph in Figure 9, and (b) stretch the graph hori-
zontally by the factor 2 to obtain the graph in Figure 10.

y

x0 1

1

1
2

FIGuRe 9 y  f 12x 2

y

x0 1

1

2_1

FIGuRe 10 y  f A12 xB
now Try exercise 71 ■

■ even and Odd Functions
If a function f satisfies f 1x 2  f 1x 2  for every number x in its domain, then f is called 
an even function. For instance, the function f 1x 2  x2 is even because

f 1x 2  1x 2 2  11 2 2x2  x2  f 1x 2
The graph of an even function is symmetric with respect to the y-axis (see Figure 11). 
This means that if we have plotted the graph of f for x  0, then we can obtain the 
entire graph simply by reflecting this portion in the y-axis.

If f satisfies f 1x 2  f 1x 2  for every number x in its domain, then f is called an 
odd function. For example, the function f 1x 2  x 3 is odd because

f 1x 2  1x 2 3  11 2 3x3  x3  f 1x 2
The graph of an odd function is symmetric about the origin (see Figure 12). If we have 
plotted the graph of f for x  0, then we can obtain the entire graph by rotating this 
portion through 180° about the origin. (This is equivalent to reflecting first in the x-axis 
and then in the y-axis.)

FIGuRe 11 f 1x 2  x2 is an even 
function.

y

x

Ï=x™

0 x_x

FIGuRe 12 f 1x 2  x3 is an odd 
function.

0

y

x

Ï=x£

x
_x
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eVen And Odd FunCTIOns

Let f be a function.

f is even if f 1x 2  f 1x 2  for all x in the domain of f.

f is odd if f 1x 2  f 1x 2  for all x in the domain of f.

y

x0

The graph of an even function is
symmetric with respect to the y-axis.

The graph of an odd function is
symmetric with respect to the origin.

_x x

Ïf(_x)

y

x
_x

x0
Ï

f(_x)

exAMpLe 8 ■ even and Odd Functions
Determine whether the functions are even, odd, or neither even nor odd.

(a) f 1x 2  x5  x

(b) g 1x 2  1  x4

(c) h 1x 2  2x  x2

sOLuTIOn

(a)  f 1x 2  1x 2 5  1x 2
    x5  x  1x5  x 2
    f 1x 2
  Therefore f is an odd function.

(b) g1x 2  1  1x 2 4  1  x4  g1x 2
  So g is even.

(c) h 1x 2  21x 2  1x 2 2  2x  x2

   Since h1x 2 ? h1x 2  and h1x 2 ? h1x 2 , we conclude that h is neither even  
nor odd.

now Try exercises 83, 85, and 87 ■

The graphs of the functions in Example 8 are shown in Figure 13. The graph of f is 
symmetric about the origin, and the graph of g is symmetric about the y-axis. The graph 
of h is not symmetric about either the y-axis or the origin.

(a) (b) (c)

2.5

_2.5

_1.75 1.75

Ï=x∞+x 2.5

_2.5

_2 2

˝=1-x¢

2.5

_2.5

_1 3

h(x)=2x-x™

FIGuRe 13
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soNyA KoVAleVsKy (1850–1891) is 
considered the most important woman 
mathematician of the 19th century. She 
was born in Moscow to an aristocratic 
family. While a child, she was exposed to 
the principles of calculus in a very 
unusual fashion: Her bedroom was tem-
porarily wallpapered with the pages of a 
calculus book. She later wrote that she 
“spent many hours in front of that wall, 
trying to understand it.” Since Russian law 
forbade women from studying in univer-
sities, she entered a marriage of conve-
nience, which allowed her to travel to 
Germany and obtain a doctorate in math-
ematics from the University of Göttingen. 
She eventually was awarded a full profes-
sorship at the University of Stockholm, 
where she taught for eight years before 
dying in an influenza epidemic at the age 
of 41. Her research was instrumental in 
helping to put the ideas and applications 
of functions and calculus on a sound and 
logical foundation. She received many 
accolades and prizes for her research 
work.
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COnCepTs
1–2 ■ Fill in the blank with the appropriate direction (left, right, 
up, or down).

 1. (a)  The graph of y  f 1x 2  3 is obtained from the graph 

 of y  f 1x 2  by shifting   3 units.

(b)  The graph of y  f 1x  3 2  is obtained from the graph 

 of y  f 1x 2  by shifting   3 units.

 2. (a)  The graph of y  f 1x 2  3 is obtained from the graph 

 of y  f 1x 2  by shifting   3 units.

(b)  The graph of y  f 1x  3 2  is obtained from the graph 

 of y  f 1x 2  by shifting   3 units.

 3. Fill in the blank with the appropriate axis (x-axis or y-axis).

(a)  The graph of y  f 1x 2  is obtained from the graph of 

 y  f 1x 2  by reflecting in the    .

(b)  The graph of y  f 1x 2  is obtained from the graph of 

 y  f 1x 2  by reflecting in the    .

 4. A graph of a function f  is given. Match each equation with 
one of the graphs labeled I–IV.

(a)  f 1x 2  2 (b) f 1x  3 2
(c)  f 1x  2 2  (d) f 1x 2  4

y

x

f
1

1

I III

II

IV

0

 5. If a function f  is an even function, then what type of symme-
try does the graph of f  have?

 6. If a function f  is an odd function, then what type of symme-
try does the graph of f  have?

skILLs
7–18 ■ describing Transformations  Suppose the graph of f is 
given. Describe how the graph of each function can be obtained 
from the graph of f.

 7. (a) f 1x 2  1 (b) f 1x  2 2
 8. (a) f 1x  5 2  (b) f 1x 2  4

 9. (a) f 1x 2  (b) 3f 1x 2
 10. (a) f 1x 2  (b) 1

3 f 1x 2
 11. (a) y  f 1x  5 2  2 (b) y  f 1x  1 2  1

 12. (a) y  f 1x  3 2  2 (b) y  f 1x  7 2  3

 13. (a) y  f 1x 2  5 (b) y  3f 1x 2  5

14. (a) 1  f 1x 2  (b) 2  1
5 
f 1x 2

15. (a) 2f 1x  5 2  1 (b) 1
4 f 1x  3 2  5

16. (a) 1
3 f 1x  2 2  5 (b) 4f 1x  1 2  3

17. (a) y  f 14x 2  (b) y  f A14 xB
18. (a) y  f 12x 2  1 (b) y  2f A12 xB

19–22 ■ describing Transformations  Explain how the graph of g 
is obtained from the graph of f.

 19. (a) f 1x 2  x2, g1x 2  1x  2 2 2
(b) f 1x 2  x2, g1x 2  x2  2

 20. (a) f 1x 2  x3, g1x 2  1x  4 2 3
(b) f 1x 2  x3, g1x 2  x3  4

 21. (a) f 1x 2  0  x 0 , g 1x 2  0  x  2 0  2

(b) f 1x 2  0  x 0 , g 1x 2  0  x  2 0  2

 22. (a) f 1x 2  !x, g 1x 2  !x  1

(b) f 1x 2  !x, g 1x 2  !x  1

 23. Graphing Transformations  Use the graph of y  x2 in Fig-
ure 4 to graph the  following.

(a) g 1x 2  x2  1 (b) g 1x 2  1x  1 2 2
(c) g 1x 2  x2 (d) g 1x 2  1x  1 2 2  3

 24. Graphing Transformations  Use the graph of y  !x in Fig-
ure 5 to graph the  following.

(a) g 1x 2  !x  2 (b) g 1x 2  !x  1

(c) g 1x 2  !x  2  2 (d) g 1x 2  !x  1

25–28 ■ Identifying Transformations  Match the graph with the 
function. (See the graph of y  0  x 0  on page 202.)

 25. y  0  x  1 0  26. y  0  x  1 0
 27. y  0  x 0  1 28. y   0  x 0

I y

x
0

2

2

y

x0 2

2

II

y

x
0

2

2

y

x0 2

2

III IV

2.6 exeRCIses
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SECTION 2.6 ■ Transformations of Functions 243

29–52 ■ Graphing Transformations  Sketch the graph of the 
function, not by plotting points, but by starting with the graph of 
a standard function and applying transformations.

 29. f 1x 2  x2  3 30. f 1x 2  x2  4

31. f 1x 2  0  x 0  1 32. f 1x 2  !x  1

33. f 1x 2  1x  5 2 2 34. f 1x 2  1x  1 2 2

35. f 1x 2  0  x  2 0  36. f 1x 2  !x  4

37. f 1x 2  x3 38. f 1x 2   0  x 0
39. y  !4 x 40. y  !3

x

41. y  1
4 x2 42. y  5!x

43. y  3 0  x 0  44. y  1
2 0  x 0

45. y  1x  3 2 2  5 46. y  !x  4  3

47. y  3  1
2 1x  1 2 2 48. y  2  !x  1

 49. y  0  x  2 0  2 50. y  2  0  x 0
 51. y  1

2 !x  4  3 52. y  3  21x  1 2 2

53–62 ■ Finding equations for Transformations  A function f is 
given, and the indicated transformations are applied to its graph 
(in the given order). Write an equation for the final transformed 
graph.

 53. f 1x 2  x2; shift downward 3 units

 54. f 1x 2  x3; shift upward 5 units

 55. f 1x 2  !x; shift 2 units to the left

 56. f 1x 2  !3 x; shift 1 unit to the right

 57. f 1x 2  0  x 0 ; shift 2 units to the left and shift downward  
5 units

 58. f 1x 2  0  x 0 ; reflect in the x-axis, shift 4 units to the right, 
and shift upward 3 units. 

 59. f 1x 2  !4 x; reflect in the y-axis and shift upward 1 unit

 60. f 1x 2  x2; shift 2 units to the left and reflect in the x-axis 

 61. f 1x 2  x2; stretch vertically by a factor of 2, shift downward  
2 units, and shift 3 units to the right

 62. f 1x 2  0  x 0 ; shrink vertically by a factor of 1
 2 

, shift to the 
left 1 unit, and shift upward 3 units

63–68 ■ Finding Formulas for Transformations  The graphs of f 
and g are given. Find a formula for the function g.

 63. 

x

y

g
f(x)=x2 1

10

 64. 

x

y

1

10

g

f(x)=x3

 65. 

1

1
0 x

y
g

f(x)=|x|

 66. 

10 x

y
g

f(x)=|x|2

 67. 

0
1

1 x

y

g

f (x)= x

 

68. 

0 x

y

g

f (x)=x2 2

2

69–70 ■ Identifying Transformations  The graph of y  f 1x 2  is 
given. Match each equation with its graph.

 69. (a) y  f 1x  4 2  (b) y  f 1x 2  3

(c) y  2f 1x  6 2  (d) y  f 12x 2

y

x3

3

_3

_3

_6 6

6 ��

�

�

Ï

0

 70. (a) y  1
3f 1x 2  (b) y  f 1x  4 2

(c) y  f 1x  4 2  3 (d) y  f 1x 2

y

x3

3

_3

_3

_6 6

6 �

�

�

�
Ï

0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



244 CHAPTER 2 ■ Functions

71–74 ■ Graphing Transformations  The graph of a function f 
is given. Sketch the graphs of the following transformations of f.

 71. (a) y  f 1x  2 2  (b) y  f 1x 2  2

(c) y  2f 1x 2  (d) y  f 1x 2  3

(e) y  f 1x 2  (f) y  1
2f 1x  1 2

0

2

2 x

f

y

 72. (a) y  f 1x  1 2  (b) y  f 1x 2
(c) y  f 1x  2 2  (d) y  f 1x 2  2

(e) y  f 1x 2  (f) y  2f 1x 2

0

2

2 x

y

f

 73. (a) y  f 12x 2  (b) y  f A12 
xB

x

y

1

10

f

 74. (a) y  f 13x 2  (b) y  f A13 
xB

y

x

f

0 3

_3

_1

1

75–76 ■ Graphing Transformations  Use the graph of f 1x 2  “x‘ 
described on page 199 to graph the indicated function.

 75. y  “2x‘ 76. y  “ 
1
4  
x‘

77–80 ■ Graphing Transformations  Graph the functions on the 
same screen using the given viewing rectangle. How is each graph 
related to the graph in part (a)?

 77. Viewing rectangle 38, 8 4  by 32, 8 4
(a) y  !4 x (b) y  !4 x  5

(c) y  2!4 x  5 (d) y  4  2!4 x  5

 78. Viewing rectangle 38, 8 4  by 36, 6 4
(a) y  0  x 0  (b) y   0  x 0
(c) y  3 0  x 0  (d) y  3 0  x  5 0

 79. Viewing rectangle 34, 6 4  by 34, 4 4
(a) y  x6 (b) y  1

3 x6

(c) y   
1
3 x6 (d) y   

1
3 
1x  4 2 6

 80. Viewing rectangle 36, 6 4  by 34, 4 4
(a) y 

1

!x
 (b) y 

1

!x  3

(c) y 
1

2 !x  3
 (d) y 

1

2 !x  3
 3

81–82 ■ Graphing Transformations  If f 1x 2  "2x  x2, 
graph the following functions in the viewing rectangle 35, 5 4  by 
34, 4 4 . How is each graph related to the graph in part (a)?

 81. (a) y  f 1x 2     (b) y  f 12x 2     (c) y  f  A12 xB
 82. (a) y  f 1x 2  (b) y  f 1x 2

(c) y  f 1x 2  (d) y  f 12x 2
(e) y  f A 

1
2 xB

83–90 ■ even and Odd Functions  Determine whether the func-
tion f is even, odd, or neither. If f is even or odd, use symmetry to 
sketch its graph.

83. f 1x 2  x4 84. f 1x 2  x3

85. f 1x 2  x2  x 86. f 1x 2  x4  4x2

87. f 1x 2  x3  x 88. f 1x 2  3x3  2x2  1

 89. f 1x 2  1  !3 x 90. f 1x 2  x 
1
x

skILLs plus
91–92 ■ Graphing even and Odd Functions  The graph of a 
function defined for x  0 is given.  Complete the graph for x  0 
to make (a) an even function and (b) an odd function.

 91. 

x

y

1
10

 92. 

x

y

1
10

93–94 ■ Graphing the Absolute Value of a Function  These 
exercises show how the graph of y  0  f 1x 2  0  is obtained from 
the graph of y  f 1x 2 .
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SECTION 2.6 ■ Transformations of Functions 245

 93. The graphs of f1x 2  x2  4 and g 1x 2  0  x2  4 0  are 
shown. Explain how the graph of g is obtained from the 
graph of f .

y

x2

4

_2

8

0

_4

˝=|≈-4|

y

x2

4

_2

_4

8

0

Ï=≈-4

 94. The graph of f 1x 2  x4  4x2 is shown. Use this graph to 
sketch the graph of g 1x 2  0  x4  4x2

 0 .

1 3

2

4

_1_3

_4

y

x

95–96 ■ Graphing the Absolute Value of a Function  Sketch the 
graph of each function.

 95. (a) f 1x 2  4x  x2 (b) g 1x 2  0  4x  x2
 0

 96. (a) f 1x 2  x3 (b) g 1x 2  0  x3
 0

AppLICATIOns
 97. Bungee jumping  Luisa goes bungee jumping from a 500-ft-

high bridge. The graph shows Luisa’s height h1 t 2  (in ft) after 
t seconds.

(a)  Describe in words what the graph indicates about Luisa’s 
bungee jump.

(b)  Suppose Luisa goes bungee jumping from a 400-ft-high 
bridge. Sketch a new graph that shows Luisa’s height 
H1 t 2  after t seconds.

(c)  What transformation must be performed on the function 
h to obtain the function H? Express the function H in 
terms of h.

t (s)

y (ft)

500

40

 98. swimming Laps  Miyuki practices swimming laps with her 
team. The function y  f 1 t 2  graphed below gives her dis-
tance (in meters) from the starting edge of the pool t sec-
onds after she starts her laps.

(a)  Describe in words Miyuki’s swim practice. What is her 
average speed for the first 30 s?

(b)  Graph the function y  1.2f 1 t 2 . How is the graph of 
the new function related to the graph of the original 
function?

(c)  What is Miyuki’s new average speed for the first  
30 s?

t (s)

d (m)

50

300

 99. Field Trip  A class of fourth graders walks to a park on a 
field trip. The function y  f 1 t 2  graphed below gives their 
distance from school (in ft) t minutes after they left school.

(a)  What is the average speed going to the park? How long 
was the class at the park? How far away is the park?

(b)  Graph the function y  0.5f 1 t 2 . How is the graph of 
the new function related to the graph of the original 
function? What is the average speed going to the new 
park? How far away is the new park?

(c)  Graph the function y  f 1 t  10 2 . How is the graph of 
the new function related to the graph of the original 
function? How does the field trip descibed by this func-
tion differ from the original trip?

t (min)

d (ft)

200

100

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
100–101 ■ dIsCuss: Obtaining Transformations  Can the func-
tion g be obtained from f  by transformations? If so, describe the 
transformations needed.

100. The functions f  and g are described algebraically as 
follows: 

f 1x 2  1x  2 2 2  g1x 2  1x  2 2 2  5
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246 CHAPTER 2 ■ Functions

101. The functions f  and g are described graphically in the figure.

x

y

g

f

0 1

1

102. dIsCuss: sums of even and Odd Functions  If f and g are 
both even functions, is f  g necessarily even? If both are 

odd, is their sum necessarily odd? What can you say about 
the sum if one is odd and one is even? In each case, prove 
your answer.

103. dIsCuss: products of even and Odd Functions  Answer the 
same questions as in Exercise 102, except this time consider 
the product of f and g instead of the sum.

104. dIsCuss: even and Odd power Functions  What must be 
true about the integer n if the function

f 1x 2  x n

  is an even function? If it is an odd function? Why do you 
think the names “even” and “odd” were chosen for these 
function properties?

2.7 COMBInInG FunCTIOns
■ sums, differences, products, and Quotients ■ Composition of Functions  
■ Applications of Composition

In this section we study different ways to combine functions to make new functions.

■ sums, differences, products, and Quotients
Two functions f and g can be combined to form new functions f  g, f  g, fg, and 
f/g in a manner similar to the way we add, subtract, multiply, and divide real numbers. 
For example, we define the function f  g by

1f  g 2 1x 2  f 1x 2  g1x 2
The new function f  g is called the sum of the functions f and g; its value at x is 
f 1x 2  g1x 2 . Of course, the sum on the right-hand side makes sense only if both 
f 1x 2  and g1x 2  are defined, that is, if x belongs to the domain of f and also to the 
domain of g. So if the domain of f is A and the domain of g is B, then the domain of 
f  g is the intersection of these domains, that is, A > B. Similarly, we can define 
the difference f  g, the product fg, and the quotient f/g of the functions f and g. 
Their domains are A > B, but in the case of the quotient we must remember not to 
divide by 0.

ALGeBRA OF FunCTIOns

Let f and g be functions with domains A and B. Then the functions f  g,  
f  g, fg, and f/g are defined as follows.

 1f  g 2 1x 2  f 1x 2  g1x 2     Domain A > B

 1f  g 2 1x 2  f 1x 2  g1x 2     Domain A > B

 1fg 2 1x 2  f 1x 2g1x 2     Domain A > B

 a f
g b 1x 2 

f 1x 2
g1x 2       Domain 5x [ A > B 0  g1x 2 ? 06

The sum of f and g is defined by

1f  g 2 1x 2  f 1x 2  g1x 2
The name of the new function is  
“f  g.” So this  sign stands for the 
operation of addition of functions.  
The  sign on the right side, however, 
stands for addition of the numbers f1x 2  
and g1x 2 .
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SECTION 2.7 ■ Combining Functions 247

exAMpLe 1 ■ Combinations of Functions and Their domains

Let f 1x 2 
1

x  2
 and g1x 2  !x.

(a) Find the functions f  g, f  g, fg, and f/g and their domains.

(b) Find 1f  g 2 14 2 , 1f  g 2 14 2 , 1fg 2 14 2 , and 1f/g 2 14 2 .
sOLuTIOn

(a)  The domain of f is 5x 0  x ? 26 , and the domain of g is 5x 0  x  06 . The  
intersection of the domains of f and g is

5x 0  x  0 and x ? 26  30, 2 2 < 12, ` 2
  Thus we have

 1f  g 2 1x 2  f 1x 2  g1x 2 
1

x  2
 !x Domain 5x 0  x  0 and x ? 26

 1f  g 2 1x 2  f 1x 2  g1x 2 
1

x  2
 !x Domain 5x 0  x  0 and x ? 26

 1fg 2 1x 2  f 1x 2g1x 2 
!x

x  2
 Domain 5x 0  x  0 and x ? 26

 a f
g b 1x 2 

f 1x 2
g1x 2 

1

1x  2 2!x
 Domain 5x 0  x  0 and x ? 26

  Note that in the domain of f/g we exclude 0 because g10 2  0.

(b) Each of these values exist because x  4 is in the domain of each  
function:

 1f  g 2 14 2  f 14 2  g14 2 
1

4  2
 !4 

5

2

 1f  g 2 14 2  f 14 2  g14 2 
1

4  2
 !4   

3

2

 1fg 2 14 2  f 14 2g14 2  a 1

4  2
b  !4  1

 a f
g b 14 2 

f 14 2
g14 2 

1

14  2 2  !4


1

4

now Try exercise 9 ■

To divide fractions, invert the  
denominator and multiply:

 
1/ 1x  22

!x


1/ 1x  2 2
!x/1

  
1

x  2
# 1

!x

  
1

1x  2 2!x

dIsCOVeRy pROjeCT

Iteration and Chaos

The iterates of a function f at a point x are the numbers f 1x 2 , f 1f 1x 22 , 
f 1f 1f 1x 222 , and so on. We examine iterates of the logistic function, which mod-
els the population of a species with limited potential for growth (such as lizards 
on an island or fish in a pond). Iterates of the model can help us to predict 
whether the population will eventually stabilize or whether it will fluctuate  
chaotically. You can find the project at www.stewartmath.com.
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248 CHAPTER 2 ■ Functions

The graph of the function f  g can be obtained from the graphs of f and g by 
graphical addition. This means that we add corresponding y-coordinates, as illustrated 
in the next example.

exAMpLe 2 ■ using Graphical Addition
The graphs of f and g are shown in Figure 1. Use graphical addition to graph the 
function f  g.

sOLuTIOn  We obtain the graph of f  g by “graphically adding” the value of f 1x 2  
to g1x 2  as shown in Figure 2. This is implemented by copying the line segment PQ 
on top of PR to obtain the point S on the graph of f  g.

y

xP
f(x)

g(x)

y=(f+g)(x)

y=˝

y=Ï

f(x)
S
R

Q

FIGuRe 2 Graphical addition

y

x

y=˝

y=Ï

FIGuRe 1

now Try exercise 21 ■

■ Composition of Functions
Now let’s consider a very important way of combining two functions to get a new 
function. Suppose f 1x 2  !x and g1x 2  x2  1. We may define a new function  
h as

h1x 2  f 1g1x 22  f 1x2  1 2  "x2  1

The function h is made up of the functions f and g in an interesting way: Given a number 
x, we first apply the function g to it, then apply f to the result. In this case, f is the rule 
“take the square root,” g is the rule “square, then add 1,” and h is the rule “square, then 
add 1, then take the square root.” In other words, we get the rule h by applying the rule g 
and then the rule f. Figure 3 shows a machine diagram for h.

gx
input

f ≈+1
output

x2+1 

FIGuRe 3 The h machine is composed of the g machine (first) and 
then the f  machine.

In general, given any two functions f and g, we start with a number x in the domain 
of g and find its image g1x 2 . If this number g1x 2  is in the domain of f, we can then 
calculate the value of f 1g1x 22 . The result is a new function h1x 2  f 1g1x 22  that is ob-
tained by substituting g into f. It is called the composition (or composite) of f and g and 
is denoted by f  g (“f composed with g”).
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COMpOsITIOn OF FunCTIOns

Given two functions f and g, the composite function f  g (also called the 
composition of f and g) is defined by

1f  g 2 1x 2  f 1g1x 22

The domain of f  g is the set of all x in the domain of g such that g1x 2  is in the 
domain of f. In other words, 1f  g 2 1x 2  is defined whenever both g1x 2  and f 1g1x 22  are 
defined. We can picture f  g using an arrow diagram (Figure 4).

FIGuRe 4 Arrow diagram for f  g

x g(x) fÓ˝Ô

g f

f$g

exAMpLe 3 ■ Finding the Composition of Functions
Let f 1x 2  x2 and g1x 2  x  3.

(a) Find the functions f  g and g  f  and their domains.

(b) Find 1f  g 2 15 2  and 1g  f 2 17 2 .
sOLuTIOn

(a) We have

 1f  g 2 1x 2  f 1g1x 22  Definition of f  g

   f 1x  3 2  Definition of g

   1x  3 2 2  Definition of f

and  1g  f 2 1x 2  g1f 1x 22  Definition of g  f

   g1x2 2  Definition of f

   x2  3  Definition of g

  The domains of both f  g and g  f are R.

(b) We have

 1f  g 2 15 2  f 1g15 22  f 12 2  22  4

 1g  f 2 17 2  g1f 17 22  g149 2  49  3  46

now Try exercises 27 and 49 ■

You can see from Example 3 that, in general, f  g ? g  f . Remember that the 
notation f  g means that the function g is applied first and then f is applied  
second.

In Example 3, f is the rule “square,”  
and g is the rule “subtract 3.” The  
function f  g first subtracts 3 and then 
squares; the function g  f first squares 
and then subtracts 3.
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250 CHAPTER 2 ■ Functions

exAMpLe 4 ■ Finding the Composition of Functions
If f 1x 2  !x and g1x 2  !2  x, find the following functions and their domains.

(a) f  g      (b) g  f       (c) f  f       (d) g  g

sOLuTIOn

(a)  1f  g 2 1x 2  f 1g1x 22  Definition of f  g

    f 1!2  x 2  Definition of g

    "!2  x  Definition of f
    !4 2  x

  The domain of f  g is 5x 0  2  x  06  5x 0  x  26  1`,  2 4 .
(b) 1g  f 2 1x 2  g1f 1x 22  Definition of g  f

    g1!x 2  Definition of f
    "2  !x Definition of g

   For !x to be defined, we must have x  0. For "2  !x to be defined, we 
must have 2  !x  0, that is, !x  2, or x  4. Thus we have 0  x  4, so 
the domain of g  f  is the closed interval 30, 44.

(c)  1f  f 2 1x 2  f 1f 1x 22  Definition of f   f

    f 1!x 2  Definition of f
    "!x  Definition of f
    !4 x

  The domain of f  f  is 30,  ` 2 .
(d) 1g  g 2 1x 2  g1g1x 22  Definition of g  g

    g1!2  x 2  Definition of g

    "2  !2  x Definition of g

   This expression is defined when both 2  x  0 and 2  !2  x  0. The first 
inequality means x  2, and the second is equivalent to !2  x  2, or 
2  x  4, or x  2. Thus 2  x  2, so the domain of g  g is 32, 24.

now Try exercise 55 ■

It is possible to take the composition of three or more functions. For instance, the 
composite function f  g  h is found by first applying h, then g, and then f as  
follows:

1f  g  h 2 1x 2  f 1g1h1x 222

exAMpLe 5 ■ A Composition of Three Functions
Find f  g  h if f 1x 2  x/ 1x  1 2 , g1x 2  x10, and h1x 2  x  3.

sOLuTIOn

 1f  g  h 2 1x 2  f 1g1h1x 222  Definition of f   g  h

  f 1g1x  3 22  Definition of h

  f 11x  3 2 10 2  Definition of g

  
1x  3 2 10

1x  3 2 10  1
 Definition of f

now Try exercise 59 ■

The graphs of f and g of Example 4, as 
well as those of f  g, g  f, f  f, and  
g  g, are shown below. These graphs 
indicate that the operation of composi-
tion can produce functions that are quite 
different from the original functions.

f$g

g$f

f$f

g$g

fg
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So far, we have used composition to build complicated functions from simpler ones. 
But in calculus it is useful to be able to “decompose” a complicated function into sim-
pler ones, as shown in the following example.

exAMpLe 6 ■ Recognizing a Composition of Functions
Given F1x 2  !4 x  9, find functions f and g such that F  f  g.

sOLuTIOn  Since the formula for F says to first add 9 and then take the fourth root, we let

g1x 2  x  9  and  f 1x 2  !4 x

Then

 1f  g 2 1x 2  f 1g1x 22     Definition of f   g

  f 1x  9 2     Definition of g

  !4 x  9     Definition of f

  F1x 2
now Try exercise 63 ■

■ Applications of Composition
When working with functions that model real-world situations, we name the variables us-
ing letters that suggest the quantity being modeled. We may use t for time, d for distance, 
V for volume, and so on. For example, if air is being pumped into a balloon, then the radius 
R of the balloon is a function of the volume V of air pumped into the balloon, say, 
R  f 1V 2 . Also the volume V is a function of the time t that the pump has been working, 
say, V  g1 t 2 . It follows that the radius R is a function of the time t given by R  f 1g1 t 22 .

exAMpLe 7 ■ An Application of Composition of Functions
A ship is traveling at 20 mi/h parallel to a straight shoreline. The ship is 5 mi from 
shore. It passes a lighthouse at noon.

(a)  Express the distance s between the lighthouse and the ship as a function of d, the 
distance the ship has traveled since noon; that is, find f so that s  f 1d 2 .

(b)  Express d as a function of t, the time elapsed since noon; that is, find g so that 
d  g1 t 2 .

(c) Find f  g. What does this function represent?

sOLuTIOn  We first draw a diagram as in Figure 5.

(a)  We can relate the distances s and d by the Pythagorean Theorem. Thus s can be 
expressed as a function of d by

s  f 1d 2  "25  d 2

(b)  Since the ship is traveling at 20 mi/h, the distance d it has traveled is a function 
of t as follows:

d  g1 t 2  20t

(c) We have

 1f  g 2 1 t 2  f 1g1 t 22   Definition of f  g

  f 120t 2   Definition of g

  "25  120t 2 2  Definition of f

   The function f  g gives the distance of the ship from the lighthouse as a function  
of time.

now Try exercise 77 ■

5 mi
time=noon

time=t

s d

FIGuRe 5

distance  rate  time
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COnCepTs
 1. From the graphs of f  and g in the figure, we find

1f  g 2 12 2       1f  g 2 12 2   

1fg 2 12 2    a f
g
b 12 2   

0 

2 

2 x 

g 

f 

y 

 2. By definition, 1f  g 2 1x 2     . So if g12 2  5 and 

  f 15 2  12, then 1f  g 2 12 2      .

 3. If the rule of the function f  is “add one” and the rule of the 
function g is “multiply by 2,” then the rule of f  g is 

  “   ,” 

  and the rule of g  f  is

  “   .”

 4. We can express the functions in Exercise 3 algebraically as 

f 1x 2    g1x 2   

1f  g 2 1x 2    1g  f 2 1x 2   

5–6 ■ Let f and g be functions.

 5. (a)  The function 1f  g 2 1x 2  is defined for all values of x 

   that are in the domains of both   and    . 

(b)  The function 1fg 2 1x 2  is defined for all values of x that are 

in the domains of both   and    .

(c)  The function 1f/g 2 1x 2  is defined for all values of x that 

are in the domains of both   and    , and 

g1x 2  is not equal to    . 

 6. The composition 1f  g 2 1x 2  is defined for all values of x for 

which x is in the domain of   and g1x 2  is in the 

domain of    .

skILLs
7–16 ■ Combining Functions  Find f  g, f  g, fg, and f/g 
and their domains.

 7. f 1x 2  x,  g1x 2  2x  8. f 1x 2  x,  g1x 2  !x

 9. f 1x 2  x2  x, g1x 2  x2 

10. f 1x 2  3  x2, g1x 2  x2  4

 11. f 1x 2  5  x, g1x 2  x2  3x

 12. f 1x 2  x2  2x,  g1x 2  3x2  1

 13. f 1x 2  "25  x2, g1x 2  !x  3

14. f 1x 2  "16  x2, g1x 2  "x2  1

 15. f 1x 2 
2
x

,  g1x 2 
4

x  4

 16. f 1x 2 
2

x  1
,  g1x 2 

x

x  1

17–20 ■ domain  Find the domain of the function.

 17. f 1x 2  !x  !3  x 

18. f 1x 2  !x  4 
!1  x

x

 19. h1x 2  1x  3 21/4 20. k1x 2 
!x  3

x  1

21–22 ■ Graphical Addition  Use graphical addition to sketch 
the graph of f  g.

 21. 

0
f

g

x

y  22. 

0

f

g x

y

23–26 ■ Graphical Addition  Draw the graphs of f, g, and 
f  g on a common screen to illustrate graphical addition.

 23. f 1x 2  !1  x,  g1x 2  !1  x

24. f 1x 2  x2,  g1x 2  !x

 25. f 1x 2  x2,  g1x 2  1
3 x3

 26. f 1x 2  !4 1  x,  g1x 2  Å1 
x2

9

27–32 ■ evaluating Composition of Functions  Use 
f 1x 2  2x  3 and g1x 2  4  x2 to evaluate the expression.

27. (a) f 1g10 22  (b) g1f 10 22
28. (a) f 1f 12 22  (b) g1g13 22
29. (a) 1f  g 2 12 2  (b) 1g  f 2 12 2
30. (a) 1f  f 2 11 2  (b) 1g  g 2 11 2
 31. (a) 1f  g 2 1x 2  (b) 1g  f 2 1x 2
 32. (a) 1f  f 2 1x 2  (b) 1g  g 2 1x 2

2.7 exeRCIses
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33–38 ■ Composition using a Graph  Use the given graphs of f 
and g to evaluate the  expression.

x

y

0

f
g

2

2

 33. f 1g12 22  34. g1f 10 22
 35. 1g  f 2 14 2  36. 1f  g 2 10 2
 37. 1g  g 2 12 2  38. 1f  f 2 14 2

39–46 ■ Composition using a Table  Use the table to evaluate 
the expression.

x 1 2 3 4 5 6

fxxc 2 3 5 1 6 3

gxxc 3 5 6 2 1 4

 39. f 1g12 22  40. g1f 12 22
 41. f 1f 11 22  42. g1g12 22
 43. 1f  g 2 16 2  44. 1g  f 2 12 2
 45. 1f  f 2 15 2  46. 1g  g 2 12 2

47–58 ■ Composition of Functions  Find the functions f  g, 
g  f , f  f , and g  g and their domains.

 47. f 1x 2  2x  3,  g1x 2  4x  1

 48. f 1x 2  6x  5,  g1x 2 
x

2

49. f 1x 2  x2,  g1x 2  x  1

 50. f 1x 2  x3  2,  g1x 2  !3 x

 51. f 1x 2 
1
x

,  g1x 2  2x  4

 52. f 1x 2  x2,  g1x 2  !x  3

 53. f 1x 2  0  x 0 ,  g1x 2  2x  3

 54. f 1x 2  x  4,  g1x 2  0  x  4 0

55. f 1x 2 
x

x  1
,  g1x 2  2x  1

 56. f 1x 2 
1

!x
,  g1x 2  x2  4x

 57. f 1x 2 
x

x  1
,  g1x 2 

1
x

 58. f 1x 2 
2
x

,  g1x 2 
x

x  2

59–62 ■ Composition of Three Functions  Find f  g  h.

59. f 1x 2  x  1,  g1x 2  !x,  h1x 2  x  1

 60. f 1x 2 
1
x

,  g1x 2  x3,  h1x 2  x2  2

 61. f 1x 2  x4  1,  g1x 2  x  5,  h1x 2  !x

 62. f 1x 2  !x,  g1x 2 
x

x  1
,  h1x 2  !3 x

63–68 ■ expressing a Function as a Composition  Express the 
function in the form f  g.

63. F1x 2  1x  9 2 5 64. F1x 2  !x  1

 65. G1x 2 
x2

x2  4
 66. G1x 2 

1

x  3

 67. H1x 2  0  1  x3
 0  68. H1x 2  #1  !x

69–72 ■ expressing a Function as a Composition  Express the 
function in the form f  g  h.

 69. F1x 2 
1

x2  1
 70. F1x 2  #3 !x  1

 71. G1x 2  14  !3 x 2 9 72. G1x 2 
2

13  !x 2 2

skILLs plus
73. Composing Linear Functions  The graphs of the functions

f 1x 2  m1x  b1

g1x 2  m2x  b2

  are lines with slopes m1 and m2, respectively. Is the graph of 
f  g a line? If so, what is its slope?

74. solving an equation for an unknown Function  Suppose that

g1x 2  2x  1

h1x 2  4x2  4x  7

  Find a function f  such that f  g  h. (Think about what 
operations you would have to perform on the formula for g 
to end up with the formula for h.) Now suppose that

f 1x 2  3x  5

h1x 2  3x2  3x  2

  Use the same sort of reasoning to find a function g such that 
f  g  h.

AppLICATIOns
75–76 ■ Revenue, Cost, and profit  A print shop makes  
bumper stickers for election campaigns. If x stickers are ordered 
(where x  10,000), then the price per bumper sticker is 
0.15  0.000002x dollars, and the total cost of producing the 
order is 0.095x  0.0000005x2 dollars.

 75. Use the fact that

revenue    price per item    number of items sold

  to express R1x 2 , the revenue from an order of x stickers, as a 
product of two functions of x.
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 76. Use the fact that 

profit   revenue    cost

  to express P1x 2 , the profit on an order of x stickers, as a dif-
ference of two functions of x.

 77. Area of a Ripple  A stone is dropped in a lake, creating a  
circular ripple that travels outward at a speed of 60 cm/s.

(a)  Find a function g that models the radius as a function of 
time.

(b)  Find a function f  that models the area of the circle as a 
function of the radius.

(c) Find f  g. What does this function represent?

 78. Inflating a Balloon  A spherical balloon is being inflated. 
The radius of the balloon is increasing at the rate of 1 cm/s.

(a)  Find a function f  that models the radius as a function of 
time.

(b)  Find a function g that models the volume as a function 
of the radius.

(c) Find g  f . What does this function represent?

 79. Area of a Balloon  A spherical weather balloon is being 
inflated. The radius of the balloon is increasing at the rate of  
2 cm/s. Express the surface area of the balloon as a function 
of time t (in seconds).

 80. Multiple discounts  You have a $50 coupon from the manu-
facturer that is good for the purchase of a cell phone. The 
store where you are purchasing your cell phone is offering a 
20% discount on all cell phones. Let x represent the regular 
price of the cell phone.

(a)  Suppose only the 20% discount applies. Find a function 
f  that models the purchase price of the cell phone as a 
function of the regular price x.

(b)  Suppose only the $50 coupon applies. Find a function g 
that models the purchase price of the cell phone as a 
function of the sticker price x.

(c)  If you can use the coupon and the discount, then the pur-
chase price is either 1f  g 2 1x 2  or 1g  f 2 1x 2 , depending 
on the order in which they are applied to the price. Find 
both 1f  g 2 1x 2  and 1g  f 2 1x 2 . Which composition gives 
the lower price?

 81. Multiple discounts  An appliance dealer advertises a  
10% discount on all his washing machines. In addition, the 
manufacturer offers a $100 rebate on the purchase of a  

washing machine. Let x represent the sticker price of the 
 washing machine.

(a)  Suppose only the 10% discount applies. Find a function 
f  that models the purchase price of the washer as a func-
tion of the sticker price x.

(b)  Suppose only the $100 rebate applies. Find a function g 
that models the purchase price of the washer as a func-
tion of the sticker price x.

(c)  Find f  g and g  f . What do these functions represent? 
Which is the better deal?

 82. Airplane Trajectory  An airplane is flying at a speed of  
350 mi/h at an altitude of one mile. The plane passes directly 
above a radar station at time t  0.

(a)  Express the distance s (in miles) between the plane and 
the radar station as a function of the horizontal distance 
d (in miles) that the plane has flown.

(b)  Express d as a function of the time t (in hours) that the 
plane has flown.

(c) Use composition to express s as a function of t.

s

d

1 mi 

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
 83. dIsCOVeR: Compound Interest  A savings account earns 

5% interest compounded annually. If you invest x dollars in 
such an account, then the amount A1x 2  of the investment 
after one year is the  initial investment plus 5%; that is, 

A1x 2  x  0.05x  1.05x 

  Find

A  A

A  A  A

A  A  A  A

  What do these compositions represent? Find a formula for 
what you get when you compose n copies of A.

 84. dIsCuss: Compositions of Odd and even Functions   
Suppose that

h  f  g

  If g is an even function, is h necessarily even? If g is odd, is  
h odd? What if g is odd and f  is odd? What if g is odd and  
f  is even?

2.8 One-TO-One FunCTIOns And THeIR InVeRses
■ One-to-One Functions ■ The Inverse of a Function ■ Finding the Inverse of a Function  
■ Graphing the Inverse of a Function ■ Applications of Inverse Functions

The inverse of a function is a rule that acts on the output of the function and produces 
the corresponding input. So the inverse “undoes” or reverses what the function has 
done. Not all functions have inverses; those that do are called one-to-one.

■ One-to-One Functions
Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1. Note 
that f never takes on the same value twice (any two numbers in A have different im-
ages), whereas g does take on the same value twice (both 2 and 3 have the same image, 
4). In symbols, g 12 2  g 13 2  but f 1x1 2 ? f 1x2 2  whenever x1 ? x2. Functions that have 
this latter property are called one-to-one.

10
7

4
2

B

f is one-to-one

f

A

4
3

2
1

10

4
2

B

g is not one-to-one

g

A

4
3

2
1

FIGuRe 1

deFInITIOn OF A One-TO-One FunCTIOn

A function with domain A is called a one-to-one function if no two elements 
of A have the same image, that is,

f 1x1 2 ? f 1x2 2 whenever x1 ? x2

An equivalent way of writing the condition for a one-to-one function is this:

If f 1x1 2  f 1x2 2 , then x1  x2.

If a horizontal line intersects the graph of f at more than one point, then we see from 
Figure 2 that there are numbers x1 ? x2 such that f 1x1 2  f 1x2 2 . This means that f is 
not one-to-one. Therefore we have the following geometric method for determining 
whether a function is one-to-one.

HORIzOnTAL LIne TesT

A function is one-to-one if and only if no horizontal line intersects its graph 
more than once.
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2.8 One-TO-One FunCTIOns And THeIR InVeRses
■ One-to-One Functions ■ The Inverse of a Function ■ Finding the Inverse of a Function  
■ Graphing the Inverse of a Function ■ Applications of Inverse Functions

The inverse of a function is a rule that acts on the output of the function and produces 
the corresponding input. So the inverse “undoes” or reverses what the function has 
done. Not all functions have inverses; those that do are called one-to-one.

■ One-to-One Functions
Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1. Note 
that f never takes on the same value twice (any two numbers in A have different im-
ages), whereas g does take on the same value twice (both 2 and 3 have the same image, 
4). In symbols, g 12 2  g 13 2  but f 1x1 2 ? f 1x2 2  whenever x1 ? x2. Functions that have 
this latter property are called one-to-one.
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deFInITIOn OF A One-TO-One FunCTIOn

A function with domain A is called a one-to-one function if no two elements 
of A have the same image, that is,

f 1x1 2 ? f 1x2 2 whenever x1 ? x2

An equivalent way of writing the condition for a one-to-one function is this:

If f 1x1 2  f 1x2 2 , then x1  x2.

If a horizontal line intersects the graph of f at more than one point, then we see from 
Figure 2 that there are numbers x1 ? x2 such that f 1x1 2  f 1x2 2 . This means that f is 
not one-to-one. Therefore we have the following geometric method for determining 
whether a function is one-to-one.

HORIzOnTAL LIne TesT

A function is one-to-one if and only if no horizontal line intersects its graph 
more than once.

y
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FIGuRe 2 This function is not  
one-to-one because f 1x1 2  f 1x2 2 .
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exAMpLe 1 ■ deciding Whether a Function Is One-to-One
Is the function f 1x 2  x3 one-to-one?

sOLuTIOn 1  If x1 ? x2, then x3
1 ? x3

2 (two different numbers cannot have the same 
cube). Therefore f 1x 2  x3 is one-to-one.

sOLuTIOn 2  From Figure 3 we see that no horizontal line intersects the graph of 
f 1x 2  x3 more than once. Therefore by the Horizontal Line Test, f is one-to-one.

now Try exercise 15 ■

Notice that the function f of Example 1 is increasing and is also one-to-one. In fact, it 
can be proved that every increasing function and every decreasing function is one-to-one.

exAMpLe 2 ■ deciding Whether a Function Is One-to-One
Is the function g 1x 2  x2 one-to-one?

sOLuTIOn 1  This function is not one-to-one because, for instance,

g 11 2  1  and  g 11 2  1

so 1 and 1 have the same image.

sOLuTIOn 2  From Figure 4 we see that there are horizontal lines that intersect the 
graph of g more than once. Therefore by the Horizontal Line Test, g is not one-to-one.

now Try exercise 17 ■

Although the function g in Example 2 is not one-to-one, it is possible to restrict its 
domain so that the resulting function is one-to-one. In fact, if we define

h1x 2  x2  x  0

then h is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.

exAMpLe 3 ■ showing That a Function Is One-to-One
Show that the function f 1x 2  3x  4 is one-to-one.

sOLuTIOn  Suppose there are numbers x1 and x2 such that f 1x1 2  f 1x2 2 . Then

 3x1  4  3x2  4  Suppose f 1x1 2  f 1x2 2
 3x1  3x2   Subtract 4

 x1  x2   Divide by 3

Therefore f is one-to-one.

now Try exercise 13 ■

■ The Inverse of a Function
One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

deFInITIOn OF THe InVeRse OF A FunCTIOn

Let f be a one-to-one function with domain A and range B. Then its inverse 
function f1 has domain B and range A and is defined by

f1 1y 2  x 3 f 1x 2  y

for any y in B.

1

y

x0

1

FIGuRe 3 f 1x 2  x3 is one-to-one.

y

x10

1

FIGuRe 4 g 1x 2  x2 is not  
one-to-one.

y

x10

1

FIGuRe 5 h 1x 2  x2 1x  0 2  is  
one-to-one.

y=Ï

BA

x
f

f_ 1

FIGuRe 6
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SECTION 2.8 ■ One-to-One Functions and Their Inverses 257

This definition says that if f takes x to y, then f 
1 takes y back to x. (If f were not 

one-to-one, then f 
1 would not be defined uniquely.) The arrow diagram in Figure 6 

indicates that f 
1 reverses the effect of f. From the definition we have

 domain of f 
1  range of f

 range of f 
1  domain of f

exAMpLe 4 ■ Finding f 1 for specific Values
If f 11 2  5, f 13 2  7, and f 18 2  10, find f 

115 2 , f 
117 2 , and f 

1110 2 .
sOLuTIOn  From the definition of f 

1 we have

 f115 2  1 because f 11 2  5

 f117 2  3 because f 13 2  7

 f1110 2  8 because f 18 2  10

Figure 7 shows how f1 reverses the effect of f in this case.

B

5
7

_10

f

A

1
3

8

A

1
3

8

f_ 1

B

5
7

_10

FIGuRe 7

now Try exercise 25 ■

exAMpLe 5 ■ Finding Values of an Inverse Function
We can find specific values of an inverse function from a table or graph of the func-
tion itself.  

(a)  The table below gives values of a function h. From the table we see that 
h118 2  3, h1112 2  4, and h113 2  6.

(b)  A graph of a function f is shown in Figure 8. From the graph we see that 
f 

115 2  7 and f 
113 2  4.

x0
1

3

5

1 4 7

f

y

FIGuRe 8 Finding values of f1 
from a graph of f

Finding values of h1 
from a table of h

x hxxc

2  5
3  8
4 12
5  1
6  3
7 15

now Try exercises 29 and 31 ■

 Don’t mistake the 1 in f 
1 for 

an exponent.

f11x 2 does not mean 
1

f 1x 2
The reciprocal 1/f 1x 2  is written as 
1f 1x 221.
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258 CHAPTER 2 ■ Functions

By definition the inverse function f 
1 undoes what f does: If we start with x, apply 

f, and then apply f 
1, we arrive back at x, where we started. Similarly, f undoes what 

f 
1 does. In general, any function that reverses the effect of f in this way must be the 

inverse of f. These observations are expressed precisely as follows.

InVeRse FunCTIOn pROpeRTy

Let f be a one-to-one function with domain A and range B. The inverse function 
f 

1 satisfies the following cancellation properties:

f11f 1x 22  x for every x in A

f 1f11x 22  x for every x in B

Conversely, any function f 
1 satisfying these equations is the inverse of f.

These properties indicate that f is the inverse function of f 
1, so we say that f and 

f 
1 are inverses of each other.

exAMpLe 6 ■ Verifying That Two Functions Are Inverses
Show that f 1x 2  x3 and g1x 2  x1/3 are inverses of each other.

sOLuTIOn  Note that the domain and range of both f and g are R. We have

 g 1f 1x 2 2  g 1x3 2  1x3 2 1/3  x

 f 1g 1x 2 2  f 1x1/3 2  1x1/3 2 3  x

So by the Property of Inverse Functions, f and g are inverses of each other. These 
equations simply say that the cube function and the cube root function, when com-
posed, cancel each other.

now Try exercise 39 ■

■ Finding the Inverse of a Function
Now let’s examine how we compute inverse functions. We first observe from the 
definition of f 

1 that

y  f 1x 2 3 f 
11  y 2  x

So if y  f 1x 2  and if we are able to solve this equation for x in terms of y, then we must 
have x  f 

11 y 2 . If we then interchange x and y, we have y  f 
11x 2 , which is the 

desired equation.

HOW TO FInd THe InVeRse OF A One-TO-One FunCTIOn

1. Write y  f 1x 2 .
2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is y  f 11x 2 .

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x and y 
first and then solve for y in terms of x.

exAMpLe 7 ■ Finding the Inverse of a Function
Find the inverse of the function f 1x 2  3x  2.

sOLuTIOn  First we write y  f 1x 2 .
y  3x  2

In Example 7 note how f 
1 reverses  

the effect of f. The function f is the  
rule “Multiply by 3, then subtract 2,” 
whereas f 

1 is the rule “Add 2, then 
 divide by 3.”
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SECTION 2.8 ■ One-to-One Functions and Their Inverses 259

Then we solve this equation for x:

 3x  y  2  Add 2

 x 
y  2

3
  Divide by 3

Finally, we interchange x and y:

y 
x  2

3

Therefore, the inverse function is f 
11x 2 

x  2

3
.

now Try exercise 49 ■

exAMpLe 8 ■ Finding the Inverse of a Function

Find the inverse of the function f 1x 2 
x5  3

2
.

sOLuTIOn  We first write y  1x5  3 2 /2 and solve for x.

 y 
x5  3

2
  Equation defining function

 2y  x5  3   Multiply by 2

 x5  2y  3   Add 3 (and switch sides)

 x  12y  3 2 1/5  Take fifth root of each side

Then we interchange x and y to get y  12x  3 2 1/5. Therefore the inverse function is 
f 

11x 2  12x  3 2 1/5.

now Try exercise 61 ■

A rational function is a function defined by a rational expression. In the next ex-
ample we find the inverse of a rational function.

exAMpLe 9 ■ Finding the Inverse of a Rational Function 

Find the inverse of the function f 1x 2 
2x  3

x  1
.

sOLuTIOn  We first write y  12x  3 2/ 1x  1 2  and solve for x.

 y 
2x  3

x  1
  Equation defining function

 y1x  1 2  2x  3  Multiply by x  1

 yx  y  2x  3  Expand

 yx  2x  y  3   Bring x-terms to LHS

 x1y  2 2  y  3   Factor x

 x 
y  3

y  2
  Divide by y  2

Therefore the inverse function is f  
11x 2 

x  3

x  2
.

now Try exercise 55 ■

In Example 8 note how f1 reverses 
the effect of f. The function f is the 
rule “Take the fifth power, subtract 3, 
then divide by 2,” whereas f1 is the 
rule “Multiply by 2, add 3, then take 
the fifth root.”

Rational functions are studied in  
Section 3.6.

CHeCk yOuR AnsWeR

We use the Inverse Function Property:

 f 
11f 1x 22  f 

113x  2 2

 
13x  2 2  2

3

 
3x

3
 x

 f 1f 
11x 22  f ax  2

3
b

  3 ax  2

3
b  2

  x  2  2  x ✓

CHeCk yOuR AnsWeR

We use the Inverse Function Property:

 f 
11f 1x 22  f 

1 a x5  3

2
b

  c 2 a x5  3

2
b  3 d

1/5

  1x5  3  3 2 1/5

  1x5 2 1/5  x

 f 1f 
11x 22  f 112x  3 2 1/5 2

 
3 12x  3 2 1/5 4 5  3

2

 
2x  3  3

2

 
2x

2
 x ✓
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260 CHAPTER 2 ■ Functions

■ Graphing the Inverse of a Function
The principle of interchanging x and y to find the inverse function also gives us a method 
for obtaining the graph of f 

1 from the graph of f. If f 1a 2  b, then f 
11b 2  a. Thus 

the point 1a, b 2  is on the graph of f if and only if the point 1b, a 2  is on the graph of f 
1. 

But we get the point 1b, a 2  from the point 1a, b 2  by reflecting in the line y  x (see 
Figure 9). Therefore, as Figure 10 illustrates, the following is true.

The graph of f1 is obtained by reflecting the graph of f in the line y  x.

y=x

(b, a)

(a, b)

y

x

y=x

f

f _¡

y

x

FIGuRe 9 FIGuRe 10

exAMpLe 10 ■ Graphing the Inverse of a Function
(a) Sketch the graph of f 1x 2  !x  2.

(b) Use the graph of f to sketch the graph of f 
1.

(c) Find an equation for f 
1.

sOLuTIOn

(a)  Using the transformations from Section 2.6, we sketch the graph of y  !x  2 
by plotting the graph of the function y  !x (Example 1(c) in Section 2.2) and 
shifting it to the right 2 units.

(b)  The graph of f 
1 is obtained from the graph of f in part (a) by reflecting it in the 

line y  x, as shown in Figure 11.

(c) Solve y  !x  2 for x, noting that y  0.

 !x  2  y

 x  2  y2   Square each side

 x  y2  2  y  0  Add 2

  Interchange x and y, as follows:

y  x2  2  x  0

 Thus  f 
11x 2  x2  2  x  0

  This expression shows that the graph of f 
1 is the right half of the parabola  

y  x2  2, and from the graph shown in Figure 11 this seems reasonable.

now Try exercise 73 ■

■ Applications of Inverse Functions
When working with functions that model real-world situations, we name the variables 
using letters that suggest the quantity being modeled. For instance we may use t  
for time, d for distance, V for volume, and so on. When using inverse functions, we 

y

x2

2

y=f–¡(x)

y=Ï= x-2

y=x

FIGuRe 11

In Example 10 note how f 
1 reverses 

the effect of f. The function f is the 
rule “Subtract 2, then take the square 
root,” whereas f 

1 is the rule “Square, 
then add 2.”
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SECTION 2.8 ■ One-to-One Functions and Their Inverses 261

follow this convention. For example, suppose that the variable R is a function of the 
variable N, say, R  f 1N 2 . Then f 

11R 2  N . So the function f 
1 defines N as a 

function of R.

exAMpLe 11 ■ An Inverse Function
At a local pizza parlor the daily special is $12 for a plain cheese pizza plus $2 for 
each additional topping. 

(a) Find a function f that models the price of a pizza with n toppings.

(b) Find the inverse of the function f. What does f 
1 represent?

(c) If a pizza costs $22, how many toppings does it have?

sOLuTIOn  Note that the price p of a pizza is a function of the number n of 
toppings.

(a) The price of a pizza with n toppings is given by the function 

f 1n 2  12  2n

(b) To find the inverse function, we first write p  f 1n 2 , where we use the letter p 
instead of our usual y because f 1n 2  is the price of the pizza. We have 

p  12  2n

  Next we solve for n:

 p  12  2n

 p  12  2n

 n 
p  12

2

   So n  f 
11p 2 

p  12

2
. The function f 

1 gives the number n of toppings for a 
pizza with price p. 

(c)  We have n  f 
1122 2  122  12 2 /2  5. So the pizza has five toppings.

now Try exercise 93 ■

COnCepTs
 1. A function f  is one-to-one if different inputs produce 

  outputs. You can tell from the graph that a function 

is one-to-one by using the   Test.

 2. (a)  For a function to have an inverse, it must be    . 
So which one of the following functions has an inverse?

f 1x 2  x2  g 1x 2  x3

(b)  What is the inverse of the function that you chose in  
part (a)?

 3. A function f  has the following verbal description: “Multiply 
by 3, add 5, and then take the third power of the result.”

(a) Write a verbal description for f 
1.

(b)  Find algebraic formulas that express f and f 
1 in terms 

of the input x.

 4. A graph of a function f  is given. Does f  have an inverse? If 

so, find f 
111 2     and f 

113 2      .

0 1

1 f

x

y

 5. If the point 13, 4 2 is on the graph of the function f , then the 

  point 1    ,  2  is on the graph of f 
1.

2.8 exeRCIses
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262 CHAPTER 2 ■ Functions

 6. True or false?

(a) If f  has an inverse, then f 11x 2  is always the same  

as 
1

f 1x 2 .
(b) If f has an inverse, then f 11f 1x 22  x.

skILLs
7–12 ■ One-to-One Function?  A graph of a function f is given. 
Determine whether f is one-to-one.

 7. y

x0

 8. y

x0

 9. y

x0

 10. y

x0

 11. y

x0

 12. y

x0

13–24 ■ One-to-One Function?  Determine whether the func-
tion is one-to-one.

 13. f 1x 2  2x  4 14. f 1x 2  3x  2

 15. g 1x 2  !x 16. g1x 2  0  x 0
 17. h1x 2  x2  2x 18. h1x 2  x3  8

 19. f 1x 2  x4  5 

 20. f 1x 2  x4  5, 0  x  2

 21. r 1 t 2  t6  3, 0  t  5

 22. r 1 t 2  t4  1

 23. f 1x 2 
1

x2  24. f 1x 2 
1
x

25–28 ■ Finding Values of an Inverse Function  Assume that f is 
a one-to-one function.

 25. (a) If f 12 2  7, find f117 2 .
(b) If f113 2  1, find f 11 2 .

 26. (a) If f 15 2  18, find f1118 2 .
(b) If f 

114 2  2, find f 12 2 .
 27. If f 1x 2  5  2x, find f113 2 .
 28. If g 1x 2  x2  4x with x  2, find g115 2 .

29–30 ■ Finding Values of an Inverse from a Graph  A graph of 
a function is given. Use the graph to find the indicated values.

 29. (a) f 
112 2       (b) f 

115 2       (c) f 
116 2

0 4

4
f

y

x

 30. (a) g112 2       (b) g115 2       (c) g116 2

0 4

4 g

y

x

31–36 ■ Finding Values of an Inverse using a Table  A table of 
values for a one-to-one function is given. Find the indicated 
values.

 31. f 
115 2  32. f 

110 2
 33. f 

11f 11 22  34. f 1f 
116 22

 35. f 
11f 111 22  36. f 

11f 110 22

x 1 2 3 4 5 6

fxxc 4 6 2 5 0 1

37–48 ■ Inverse Function property  Use the Inverse Function 
Property to show that f and g are inverses of each other.

 37. f 1x 2  x  6; g 1x 2  x  6

 38. f 1x 2  3x; g1x 2 
x

3

 39. f 1x 2  3x  4; g1x 2 
x  4

3

 40. f 1x 2  2  5x; g1x 2 
2  x

5

 41. f 1x 2 
1
x

; g1x 2 
1
x

 42. f 1x 2  x5; g 1x 2  !5 x

 43. f 1x 2  x2  9, x  0; g1x 2  !x  9, x  9

 44. f 1x 2  x3  1; g 1x 2  1x  1 2 1/3

 45. f 1x 2 
1

x  1
;  g 1x 2 

1
x

 1
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SECTION 2.8 ■ One-to-One Functions and Their Inverses 263

 46. f 1x 2  "4  x2, 0  x  2;

  g1x 2  "4  x2, 0  x  2

 47. f 1x 2 
x  2

x  2
;  g1x 2 

2x  2

x  1

 48. f 1x 2 
x  5

3x  4
;  g1x 2 

5  4x

1  3x

49–70 ■ Finding Inverse Functions  Find the inverse function  
of f.

 49. f 1x 2  3x  5 50. f 1x 2  7  5x

 51. f 1x 2  5  4x3 52. f 1x 2  3x3  8

 53. f 1x 2 
1

x  2
 54. f 1x 2 

x  2

x  2

 55. f 1x 2 
x

x  4
 56. f 1x 2 

3x

x  2

57. f 1x 2 
2x  5

x  7
 58. f 1x 2 

4x  2

3x  1

 59. f 1x 2 
2x  3

1  5x
 60. f 1x 2 

3  4x

8x  1

 61. f 1x 2  4  x2, x  0 62. f 1x 2  x2  x, x   
1
2

 63. f 1x 2  x6, x  0 64. f 1x 2 
1

x2 , x  0

 65. f 1x 2 
2  x3

5
 66. f 1x 2  1x5  6 2 7

 67. f 1x 2  !5  8x 68. f 1x 2  2  !3  x

 69. f 1x 2  2  !3 x

 70. f 1x 2  "4  x2, 0  x  2

71–74 ■ Graph of an Inverse Function  A function f is given. 
(a) Sketch the graph of f. (b) Use the graph of f to sketch the 
graph of f 

1. (c) Find f 
1.

 71. f 1x 2  3x  6 72. f 1x 2  16  x2, x  0

 73. f 1x 2  !x  1 74. f 1x 2  x3  1

75–80 ■ One-to-One Functions from a Graph  Draw the graph 
of f, and use it to determine whether the function is one-to-one.

 75. f 1x 2  x3  x 76. f 1x 2  x3  x

 77. f 1x 2 
x  12

x  6
 78. f 1x 2  "x3  4x  1

 79. f 1x 2  0  x 0  0  x  6 0  80. f 1x 2  x # 0  x 0

81–84 ■ Finding Inverse Functions  A one-to-one function is 
given. (a) Find the inverse of the function. (b) Graph both the 
function and its inverse on the same screen to verify that the 
graphs are reflections of each other in the line y  x.

 81. f 1x 2  2  x 82. f  1x 2  2  1
2 x

 83. g1x 2  !x  3 84. g1x 2  x2  1, x  0

85–88 ■ Restricting the domain  The given function is not  
one-to-one. Restrict its domain so that the resulting function is 

one-to-one. Find the inverse of the function with the restricted 
domain. (There is more than one correct answer.)

 85. f 1x 2  4  x2 86. g1x 2  1x  1 2 2

  

x0 1

1

y

  

y

x0 1

1

 87. h1x 2  1x  2 2 2 88. k1x 2  0  x  3 0

  

y

x0_1

1

  

y

x0 1

1

89–90 ■ Graph of an Inverse Function  Use the graph of f to 
sketch the graph of f1.

89. 

x

y

0 1

1

 90. 

x

y

0 1
1

skILLs plus
91–92 ■ Functions That Are Their Own Inverse  If a function f  
is its own inverse, then the graph of f  is symmetric about the line 
y  x. (a) Graph the given function. (b) Does the graph indicate 
that f  and f 

1 are the same function? (c) Find the function f 
1. 

Use your result to verify your answer to part (b).

91. f 1x 2 
1
x

 92. f 1x 2 
x  3

x  1

AppLICATIOns
 93. pizza Cost  Marcello’s Pizza charges a base price of $16 for 

a large pizza plus $1.50 for each additional topping. 

(a)  Find a function f that models the price of a pizza with  
n toppings.

(b)  Find the inverse of the function f. What does f 
1  

represent?

(c) If a pizza costs $25, how many toppings does it have?
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264 CHAPTER 2 ■ Functions

 94. Fee for service  For his services, a private investigator 
requires a $500 retainer fee plus $80 per hour. Let x represent 
the number of hours the investigator spends working on a 
case.

(a)  Find a function f that models the investigator’s fee as a 
function of x.

(b) Find f 
1. What does f 

1 represent?

(c) Find f 
111220 2. What does your answer represent?

 95. Torricelli’s Law  A tank holds 100 gallons of water, which 
drains from a leak at the bottom, causing the tank to empty in 
40 minutes. According to Torricelli’s Law, the volume V of 
water remaining in the tank after t min is given by the 
function

V  f 1 t 2  100 a 1 
t

40
b

2

(a) Find f 
1. What does f 

1 represent?

(b) Find f 
1115 2. What does your answer represent?

 96. Blood Flow  As blood moves through a vein or artery, its 
 velocity √ is greatest along the central axis and decreases as  
the distance r from the central axis increases (see the figure 
 below). For an artery with radius 0.5 cm, √ (in cm/s) is given 
as a function of r (in cm) by

√  g 1r 2  18,50010.25  r 2 2
(a) Find g1. What does g1 represent?

(b) Find g1130 2. What does your answer represent?

r

 97. demand Function  The amount of a commodity that  
is sold is called the demand for the commodity. The 
demand D for a certain commodity is a function of the 
price given by

D  f 1 p 2  3p  150

(a) Find f 
1. What does f 

1 represent?

(b) Find f 
1130 2. What does your answer represent?

 98. Temperature scales  The relationship between the Fahren-
heit (F) and Celsius (C) scales is given by

F  g1C 2  9
5 C  32

(a) Find g1. What does g1 represent?

(b) Find g11862. What does your answer represent?

 99. exchange Rates  The relative value of currencies fluctuates 
every day. When this problem was written, one Canadian dol-
lar was worth 0.9766 U.S. dollars.

(a)  Find a function f that gives the U.S. dollar value f 1x 2  of  
x Canadian dollars.

(b) Find f 
1. What does f 

1 represent?

(c)  How much Canadian money would $12,250 in U.S. cur-
rency be worth?

100. Income Tax  In a certain country the tax on incomes less 
than or equal to €20,000 is 10%. For incomes that are more 
than €20,000 the tax is €2000 plus 20% of the amount over 
€20,000.

(a)  Find a function f that gives the income tax on an  
income x. Express f as a piecewise defined function.

(b) Find f 
1. What does f 

1 represent?

(c)  How much income would require paying a tax of 
€10,000?

101. Multiple discounts  A car dealership advertises a 15% dis-
count on all its new cars. In addition, the manufacturer 
offers a $1000 rebate on the purchase of a new car. Let x 
represent the sticker price of the car.

(a)  Suppose that only the 15% discount applies. Find a  
function f that models the purchase price of the car as a 
function of the sticker price x.

(b)  Suppose that only the $1000 rebate applies. Find a  
function g that models the purchase price of the car as a 
function of the sticker price x.

(c) Find a formula for H  f  g.

(d) Find H1. What does H1 represent?

(e) Find H1113,0002. What does your answer represent?

dIsCuss ■ dIsCOVeR ■ pROVe ■ WRITe
102. dIsCuss: determining When a Linear Function Has an 

Inverse  For the linear function f 1x 2  mx  b to be  
one-to-one, what must be true about its slope? If it is one-
to-one, find its inverse. Is the inverse linear? If so, what is 
its slope?

103. dIsCuss: Finding an Inverse “in your Head”  In the margin 
notes in this section we pointed out that the inverse of a 
function can be found by simply reversing the operations 
that make up the function. For instance, in Example 7 we 
saw that the inverse of

f 1x 2  3x  2  is  f 
11x 2 

x  2

3

  because the “reverse” of “Multiply by 3 and subtract 2” is 
“Add 2 and divide by 3.” Use the same procedure to find the 
 inverse of the following functions.

(a) f 1x 2 
2x  1

5
 (b) f 1x 2  3 

1
x

(c) f 1x 2  "x3  2 (d) f 1x 2  12x  5 2 3
  Now consider another function:

f 1x 2  x3  2x  6

  Is it possible to use the same sort of simple reversal of oper-
ations to find the inverse of this function? If so, do it. If not, 
explain what is different about this function that makes this 
task difficult.

104. pROVe: The Identity Function  The function I1x 2  x is 
called the identity function. Show that for any function f 
we have f  I  f, I  f  f , and f  f1  f1  f  I . 
(This means that the identity function I behaves for func-
tions and composition just the way the number 1 behaves 
for real numbers and multiplication.)
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105. dIsCuss: solving an equation for an unknown Function   
In  Exercises 69–72 of Section 2.7 you were asked to solve 
equations in which the unknowns are functions. Now that 
we know about inverses and the identity function (see Exer-
cise 104), we can use algebra to solve such equations. For 
instance, to solve f  g  h for the unknown function f, we 
perform the following steps:

 f  g  h Problem: Solve for f
 f  g  g1  h  g1 Compose with g1 on the right

 f  I  h  g1 Because g  g1  I
 f  h  g1 Because f  I  f

  So the solution is f  h  g1. Use this technique to solve 
the equation f  g  h for the indicated unknown function.

(a)  Solve for f, where g1x 2  2x  1 and 
h1x 2  4x2  4x  7.

(b)  Solve for g, where f 1x 2  3x  5 and 
 h1x 2  3x2  3x  2.

Function notation (p. 185)
If a function is given by the formula y  f 1x 2 , then x is the inde-
pendent variable and denotes the input; y is the dependent vari-
able and denotes the output; the domain is the set of all possible 
inputs x; the range is the set of all possible outputs y.

net Change (p. 187)
The net change in the value of the function f between x  a and  
x  b is 

net change  f 1b 2  f 1a 2
The Graph of a Function (p. 195)
The graph of a function f is the graph of the equation y  f 1x 2  
that defines f.

The Vertical Line Test (p. 200)
A curve in the coordinate plane is the graph of a function if and 
only if no vertical line intersects the graph more than once.

Increasing and decreasing Functions (p. 210)
A function f is increasing on an interval if f 1x1 2  f 1x2 2  when-
ever x1  x2 in the interval.

A function f is decreasing on an interval if f 1x1 2  f 1x2 2  when-
ever x1  x2 in the interval.

Local Maximum and Minimum Values (p. 212)
The function value f 1a 2  is a local maximum value of the func-
tion f if f 1a 2  f 1x 2  for all x near a. In this case we also say that 
f has a local maximum at x  a. 

The function value f 1b 2  is a local minimum value of the func-
tion f if f 1b 2  f 1x 2  for all x near b. In this case we also say that 
f has a local minimum at x  b.

Average Rate of Change (p. 220)
The average rate of change of the function f between x  a  
and x  b is the slope of the secant line between 1a, f 1a 22  and  
1b, f 1b 22 :

average rate of change 
f 1b 2  f 1a 2

b  a

Linear Functions (pp. 227–228)
A linear function is a function of the form f 1x 2  ax  b. The 
graph of f is a line with slope a and y-intercept b. The average 
rate of change of f has the constant value a between any two 
points.

a  slope of graph of f  rate of change of f  

Vertical and Horizontal shifts of Graphs (pp. 234–235)
Let c be a positive constant.

To graph y  f 1x 2  c, shift the graph of y  f 1x 2  upward by  
c units.

To graph y  f 1x 2  c, shift the graph of y  f 1x 2  downward 
by c units.

To graph y  f 1x  c 2 , shift the graph of y  f 1x 2  to the right 
by c units.

To graph y  f 1x  c 2 , shift the graph of y  f 1x 2  to the left 
by c units.

Reflecting Graphs (p. 237)
To graph y  f 1x 2 , reflect the graph of y  f 1x 2  in the  
x-axis.

To graph y  f 1x 2 , reflect the graph of y  f 1x 2  in the  
y-axis.

Vertical and Horizontal stretching and shrinking 
of Graphs (pp. 238, 239)
If c  1, then to graph y  cf 1x 2 , stretch the graph of y  f 1x 2  
vertically by a factor of c.

If 0  c  1, then to graph y  cf 1x 2 , shrink the graph of 
y  f 1x 2  vertically by a factor of c.

If c  1, then to graph y  f 1cx 2 , shrink the graph of y  f 1x 2  
horizontally by a factor of 1/c.

If 0  c  1, then to graph y  f 1cx 2 , stretch the graph of 
y  f 1x 2  horizontally by a factor of 1/c.

■ pROpeRTIes And FORMuLAs
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even and Odd Functions (p. 240)
A function f is

  even if f 1x 2  f 1x 2
  odd if f 1x 2  f 1x 2
for every x in the domain of f.

Composition of Functions (p. 249)
Given two functions f and g, the composition of f and g is the 
function f  g defined by

1f  g 2 1x 2  f 1g 1x 2 2
The domain of f  g is the set of all x for which both g 1x 2  and 
f 1g 1x 2 2  are defined.

One-to-One Functions (p. 255)
A function f is one-to-one if f 1x1 2 ? f 1x2 2  whenever x1 and x2 
are different elements of the domain of f.

Horizontal Line Test (p. 255)
 A function is one-to-one if and only if no horizontal line inter-
sects its graph more than once.

Inverse of a Function (p. 256)
Let f be a one-to-one function with domain A and range B.

The inverse of f is the function f1 defined by

f11  y 2  x 3 f 1x 2  y

The inverse function f1 has domain B and range A.

The functions f and f1 satisfy the following  cancellation 
 properties:

 f11f 1x 22  x for every x in A

 f 1f11x 22  x for every x in B

 1. Define each concept.

(a) Function

(b) Domain and range of a function

(c) Graph of a function

(d) Independent and dependent variables 

 2. Describe the four ways of representing a function.

 3. Sketch graphs of the following functions by hand.

(a) f 1x 2  x2 (b) g1x 2  x3

(c) h1x 2  0  x 0  (d) k1x 2  !x

 4. What is a piecewise defined function? Give an example.

 5. (a) What is the Vertical Line Test, and what is it used for?

(b) What is the Horizontal Line Test, and what is it used for?

 6. Define each concept, and give an example of each.

(a) Increasing function

(b) Decreasing function

(c) Constant function

 7. Suppose we know that the point 13, 5 2  is a point on the graph 
of a function f. Explain how to find f 13 2  and f 

115 2 .
 8. What does it mean to say that f 14 2  is a local maximum value 

of f?

 9. Explain how to find the average rate of change of a function 
f between x  a and x  b.

 10. (a)  What is the slope of a linear function? How do you find 
it? What is the rate of change of a linear function?

(b)  Is the rate of change of a linear function constant? 
Explain.

(c) Give an example of a linear function, and sketch its 
graph.

 11. Suppose the graph of  a function f is given. Write an equa-
tion for each of the graphs that are obtained from the graph 
of f as follows.

(a) Shift upward 3 units

(b) Shift downward 3 units

(c) Shift 3 units to the right

(d) Shift 3 units to the left

(e) Reflect in the x-axis

(f) Reflect in the y-axis

(g) Stretch vertically by a factor of 3

(h) Shrink vertically by a factor of 1
3

(i) Shrink horizontally by a factor of 1
3

(j) Stretch horizontally by a factor of 3

 12. (a)  What is an even function? How can you tell that a func-
tion is even by looking at its graph? Give an example of 
an even function.

(b)  What is an odd function? How can you tell that a func-
tion is odd by looking at its graph? Give an example of 
an odd function.

 13. Suppose that f has domain A and g has domain B. What are 
the domains of the following functions?

(a) Domain of f  g
(b) Domain of fg
(c) Domain of f/g

 14. (a)  How is the composition function f  g defined? What is 
its domain? 

(b)  If g1a 2  b and f 1b 2  c, then explain how to find 
1f  g 2 1a 2 .

■ COnCepT CHeCk
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1–2 ■ Function notation  A verbal description of a function f is 
given. Find a formula that expresses f in function notation.

 1. “Square, then subtract 5.”

 2. “Divide by 2, then add 9.”

3–4 ■ Function in Words  A formula for a function f is given. 
Give a verbal description of the function.

 3. f 1x 2  31x  10 2   4. f 1x 2  !6x  10

5–6 ■ Table of Values  Complete the table of values for the 
given function.

 5. g 1x 2  x2  4x  6. h1x 2  3x2  2x  5

  

x gxxc

1
0
1
2
3

  

x hxxc

2
1

0
1
2

 7. printing Cost  A publisher estimates that the cost C(x) of 
printing a run of x copies of a certain mathematics textbook 
is given by the function C1x 2  5000  30x  0.001x2.

(a) Find C(1000) and C(10,000).

(b) What do your answers in part (a) represent?

(c) Find C(0). What does this number represent?

(d)  Find the net change and the average rate of change of the 
cost C between x  1000 and x  10,000.

 8. earnings  Reynalda works as a salesperson in the electronics 
division of a department store. She earns a base weekly sal-
ary plus a commission based on the retail price of the goods 
she has sold. If she sells x dollars worth of goods in a week, 
her earnings for that week are given by the function 
E1x 2  400  0.03x.

(a) Find E(2000) and E(15,000).

(b) What do your answers in part (a) represent?

(c) Find E(0). What does this number represent?

(d)  Find the net change and the average rate of change of her 
earnings E between x  2000 and x  15,000.

(e)  From the formula for E, determine what percentage  
Reynalda earns on the goods that she sells.

9–10 ■ evaluating Functions  Evaluate the function at the indi-
cated values.

 9. f 1x 2  x2  4x  6; f 10 2 , f 12 2 , f 12 2 , f 1a 2 , f 1a 2 , 
f 1x  1 2 , f 12x 2

 10. f 1x 2  4  !3x  6; f 15 2 , f 19 2 , f 1a  2 2 , f 1x 2 , f 1x2 2
 11. Functions Given by a Graph  Which of the following figures 

are graphs of functions? Which of the functions are one-to-one?

(a) y

x0

 (b) y

x0

(c) y

x0

 (d) y

x0

 12. Getting Information from a Graph  A graph of a function f 
is given.

(a) Find f 12 2  and f 12 2 .
(b)  Find the net change and the average rate of change of f 

between x  2 and x  2.

(c) Find the domain and range of f.

(d)  On what intervals is f increasing? On what intervals is f 
decreasing?

(e) What are the local maximum values of f?

(f) Is f one-to-one?

x

y

0 2

2

f

■ exeRCIses

 15. (a) What is a one-to-one function?

(b)  How can you tell from the graph of a function whether it 
is one-to-one?

(c)  Suppose that f is a one-to-one function with domain A 
and range B. How is the inverse function f 

1 defined? 
What are the domain and range of f 

1? 

(d)  If you are given a formula for f, how do you find a  
formula for f 

1? Find the inverse of the function 
f 1x 2  2x.

(e)  If you are given a graph of f, how do you find a graph of 
the inverse function f 

1?

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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13–14 ■ domain and Range  Find the domain and range of the 
function.

 13. f 1x 2  !x  3 14. F 1 t 2  t2  2t  5

15–22 ■ domain  Find the domain of the function.

 15. f 1x 2  7x  15 16. f 1x 2 
2x  1

2x  1

 17. f 1x 2  !x  4 18. f 1x 2  3x 
2

!x  1

 19. f 1x 2 
1
x


1

x  1


1

x  2
 20. g 1x 2 

2x2  5x  3

2x2  5x  3

 21. h1x 2  !4  x  "x2  1 22. f 1x 2 
!3 2x  1

!3 2x  2

23–38 ■ Graphing Functions  Sketch a graph of the function. 
Use transformations of functions whenever possible.

 23. f 1x 2  1  2x

 24. f 1x 2  1
3 1x  5 2 , 2  x  8

 25. f 1x 2  3x2 26. f 1x 2  1
4 
x2

 27. f 1x 2  2x2  1 28. f 1x 2  1x  1 2 4
 29. f 1x 2  1  !x 30. f 1x 2  1  !x  2

 31. f 1x 2  1
2 
x3 32. f 1x 2  !3

x

 33. f 1x 2   0  x 0  34. f 1x 2  0  x  1 0

 35. f 1x 2   

1

x2  36. f 1x 2 
1

1x  1 2 3

 37. f 1x 2  e1  x  if x  0

1  if x  0
 

 38. f 1x 2  c
x if x  0

x2 if 0  x  2

1 if x  2

39–42 ■ equations That Represent Functions  Determine 
whether the equation defines y as a function of x.

 39. x  y2  14 40. 3x  !y  8

 41. x3  y3  27 42. 2x  y4  16

43–44 ■ Graphing Functions  Determine which viewing rectan-
gle produces the most appropriate graph of the function.

 43. f 1x 2  6x3  15x2  4x  1

 (i) 32, 24 by 32, 24
 (ii) 38, 84 by 38, 84
 (iii) 34, 44 by 312, 124
 (iv) 3100, 1004 by 3100, 1004
 44. f 1x 2  "100  x3.

 (i) 34, 44 by 34, 44
 (ii) 310, 104 by 310, 104
 (iii) 310, 104 by 310, 404
 (iv) 3100, 1004 by 3100, 1004

45–48 ■ domain and Range from a Graph  A function f is 
given. (a) Use a graphing calculator to draw the graph of f.  
(b) Find the domain and range of f from the graph.

 45. f 1x 2  "9  x2

 46. f 1x 2  "x2  3

 47. f 1x 2  "x3  4x  1

 48. f 1x 2  x4  x3  x2  3x  6

49–50 ■ Getting Information from a Graph  Draw a graph of the 
function f, and determine the intervals on which f is increasing 
and on which f is decreasing.

 49. f 1x 2  x3  4x2 50. f 1x 2  0  x4  16 0

51–56 ■ net Change and Average Rate of Change  A function is 
given (either numerically, graphically, or algebraically). Find the 
net change and the average rate of change of the function 
between the indicated values.

 51. Between x  4 and  52. Between x  10 and 
  x  8  x  30

  

x fxxc

2 14
4 12
6 12
8  8

10  6
  

x gxxc

 0 25
10 5
20 2
30 30
40 0

 53. Between x  1 and  54. Between x  1 and  
x  2  x  3

  

f

y

x0 1

2

 

g

y

x0 1

1

 55. f 1x 2  x2  2x; between x  1 and x  4

 56. g1x 2  1x  1 2 2; between x  a and x  a  h

57–58 ■ Linear?  Determine whether the given function is 
linear.

 57. f 1x 2  12  3x 2 2 58. g1x 2 
x  3

5

59–60 ■ Linear Functions  A linear function is given.  
(a) Sketch a graph of the function. (b) What is the slope of the 
graph? (c) What is the rate of change of the function?

 59. f 1x 2  3x  2 60. g1x 2  3  1
2 
x
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61–66 ■ Linear Functions  A linear function is described either 
verbally, numerically, or graphically. Express f in the form 
f 1x 2  ax  b.

 61. The function has rate of change 2 and initial value 3.

 62. The graph of the function has slope 1
2 and y-intercept 1.

 63. 
x fxxc

0  3
1  5
2  7
3  9
4 11

 64. 
x fxxc

0 6
2 5.5
4 5
6 4.5
8 4

 65. 

2

20

y

x

 66. 

0

2

1

y

x

 67. population  The population of a planned seaside community in 
Florida is given by the function P1 t 2  3000  200t  0.1t2, 
where t represents the number of years since the community 
was incorporated in 1985.

(a)  Find P110 2  and P120 2 . What do these values represent?

(b)  Find the average rate of change of P between t  10 and  
t  20. What does this number represent?

 68. Retirement savings  Ella is saving for her retirement by 
making regular deposits into a 401(k) plan. As her salary 
rises, she finds that she can deposit increasing amounts  
each year. Between 1995 and 2008 the annual amount (in  
dollars) that she deposited was given by the function 
D1 t 2  3500  15t2, where t represents the year of the 
deposit measured from the start of the plan (so 1995 corre-
sponds to t  0, 1996 corresponds to t  1, and so on).

(a) Find D10 2  and D115 2 . What do these values represent?

(b)  Assuming that her deposits continue to be modeled by 
the function D, in what year will she deposit $17,000?

(c)  Find the average rate of change of D between t  0 and  
t  15. What does this number represent?

69–70 ■ Average Rate of Change  A function f is given. (a) Find 
the average rate of change of f between x  0 and x  2, and the 
average rate of change of f between x  15 and x  50. (b) Were 
the two average rates of change that you found in part (a) the 
same? (c) Is the function linear? If so, what is its rate of change?

 69. f 1x 2  1
2 x  6 70. f 1x 2  8  3x

 71. Transformations  Suppose the graph of f is given. Describe 
how the graphs of the following functions can be obtained 
from the graph of f.

(a) y  f 1x 2  8 (b) y  f 1x  8 2
(c) y  1  2f 1x 2  (d) y  f 1x  2 2  2

(e) y  f 1x 2  (f ) y  f 1x 2
(g) y  f 1x 2  (h) y  f 

11x 2

 72. Transformations  The graph of f is given. Draw the graphs 
of the following functions.

(a) y  f 1x  2 2   (b) y  f 1x 2
(c) y  3  f 1x 2  (d) y  1

2 f 1x 2  1

(e) y  f 11x 2   (f ) y  f 1x 2

y

x0 1

1

 73. even and Odd Functions  Determine whether f is even, odd, 
or neither.

(a) f 1x 2  2x5  3x2  2 (b) f 1x 2  x3  x7

(c) f 1x 2 
1  x2

1  x2  (d) f 1x 2 
1

x  2

 74. even and Odd Functions  Determine whether the function in 
the figure is even, odd, or neither.

(a)   (b)

(c)   (d)

 

y

x0 0

y

x

y

x0

y

x0

75–78 ■ Local Maxima and Minima  Find the local maximum 
and minimum values of the function and the values of x at which 
they occur. State each answer rounded to two decimal places.

 75. g1x 2  2x2  4x  5

 76. f 1x 2  1  x  x2

 77. f 1x 2  3.3  1.6x  2.5x3

 78. f 1x 2  x2/316  x 2 1/3

 79. Maximum Height of projectile  A stone is thrown upward 
from the top of a building. Its height (in feet) above the 
ground after t seconds is given by 

h1 t 2  16t2  48t  32

  What maximum height does it reach?
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CHApTeR 2
 80. Maximum profit  The profit P (in dollars) generated by sell-

ing x units of a certain commodity is given by

P1x 2  1500  12x  0.0004x2

  What is the maximum profit, and how many units must be 
sold to generate it?

81–82 ■ Graphical Addition  Two functions, f and g, are given. 
Draw graphs of f, g, and f  g on the same graphing calculator 
screen to illustrate the concept of graphical addition.

 81. f 1x 2  x  2, g 1x 2  x2

 82. f 1x 2  x2  1, g 1x 2  3  x2

 83. Combining Functions  If f 1x 2  x2  3x  2 and 
g 1x 2  4  3x, find the following functions.

(a) f  g (b) f  g (c) fg
(d) f/g (e) f  g (f ) g  f

 84. If f 1x 2  1  x2 and g 1x 2  !x  1, find the following.

(a) f  g (b) g  f  (c) 1f  g 2 12 2
(d) 1f  f 2 12 2  (e) f  g  f  (f ) g  f  g

85–86 ■ Composition of Functions  Find the functions 
f  g, g  f, f  f , and g  g and their domains.

 85. f 1x 2  3x  1, g 1x 2  2x  x2

 86. f 1x 2  !x, g 1x 2 
2

x  4

 87. Finding a Composition  Find f  g  h, where 
f 1x 2  !1  x, g 1x 2  1  x2, and h1x 2  1  !x.

 88. Finding a Composition  If T1x 2 
1

"1  !x
, find func-

tions f, g, and h such that f  g  h  T .

89–94 ■ One-to-One Functions  Determine whether the func-
tion is one-to-one.

 89. f 1x 2  3  x3 90. g 1x 2  2  2x  x2

 91. h1x 2 
1

x4  92. r 1x 2  2  !x  3

 93. p1x 2  3.3  1.6x  2.5x3

94. q1x 2  3.3  1.6x  2.5x3

95–98 ■ Finding Inverse Functions  Find the inverse of the 
function.

 95. f 1x 2  3x  2 96. f 1x 2 
2x  1

3
 97. f 1x 2  1x  1 2 3 98. f 1x 2  1  !5 x  2

99–100 ■ Inverse Functions from a Graph  A graph of a func-
tion f is given. Does f have an inverse? If so, find f 

110 2  and 
f 

114 2 .
 99.   100. 

  

0 1

1

f

x

y

  

0 1

1

f

x

y

101. Graphing Inverse Functions  

(a) Sketch a graph of the function

f 1x 2  x2  4  x  0

(b) Use part (a) to sketch the graph of f1.

(c) Find an equation for f1.

102. Graphing Inverse Functions  

(a) Show that the function f 1x 2  1  !4 x is one-to-one.

(b) Sketch the graph of f.

(c) Use part (b) to sketch the graph of f1.

(d) Find an equation for f1.
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 1. Which of the following are graphs of functions? If the graph is that of a function, is it 
one-to-one?

(a) y

x0

 (b) y

x0

(c) y

x

 (d) y

x0

  

 2. Let f 1x 2 
!x

x  1
.

(a) Evaluate f 10 2 , f 12 2 , and f 1a  2 2 .
(b) Find the domain of f.
(c) What is the average rate of change of f between x  2 and x  10?

 3. A function f has the following verbal description: “Subtract 2, then cube the result.”

(a) Find a formula that expresses f algebraically.

(b) Make a table of values of f, for the inputs 1, 0, 1, 2, 3, and 4.

(c) Sketch a graph of f, using the table of values from part (b) to help you.

(d) How do we know that f has an inverse? Give a verbal description for f 
1.

(e) Find a formula that expresses f 
1 algebraically.

 4. A graph of a function f is given in the margin.

(a)  Find the local minimum and maximum values of f and the values of x at which they occur.

(b) Find the intervals on which f is increasing and on which f is decreasing.

 5. A school fund-raising group sells chocolate bars to help finance a swimming pool for  
their physical education program. The group finds that when they set their price at x dollars 
per bar (where 0  x  5), their total sales revenue (in dollars) is given by the function 
R1x 2  500x2  3000x.

(a) Evaluate R12 2  and R14 2 . What do these values represent?

(b)  Use a graphing calculator to draw a graph of R. What does the graph tell us about  
what happens to revenue as the price increases from 0 to 5 dollars?

(c) What is the maximum revenue, and at what price is it achieved?

 6. Determine the net change and the average rate of change for the function f 1 t 2  t2  2t  
between t  2 and t  2  h.

 7. Let f 1x 2  1x  5 2 2 and g1x 2  1  5x.

(a) Only one of the two functions f and g is linear. Which one is linear, and why is the 
other one not linear?

(b) Sketch a graph of each function.

(c) What is the rate of change of the linear function?

 8. (a) Sketch the graph of the function f 1x 2  x3.

(b) Use part (a) to graph the function g1x 2  1x  1 2 3  2.

 9. (a) How is the graph of y  f 1x  3 2  2 obtained from the graph of f?

(b) How is the graph of y  f 1x 2  obtained from the graph of f?

CHApTeR 2 TesT

y

x

f

1

20
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272 CHAPTER 2 ■ Test

 10. Let f 1x 2  b1  x if x  1

2x  1 if x  1

(a) Evaluate f 12 2  and f 11 2 .
(b) Sketch the graph of f.

 11. If f 1x 2  x2  x  1 and g1x 2  x  3, find the following.

(a) f  g (b) f  g (c) f  g (d) g  f

(e) f 1g12 22  (f) g 1f 12 22  (g) g  g  g

 12. Determine whether the function is one-to-one.

(a) f 1x 2  x3  1 (b) g1x 2  0  x  1 0

 13. Use the Inverse Function Property to show that f 1x 2 
1

x  2
 is the inverse of 

g1x 2 
1
x

 2.

 14. Find the inverse function of f 1x 2 
x  3

2x  5
.

 15. (a) If f 1x 2  !3  x, find the inverse function f 
1.

(b) Sketch the graphs of f and f 
1 on the same coordinate axes.

16–21 ■ A graph of a function f is given below.

 16. Find the domain and range of f.

 17. Find f 10 2  and f 14 2 .
 18. Graph f 1x  2 2  and f 1x 2  2.

 19. Find the net change and the average rate of change of f between x  2 and  
x  6.

 20. Find f 
111 2  and f 

113 2 .
21. Sketch the graph of f 

1.

x

y

0 1
1

f

 22. Let f 1x 2  3x4  14x2  5x  3.

(a) Draw the graph of f in an appropriate viewing rectangle.

(b) Is f one-to-one?

(c)  Find the local maximum and minimum values of f and the values of x at which they  
occur. State each answer correct to two decimal places.

(d) Use the graph to determine the range of f.

(e) Find the intervals on which f is increasing and on which f is decreasing.

A CUMULATIVE REVIEW TEST FOR CHAPTERS 1 AND 2 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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Many of the processes that are studied in the physical and social sciences involve un-
derstanding how one quantity varies with respect to another. Finding a function that 
describes the dependence of one quantity on another is called modeling. For example, 
a biologist observes that the number of bacteria in a certain culture increases with time. 
He tries to model this phenomenon by finding the precise function (or rule) that relates 
the bacteria population to the elapsed time.

In this Focus on Modeling we will learn how to find models that can be constructed 
using geometric or algebraic properties of the object under study. Once the model is 
found, we use it to analyze and predict properties of the object or process being studied.

■ Modeling with Functions
We begin by giving some general guidelines for making a function model.

GuIdeLInes FOR MOdeLInG WITH FunCTIOns

1. express the Model in Words.  Identify the quantity you want to model, and 
express it, in words, as a function of the other quantities in the problem.

2. Choose the Variable.  Identify all the variables that are used to express the 
function in Step 1. Assign a symbol, such as x, to one variable, and express 
the other variables in terms of this symbol.

3. set up the Model.  Express the function in the language of algebra by writing 
it as a function of the single variable chosen in Step 2.

4. use the Model.  Use the function to answer the questions posed in the prob-
lem. (To find a maximum or a minimum, use the methods described in Sec- 
tion 2.3.)

exAMpLe 1 ■ Fencing a Garden
A gardener has 140 feet of fencing to fence in a rectangular vegetable garden.

(a) Find a function that models the area of the garden she can fence.

(b) For what range of widths is the area greater than 825 ft2?

(c) Can she fence a garden with area 1250 ft2?

(d) Find the dimensions of the largest area she can fence.

THInkInG ABOuT THe pROBLeM

If the gardener fences a plot with width 10 ft, then the length must be 60 ft, 
 because 10  10  60  60  140. So the area is

A  width  length  10 # 60  600 ft2

The table shows various choices for fencing the garden. We see that as the 
width increases, the fenced area increases, then decreases.

 Width Length Area

 10 60  600
 20 50 1000
 30 40 1200
 40 30 1200
 50 20 1000
 60 10  600

length

width

Modeling with Functions FOCus On MOdeLInG
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274 Focus on Modeling

sOLuTIOn

(a) The model that we want is a function that gives the area she can fence.

express the model in words.  We know that the area of a rectangular garden is

area
 


 
width

 


 
length

Choose the variable.  There are two varying quantities: width and length. Because the 
function we want depends on only one variable, we let

x  width of the garden

Then we must express the length in terms of x. The perimeter is fixed at 140 ft, so the 
length is determined once we choose the width. If we let the length be l, as in Figure 1, 
then 2x  2l  140, so l  70  x. We summarize these facts:

In Words In Algebra

Width x
Length 70  x

set up the model.  The model is the function A that gives the area of the garden for 
any width x.

area
 


 
width

 


 
length

  A1x 2  x170  x 2
  A1x 2  70x  x 

2

The area that she can fence is modeled by the function A1x 2  70x  x 
2.

use the model.  We use the model to answer the questions in parts (b)–(d).

(b)  We need to solve the inequality A1x 2  825. To solve graphically, we graph  
y  70x  x2 and y  825 in the same viewing rectangle (see Figure 2). We see 
that 15  x  55.

(c)  From Figure 3 we see that the graph of A1x 2  always lies below the line  
y  1250, so an area of 1250 ft2 is never attained.

(d)  We need to find where the maximum value of the function A1x 2  70x  x2 
occurs. The function is graphed in Figure 4. Using the trace  feature on a 
graphing calculator, we find that the function achieves its maximum value at 
x  35. So the maximum area that she can fence is that when the garden’s width 
is 35 ft and its length is 70  35  35 ft. The maximum area then is 
35  35  1225 ft2.

1500

_100
_5 75

y=70x-≈

y=825

1500

_100
_5 75

y=70x-≈

y=1250

FIGuRe 2 FIGuRe 3

1500 

_100 
_5 75 

y=70x-x™ 

(35, 1225) 

FIGuRe 4 ■

Maximum values of functions are 
 discussed on page 212.

FIGuRe 1

x

l

x

l
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  Modeling with Functions 275

exAMpLe 2 ■ Minimizing the Metal in a Can
A manufacturer makes a metal can that holds 1 L (liter) of oil. What radius minimizes 
the amount of metal in the can?

THInkInG ABOuT THe pROBLeM

To use the least amount of metal, we must minimize the surface area of the can, 
that is, the area of the top, bottom, and the sides. The area of the top and bottom 
is 2pr2 and the area of the sides is 2prh (see Figure 5), so the surface area of the 
can is

S  2pr 
2  2prh

The radius and height of the can must be chosen so that the volume is ex-
actly 1 L, or 1000 cm3. If we want a small radius, say, r  3, then the height 
must be just tall enough to make the total volume 1000 cm3. In other words, we 
must have

 p13 2 2h  1000   Volume of the can is pr2h

 h 
1000

9p
 35.37 cm  Solve for h

Now that we know the radius and height, we can find the surface area of the can:

surface area  2p13 2 2  2p13 2 135.4 2  723.2 cm3

If we want a different radius, we can find the corresponding height and surface 
area in a similar fashion.

h

r 2πr

h

r

r

FIGuRe 5

sOLuTIOn  The model that we want is a function that gives the surface area of  
the can.

express the model in words.  We know that for a cylindrical can

surface area
 


 
area of top and bottom

 
 area of sides

Choose the variable.  There are two varying quantities: radius and height. Because 
the function we want depends on the radius, we let

r  radius of can

Next, we must express the height in terms of the radius r. Because the volume of a 
cylindrical can is V  pr 2h and the volume must be 1000 cm3, we have

 pr 
2h  1000  Volume of can is 1000 cm3

 h 
1000

pr 
2   Solve for h
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276 Focus on Modeling

We can now express the areas of the top, bottom, and sides in terms of r only:

 In Words In Algebra

 Radius of can r

 Height of can 
1000

pr 
2

 Area of top and bottom 2pr 2

 Area of sides (2prh) 2pr a 1000

pr 
2 b

set up the model.  The model is the function S that gives the surface area of the can 
as a function of the radius r.

surface area
 


 
area of top and bottom

 
 area of sides

  S1r 2  2pr 
2  2pr a 1000

pr 
2 b

  S1r 2  2pr 
2 

2000
r

use the model.  We use the model to find the minimum surface area of the can. We 
graph S in Figure 6 and zoom in on the minimum point to find that the minimum 
value of S is about 554 cm2 and occurs when the radius is about 5.4 cm. ■

pROBLeMs
1–18 ■ In these problems you are asked to find a function that models a real-life situation. Use 
the principles of modeling described in this Focus to help you.

 1. Area  A rectangular building lot is three times as long as it is wide. Find a function that 
models its area A in terms of its width „.

 2. Area  A poster is 10 in. longer than it is wide. Find a function that models its area A in 
terms of its width „.

 3. Volume  A rectangular box has a square base. Its height is half the width of the base. 
Find a function that models its volume V in terms of its width „.

 4. Volume  The height of a cylinder is four times its radius. Find a function that models the 
volume V of the cylinder in terms of its radius r.

 5. Area  A rectangle has a perimeter of 20 ft. Find a function that models its area A in terms 
of the length x of one of its sides.

 6. perimeter  A rectangle has an area of 16 m2. Find a function that models its perimeter P 
in terms of the length x of one of its sides.

 7. Area  Find a function that models the area A of an equilateral triangle in terms of the 
length x of one of its sides.

 8. Area  Find a function that models the surface area S of a cube in terms of its volume V.

 9. Radius  Find a function that models the radius r of a circle in terms of its area A.

 10. Area  Find a function that models the area A of a circle in terms of its circumference C.

 11. Area  A rectangular box with a volume of 60 ft3 has a square base. Find a function that 
models its surface area S in terms of the length x of one side of its base.

0

1000

15

FIGuRe 6 S1r 2  2pr 
2 

2000
r
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  Modeling with Functions 277

 12. Length  A woman 5 ft tall is standing near a street lamp that is 12 ft tall, as shown in the 
figure. Find a function that models the length L of her shadow in terms of her distance d 
from the base of the lamp.

L d

12 ft

5 ft

 13. distance  Two ships leave port at the same time. One sails south at 15 mi/h, and the 
other sails east at 20 mi/h. Find a function that models the distance D between the ships in 
terms of the time t (in hours) elapsed since their departure.

D

 14. product  The sum of two positive numbers is 60. Find a function that models their prod-
uct P in terms of x, one of the numbers.

 15. Area  An isosceles triangle has a perimeter of 8 cm. Find a function that models its area 
A in terms of the length of its base b.

 16. perimeter  A right triangle has one leg twice as long as the other. Find a function that 
 models its perimeter P in terms of the length x of the shorter leg.

 17. Area  A rectangle is inscribed in a semicircle of radius 10, as shown in the figure. Find a 
function that models the area A of the rectangle in terms of its height h.

h h

10

A

 18. Height  The volume of a cone is 100 in3. Find a function that models the height h of the 
cone in terms of its radius r.

PythAgoRAs (circa 580–500 b.c.) 
founded a school in Croton in southern 
Italy, devoted to the study of arithmetic, 
geometry, music, and astronomy. The 
Pythagoreans, as they were called, were a 
secret society with peculiar rules and initi-
ation rites. They wrote nothing down and 
were not to reveal to anyone what they 
had learned from the Master. Although 
women were barred by law from attend-
ing public meetings, Pythagoras allowed 
women in his school, and his most famous 
student was Theano (whom he later 
married).

According to Aristotle, the Pythagore-
ans were convinced that “the principles of 
mathematics are the principles of all 
things.” Their motto was “Everything is 
Number,” by which they meant whole 
numbers. The outstanding contribution of 
Pythagoras is the theorem that bears his 
name: In a right triangle the area of the 
square on the hypotenuse is equal to the 
sum of the areas of the square on the 
other two sides.

c™=a™+b™

c

b

a

The converse of Pythagoras’s Theorem 
is also true; that is, a triangle whose sides a, 
b, and c satisfy a2  b2  c2 is a right 
triangle.
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278 Focus on Modeling

19–32 ■ In these problems you are asked to find a function that models a real-life situation 
and then use the model to answer questions about the situation. Use the guidelines on page 273 
to help you.

 19. Maximizing a product  Consider the following problem: Find two numbers whose sum 
is 19 and whose product is as large as possible.

(a)  Experiment with the problem by making a table like the one following, showing the 
product of different pairs of numbers that add up to 19. On the basis of the evidence in 
your table, estimate the answer to the problem.

First number Second number Product

1 18 18
2 17 34
3 16 48
( ( (

(b) Find a function that models the product in terms of one of the two numbers.

(c) Use your model to solve the problem, and compare with your answer to part (a).

 20. Minimizing a sum   Find two positive numbers whose sum is 100 and the sum of whose 
squares is a minimum.

 21. Fencing a Field  Consider the following problem: A farmer has 2400 ft of fencing and 
wants to fence off a rectangular field that borders a straight river. He does not need a fence 
along the river (see the figure). What are the dimensions of the field of largest area that he 
can fence?

(a)  Experiment with the problem by drawing several diagrams illustrating the situation. 
 Calculate the area of each configuration, and use your results to estimate the dimen-
sions of the largest possible field.

(b) Find a function that models the area of the field in terms of one of its sides.

(c) Use your model to solve the problem, and compare with your answer to part (a).

 22. dividing a pen  A rancher with 750 ft of fencing wants to enclose a rectangular area and 
then divide it into four pens with fencing parallel to one side of the rectangle (see the 
figure).

(a) Find a function that models the total area of the four pens.

(b) Find the largest possible total area of the four pens.

 23. Fencing a Garden plot  A property owner wants to fence a garden plot adjacent to a 
road, as shown in the figure. The fencing next to the road must be sturdier and costs $5 per 
foot, but the other fencing costs just $3 per foot. The garden is to have an area of 1200 ft2.

(a) Find a function that models the cost of fencing the garden.

(b) Find the garden dimensions that minimize the cost of fencing.

(c)  If the owner has at most $600 to spend on fencing, find the range of lengths he can 
fence along the road.

x

x xA
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  Modeling with Functions 279

 24. Maximizing Area  A wire 10 cm long is cut into two pieces, one of length x and the 
other of length 10  x, as shown in the figure. Each piece is bent into the shape of a 
square.

(a) Find a function that models the total area enclosed by the two squares.

(b) Find the value of x that minimizes the total area of the two squares.

10 cm

x 10-x

 25. Light from a Window  A Norman window has the shape of a rectangle surmounted by a 
semicircle, as shown in the figure to the left. A Norman window with perimeter 30 ft is to 
be constructed.

(a) Find a function that models the area of the window.

(b) Find the dimensions of the window that admits the greatest amount of light.

 26. Volume of a Box  A box with an open top is to be constructed from a rectangular piece 
of cardboard with dimensions 12 in. by 20 in. by cutting out equal squares of side x at each 
corner and then folding up the sides (see the figure).

(a) Find a function that models the volume of the box.

(b) Find the values of x for which the volume is greater than 200 in3.

(c) Find the largest volume that such a box can have.

x
x

x
x x

x

x

x
12 in.

20 in.

x

 27. Area of a Box  An open box with a square base is to have a volume of 12 ft3.

(a) Find a function that models the surface area of the box.

(b) Find the box dimensions that minimize the amount of material used.

 28. Inscribed Rectangle  Find the dimensions that give the largest area for the rectangle 
shown in the figure. Its base is on the x-axis, and its other two vertices are above the  
x-axis, lying on the parabola y  8  x2.

y=8-≈

0

(x, y)

x

y

 29. Minimizing Costs  A rancher wants to build a rectangular pen with an area of 100 m2.

(a) Find a function that models the length of fencing required.

(b) Find the pen dimensions that require the minimum amount of fencing.

x
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280 Focus on Modeling

 30. Minimizing Time  A man stands at a point A on the bank of a straight river, 2 mi wide. 
To reach point B, 7 mi downstream on the opposite bank, he first rows his boat to point P 
on the opposite bank and then walks the remaining distance x to B, as shown in the figure. 
He can row at a speed of 2 mi/h and walk at a speed of 5 mi/h.

(a) Find a function that models the time needed for the trip.

(b) Where should he land so that he reaches B as soon as possible?

A

P B

7 mi
x

 31. Bird Flight  A bird is released from point A on an island, 5 mi from the nearest point B 
on a straight shoreline. The bird flies to a point C on the shoreline and then flies along the 
shoreline to its nesting area D (see the figure). Suppose the bird requires 10 kcal/mi of 
energy to fly over land and 14 kcal/mi to fly over water.

(a) Use the fact that

energy used  energy per mile  miles flown

 to show that the total energy used by the bird is modeled by the function

E1x 2  14"x2  25  10112  x 2
(b)  If the bird instinctively chooses a path that minimizes its energy expenditure, to what 

point does it fly?

C D

5 mi

nesting
area

B

12 mi

A

x

island

 32. Area of a kite  A kite frame is to be made from six pieces of wood. The four pieces that 
form its border have been cut to the lengths indicated in the figure. Let x be as shown in 
the figure.

(a) Show that the area of the kite is given by the function

A1x 2  xA"25  x2  "144  x2 B
(b) How long should each of the two crosspieces be to maximize the area of the kite?

12

5

x x

12

5
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Functions defined by polynomial expressions  are called polynomial 
functions. The graphs of polynomial functions can have many peaks and 
valleys. This property makes them suitable models for many real-world 
situations. For example, a factory owner notices that if she increases the 
number of workers, productivity increases, but if there are too many 
workers, productivity begins to decrease. This situation is modeled by a 
polynomial function of degree 2 (a quadratic function). The growth of 
many animal species follows a predictable pattern, beginning with a period 
of rapid growth, followed by a period of slow growth and then a final 
growth spurt. This variability in growth is modeled by a polynomial of 
degree 3.

In the Focus on Modeling at the end of this chapter we explore different 
ways of using polynomial functions to model real-world situations.

281

Polynomial and Rational 
Functions3

3.1 Quadratic Functions  
and Models
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282 CHAPTER 3 ■ Polynomial and Rational Functions

3.1 QuADRATIC FunCTIons AnD MoDels
■ Graphing Quadratic Functions using the standard Form ■ Maximum and Minimum  
Values of Quadratic Functions ■ Modeling with Quadratic Functions

A polynomial function is a function that is defined by a polynomial expression. So a 
polynomial function of degree n is a function of the form

P 1x 2  anxn  an1x
n1  . . .  a1x  a0  an ? 0

We have already studied polynomial functions of degree 0 and 1. These are functions of 
the form P 1x 2  a0 and P 1x 2  a1x  a0, respectively, whose graphs are lines. In this 
section we study polynomial functions of degree 2. These are called quadratic functions.

QuADRATIC FunCTIons

A quadratic function is a polynomial function of degree 2. So a quadratic 
function is a function of the form

f 1x 2  ax2  bx  c  a ? 0

We see in this section how quadratic functions model many real-world phenomena. We 
begin by analyzing the graphs of quadratic functions.

■ Graphing Quadratic Functions using the standard Form
If we take a  1 and b  c  0 in the quadratic function f 1x 2  ax2  bx  c, we get 
the quadratic function f 1x 2  x2, whose graph is the parabola graphed in Example 1 of 
Section 2.2. In fact, the graph of any quadratic function is a parabola; it can be obtained 
from the graph of f 1x 2  x2 by the transformations given in Section 2.6.

sTAnDARD FoRM oF A QuADRATIC FunCTIon

A quadratic function f 1x 2  ax2  bx  c can be expressed in the standard form

f 1x 2  a1x  h 2 2  k

by completing the square. The graph of f is a parabola with vertex 1h,  k 2 ; the 
parabola opens upward if a  0 or downward if a  0.

y

x0

Ï=a(x-h)™+k,  a>0

y

x0

Ï=a(x-h)™+k,  a<0

h

k

h

Vertex (h, k)

Vertex (h, k)

k

exAMPle 1 ■ standard Form of a Quadratic Function
Let f 1x 2  2x2  12x  13.

(a) Express f in standard form.

(b) Find the vertex and x- and y-intercepts of f.

(c) Sketch a graph of f.

(d) Find the domain and range of f.

Polynomial expressions are defined in 
Section P.5.

For a geometric definition of parabolas, 
see Section 12.1.
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SECTION 3.1 ■ Quadratic Functions and Models 283

soluTIon

(a)  Since the coefficient of x2 is not 1, we must factor this coefficient from the terms 
involving x before we complete the square.

 f 1x 2  2x2  12x  13

  21x2  6x 2  13     Factor 2 from the x-terms

  21x2  6x  9 2  13  2 # 9    
Complete the square: Add 9 inside 
parentheses, subtract 2 # 9 outside

  21x  3 2 2  5     Factor and simplify

  The standard form is f 1x 2  21x  3 2 2  5.

(b)  From the standard form of f we can see that the vertex of f is 13, 5 2 . The 
y-intercept is f 10 2  13. To find the x-intercepts, we set f 1x 2  0 and solve the 
resulting equation. We can solve a quadratic equation by any of the methods we stud-
ied in Section 1.4. In this case we solve the equation by using the Quadratic Formula.

 0  2x2  12x  13     Set f 1x 2  0

 x 
12  !144  4 # 2 # 13

4
    Solve for x using the Quadratic Formula

 x 
6  !10

2
    Simplify

   Thus the x-intercepts are x  A6  !10B/2. So the intercepts are approximately 
1.42 and 4.58.

(c)  The standard form tells us that we get the graph of f by taking the parabola 
y  x2, shifting it to the right 3 units, stretching it vertically by a factor of 2, and 
moving it downward 5 units. We sketch a graph of f in Figure 1, including the  
x- and y-intercepts found in part (b).

(d)  The domain of f is the set of all real numbers 1,  2 . From the graph we see 
that the range of f is 35,  2 .

now Try exercise 15 ■

■ Maximum and Minimum Values of Quadratic Functions
If a quadratic function has vertex 1h,  k 2 , then the function has a minimum value at the 
vertex if its graph opens upward and a maximum value at the vertex if its graph opens 
downward. For example, the function graphed in Figure 1 has minimum value 5 when 
x  3, since the  vertex 13,  5 2  is the lowest point on the graph.

MAxIMuM oR MInIMuM VAlue oF A QuADRATIC FunCTIon

Let f be a quadratic function with standard form f 1x 2  a1x  h 2 2  k. The 
maximum or minimum value of f occurs at x  h.

If a  0, then the minimum value of f is f 1h 2  k.

If a  0, then the maximum value of f is f 1h 2  k.

y

x0

y

x0 h

k

h

Minimum

Maximum

k

Ï=a(x-h)™+k, a>0 Ï=a(x-h)™+k, a<0

Completing the square is discussed  
in Section 1.4.

FIGuRe 1 f 1x 2  2x2  12x  13 

y

x

Vertex (3, _5)

13

5

0 1 6
1.42 4.58
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284 CHAPTER 3 ■ Polynomial and Rational Functions

exAMPle 2 ■ Minimum Value of a Quadratic Function
Consider the quadratic function f 1x 2  5x2  30x  49.

(a) Express f in standard form.

(b) Sketch a graph of f.

(c) Find the minimum value of f.

soluTIon

(a) To express this quadratic function in standard form, we complete the square.

 f 1x 2  5x2  30x  49

  51x2  6x 2  49     Factor 5 from the x-terms

  51x2  6x  9 2  49  5 # 9    
Complete the square: Add 9 inside 
parentheses, subtract 5  9 outside

  51x  3 2 2  4     Factor and simplify

(b)  The graph is a parabola that has its vertex at 13,  4 2  and opens upward, as 
sketched in Figure 2.

(c)  Since the coefficient of x2 is positive, f has a minimum value. The minimum 
value is f 13 2  4.

now Try exercise 27 ■

exAMPle 3 ■ Maximum Value of a Quadratic Function
Consider the quadratic function f 1x 2  x2  x  2.

(a) Express f in standard form.

(b) Sketch a graph of f.

(c) Find the maximum value of f.

soluTIon

(a) To express this quadratic function in standard form, we complete the square.

 f 1x 2  x2  x  2

  1x2  x 2  2     Factor 1 from the x-terms

  Ax2  x  1
4B  2  11 2 14    

Complete the square: Add 1
4 inside 

parentheses, subtract 11 2 14 outside
  Ax  1

2B2  9
4     Factor and simplify

(b)  From the standard form we see that the graph is a parabola that opens downward  
and has vertex A12,  

9
4B . The graph of f is sketched in Figure 3.

y

x

1

10

!   ,    @1
2

9
4 9

4

2_1

Maximum value

FIGuRe 3 Graph of 
f 1x 2  x2  x  2

(c)  Since the coefficient of x2 is negative, f has a maximum value, which is f A12B  9
4.

now Try exercise 29 ■

In Example 3 you can check that the 
x-intercepts of the parabola are 1 and 
2. These are obtained by solving the 
equation f 1x 2  0.

y

x3

4

Ï=5(x-3)™+4

(3, 4)

0

49

Minimum
value 4

FIGuRe 2
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SECTION 3.1 ■ Quadratic Functions and Models 285

Expressing a quadratic function in standard form helps us to sketch its graph as well 
as to find its maximum or minimum value. If we are interested only in finding the 
maximum or minimum value, then a formula is available for doing so. This formula is 
obtained by  completing the square for the general quadratic function as follows.

 f 1x 2  ax2  bx  c

  a a x2 
b
a

x b  c     Factor a from the x-terms

  a a x2 
b
a

x 
b2

4a2 b  c  a a b2

4a2 b     

Complete the square: Add 
b2

4a2  

inside parentheses, subtract 

a a b2

4a2 b  outside

  a a x 
b

2a
b

2

 c 
b2

4a
    Factor

This equation is in standard form with h  b/ 12a 2  and k  c  b2/ 14a 2 . Since the 
maximum or minimum value occurs at x  h, we have the following result.

MAxIMuM oR MInIMuM VAlue oF A QuADRATIC FunCTIon

The maximum or minimum value of a quadratic function f 1x 2  ax2  bx  c 
occurs at

x   

b

2a

If a  0, then the minimum value is f a 

b

2a
b .

If a  0, then the maximum value is f a 

b

2a
b .

exAMPle 4 ■   Finding Maximum and Minimum Values  
of Quadratic Functions

Find the maximum or minimum value of each quadratic function.

(a) f 1x 2  x2  4x        

(b) g1x 2  2x2  4x  5

soluTIon

(a)  This is a quadratic function with a  1 and b  4. Thus the maximum or mini-
mum value occurs at

x   

b

2a
  

4

2 # 1
 2

  Since a  0, the function has the minimum value

f 12 2  12 2 2  412 2  4

(b)  This is a quadratic function with a  2 and b  4. Thus the maximum or mini-
mum value occurs at

x   

b

2a
  

4

2 # 12 2  1

  Since a  0, the function has the maximum value

f 11 2  211 2 2  411 2  5  3

now Try exercises 35 and 37 ■

1

_6

_2 4

The maximum value
occurs at x = 1.

4

_6

_5 2

The minimum value
occurs at x = _2.
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286 CHAPTER 3 ■ Polynomial and Rational Functions

■ Modeling with Quadratic Functions
We study some examples of real-world phenomena that are modeled by quadratic func-
tions. These examples and the Applications exercises for this section show some of the 
variety of situations that are naturally modeled by quadratic functions.

exAMPle 5 ■ Maximum Gas Mileage for a Car
Most cars get their best gas mileage when traveling at a relatively modest speed. The 
gas mileage M for a certain new car is modeled by the function

M1s 2   

1

28
 s2  3s  31  15  s  70

where s is the speed in mi/h and M is measured in mi/gal. What is the car’s best gas 
mileage, and at what speed is it attained?

soluTIon  The function M is a quadratic function with a   1
28 and b  3. Thus its 

maximum value occurs when

s   

b

2a
  

3

2A 
1

28B
 42

The maximum value is M142 2   
1

28 142 2 2  3142 2  31  32. So the car’s best 
gas mileage is 32 mi/gal when it is traveling at 42 mi/h.

now Try exercise 55 ■

exAMPle 6 ■ Maximizing Revenue from Ticket sales
A hockey team plays in an arena that has a seating capacity of 15,000 spectators. 
With the ticket price set at $14, average attendance at recent games has been 9500. A 
market survey indicates that for each dollar the ticket price is lowered, the average 
attendance increases by 1000.

(a) Find a function that models the revenue in terms of ticket price. 

(b) Find the price that maximizes revenue from ticket sales.

(c) What ticket price is so high that no one attends and so no revenue is generated?

soluTIon 

(a)  express the model in words.  The model that we want is a function that gives 
the revenue for any ticket price:

revenue   ticket price   attendance

15 70

40

0
The maximum gas
mileage occurs at 42 mi/h.

DIsCoVeRy PRojeCT

Torricelli’s law

Evangelista Torricelli (1608–1647) is best known for his invention of the 
barometer. He also discovered that the speed at which a fluid leaks from the 
bottom of a tank is related to the height of the fluid in the tank (a principle now 
called Torricelli’s Law). In this project we conduct a simple experiment to col-
lect data on the speed of water leaking through a hole in the bottom of a large 
soft-drink bottle. We then find an algebraic expression for Torricelli’s Law by 
fitting a quadratic function to the data we obtained. You can find the project at 
www.stewartmath.com.
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SECTION 3.1 ■ Quadratic Functions and Models 287

  Choose the variable.  There are two varying quantities: ticket price and atten-
dance. Since the function we want depends on price, we let

x  ticket price

  Next, we express attendance in terms of x.

In Words In Algebra

Ticket price x
Amount ticket price is lowered 14  x
Increase in attendance 1000114  x 2
Attendance 9500  1000114  x 2

   set up the model.  The model that we want is the function R that gives the reve-
nue for a given ticket price x.

revenue   ticket price   attendance

 R 1x 2  x  39500  1000114  x 2 4
 R 1x 2  x 123,500  1000x 2
 R 1x 2  23,500x  1000x2

(b)  Use the model.  Since R is a quadratic function with a  1000 and 
b  23,500, the maximum  occurs at

x   

b

2a
  

23,500

211000 2  11.75

  So a ticket price of $11.75 gives the maximum revenue. 

(c) Use the model.  We want to find the ticket price for which R1x 2  0.

 23,500x  1000x2  0    Set R1x 2  0

 23.5x  x2  0    Divide by 1000

 x 123.5  x 2  0    Factor 

 x  0 or x  23.5 Solve for x

   So according to this model, a ticket price of $23.50 is just too high; at that price 
no one attends to watch this team play. (Of course, revenue is also zero if the 
ticket price is zero.) 

now Try exercise 65 ■

ConCePTs
 1. To put the quadratic function f 1x 2  ax2  bx  c in  

standard form, we complete the    .

 2. The quadratic function f 1x 2  a1x  h 2 2  k is in standard 
form.

(a) The graph of f  is a parabola with vertex  

1    ,  2.
(b) If a  0, the graph of f  opens    . In this case 

f 1h 2  k is the   value of f .

(c) If a  0, the graph of f  opens    . In this case 

f 1h 2  k is the   value of f .

 3. The graph of f 1x 2  31x  2 2 2  6 is a parabola that opens 

   , with its vertex at 1    ,  2, and f 12 2 

  is the (minimum/maximum)   value of f .

 4. The graph of f 1x 2  31x  2 2 2  6 is a parabola that 

opens    , with its vertex at 1    ,  2, and 

f 12 2    is the (minimum/maximum)   
value of f .

3.1 exeRCIses

150,000

250
Maximum attendance occurs  
when ticket price is $11.75. 
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288 CHAPTER 3 ■ Polynomial and Rational Functions

skIlls
5–8 ■ Graphs of Quadratic Functions  The graph of a quadratic 
function f  is given. (a) Find the  coordinates of the vertex and the 
x- and y-intercepts. (b) Find the maximum or minimum value of 
f. (c) Find the domain and range of f.

 5. f 1x 2  x2  6x  5 6. f 1x 2  1
2 x2  2x  6

  

1

10 x

y

 

5

10 x

y

 7. f 1x 2  2x2  4x  1 8. f 1x 2  3x2  6x  1

  

1

10 x

y

1

10 x

y

9–24 ■ Graphing Quadratic Functions  A quadratic function f is 
given. (a) Express f in standard form. (b) Find the vertex and x- 
and y-intercepts of f. (c) Sketch a graph of f. (d) Find the domain 
and range of f.

 9. f 1x 2  x2  2x  3 10. f 1x 2  x2  4x  1

 11. f 1x 2  x2  6x 12. f 1x 2  x2  8x

 13. f 1x 2  3x2  6x 14. f 1x 2  x2  10x

 15. f 1x 2  x2  4x  3 16. f 1x 2  x2  2x  2

 17. f 1x 2  x2  6x  4 18. f 1x 2  x2  4x  4

19. f 1x 2  2x2  4x  3 20. f 1x 2  3x2  6x  2

21. f 1x 2  2x2  20x  57 22. f 1x 2  2x2  12x  10

23. f 1x 2  4x2  12x  1 24. f 1x 2  3x2  2x  2

25–34 ■ Maximum and Minimum Values  A quadratic function 
f is given. (a) Express f in standard form. (b) Sketch a graph of 
f. (c) Find the maximum or minimum value of f.

25. f 1x 2  x2  2x  1 26. f 1x 2  x2  8x  8

27. f 1x 2  3x2  6x  1 28. f 1x 2  5x2  30x  4

29. f 1x 2  x2  3x  3 30. f 1x 2  1  6x  x2

31. g1x 2  3x2  12x  13 32. g1x 2  2x2  8x  11

33. h1x 2  1  x  x2 34. h1x 2  3  4x  4x2

35–44 ■ Formula for Maximum and Minimum Values   
Find the maximum or minimum value of the function.

35. f 1x 2  2x2  4x  1 36. f 1x 2  3  4x  x2

37. f 1 t 2  3  80t  20t2 38. f 1x 2  6x2  24x  100

39. f 1s 2  s2  1.2s  16 40. g1x 2  100x2  1500x

41. h1x 2  1
2 x2  2x  6 42. f 1x 2   

x 2

3
 2x  7

43. f 1x 2  3  x  1
2 x2 44. g1x 2  2x1x  4 2  7

45–46 ■ Maximum and Minimum Values  A quadratic function 
is given. (a) Use a graphing device to find the maximum or mini-
mum value of the quadratic function f, rounded to two decimal 
places. (b) Find the exact maximum or minimum value of f, and 
compare it with your answer to part (a).

45. f 1x 2  x2  1.79x  3.21

46. f 1x 2  1  x  !2x2

skIlls Plus
47–48 ■ Finding Quadratic Functions  Find a function f whose 
graph is a parabola with the given vertex and that passes through 
the given point.

 47. Vertex 12, 3 2 ; point 13, 1 2
 48. Vertex 11, 5 2 ; point 13, 7 2
 49. Maximum of a Fourth-Degree Polynomial  Find the maxi-

mum value of the function 

f 1x 2  3  4x2  x4

  [Hint: Let t  x2.]

 50. Minimum of a sixth-Degree Polynomial  Find the minimum 
value of the function 

f 1x 2  2  16x3  4x6

  [Hint: Let t  x3.]

APPlICATIons
 51. Height of a Ball  If a ball is thrown directly upward with a 

velocity of 40 ft/s, its height (in feet) after t seconds is given  
by y  40t  16t2. What is the maximum height attained by 
the ball?

 52. Path of a Ball  A ball is thrown across a playing field from  
a height of 5 ft above the ground at an angle of 45º to the 
horizontal at a speed of 20 ft/s. It can be deduced from phys-
ical principles that the path of the ball is modeled by the 
function

y   

32

120 2 2 x2  x  5

  where x is the distance in feet that the ball has traveled 
 horizontally.

(a) Find the maximum height attained by the ball.
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SECTION 3.1 ■ Quadratic Functions and Models 289

(b)  Find the horizontal distance the ball has traveled when it 
hits the ground.

x

5 ft

 53. Revenue  A manufacturer finds that the revenue generated 
by selling x units of a certain commodity is given by the 
function R1x 2  80x  0.4x2, where the revenue R1x 2  is 
measured in dollars. What is the maximum revenue, and how 
many units should be manufactured to obtain this maximum?

 54. sales  A soft-drink vendor at a popular beach analyzes his 
sales records and finds that if he sells x cans of soda pop in 
one day, his profit (in dollars) is given by

P1x 2  0.001x2  3x  1800

  What is his maximum profit per day, and how many cans 
must he sell for maximum profit?

 55. Advertising  The effectiveness of a television commercial 
depends on how many times a viewer watches it. After some 
experiments an advertising agency found that if the effective-
ness E is measured on a scale of 0 to 10, then

E1n 2  2
3 
n  1

90 n2

  where n is the number of times a viewer watches a given 
commercial. For a commercial to have maximum effective-
ness, how many times should a viewer watch it?

 56. Pharmaceuticals  When a certain drug is taken orally,  
the concentration of the drug in the patient’s bloodstream  
after t minutes is given by C1 t 2  0.06t  0.0002t2, where  
0  t  240 and the concentration is measured in mg/L. 
When is the maximum serum concentration reached, and 
what is that maximum concentration?

 57. Agriculture  The number of apples produced by each tree in 
an apple orchard depends on how densely the trees are 
planted. If n trees are planted on an acre of land, then each 
tree produces 900  9n apples. So the number of apples  
produced per acre is

A1n 2  n1900  9n 2
  How many trees should be planted per acre to obtain the 

maximum yield of apples?

 58. Agriculture  At a certain vineyard it is found that each grape 
vine produces about 10 lb of grapes in a season when about 
700 vines are planted per acre. For each additional vine that 
is planted, the production of each vine decreases by about  
1 percent. So the number of pounds of grapes produced per 
acre is modeled by

A1n 2  1700  n 2 110  0.01n 2
  where n is the number of additional vines planted. Find the 

number of vines that should be planted to maximize grape 
 production.

59–62 ■ Maxima and Minima  Use the formulas of this section 
to give an alternative  solution to the indicated problem in Focus 
on Modeling: Modeling with Functions on pages 237–244.

 59. Problem 21 60. Problem 22

 61. Problem 25 62. Problem 24

 63. Fencing a Horse Corral  Carol has 2400 ft of fencing to fence 
in a rectangular horse corral.

(a)  Find a function that models the area of the corral in 
terms of the width x of the corral.

(b)  Find the dimensions of the rectangle that maximize the 
area of the corral.

x 1200 – x

 64. Making a Rain Gutter  A rain gutter is formed by bending up 
the sides of a 30-in.-wide rectangular metal sheet as shown in 
the figure.

(a)  Find a function that models the cross-sectional area of 
the gutter in terms of x.

(b)  Find the value of x that maximizes the cross-sectional 
area of the gutter.

(c) What is the maximum cross-sectional area for the gutter?

x

30 in.

 65. stadium Revenue  A baseball team plays in a stadium that 
holds 55,000 spectators. With the ticket price at $10, the 
average attendance at recent games has been 27,000. A mar-
ket survey indicates that for every dollar the ticket price is 
lowered, attendance increases by 3000.

(a)  Find a function that models the revenue in terms of ticket 
price.

(b) Find the price that maximizes revenue from ticket sales.

(c) What ticket price is so high that no revenue is generated?
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290 CHAPTER 3 ■ Polynomial and Rational Functions

 66. Maximizing Profit  A community bird-watching society 
makes and sells simple bird feeders to raise money for its 
 conservation activities. The materials for each feeder cost $6, 
and the society sells an average of 20 per week at a price of 
$10 each. The society has been considering raising the price, 
so it conducts a survey and finds that for every dollar 
increase, it will lose 2 sales per week.

(a)  Find a function that models weekly profit in terms of 
price per feeder.

(b)  What price should the society charge for each feeder  
to maximize profits? What is the maximum weekly 
profit?

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
 67. DIsCoVeR: Vertex and x-Intercepts  We know that the graph 

of the quadratic function f 1x 2  1x  m 2 1x  n 2  is a parab-
ola. Sketch a rough graph of what such a parabola would 
look like. What are the x-intercepts of the graph of f? Can 
you tell from your graph the x-coordinate of the vertex in 
terms of m and n? (Use the symmetry of the parabola.) Con-
firm your answer by expanding and using the formulas of this 
section.

3.2 PolynoMIAl FunCTIons AnD THeIR GRAPHs
■ Polynomial Functions ■ Graphing Basic Polynomial Functions ■ Graphs of Polynomial 
Functions: end Behavior ■ using Zeros to Graph Polynomials ■ shape of the Graph near  
a Zero ■ local Maxima and Minima of Polynomials

■ Polynomial Functions
In this section we study polynomial functions of any degree. But before we work with 
polynomial functions, we must agree on some terminology.

PolynoMIAl FunCTIons

A polynomial function of degree n is a function of the form

P1x 2  an 
x 

n  an1x
n1  . . .  a1x  a0

where n is a nonnegative integer and an ? 0.

The numbers a0, a1, a2, . . . , an are called the coefficients of the polynomial. 

The number a0 is the constant coefficient or constant term. 

The number an, the coefficient of the highest power, is the leading coefficient, 
and the term an 

xn is the leading term.

We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 5, leading coefficient 3, and constant term 6.

3x5  6x4  2x3  x2  7x  6

Degree 5Leading 
coefficient 3

Leading term 3x5

Coefficients 3, 6, 2, 1, 7, and 6

Constant term 6
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 291

The table lists some more examples of polynomials.

Polynomial Degree Leading term Constant term

P1x 2  4x  7 1 4x 7
P1x 2  x2  x 2 x2 0
P1x 2  2x3  6x2  10 3 2x3 10
P1x 2  5x4  x  2 4 5x4 2

If a polynomial consists of just a single term, then it is called a monomial. For example, 
P1x 2  x3 and Q1x 2  6x5 are monomials.

■ Graphing Basic Polynomial Functions
The simplest polynomial functions are the monomials P1x 2  xn, whose graphs are 
shown in Figure 1. As the figure suggests, the graph of P1x 2  xn has the same general 
shape as the graph of y  x2 when n is even and the same general shape as the graph 
of y  x3 when n is odd. However, as the degree n becomes larger, the graphs become 
flatter around the origin and steeper elsewhere.

FIGuRe 1 Graphs of monomials
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1
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exAMPle 1 ■ Transformations of Monomials
Sketch graphs of the following functions.

(a) P1x 2  x3 (b) Q1x 2  1x  2 2 4
(c) R1x 2  2x5  4

Splines

Mathematics in the Modern World

adjusting the coefficients of the polynomial (see Example 10,  
page 301).

Curves obtained in this way are called cubic splines. In modern com-
puter design programs, such as Adobe Illustrator or Microsoft Paint, a 
curve can be drawn by fix ing two points, then using the mouse to drag 
one or more anchor points. Moving the anchor points amounts to adjust-
ing the coeffi cients of a cubic polynomial.

A spline is a long strip of wood that is curved while held fixed at certain 
points. In the old days ship builders used splines to create the curved 
shape of a boat’s hull. Splines are also used to make the curves of a 
piano, a violin, or the spout of a teapot.

Mathematicians discovered that the shapes of splines can be 
obtained by piecing together parts of polynomials. For example, the 
graph of a cubic polynomial can be made to fit specified points by 
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292 CHAPTER 3 ■ Polynomial and Rational Functions

soluTIon  We use the graphs in Figure 1 and transform them using the techniques of 
Section 2.6.

(a)  The graph of P1x 2  x3 is the reflection of the graph of y  x3 in the x-axis, as 
shown in Figure 2(a) below.

(b)  The graph of Q1x 2  1x  2 2 4 is the graph of y  x4 shifted to the right 2 units, 
as shown in Figure 2(b).

(c)  We begin with the graph of y  x5. The graph of y  2x5 is obtained by stretch- 
ing the graph vertically and reflecting it in the x-axis (see the dashed blue graph 
in Figure 2(c)). Finally, the graph of R1x 2  2x5  4 is obtained by shifting 
upward 4 units (see the red graph in Figure 2(c)).

y

0 x

Q(x)=(x-2)¢

8

16

2 4

y

0 x1

1

P(x)=_x£ y

0 x

R(x)=_2x∞+44

8

1_1_2

(a) (b) (c)FIGuRe 2

now Try exercise 5 ■

■ Graphs of Polynomial Functions: end Behavior
The graphs of polynomials of degree 0 or 1 are lines (Sections 1.10 and 2.5), and the 
graphs of polynomials of degree 2 are parabolas (Section 3.1). The greater the degree 
of a polynomial, the more complicated its graph can be. However, the graph of a poly-
nomial function is continuous. This means that the graph has no breaks or holes (see 
Figure 3). Moreover, the graph of a polynomial function is a smooth curve; that is, it 
has no corners or sharp points (cusps) as shown in Figure 3.

Not the graph of a
polynomial function

y y y

x x x

break

hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous

FIGuRe 3
The domain of a polynomial function is the set of all real numbers, so we can sketch 

only a small portion of the graph. However, for values of x  outside the portion of the 
graph we have drawn, we can describe the behavior of the graph.

The end behavior of a polynomial is a description of what happens as x becomes 
large in the positive or negative direction. To describe end behavior, we use the follow-
ing arrow notation.

Symbol Meaning

x S  x goes to infinity; that is, x increases without bound
x S  x goes to negative infinity; that is, x decreases without bound
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 293

For example, the monomial y  x2 in Figure 1(b) has the following end behavior.

y S  as x S   and  y S  as x S 

The monomial y  x3 in Figure 1(c) has the following end behavior.

y S  as x S   and  y S  as x S 

For any polynomial the end behavior is determined by the term that contains the high-
est power of x, because when x is large, the other terms are relatively insignificant in 
size. The following box shows the four possible types of end behavior, based on the 
highest power and the sign of its coefficient.

enD BeHAVIoR oF PolynoMIAls

The end behavior of the polynomial P1x 2  anxn  an1x
n1  . . .  a1x  a0 is determined by the degree n and the 

sign of the leading coefficient an, as indicated in the following graphs.

 P has odd degree P has even degree

y

0 x

y

0 x

y

0 x

y

0 x

y  ` as
x  `

y  ` as
x  _`

y  ` as
x  _`

y  ` as
x  `

y  _` as
x  `

y  _` as
x  `

y  _` as
x  _`

y  _` as
x  _`

 Leading coefficient positive  Leading coefficient negative Leading coefficient positive Leading coefficient negative

exAMPle 2 ■ end Behavior of a Polynomial
Determine the end behavior of the polynomial

P1x 2  2x4  5x3  4x  7

soluTIon  The polynomial P has degree 4 and leading coefficient 2. Thus P has 
even degree and negative leading coefficient, so it has the following end behavior.

y S  as x S   and  y S  as x S 

The graph in Figure 4 illustrates the end behavior of P.

FIGuRe 4 P1x 2  2x4  5x3  4x  7
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_50
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y  _` as
x  _`

y  _` as
x  `

now Try exercise 11 ■
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294 CHAPTER 3 ■ Polynomial and Rational Functions

exAMPle 3 ■ end Behavior of a Polynomial
(a) Determine the end behavior of the polynomial P1x 2  3x5  5x3  2x.

(b)  Confirm that P and its leading term Q1x 2  3x5 have the same end behavior by 
graphing them together.

soluTIon

(a)  Since P has odd degree and positive leading coefficient, it has the following end 
 behavior.

y S  as x S   and  y S  as x S 

(b)  Figure 5 shows the graphs of P and Q in progressively larger viewing rectangles. 
The larger the viewing rectangle, the more the graphs look alike. This confirms 
that they have the same end behavior.

now Try exercise 45 ■

To see algebraically why P and Q in Example 3 have the same end behavior, factor 
P as follows and compare with Q.

 P1x 2  3x5 a 1 
5

3x2 
2

3x4 b     
 Q1x 2  3x5

When x is large, the terms 5/ 13x2 2  and 2/ 13x4 2  are close to 0 (see Exercise 90 on  
page 17). So for large x we have

 P1x 2  3x511  0  0 2   3x5  Q1x 2
So when x is large, P and Q have approximately the same values. We can also see this 
 numerically by making a table like the one shown below.

x Pxxc Qxxc

15   2,261,280   2,278,125
30  72,765,060  72,900,000
50 936,875,100 937,500,000

By the same reasoning we can show that the end behavior of any polynomial is de-
termined by its leading term.

■ using Zeros to Graph Polynomials
If P is a polynomial function, then c is called a zero of P if P1c 2  0. In other words, 
the zeros of P are the solutions of the polynomial equation P1x 2  0. Note that if 
P1c 2  0, then the graph of P has an x-intercept at x  c, so the x-intercepts of the 
graph are the  zeros of the function.

10,000

_10,000

_10 10

50

_50

_3 3

2

_2

_2 2

Q P
1

_1

_1 1

Q

P

PQ PQ

FIGuRe 5  
 P1x 2  3x5  5x3  2x
 Q1x 2  3x5
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 295

ReAl ZeRos oF PolynoMIAls

If P is a polynomial and c is a real number, then the following are equivalent:

1. c is a zero of P.

2. x  c is a solution of the equation P1x 2  0.

3. x  c is a factor of P1x 2 .
4. c is an x-intercept of the graph of P.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Prop-
erty (see page 116). For example, to find the zeros of P1x 2  x2  x  6, we factor P 
to get

P1x 2  1x  2 2 1x  3 2
From this factored form we easily see that

1. 2 is a zero of P.

2. x  2 is a solution of the equation x2  x  6  0.

3. x  2 is a factor of x2  x  6.

4. 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, 3.
The following theorem has many important consequences. (See, for instance, the 

Discovery Project referenced on page 312.) Here we use it to help us graph polynomial 
functions.

InTeRMeDIATe VAlue THeoReM FoR PolynoMIAls

If P is a polynomial function and P1a 2  and P1b 2  have opposite signs, then 
there exists at least one value c between a and b for which P1c 2  0.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive ze ros 

the values of a polynomial are either all positive or all negative. That is, between two suc-
cessive zeros the graph of a polynomial lies entirely above or entirely below the x-axis. To 
see why, suppose c1 and c2 are successive zeros of P. If P has both positive and negative 
values between c1 and c2, then by the Intermediate Value Theorem, P must have another 
zero between c1 and c2. But that’s not possible because c1 and c2 are successive zeros. This 
observation allows us to use the following guidelines to graph polynomial functions.

GuIDelInes FoR GRAPHInG PolynoMIAl FunCTIons

1.  Zeros.  Factor the polynomial to find all its real zeros; these are the  
x-intercepts of the graph.

2.  Test Points.  Make a table of values for the polynomial. Include test points to 
determine whether the graph of the polynomial lies above or below the x-axis 
on the intervals determined by the zeros. Include the y-intercept in the table.

3. end Behavior.  Determine the end behavior of the polynomial.

4.  Graph.  Plot the intercepts and other points you found in the table. Sketch 
a smooth curve that passes through these points and exhibits the required 
end  behavior.

FIGuRe 6

0 x

y

P(b)

P(a)

a
c b

y=P(x)
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296 CHAPTER 3 ■ Polynomial and Rational Functions

exAMPle 4 ■ using Zeros to Graph a Polynomial Function
Sketch the graph of the polynomial function P1x 2  1x  2 2 1x  1 2 1x  3 2 .
soluTIon  The zeros are x  2, 1, and 3. These determine the intervals 1,  2 2 , 
12,  1 2 , 11,  3 2 , and 13,   2 . Using test points in these intervals, we get the informa-
tion in the following sign diagram (see Section 1.7).

Sign of
P1x 2  1x  2 2 1x  1 2 1x  3 2
Graph of P

_2 1

+-

below
x-axis

above
x-axis

below
x-axis

above
x-axis

+

3

-

Test point
x = –3

P(–3) < 0

Test point
x = –1

P(–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

Plotting a few additional points and connecting them with a smooth curve helps us to 
complete the graph in Figure 7.

Test point →

Test point →

Test point →

Test point →

FIGuRe 7 P1x 2  1x  2 2 1x  1 2 1x  3 2

Test point
P (–1) > 0

Test point
P (4) > 0

Test point
P (2) < 0

Test point
P (–3) < 0

x

5

1

y

0

x Pxxc

3 24
2 0
1 8

0 6
1 0
2 4
3 0
4 18

now Try exercise 17 ■

exAMPle 5 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  3x.

(a) Find the zeros of P.   (b) Sketch a graph of P.

soluTIon 

(a) To find the zeros, we factor completely.

 P1x 2  x3  2x2  3x

  x1x2  2x  3 2     Factor x

  x1x  3 2 1x  1 2     Factor quadratic

  Thus the zeros are x  0, x  3, and x  1.

(b)  The x-intercepts are x  0, x  3, and x  1. The y-intercept is P10 2  0. We 
make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior:

y S  as x S   and  y S  as x S 
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Automotive Design
Computer-aided design (CAD) has com-
pletely changed the way in which car 
companies design and manufacture cars. 
Before the 1980s automotive engineers 
would build a full-scale “nuts and bolts” 
model of a proposed new car; this was 
really the only way to tell whether the 
design was feasible. Today automotive 
engineers build a mathematical model, 
one that exists only in the memory of a 
computer. The model incorporates all the 
main design features of the car. Certain 
polynomial curves, called splines (see 
page 291), are used in shaping the body 
of the car. The resulting “mathematical 
car” can be tested for structural stability, 
handling, aerodynamics, suspension 
response, and more. All this testing is 
done before a prototype is built. As you 
can imagine, CAD saves car manufactur-
ers millions of dollars each year. More 
importantly, CAD gives automotive engi-
neers far more flexibility in design; 
desired changes can be created and 
tested within seconds. With the help of 
computer graphics, designers can see 
how good the “mathematical car” looks 
before they build the real one. Moreover, 
the mathematical car can be viewed from 
any perspective; it can be moved, 
rotated, or seen from the inside. These 
manipulations of the car on the com-
puter monitor translate mathematically 
into solving large systems of linear 
equations.

Mathematics in the Modern World
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 297

   We plot the points in the table and connect them by a smooth curve to complete 
the graph, as shown in Figure 8.

Test point →

Test point →

Test point →

Test point →

FIGuRe 8 P1x 2  x3  2x2  3x

x Pxxc

2 10
1 0
 1

2  7
8

0 0
1 4
2 6
3 0
4 20

y

0 x
1

5

now Try exercise 31 ■

exAMPle 6 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  2x4  x3  3x2.

(a) Find the zeros of P.   (b) Sketch a graph of P.

soluTIon

(a) To find the zeros, we factor completely.

 P1x 2  2x4  x3  3x2

  x212x2  x  3 2     Factor x2

  x212x  3 2 1x  1 2     Factor quadratic

  Thus the zeros are x  0, x  3
2, and x  1.

(b)  The x-intercepts are x  0, x  3
2, and x  1. The y-intercept is P10 2  0. We 

make a table of values of P1x 2 , making sure that we choose test points between 
(and to the right and left of) successive zeros.

     Since P is of even degree and its leading coefficient is negative, it has the fol-
lowing end behavior.

y S  as x S   and  y S  as x S 

   We plot the points from the table and connect the points by a smooth curve to 
complete the graph in Figure 9.

y

0 x1

2

_12

FIGuRe 9 P1x 2  2x4  x3  3x2

x Pxxc

2 12
1.5 0
1 2
0.5 0.75

0 0
0.5 0.5
1 0
1.5 6.75

now Try exercise 35 ■

A table of values is most easily calcu-
lated by using a programmable cal-
culator or a graphing calculator. See 
Appendix D, Using the TI-83/84 Graph-
ing Calculator, for specific instructions. 
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298 CHAPTER 3 ■ Polynomial and Rational Functions

exAMPle 7 ■ Finding Zeros and Graphing a Polynomial Function
Let P1x 2  x3  2x2  4x  8.

(a) Find the zeros of P.   (b) Sketch a graph of P.

soluTIon

(a) To find the zeros, we factor completely.

 P1x 2  x3  2x2  4x  8

  x21x  2 2  41x  2 2     Group and factor

  1x2  4 2 1x  2 2     Factor x  2

  1x  2 2 1x  2 2 1x  2 2     Difference of squares

  1x  2 2 1x  2 2 2     Simplify

  Thus the zeros are x  2 and x  2.

(b)  The x-intercepts are x  2 and x  2. The y-intercept is P10 2  8. The table 
gives additional values of P1x 2 .

     Since P is of odd degree and its leading coefficient is positive, it has the fol-
lowing end behavior.

y S  as x S   and  y S  as x S 

  We connect the points by a smooth curve to complete the graph in Figure 10.

y

0 x1

5

FIGuRe 10 
P1x 2  x3  2x2  4x  8

x Pxxc

3 25
2 0
1 9

0 8
1 3
2 0
3 5

now Try exercise 37 ■

■ shape of the Graph near a Zero
Although x  2 is a zero of the polynomial in Example 7, the graph does not cross the 
x-axis at the x-intercept 2. This is because the factor 1x  2 2 2 corresponding to that 
zero is raised to an even power, so it doesn’t change sign as we test points on either side 
of 2. In the same way the graph does not cross the x-axis at x  0 in Example 6.

DIsCoVeRy PRojeCT

Bridge science

If you want to build a bridge, how can you be sure that your bridge design is 
strong enough to support the cars that will drive over it? In this project we per-
form a simple experiment using paper “bridges” to collect data on the weight 
our bridges can support. We model the data with linear and power functions to 
determine which  model best fits the data. The model we obtain allows us to 
predict the strength of a large bridge before it is built. You can find the project 
at www.stewartmath.com. 
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SECTION 3.2 ■ Polynomial Functions and Their Graphs 299

In general, if c is a zero of P and the corresponding factor x  c occurs exactly m 
times in the factorization of P, then we say that c is a zero of multiplicity m. By con-
sidering test points on either side of the x-intercept c, we conclude that the graph 
crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is 
even. Moreover, it can be shown by using calculus that near x  c the graph has the 
same general shape as the graph of y  A1x  c 2m.

sHAPe oF THe GRAPH neAR A ZeRo oF MulTIPlICITy m

If c is a zero of P of multiplicity m, then the shape of the graph of P near c is as 
 follows.

Multiplicity of c Shape of the graph of P near the x-intercept c

m odd, m  1

 

OR

y

xc

y

xc

OR

y

xc

y

xc
m even, m  1

exAMPle 8 ■ Graphing a Polynomial Function using Its Zeros
Graph the polynomial P1x 2  x41x  2 2 31x  1 2 2.

soluTIon  The zeros of P are 1, 0, and 2 with multiplicities 2, 4, and 3,  respectively:

P1x 2  x41x  2 2 31x  1 2 2
The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2. 
But the zeros 0 and 1 have even multiplicity, so the graph does not cross the x-axis 
at the x-intercepts 0 and 1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the 
 following end behavior:

y S  as x S   and  y S  as x S 

With this information and a table of values we sketch the graph in Figure 11.

y

0 x
1

5
Even
multiplicities

Odd multiplicity

FIGuRe 11 P1x 2  x41x  2 2 31x  1 2 2

x Pxxc

1.3 9.2
1 0
0.5 3.9

0 0
1 4
2 0
2.3 8.2

now Try exercise 29 ■

0 is a zero of 
multiplicity 4

2 is a zero of 
multiplicity 3

–1 is a zero of 
multiplicity 2
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■ local Maxima and Minima of Polynomials
Recall from Section 2.3 that if the point 1a, f 1a 22  is the highest point on the graph 
of f within some viewing rectangle, then f 1a 2  is a local maximum value of f, and if 
1b,  f 1b 22  is the lowest point on the graph of f within a viewing rectangle, then f 1b 2  
is a local minimum value (see Figure 12). We say that such a point 1a, f 1a 22  is a  
local maximum point on the graph and that 1b, f 1b 22  is a local minimum point. 
The local maximum and minimum points on the graph of a function are called its 
local extrema.

0 a b

Ób, f(b)Ô
Local minimum point

Óa, f(a)Ô
Local maximum point

y=Ï

x

y

FIGuRe 12

For a polynomial function the number of local extrema must be less than the degree, 
as the following principle indicates. (A proof of this principle requires calculus.)

loCAl exTReMA oF PolynoMIAls

If P1x 2  anxn  an1x
n1  . . .  a1x  a0 is a polynomial of degree n, then 

the graph of P has at most n  1 local extrema.

A polynomial of degree n may in fact have fewer than n  1 local extrema. For  
example, P1x 2  x5 (graphed in Figure 1) has no local extrema, even though it is of 
degree 5. The preceding principle tells us only that a polynomial of degree n can have 
no more than n  1 local extrema.

exAMPle 9 ■ The number of local extrema
Graph the polynomial and determine how many local extrema it has.

(a) P11x 2  x4  x3  16x2  4x  48

(b) P21x 2  x5  3x4  5x3  15x2  4x  15    
(c) P31x 2  7x4  3x2  10x

soluTIon  The graphs are shown in Figure 13.

(a)  P1 has two local minimum points and one local maximum point, for a total of 
three local extrema.

(b)  P2 has two local minimum points and two local maximum points, for a total of 
four local extrema.

(c) P3 has just one local extremum, a local minimum.
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100

_100

_5 5

(a)

100

_100

_5 5

(b)

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48 P¤(x)=x∞+3x¢-5x£-15≈+4x-15 P‹(x)=7x¢+3≈-10x

(c)

FIGuRe 13

now Try exercises 65 and 67 ■

With a graphing calculator we can quickly draw the graphs of many functions at 
once, on the same viewing screen. This allows us to see how changing a value in the 
definition of the functions affects the shape of its graph. In the next example we apply 
this principle to a family of third-degree polynomials.

exAMPle 10 ■ A Family of Polynomials
Sketch the family of polynomials P1x 2  x3  cx2 for c  0, 1, 2, and 3. How does 
changing the value of c affect the graph?

soluTIon  The polynomials

P01x 2  x3       P11x 2  x3  x2

P21x 2  x3  2x2      P31x 2  x3  3x2

are graphed in Figure 14. We see that increasing the value of c causes the graph to 
develop an increasingly deep “valley” to the right of the y-axis, creating a local maxi-
mum at the origin and a local minimum at a point in Quadrant IV. This local mini-
mum moves lower and farther to the right as c increases. To see why this happens, 
factor P1x 2  x21x  c 2 . The polynomial P has zeros at 0 and c, and the larger c 
gets, the farther to the right the minimum between 0 and c will be.

now Try exercise 75 ■

10

_10

_2 4

c=0 c=1 c=2 c=3

FIGuRe 14 A family of polynomials 
P1x 2  x3  cx2

ConCePTs
 1. Only one of the following graphs could be the graph of a 

polynomial function. Which one? Why are the others not 
graphs of polynomials?

I
y

x

II
y

x

III
y

x

IV
y

x

 2. Describe the end behavior of each polynomial.

(a) y  x3  8x2  2x  15

 End behavior:  y S     as  x S 

  y S     as  x S 

3.2 exeRCIses
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302 CHAPTER 3 ■ Polynomial and Rational Functions

(b) y  2x4  12x  100

 End behavior: y S     as  x S 

    y S     as  x S 

 3. If c is a zero of the polynomial P, then

(a) P1c 2     .

(b) x  c is a   of P1x 2 .
(c) c is a(n)   -intercept of the graph of P.

 4. Which of the following statements couldn’t possibly be true 
about the polynomial function P?

(a) P has degree 3, two local maxima, and two local minima.

(b) P has degree 3 and no local maxima or minima.

(c) P has degree 4, one local maximum, and no local 
minima.

skIlls
5–8 ■ Transformations of Monomials  Sketch the graph of each 
function by transforming the graph of an appropriate function of 
the form y  xn from Figure 1. Indicate all x- and y-intercepts on 
each graph.

 5. (a) P1x 2  x2  4 (b) Q1x 2  1x  4 2 2
(c) P1x 2  2x2  3 (d) P1x 2  1x  2 2 2

 6. (a) P1x 2  x4  16 (b) P1x 2  1x  5 2 4
(c) P1x 2  5x4  5 (d) P1x 2  1x  5 2 4

 7. (a) P1x 2  x3  8 (b) Q1x 2  x3  27

(c) R1x 2  1x  2 2 3 (d) S1x 2  1
2 1x  1 2 3  4

 8. (a) P1x 2  1x  3 2 5 (b) Q1x 2  21x  3 2 5  64

(c) R1x 2   
1
2 1x  2 2 5 (d) S1x 2   

1
2 1x  2 2 5  16

9–14 ■ end Behavior  A polynomial function is given.  
(a) Describe the end behavior of the polynomial function.  
(b) Match the polynomial function with one of the graphs I–VI.

 9. P1x 2  x 1x2  4 2  10. Q1x 2  x21x2  4 2
 11. R1x 2  x5  5x3  4x 12. S1x 2  1

2 x6  2x4

 13. T1x 2  x4  2x3 14. U1x 2  x3  2x2

I IIy

x0 1
1

y

x0 1
1

III IVy

x0 1
1

y

x0 1

1

y

x0 1
1

V VI y

x0 1

1

15–30 ■ Graphing Factored Polynomials  Sketch the graph of 
the polynomial function. Make sure your graph shows all intercepts 
and exhibits the proper end behavior.

15. P1x 2  1x  1 2 1x  2 2
16. P1x 2  12  x 2 1x  5 2
17. P1x 2  x1x  3 2 1x  2 2
18. P1x 2  x 1x  3 2 1x  2 2
19. P1x 2  12x  1 2 1x  1 2 1x  3 2
20. P1x 2  1x  3 2 1x  2 2 13x  2 2
 21. P1x 2  1x  2 2 1x  1 2 1x  2 2 1x  3 2
 22. P1x 2  x1x  1 2 1x  1 2 12  x 2
 23. P1x 2  2x1x  2 2 2
 24. P1x 2  1

5 x 1x  5 2 2
 25. P1x 2  1x  2 2 1x  1 2 212x  3 2
 26. P1x 2  1x  1 2 21x  1 2 31x  2 2
 27. P1x 2  1

12 1x  2 2 21x  3 2 2

 28. P1x 2  1x  1 2 21x  2 2 3

 29. P1x 2  x31x  2 2 1x  3 2 2

 30. P1x 2  1x  3 2 21x  1 2 2

31–44 ■ Graphing Polynomials  Factor the polynomial and use 
the factored form to find the zeros. Then sketch the graph.

31. P1x 2  x3  x2  6x 32. P1x 2  x3  2x2  8x

33. P1x 2  x3  x2  12x 34. P1x 2  2x3  x2  x

35. P1x 2  x4  3x3  2x2
 36. P1x 2  x5  9x3

37. P1x 2  x3  x2  x  1

 38. P1x 2  x3  3x2  4x  12

39. P1x 2  2x3  x2  18x  9

40. P1x 2  1
8 12x4  3x3  16x  24 2 2

41. P1x 2  x4  2x3  8x  16

42. P1x 2  x4  2x3  8x  16

43. P1x 2  x4  3x2  4 44. P1x 2  x6  2x3  1

45–50 ■ end Behavior  Determine the end behavior of P. Com-
pare the graphs of P and Q in large and small viewing rectangles, 
as in Example 3(b).

45. P1x 2  3x3  x2  5x  1; Q1x 2  3x3

46. P1x 2  1
8 x3  1

4 x2  12x; Q1x 2  1
8 x3

47. P1x 2  x4  7x2  5x  5; Q1x 2  x4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 3.2 ■ Polynomial Functions and Their Graphs 303

48. P1x 2  x5  2x2  x; Q1x 2  x5

49. P1x 2  x11  9x9; Q1x 2  x11

50. P1x 2  2x2  x12; Q1x 2  x12

51–54 ■ local extrema  The graph of a polynomial function is 
given. From the graph, find (a) the x- and y-intercepts, and (b) the 
coordinates of all  local extrema.

51. P1x 2  x2  4x 52. P1x 2  2
9 x3  x2

y

0 1

1

x

 

0

y

x1

1

53. P1x 2  1
2 x3  3

2 x  1 54. P1x 2  1
9 x4  4

9 
x3

0

y

x
11

  

0

y

x2

1

55–62 ■ local extrema  Graph the polynomial in the given 
viewing rectangle. Find the coordinates of all local extrema. State 
each answer rounded to two decimal places. State the domain and 
range.

 55. y  x2  8x,  34, 124 by 350, 304
 56. y  x3  3x2,  32, 54 by 310, 104
 57. y  x3  12x  9,  35, 54 by 330, 304
 58. y  2x3  3x2  12x  32,  35, 54 by 360, 304
 59. y  x4  4x3,  35, 54 by 330, 304
 60. y  x4  18x2  32,  35, 54 by 3100, 1004
 61. y  3x5  5x3  3,  33, 34 by 35, 104
 62. y  x5  5x2  6,  33, 34 by 35, 104

63–72 ■ number of local extrema  Graph the polynomial, and 
determine how many local maxima and minima it has.

 63. y  2x2  3x  5 64. y  x3  12x

65. y  x3  x2  x 66. y  6x3  3x  1

 67. y  x4  5x2  4

 68. y  1.2x5  3.75x4  7x3  15x2  18x

69. y  1x  2 2 5  32 70. y  1x2  2 2 3
71. y  x8  3x4  x 72. y  1

3 x7  17x2  7

73–78 ■ Families of Polynomials  Graph the family of polyno-
mials in the same viewing rectangle, using the given values of c. 
Explain how changing the value of c affects the graph.

73. P1x 2  cx3; c  1, 2, 5, 12

74. P1x 2  1x  c 2 4; c  1, 0, 1, 2

75. P1x 2  x4  c; c  1, 0, 1, 2

76. P1x 2  x3  cx; c  2, 0, 2, 4

77. P1x 2  x4  cx; c  0, 1, 8, 27

78. P1x 2  xc; c  1, 3, 5, 7

skIlls Plus
 79. Intersection Points of Two Polynomials  

(a) On the same coordinate axes, sketch graphs (as accu-
rately as possible) of the functions

y  x3  2x2  x  2  and  y  x2  5x  2

(b) On the basis of your sketch in part (a), at how many 
points do the two graphs appear to intersect?

(c) Find the coordinates of all intersection points.

 80. Power Functions  Portions of the graphs of y  x2, y  x3, 
y  x4, y  x5, and y  x6 are plotted in the figures. Deter-
mine which function  belongs to each graph.

y

0 x1

1

y

0 x1

1

 81. odd and even Functions  Recall that a function f is odd if 
f 1x 2  f 1x 2  or even if f 1x 2  f 1x 2  for all real x.

(a)  Show that a polynomial P1x 2  that contains only odd 
powers of x is an odd function.

(b)  Show that a polynomial P1x 2  that contains only even 
powers of x is an even function.

(c)  Show that if a polynomial P1x 2  contains both odd and  
even powers of x, then it is neither an odd nor an even 
function.

(d) Express the function

P1x 2  x5  6x3  x2  2x  5

 as the sum of an odd function and an even function.

 82. number of Intercepts and local extrema  

(a)  How many x-intercepts and how many local extrema 
does the polynomial P1x 2  x3  4x have?

(b)  How many x-intercepts and how many local extrema 
does the polynomial Q1x 2  x3  4x have?

(c)  If a  0, how many x-intercepts and how many local 
extrema does each of the polynomials P1x 2  x3  ax 
and Q1x 2  x3  ax have? Explain your answer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



304 CHAPTER 3 ■ Polynomial and Rational Functions

3.3 DIVIDInG PolynoMIAls
■ long Division of Polynomials ■ synthetic Division ■ The Remainder  
and Factor Theorems

So far in this chapter we have been studying polynomial functions graphically. In this 
section we begin to study polynomials algebraically. Most of our work will be concerned 
with factoring polynomials, and to factor, we need to know how to divide polynomials.

■ long Division of Polynomials
Dividing polynomials is much like the familiar process of dividing numbers. When we 
divide 38 by 7, the quotient is 5 and the remainder is 3. We write

38

7
 5 

3

7

To divide polynomials, we use long division, as follows.

DIVIsIon AlGoRITHM

If P1x 2  and D1x 2  are polynomials, with D1x 2 ? 0, then there exist unique 
polynomials Q1x 2  and R1x 2 , where R1x 2  is either 0 or of degree less than the 
degree of D1x 2 , such that

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2    or   P1x 2  D1x 2 # Q1x 2  R1x 2

The polynomials P1x 2  and D1x 2  are called the dividend and divisor, respec-
tively, Q1x 2  is the quotient, and R1x 2  is the remainder.

Dividend Divisor Quotient

Remainder

exAMPle 1 ■ long Division of Polynomials
Divide 6x2  26x  12 by x  4. Express the result in each of the two forms shown 
in the above box.

soluTIon  The dividend is 6x2  26x  12, and the divisor is x  4. We begin by 
arranging them as follows.

x  4q6x2  26x  12

Next we divide the leading term in the dividend by the leading term in the divisor to 
get the first term of the quotient: 6x2/x  6x. Then we multiply the divisor by 6x and 
subtract the result from the dividend.

6x

x  4q6x2  26x  12

6x2  24x

2x  12

Dividend

Quotient

Remainder

Divisor

Divide leading terms: 
6x2

x
 6x

Multiply: 6x1x  4 2  6x2  24x

Subtract and “bring down” 12

83–86 ■ local extrema  These exercises involve local maxima 
and minima of polynomial functions. 

 83. (a)  Graph the function P1x 2  1x  1 2 1x  3 2 1x  4 2  and 
find all local extrema, correct to the nearest tenth.

(b) Graph the function

Q1x 2  1x  1 2 1x  3 2 1x  4 2  5

  and use your answers to part (a) to find all local extrema, 
correct to the nearest tenth.

 84. (a)  Graph the function P1x 2  1x  2 2 1x  4 2 1x  5 2  and 
determine how many local extrema it has.

(b) If a  b  c, explain why the function

P1x 2  1x  a 2 1x  b 2 1x  c 2
 must have two local extrema.

 85. Maximum number of local extrema  What is the smallest 
possible degree that the polynomial whose graph is shown 
can have? Explain.

0 x

y

 86. Impossible situation?  Is it possible for a polynomial to have 
two local maxima and no local minimum? Explain.

APPlICATIons
 87. Market Research  A market analyst working for a small- 

appliance manufacturer finds that if the firm produces and  
sells x blenders annually, the total profit (in dollars) is

P1x 2  8x  0.3x2  0.0013x3  372

  Graph the function P in an appropriate viewing rectangle and 
use the graph to answer the following questions.

(a)  When just a few blenders are manufactured, the firm 
loses money (profit is negative). (For example, 
P110 2  263.3, so the firm loses $263.30 if it pro-
duces and sells only 10 blenders.) How many blenders 
must the firm produce to break even?

(b)  Does profit increase indefinitely as more blenders are 
produced and sold? If not, what is the largest possible 
profit the firm could have?

 88. Population Change  The rabbit population on a small island 
is observed to be given by the function

P1 t 2  120t  0.4t4  1000

  where t is the time (in months) since observations of the  
island began.

(a)  When is the maximum population attained, and what is 
that maximum population?

(b)  When does the rabbit population disappear from the  island?

t

P

0

 89. Volume of a Box  An open box is to be constructed from a 
piece of cardboard 20 cm by 40 cm by cutting squares of side 
length x from each corner and folding up the sides, as shown 
in the figure.

(a) Express the volume V of the box as a function of x.

(b)  What is the domain of V? (Use the fact that length and 
volume must be positive.)

(c)  Draw a graph of the function V, and use it to estimate the 
maximum volume for such a box.

20 cm

40 cm

x
x

 90. Volume of a Box  A cardboard box has a 
square base, with each edge of the base 
having length x inches, as shown in the 
figure. The total length of all 12 edges of 
the box is 144 in.

(a)  Show that the volume of the box is 
given by the function 
V1x 2  2x2118  x 2 .

(b)  What is the domain of V? (Use the 
fact that length and  volume must be 
positive.)

(c)  Draw a graph of the function V and 
use it to estimate the maximum vol-
ume for such a box.

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
 91. DIsCoVeR: Graphs of large Powers  Graph the functions  

y  x2, y  x3, y  x4, and y  x5, for 1  x  1, on  
the same coordinate axes. What do you think the graph of  
y  x100 would look like on this same interval? What about  
y  x101? Make a table of values to confirm your answers.

 92. DIsCuss ■ DIsCoVeR: Possible number of local extrema   
Is it possible for a third-degree polynomial to have exactly 
one local extremum? Can a fourth-degree polynomial have 
exactly two local extrema? How many local extrema can 
polynomials of third, fourth, fifth, and sixth degree have? 
(Think about the end behavior of such polynomials.) Now 
give an example of a polynomial that has six local extrema.

x
x
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3.3 DIVIDInG PolynoMIAls
■ long Division of Polynomials ■ synthetic Division ■ The Remainder  
and Factor Theorems

So far in this chapter we have been studying polynomial functions graphically. In this 
section we begin to study polynomials algebraically. Most of our work will be concerned 
with factoring polynomials, and to factor, we need to know how to divide polynomials.

■ long Division of Polynomials
Dividing polynomials is much like the familiar process of dividing numbers. When we 
divide 38 by 7, the quotient is 5 and the remainder is 3. We write

38

7
 5 

3

7

To divide polynomials, we use long division, as follows.

DIVIsIon AlGoRITHM

If P1x 2  and D1x 2  are polynomials, with D1x 2 ? 0, then there exist unique 
polynomials Q1x 2  and R1x 2 , where R1x 2  is either 0 or of degree less than the 
degree of D1x 2 , such that

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2    or   P1x 2  D1x 2 # Q1x 2  R1x 2

The polynomials P1x 2  and D1x 2  are called the dividend and divisor, respec-
tively, Q1x 2  is the quotient, and R1x 2  is the remainder.

Dividend Divisor Quotient

Remainder

exAMPle 1 ■ long Division of Polynomials
Divide 6x2  26x  12 by x  4. Express the result in each of the two forms shown 
in the above box.

soluTIon  The dividend is 6x2  26x  12, and the divisor is x  4. We begin by 
arranging them as follows.

x  4q6x2  26x  12

Next we divide the leading term in the dividend by the leading term in the divisor to 
get the first term of the quotient: 6x2/x  6x. Then we multiply the divisor by 6x and 
subtract the result from the dividend.

6x

x  4q6x2  26x  12

6x2  24x

2x  12

Dividend

Quotient

Remainder

Divisor

Divide leading terms: 
6x2

x
 6x

Multiply: 6x1x  4 2  6x2  24x

Subtract and “bring down” 12
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We repeat the process using the last line 2x  12 as the dividend.

 

6x  2oo

x  4q6x2  26x  12

6x2  24x

2x  12

2x  8

4  

The division process ends when the last line is of lesser degree than the divisor. The 
last line then contains the remainder, and the top line contains the quotient. The result 
of the division can be interpreted in either of two ways:

6x2  26x  12

x  4
 6x  2 

4

x  4
        or        6x2  26x  12  1x  4 2 16x  2 2  4

now Try exercises 3 and 9 ■

exAMPle 2 ■ long Division of Polynomials
Let P1x 2  8x4  6x2  3x  1 and D1x 2  2x2  x  2. Find polynomials Q1x 2  
and R1x 2  such that P1x 2  D1x 2 # Q1x 2  R1x 2 .
soluTIon  We use long division after first inserting the term 0x3 into the dividend to 
ensure that the columns line up correctly.

4x2  2x

2x2  x  2q8x4  0x3  6x2  3x  1

8x4  4x3  8x2

4x3  2x2  3x

4x3  2x2  4x

7x  1

  
Multiply divisor by 4x2

Subtract

Multiply divisor by 2x

Subtract

The process is complete at this point because 7x  1 is of lesser degree than the 
divisor 2x2  x  2. From the above long division we see that Q1x 2  4x2  2x and 
R1x 2  7x  1, so

8x4  6x2  3x  1  12x2  x  2 2 14x2  2x 2  17x  1 2
now Try exercise 19 ■

■ synthetic Division
Synthetic division is a quick method of dividing polynomials; it can be used when the 
divisor is of the form x  c. In synthetic division we write only the essential parts of 
the long division. Compare the following long and synthetic divisions, in which we 
divide 2x3  7x2  5 by x  3. (We’ll explain how to perform the synthetic division 
in Example 3.)

Divide leading terms: 
2x

x
 2

Multiply: 21x  4 2  2x  8

Subtract

Divide leading terms: 
2x

x
 2

Multiply: 21x  4 2  2x  8

Subtract

Dividend Divisor Quotient

Dividend
Quotient Remainder Remainder

Divisor
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Quotient

Remainder

Quotient Remainder

3    2   7    0    5

  6 3 9

 2 1 3 4
 144424443

 Long Division Synthetic Division

2x2  x  3

x  3q2x3  7x2  0x  5

2x3  6x2

x2  0x

x2  3x

3x  5

3x  9

4

Note that in synthetic division we abbreviate 2x3  7x2  5 by writing only the 
coefficients: 2  7  0  5, and instead of x  3, we simply write 3. (Writing 3 instead 
of 3 allows us to add instead of subtract, but this changes the sign of all the numbers 
that appear in the gold boxes.)

The next example shows how synthetic division is performed.

exAMPle 3 ■ synthetic Division
Use synthetic division to divide 2x3  7x2  5 by x  3.

soluTIon  We begin by writing the appropriate coefficients to represent the divisor 
and the dividend:

3  ∣  2    7    0    5

We bring down the 2, multiply 3  2  6, and write the result in the middle row. Then  
we add.

3 2

2

-7 0 5

6

-1     

Multiply: 3  2  6

Add: 7  6  1

We repeat this process of multiplying and then adding until the table is complete.

3 2

2

−7

−3

0 5

6

−3−1  

Multiply: 311 2  3

Add: 0  13 2  3

3 2

2

−7

−3 −9

0 5

6

−3 −4−1

Quotient
2x2 – x – 3

Remainder
–4

 

Multiply: 313 2  9

Add: 5  19 2  4

From the last line of the synthetic division we see that the quotient is 2x2  x  3 
and the remainder is 4. Thus

2x3  7x2  5  1x  3 2 12x2  x  3 2  4

now Try exercise 31 ■

Dividend  
2x3  7x2  0x  5

Divisor x  3
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■ The Remainder and Factor Theorems
The next theorem shows how synthetic division can be used to evaluate polynomials 
easily.

ReMAInDeR THeoReM

If the polynomial P1x 2  is divided by x  c, then the remainder is the value P1c 2 .

Proof  If the divisor in the Division Algorithm is of the form x  c for some real 
number c, then the remainder must be a constant (since the degree of the remainder is 
less than the degree of the divisor). If we call this constant r, then

P1x 2  1x  c 2 # Q1x 2  r

Replacing x by c in this equation, we get P1c 2  1c  c 2 # Q1c 2  r  0  r  r, 
that is, P1c 2  is the remainder r. ■

exAMPle 4 ■  using the Remainder Theorem to Find the Value  
of a Polynomial

Let P1x 2  3x5  5x4  4x3  7x  3.

(a) Find the quotient and remainder when P1x 2  is divided by x  2.

(b) Use the Remainder Theorem to find P12 2 .
soluTIon

(a)  Since x  2  x  12 2 , the synthetic division for this problem takes the  
following form:

  

2  ∣  3  5  4  0  7  3            ,

  6 2 4 8 2

 3 1 2 4 1 5

  The quotient is 3x4  x3  2x2  4x  1, and the remainder is 5.

(b)  By the Remainder Theorem, P12 2  is the remainder when P1x 2  is divided by  
x  122  x  2. From part (a) the remainder is 5, so P12 2  5.

now Try exercise 39 ■

The next theorem says that zeros of polynomials correspond to factors. We used this 
fact in Section 3.2 to graph polynomials.

FACToR THeoReM

c is a zero of P if and only if x  c is a factor of P1x 2 .

Proof  If P1x 2  factors as P1x 2  1x  c 2Q1x 2 , then

P1c 2  1c  c 2Q1c 2  0 # Q1c 2  0

Conversely, if P1c 2  0, then by the Remainder Theorem

P1x 2  1x  c 2Q1x 2  0  1x  c 2Q1x 2
so x  c is a factor of P1x 2 . ■

Remainder is 5,  
so P(2)  5
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exAMPle 5 ■ Factoring a Polynomial using the Factor Theorem
Let P1x 2  x3  7x  6. Show that P11 2  0, and use this fact to factor P1x 2  
completely.

soluTIon  Substituting, we see that P11 2  13  7 # 1  6  0. By the Factor  
Theorem this means that x  1 is a factor of P1x 2 . Using synthetic or long division 
(shown in the margin), we see that

 P1x 2  x3  7x  6   Given polynomial

  1x  1 2 1x2  x  6 2   See margin

  1x  1 2 1x  2 2 1x  3 2   Factor quadratic x2  x  6

now Try exercises 53 and 57 ■

exAMPle 6 ■ Finding a Polynomial with specified Zeros
Find a polynomial of degree four that has zeros 3, 0, 1, and 5, and the coefficient of 
x3 is 6.

soluTIon  By the Factor Theorem, x  13 2 , x  0, x  1, and x  5 must all be 
factors of the desired polynomial. Let

 P1x 2  1x  3 2 1x  0 2 1x  1 2 1x  5 2
  x4  3x3  13x2  15x

The polynomial P1x 2  is of degree 4 with the desired zeros, but the coefficient of x3 is 
3, not 6. Multiplication by a nonzero constant does not change the degree, so the 
desired polynomial is a constant multiple of P1x 2 . If we multiply P1x 2  by the con-
stant 2, we get

Q1x 2  2x4  6x3  26x2  30x

which is a polynomial with all the desired properties.The polynomial Q is graphed in 
Figure 1. Note that the zeros of Q correspond to the x-intercepts of the graph.

now Try exercises 63 and 67 ■

1 ∣ 1   0  7   6

  1 1 6

 1 1 6 0

x2  x  6

x  1qx3  0x2  7x  6

x3  x2

x2  7x

x2  x

6x  6

6x  6

0

1

20

y

x_3 5

FIGuRe 1 
Q1x 2  2x1x  3 2 1x  1 2 1x  5 2  
has zeros 3, 0, 1, and 5, and the  
coefficient of x3 is 6.

ConCePTs
 1. If we divide the polynomial P by the factor x  c and we 

obtain the equation P1x 2  1x  c 2Q1x 2  R1x 2 , then we say 

that x  c is the divisor, Q1x 2  is the    , and R1x 2  is 

the    .

 2. (a)  If we divide the polynomial P1x 2  by the factor x  c 
and we obtain a remainder of 0, then we know that c is a 

  of P.

(b)  If we divide the polynomial P1x 2  by the factor x  c 
and we obtain a remainder of k, then we know that 

P1c 2      .

skIlls
3–8 ■ Division of Polynomials  Two polynomials P and D are 
given. Use either synthetic or long division to divide P1x 2  by 
D1x 2 , and express the quotient P1x 2/D1x 2  in the form

P1x 2
D1x 2  Q1x 2 

R1x 2
D1x 2

 3. P1x 2  2x2  5x  7,  D1x 2  x  2

 4. P1x 2  3x3  9x2  5x  1,  D1x 2  x  4

 5. P1x 2  4x2  3x  7,  D1x 2  2x  1

 6. P1x 2  6x3  x2  12x  5,  D1x 2  3x  4

 7. P1x 2  2x4  x3  9x2,  D1x 2  x2  4

 8. P1x 2  2x5  x3  2x2  3x  5,  D1x 2  x2  3x  1

3.3 exeRCIses
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9–14 ■ Division of Polynomials  Two polynomials P and D are 
given. Use either synthetic or long division to divide P1x 2  by 
D1x 2 , and express P in the form 

P1x 2  D1x 2 # Q1x 2  R1x 2
 9. P1x 2  x3  2x  6,  D1x 2  x  1

 10. P1x 2  x4  2x3  10x,  D1x 2  x  3

 11. P1x 2  2x3  3x2  2x,  D1x 2  2x  3

 12. P1x 2  4x3  7x  9,  D1x 2  2x  1

 13. P1x 2  8x4  4x3  6x2,  D1x 2  2x2  1

 14. P1x 2  27x5  9x4  3x2  3,  D1x 2  3x2  3x  1

15–24 ■ long Division of Polynomials  Find the quotient and 
remainder using long division.

 15. 
x2  3x  7

x  2
 16. 

x3  2x2  x  1

x  3

 17. 
4x3  2x2  2x  3

2x  1
 18. 

x3  3x2  4x  3

3x  6

 19. 
x3  2x  1

x2  x  3
 20. 

x4  3x3  x  2

x2  5x  1

 21. 
6x3  2x2  22x

2x2  5
 22. 

9x2  x  5

3x2  7x

 23. 
x6  x4  x2  1

x2  1
 24. 

2x5  7x4  13

4x2  6x  8

25–38 ■ synthetic Division of Polynomials  Find the quotient 
and remainder using synthetic  division.

 25. 
2x2  5x  3

x  3
 26. 

x2  x  4

x  1

 27. 
3x2  x

x  1
 28. 

4x2  3

x  2

 29. 
x3  2x2  2x  1

x  2
 30. 

3x3  12x2  9x  1

x  5

 31. 
x3  8x  2

x  3
 32. 

x4  x3  x2  x  2

x  2

 33. 
x5  3x3  6

x  1
 34. 

x3  9x2  27x  27

x  3

 35. 
2x 3  3x2  2x  1

x  1
2

 36. 
6x4  10x 3  5x2  x  1

x  2
3

 37. 
x 3  27

x  3
 38. 

x4  16

x  2

39–51 ■ Remainder Theorem  Use synthetic division and the 
Remainder Theorem to evaluate P1c 2 .
 39. P1x 2  4x2  12x  5,  c  1

 40. P1x 2  2x2  9x  1,  c  1
2

 41. P1x 2  x3  3x2  7x  6,  c  2

 42. P1x 2  x3  x2  x  5,  c  1

 43. P1x 2  x3  2x2  7,  c  2

 44. P1x 2  2x3  21x2  9x  200,  c  11

 45. P1x 2  5x4  30x3  40x2  36x  14,  c  7

 46. P1x 2  6x5  10x3  x  1,  c  2

 47. P1x 2  x7  3x2  1,  c  3

 48. P1x 2  2x6  7x5  40x4  7x2  10x  112,  c  3

 49. P1x 2  3x3  4x2  2x  1,  c  2
3

 50. P1x 2  x3  x  1,  c  1
4

 51. P1x 2  x3  2x2  3x  8,  c  0.1

 52. Remainder Theorem  Let

 P1x 2  6x7  40x6  16x5  200x4

  60x3  69x2  13x  139

  Calculate P17 2  by (a) using synthetic division and (b) substi-
tuting x  7 into the polynomial and evaluating directly.

53–56 ■ Factor Theorem  Use the Factor Theorem to show that 
x  c is a factor of P1x 2  for the given value(s) of c.

 53. P1x 2  x3  3x2  3x  1,  c  1

 54. P1x 2  x3  2x2  3x  10,  c  2

 55. P1x 2  2x3  7x2  6x  5,  c  1
2

 56. P1x 2  x4  3x3  16x2  27x  63,  c  3, 3

57–62 ■ Factor Theorem  Show that the given value(s) of c are 
zeros of P1x 2 , and find all other zeros of P1x 2 .
 57. P1x 2  x3  2x2  9x  18,  c  2

 58. P1x 2  x3  5x2  2x  10,  c  5

 59. P1x 2  x3  x2  11x  15,  c  3

 60. P1x 2  3x4  x3  21x2  11x  6,  c  2, 13

 61. P1x 2  3x4  8x3  14x2  31x  6,  c  2, 3

 62. P1x 2  2x4  13x3  7x2  37x  15,  c  1, 3

63–66 ■ Finding a Polynomial with specified Zeros  Find a 
polynomial of the specified degree that has the given zeros.

 63. Degree 3;  zeros 1, 1, 3

 64. Degree 4;  zeros 2, 0, 2, 4

 65. Degree 4;  zeros 1, 1, 3, 5

 66. Degree 5;  zeros 2, 1, 0, 1, 2

67–70 ■ Polynomials with specified Zeros  Find a polynomial 
of the specified degree that satisfies the given conditions.

 67. Degree 4; zeros 2, 0, 1, 3; coefficient of x3 is 4

 68. Degree 4; zeros 1, 0, 2, 1
2; coefficient of x3 is 3

 69. Degree 4; zeros 1, 1, !2; integer coefficients and  
constant term 6

 70. Degree 5; zeros 2, 1, 2, !5; integer coefficients and 
constant term 40

3.4 ReAl ZeRos oF PolynoMIAls
■ Rational Zeros of Polynomials ■ Descartes’ Rule of signs ■ upper and lower  
Bounds Theorem ■ using Algebra and Graphing Devices to solve Polynomial  
equations

The Factor Theorem tells us that finding the zeros of a polynomial is really the same 
thing as factoring it into linear factors. In this section we study some algebraic methods 
that help us to find the real zeros of a polynomial and thereby factor the polynomial. 
We begin with the rational zeros of a polynomial.

■ Rational Zeros of Polynomials
To help us understand the next theorem, let’s consider the polynomial

 P1x 2  1x  2 2 1x  3 2 1x  4 2     Factored form

  x3  x2  14x  24     Expanded form

From the factored form we see that the zeros of P are 2, 3, and 4. When the polyno-
mial is expanded, the constant 24 is obtained by multiplying 12 2  13 2  4. This 
means that the zeros of the polynomial are all factors of the constant term. The follow-
ing generalizes this observation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 3.4 ■ Real Zeros of Polynomials 311

skIlls Plus
71–74 ■ Finding a Polynomial from a Graph  Find the polyno-
mial of the specified degree whose graph is shown.

 71. Degree 3 72. Degree 3

  

0

y

x1

1

 

0

y

x1

1

 73. Degree 4 74. Degree 4

  
0

y

x1

1

 

0

y

x1

1

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
 75. DIsCuss: Impossible Division?  Suppose you were asked to 

solve the following two problems on a test:
A.  Find the remainder when 6x1000  17x562  12x  26 is 

divided by x  1.
B. Is x  1 a factor of x567  3x400  x9  2?

  Obviously, it’s impossible to solve these problems by divid-
ing, because the polynomials are of such large degree. Use 
one or more of the theorems in this section to solve these 
problems without actually dividing.

 76. DIsCoVeR: nested Form of a Polynomial  Expand Q to 
prove that the polynomials P and Q are the same.

 P1x 2  3x4  5x3  x2  3x  5

 Q1x 2  1113x  5 2x  1 2x  3 2x  5

  Try to evaluate P12 2  and Q12 2  in your head, using the  
forms given. Which is easier? Now write the polynomial 
R1x 2  x5  2x4  3x3  2x2  3x  4 in “nested” form, 
like the polynomial Q. Use the nested form to find R13 2  in  
your head.

    Do you see how calculating with the nested form follows 
the same arithmetic steps as calculating the value of a poly-
nomial using synthetic division?

3.4 ReAl ZeRos oF PolynoMIAls
■ Rational Zeros of Polynomials ■ Descartes’ Rule of signs ■ upper and lower  
Bounds Theorem ■ using Algebra and Graphing Devices to solve Polynomial  
equations

The Factor Theorem tells us that finding the zeros of a polynomial is really the same 
thing as factoring it into linear factors. In this section we study some algebraic methods 
that help us to find the real zeros of a polynomial and thereby factor the polynomial. 
We begin with the rational zeros of a polynomial.

■ Rational Zeros of Polynomials
To help us understand the next theorem, let’s consider the polynomial

 P1x 2  1x  2 2 1x  3 2 1x  4 2     Factored form

  x3  x2  14x  24     Expanded form

From the factored form we see that the zeros of P are 2, 3, and 4. When the polyno-
mial is expanded, the constant 24 is obtained by multiplying 12 2  13 2  4. This 
means that the zeros of the polynomial are all factors of the constant term. The follow-
ing generalizes this observation.
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RATIonAl ZeRos THeoReM

If the polynomial P1x 2  an  
x 

 

n  an1x 
n1  . . .  a1x  a0 has integer 

coefficients (where an ? 0 and a0 ? 0), then every rational zero of P is of the form

p
q

where p and q are integers and 

p is a factor of the constant coefficient a0

q is a factor of the leading coefficient an

Proof  If p/q is a rational zero, in lowest terms, of the polynomial P, then we have

 an a
p
q
b

n

 an1 a
p
q
b

n1

 . . .  a1 a
p
q
b  a0  0

 an  
pn  an1  

pn1q  . . .  a1pqn1  a0q
n  0   Multiply by qn

 p1an  
pn1  an1  

pn2q  . . .  a1q
n1 2  a0q

n   
Subtract a0qn  
and factor LHS

Now p is a factor of the left side, so it must be a factor of the right side as well. Since 
p/q is in lowest terms, p and q have no factor in common, so p must be a factor of a0. 
A similar proof shows that q is a factor of an. ■

We see from the Rational Zeros Theorem that if the leading coefficient is 1 or 1, 
then the rational zeros must be factors of the constant term.

exAMPle 1 ■ using the Rational Zeros Theorem
Find the rational zeros of P1x 2  x3  3x  2.

soluTIon  Since the leading coefficient is 1, any rational zero must be a divisor of 
the constant term 2. So the possible rational zeros are 1 and 2. We test each of 
these possibilities.

 P11 2  11 2 3  311 2  2  0

 P11 2  11 2 3  311 2  2  4

 P12 2  12 2 3  312 2  2  4

 P12 2  12 2 3  312 2  2  0

The rational zeros of P are 1 and 2.

now Try exercise 15 ■

DIsCoVeRy PRojeCT

Zeroing in on a Zero

We have learned how to find the zeros of a polynomial function algebraically 
and graphically. In this project we investigate a numerical method for finding 
the zeros of a polynomial. With this method we can approximate the zeros of a 
polynomial to as many decimal places as we wish. The method involves finding 
smaller and smaller intervals that zoom in on a zero of a polynomial. You can 
find the project at www.stewartmath.com.

0.010 0.001

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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The following box explains how we use the Rational Zeros Theorem with synthetic 
division to factor a polynomial.

FInDInG THe RATIonAl ZeRos oF A PolynoMIAl

1.  list Possible Zeros.  List all possible rational zeros, using the Rational 
Zeros Theorem.

2.  Divide.  Use synthetic division to evaluate the polynomial at each of the 
candidates for the rational zeros that you found in Step 1. When the 
remainder is 0, note the quotient you have obtained.

3.  Repeat.  Repeat Steps 1 and 2 for the quotient. Stop when you reach a 
quotient that is quadratic or factors easily, and use the quadratic formula or 
factor to find the remaining zeros.

exAMPle 2 ■ Finding Rational Zeros
Write the polynomial P1x 2  2x3  x2  13x  6 in factored form, and find all its 
zeros.

soluTIon  By the Rational Zeros Theorem the rational zeros of P are of the form

possible rational zero of P 
factor of constant term

factor of leading coefficient

The constant term is 6 and the leading coefficient is 2, so

possible rational zero of P 
factor of 6

factor of 2

The factors of 6 are 1, 2, 3, 6, and the factors of 2 are 1, 2. Thus the  
possible rational zeros of P are


1

1
, 

2

1
, 

3

1
, 

6

1
, 

1

2
, 

2

2
, 

3

2
, 

6

2

Simplifying the fractions and eliminating duplicates, we get the following list of  
possible rational zeros:

1, 2, 3, 6, 
1

2
, 

3

2

To check which of these possible zeros actually are zeros, we need to evaluate  
P at each of these numbers. An efficient way to do this is to use synthetic  
division.

 Test whether 1 is a zero Test whether 2 is a zero

 1  ∣ 2  11  13  16 2  ∣ 2  11  13  6

   2 3 10  4 10 6

  2 3 10 4 2 5 3 0

Li
br

ar
y 

of
 C

on
gr

es
s 

Pr
in

ts
 a

nd
 P

ho
to

gr
ap

hs
 

Di
vi

si
on

EvAriStE GAloiS (1811–1832) is one 
of the very few mathematicians to have 
an entire theory named in his honor. Not 
yet 21 when he died, he completely set-
tled the central problem in the theory of 
equations by describing a criterion that 
reveals whether a polynomial equation 
can be solved by algebraic operations. 
Galois was one of the greatest mathema-
ticians in the world at that time, although 
no one knew it but him. He repeatedly 
sent his work to the eminent mathemati-
cians Cauchy and Poisson, who either lost 
his letters or did not understand his 
ideas. Galois wrote in a terse style and 
included few details, which probably 
played a role in his failure to pass the 
entrance exams at the Ecole Polytech-
nique in Paris. A political radical, Galois 
spent several months in prison for his 
revolutionary activities. His brief life 
came to a tragic end when he was killed 
in a duel over a love affair. The night 
before his duel, fearing that he would 
die, Galois wrote down the essence of his 
ideas and entrusted them to his friend 
Auguste Chevalier. He concluded by writ-
ing “there will, I hope, be people who will 
find it to their advantage to decipher all 
this mess.” The mathematician  Camille 
Jordan did just that, 14 years later.

Remainder is not 0, 
so 1 is not a zero

Remainder is 0,  
so 2 is a zero
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From the last synthetic division we see that 2 is a zero of P and that P factors as

 P1x 2  2x3  x2  13x  6     Given polynomial

  1x  2 2 12x2  5x  3 2     From synthetic division

  1x  2 2 12x  1 2 1x  3 2     Factor 2x2  5x  3

From the factored form we see that the zeros of P are 2,  1 

2 , and –3.

now Try exercise 29 ■

exAMPle 3 ■  using the Rational Zeros Theorem  
and the Quadratic Formula

Let P1x 2  x4  5x3  5x2  23x  10.

(a) Find the zeros of P.   (b) Sketch a graph of P.

soluTIon

(a)  The leading coefficient of P is 1, so all the rational zeros are integers: They are 
divisors of the constant term 10. Thus the possible candidates are

1, 2, 5, 10

   Using synthetic division (see the margin), we find that 1 and 2 are not zeros but 
that 5 is a zero and that P factors as

x4  5x3  5x2  23x  10  1x  5 2 1x3  5x  2 2
   We now try to factor the quotient x3  5x  2. Its possible zeros are the divisors 

of 2, namely,

1, 2

   Since we already know that 1 and 2 are not zeros of the original polynomial P, 
we don’t need to try them again. Checking the remaining candidates, 1 and 2, 
we see that 2 is a zero (see the margin), and P factors as

 x4  5x3  5x2  23x  10  1x  5 2 1x3  5x  2 2
  1x  5 2 1x  2 2 1x2  2x  1 2

  Now we use the Quadratic Formula to obtain the two remaining zeros of P:

x 
2  "12 2 2  411 2 11 2

2
 1  !2

  The zeros of P are 5, 2, 1  !2, and 1  !2.

(b)  Now that we know the zeros of P, we can use the methods of Section 3.2 to sketch 
the graph. If we want to use a graphing calculator instead, knowing the zeros allows 
us to choose an appropriate viewing rectangle—one that is wide enough to contain 
all the x-intercepts of P. Numerical approximations to the zeros of P are

5, 2, 2.4, 0.4

    So in this case we choose the rectangle 33, 64 by 350, 504 and draw the graph 
shown in Figure 1.

now Try exercises 45 and 55 ■

■ Descartes’ Rule of signs
In some cases, the following rule—discovered by the French philosopher and mathema-
tician René Descartes around 1637 (see page 237)—is helpful in eliminating candidates 
from lengthy lists of possible rational roots. To describe this rule, we need the concept 

1  ∣   1  5   5    23    10

  1 4 9 14

 1 4 9 14 24

2  ∣   1 5 5 23 10

  2 6 22 2

 1 3 11 1 12

5  ∣   1 5 5 23 10

  5 0 25 10

 1 0 5 2 0

2  ∣  1  0  5  2

  2 4 2

 1 2 1 0

50

_50

_3 6

FIGuRe 1 
P1x 2  x4  5x3  5x2  23x  10
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of variation in sign. If P1x 2  is a polynomial with real coefficients, written with descend-
ing powers of x (and omitting powers with coefficient 0), then a variation in sign oc-
curs whenever adjacent coefficients have opposite signs. For example,

P1x 2  5x7  3x5  x4  2x2  x  3

has three variations in sign.

DesCARTes’ Rule oF sIGns

Let P be a polynomial with real coefficients.

1.  The number of positive real zeros of P1x 2  either is equal to the number of 
variations in sign in P1x 2  or is less than that by an even whole number.

2.  The number of negative real zeros of P1x 2  either is equal to the number of 
variations in sign in P1x 2  or is less than that by an even whole number.

In Descartes’ Rule of Signs a zero with multiplicity m is counted m times. For ex-
ample, the polynomial P1x 2  x2  2x  1 has two sign changes and has the positive 
zero x  1. But this zero is counted twice because it has multiplicity 2.

exAMPle 4 ■ using Descartes’ Rule
Use Descartes’ Rule of Signs to determine the possible number of positive and nega-
tive real zeros of the polynomial

P1x 2  3x6  4x5  3x3  x  3

soluTIon  The polynomial has one variation in sign, so it has one positive zero. Now

 P1x 2  31x 2 6  41x 2 5  31x 2 3  1x 2  3

  3x6  4x5  3x3  x  3

So P1x 2  has three variations in sign. Thus P1x 2  has either three or one negative 
zero(s), making a total of either two or four real zeros.

now Try exercise 63 ■

■ upper and lower Bounds Theorem
We say that a is a lower bound and b is an upper bound for the zeros of a polynomial 
if every real zero c of the polynomial satisfies a  c  b. The next theorem helps us to 
find such bounds for the zeros of a polynomial.

THe uPPeR AnD loWeR BounDs THeoReM

Let P be a polynomial with real coefficients.

1.  If we divide P1x 2  by x  b (with b  0) using synthetic division and if the 
row that contains the quotient and remainder has no negative entry, then b is 
an upper bound for the real zeros of P.

2.  If we divide P1x 2  by x  a (with a  0) using synthetic division and if the 
row that contains the quotient and remainder has entries that are alternately 
nonpositive and nonnegative, then a is a lower bound for the real zeros of P.

Multiplicity is discussed on page 299.

Polynomial
Variations  

in sign

x2  4x  1 0
2x3  x  6 1

x4  3x2  x  4 2
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A proof of this theorem is suggested in Exercise 109. The phrase “alternately non-
positive and nonnegative” simply means that the signs of the numbers alternate, with 0 
considered to be positive or negative as required.

exAMPle 5 ■ upper and lower Bounds for the Zeros of a Polynomial
Show that all the real zeros of the polynomial P1x 2  x4  3x2  2x  5 lie 
between 3 and 2.

soluTIon  We divide P1x 2  by x  2 and x  3 using synthetic division:

 2  ∣  1   0  3   2  5 3  ∣  1  0  3   2  5

  2 4 2 8   3 9 18 48

 1 2 1 4 3  1 3 6 16 43 

 Entries  
alternate  
in sign

 All entries 
nonnegative

By the Upper and Lower Bounds Theorem 3 is a lower bound and 2 is an upper 
bound for the zeros. Since neither 3 nor 2 is a zero (the remainders are not 0 in the 
division table), all the real zeros lie between these numbers.

now Try exercise 69 ■

exAMPle 6 ■ A lower Bound for the Zeros of a Polynomial
Show that all the real zeros of the polynomial P1x 2  x4  4x3  3x2  7x  5 are 
greater than or equal to 4.

soluTIon  We divide P1x 2  by x  4 using synthetic division:

 4  ∣ 1    4    3     7    5

  4 0 12 20

 1 0 3 5 15

Since 0 can be considered either nonnegative or nonpositive, the entries alternate in 
sign. So 4 is a lower bound for the real zeros of P.

now Try exercise 73 ■

exAMPle 7 ■ Factoring a Fifth-Degree Polynomial
Factor completely the polynomial

P1x 2  2x5  5x4  8x3  14x2  6x  9

soluTIon  The possible rational zeros of P are  
1
2, 1,  

3
2, 3,  

9
2, and 9. We 

check the positive candidates first, beginning with the smallest:

 
1
2  ∣  2   5  8   14    6    9 1  ∣   2 5  8  14    6   9

 1 3 5
2 33

4  9
8  2 7 1 15 9

 2 6 5 33
2  9

4 63
8  2 7 1 15 9 01

2 is not a 
zero P11 2  0

_3 20

Lower
bound

Upper
bound

All zeros
are between
_3 and 2

Alternately  
nonnegative and 
nonpositive
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So 1 is a zero, and P1x 2  1x  1 2 12x4  7x3  x2  15x  9 2 . We continue by 
factoring the quotient. We still have the same list of possible zeros except that 1

2 has 
been eliminated .

 1  ∣  2  7  1  15   9 3
2  ∣ 2  7  1  15  9

  2 9 8 7   3 15 21 9

 2 9 8 7 16  2 10 14 6 0 PA32 B  0,  
all entries 
nonnegative

1 is not a 
zero

We see that 3
2 is both a zero and an upper bound for the zeros of P1x 2 , so we do not 

need to check any further for positive zeros, because all the remaining candidates are 
greater than 3

2.

 P1x 2  1x  1 2 1x  3
2 2 12x3  10x2  14x  6 2     From synthetic division

  1x  1 2 12x  3 2 1x3  5x2  7x  3 2     
 Factor 2 from last factor,  
multiply into second factor

By Descartes’ Rule of Signs, x3  5x2  7x  3 has no positive zero, so its only 
possible rational zeros are 1 and 3:

   1  ∣  1    5    7    3

  1 4 3

 1 4 3 0

Therefore,

 P1x 2  1x  1 2 12x  3 2 1x  1 2 1x2  4x  3 2     From synthetic division

  1x  1 2 12x  3 2 1x  1 2 21x  3 2     Factor quadratic

This means that the zeros of P are 1, 3
2, 1, and 3. The graph of the polynomial is 

shown in Figure 2.

now Try exercise 81 ■

■ using Algebra and Graphing Devices  
to solve Polynomial equations

In Section 1.9 we used graphing devices to solve equations graphically. We can now use 
the algebraic techniques that we’ve learned to select an appropriate viewing rectangle 
when solving a polynomial equation graphically.

exAMPle 8 ■ solving a Fourth-Degree equation Graphically
Find all real solutions of the following equation, rounded to the nearest tenth:

3x4  4x3  7x2  2x  3  0

soluTIon  To solve the equation graphically, we graph

P1x 2  3x4  4x3  7x2  2x  3

First we use the Upper and Lower Bounds Theorem to find two numbers between 
which all the solutions must lie. This allows us to choose a viewing rectangle that is 
certain to contain all the x-intercepts of P. We use synthetic division and proceed by 
trial and error.

P11 2  0

We use the Upper and Lower Bounds 
Theorem to see where the solutions can  
be found.

9

40

_20

_4 2

FIGuRe 2 

P1x 2 2x5  5x4  8x3  14x2  6x  9

 1x  1 2 12x  3 2 1x  1 2 21x  3 2
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To find an upper bound, we try the whole numbers, 1, 2, 3, . . . , as potential candi-
dates. We see that 2 is an upper bound for the solutions:

2  ∣  3    4    7    2    3

  6 20 26 48

 3 10 13 24 45

Now we look for a lower bound, trying the numbers 1, 2, and 3 as potential 
candidates. We see that 3 is a lower bound for the solutions:

 3  ∣ 3    4   7    2    3

   9 15 24 78

  3 5 8 26 75

Thus all the solutions lie between 3 and 2. So the viewing rectangle 33, 24 by  
320, 204 contains all the x-intercepts of P. The graph in Figure 3 has two x-intercepts, 
one between 3 and 2 and the other between 1 and 2. Zooming in, we find that the 
solutions of the equation, to the nearest tenth, are 2.3 and 1.3.

now Try exercise 95 ■

exAMPle 9 ■ Determining the size of a Fuel Tank
A fuel tank consists of a cylindrical center section that is 4 ft long and two hemi-
spherical end sections, as shown in Figure 4. If the tank has a volume of 100 ft3, what 
is the radius r shown in the figure, rounded to the nearest hundredth of a foot?

soluTIon  Using the volume formula listed on the inside front cover of this book, we 
see that the volume of the cylindrical section of the tank is

p # r 
2 # 4

The two hemispherical parts together form a complete sphere whose volume is
4
3 pr 

3

Because the total volume of the tank is 100 ft3, we get the following equation:
4
3 pr3  4pr 

2  100

A negative solution for r would be meaningless in this physical situation, and by 
substi tution we can verify that r  3 leads to a tank that is over 226 ft3 in volume, 
much larger than the required 100 ft3. Thus we know the correct radius lies some-
where between 0 and 3 ft, so we use a viewing rectangle of 30, 34 by 350, 1504 to graph 
the function y  4

3 px3  4px 
2, as shown in Figure 5. Since we want the value of this 

function to be 100, we also graph the horizontal line y  100 in the same viewing 
rectangle. The correct radius will be the x-coordinate of the point of intersection of 
the curve and the line. Using the cursor and zooming in, we see that at the point  
of intersection x  2.15, rounded to two decimal places. Thus the tank has a radius  
of about 2.15 ft.

now Try exercise 99 ■

Note that we also could have solved the equation in Example 9 by first writing it as
4
3 pr3  4pr 

2  100  0

and then finding the x-intercept of the function y  4
3 px3  4px 

2  100.

All  
positive

Entries  
alternate  
in sign

Volume of a cylinder: V  pr 2h

Volume of a sphere: V  4
3  pr3

20

_20

_3 2

FIGuRe 3 

y  3x4  4x3  7x2  2x  3

150

50
0 3

FIGuRe 5  

y  4
3 px3  4px 

2 and y  100

FIGuRe 4

r

4 ft

rr

4 ft

r
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SECTION 3.4 ■ Real Zeros of Polynomials 319

ConCePTs
 1. If the polynomial function

P 1x 2  anx n  an1x n1  . . .  a1x  a0

  has integer coefficients, then the only numbers that  
could  possibly be rational zeros of P are all of the  

form 
p

q
, where p is a factor of   and q is a  

factor of    . The possible rational zeros of 
P 1x 2  6x3  5x2  19x  10 are 

   .

 2. Using Descartes’ Rule of Signs, we can tell that the  
polynomial P 1x 2  x5  3x4  2x3  x2  8x  8 has 

   ,    , or   positive real zeros and 

  negative real zeros.

 3. True or False? If c is a real zero of the polynomial P, then all 
the other zeros of P are zeros of P1x 2/ 1x  c 2 .

 4. True or False? If a is an upper bound for the real zeros of the 
polynomial P, then a is necessarily a lower bound for the 
real  zeros of P.

skIlls
5–10 ■ Possible Rational Zeros  List all possible rational zeros 
given by the Rational Zeros Theorem (but don’t check to see 
which actually are zeros).

 5. P1x 2  x3  4x2  3

 6. Q1x 2  x4  3x3  6x  8

 7. R1x 2  2x5  3x3  4x2  8

 8. S1x 2  6x4  x2  2x  12

 9. T1x 2  4x4  2x2  7

 10. U1x 2  12x5  6x3  2x  8

11–14 ■ Possible Rational Zeros  A polynomial function P and 
its graph are given. (a) List all possible rational zeros of P given 
by the Rational Zeros Theorem. (b) From the graph, determine 
which of the possible rational zeros actually turn out to be zeros.

 11. P1x 2  5x3  x2  5x  1

0 1

y

x

1

 12. P1x 2  3x3  4x2  x  2

0

y

x1

1

 13. P1x 2  2x4  9x3  9x2  x  3

0

y

x1

1

14. P1x 2  4x4  x3  4x  1

0

y

x1

1

15–28 ■ Integer Zeros  All the real zeros of the given polyno-
mial are integers. Find the zeros, and write the polynomial in fac-
tored form.

 15. P1x 2  x3  2x2  13x  10

 16. P1x 2  x3  4x2  19x  14

17. P1x 2  x3  3x2  4

18. P1x 2  x3  3x  2

19. P1x 2  x3  6x2  12x  8

20. P1x 2  x3  12x2  48x  64

 21. P1x 2  x3  19x  30

 22. P1x 2  x3  11x2  8x  20

3.4 exeRCIses
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23. P1x 2  x3  3x2  x  3

24. P1x 2  x3  4x2  11x  30

25. P1x 2  x4  5x2  4

26. P1x 2  x4  2x3  3x2  8x  4

27. P1x 2  x4  6x3  7x2  6x  8

28. P1x 2  x4  x3  23x2  3x  90

29–44 ■ Rational Zeros  Find all rational zeros of the polyno-
mial, and write the polynomial in factored form.

29. P1x 2  4x4  37x2  9

 30. P1x 2  6x4  23x3  13x2  32x  16

31. P1x 2  3x4  10x3  9x2  40x  12

32. P1x 2  2x3  7x2  4x  4

33. P1x 2  4x3  4x2  x  1

34. P1x 2  2x3  3x2  2x  3

35. P1x 2  4x3  7x  3

36. P1x 2  12x3  25x2  x  2

 37. P1x 2  24x3  10x2  13x  6

38. P1x 2  12x3  20x2  x  3

39. P1x 2  2x4  7x3  3x2  8x  4

40. P1x 2  6x4  7x3  12x2  3x  2

41. P1x 2  x5  3x4  9x3  31x2  36

42. P1x 2  x5  4x4  3x3  22x2  4x  24

43. P1x 2  3x5  14x4  14x3  36x2  43x  10

44. P1x 2  2x6  3x5  13x4  29x3  27x2  32x  12

45–54 ■ Real Zeros of a Polynomial  Find all the real zeros of 
the polynomial. Use the Quadratic Formula if necessary, as in 
Example 3(a).

45. P1x 2  3x3  5x2  2x  4

 46. P1x 2  3x4  5x3  16x2  7x  15

47. P1x 2  x4  6x3  4x2  15x  4

48. P1x 2  x4  2x3  2x2  3x  2

49. P1x 2  x4  7x3  14x2  3x  9

50. P1x 2  x5  4x4  x3  10x2  2x  4

51. P1x 2  4x3  6x2  1

52. P1x 2  3x3  5x2  8x  2

53. P1x 2  2x4  15x3  17x2  3x  1

54. P1x 2  4x5  18x4  6x3  91x2  60x  9

55–62 ■ Real Zeros of a Polynomial  A polynomial P is given. 
(a) Find all the real zeros of P. (b) Sketch a graph of P.

55. P1x 2  x3  3x2  4x  12

56. P1x 2  x3  2x2  5x  6

57. P1x 2  2x3  7x2  4x  4

58. P1x 2  3x3  17x2  21x  9

59. P1x 2  x4  5x3  6x2  4x  8

60. P1x 2  x4  10x2  8x  8

61. P1x 2  x5  x4  5x3  x2  8x  4

62. P1x 2  x5  x4  6x3  14x2  11x  3

63–68 ■ Descartes’ Rule of signs  Use Descartes’ Rule of Signs 
to determine how many positive and how many negative real 
zeros the polynomial can have. Then determine the possible total 
number of real zeros.

63. P1x 2  x3  x2  x  3

64. P1x 2  2x3  x2  4x  7

65. P1x 2  2x6  5x4  x3  5x  1

66. P1x 2  x4  x3  x2  x  12

67. P1x 2  x5  4x3  x2  6x

68. P1x 2  x8  x5  x4  x3  x2  x  1

69–76 ■ upper and lower Bounds  Show that the given values 
for a and b are lower and  upper bounds for the real zeros of the 
polynomial.

69. P1x 2  2x3  5x2  x  2; a  3, b  1

70. P1x 2  x4  2x3  9x2  2x  8; a  3, b  5

71. P1x 2  8x3  10x2  39x  9; a  3, b  2

72. P1x 2  3x4  17x3  24x2  9x  1; a  0, b  6

73. P1x 2  x4  2x3  3x2  5x  1; a  2, b  1

74. P1x 2  x4  3x3  4x2  2x  7; a  4, b  2

75. P1x 2  2x4  6x3  x2  2x  3; a  1, b  3

76. P1x 2  3x4  5x3  2x2  x  1; a  1, b  2

77–80 ■ upper and lower Bounds  Find integers that are upper 
and lower bounds for the real zeros of the polynomial.

77. P1x 2  x3  3x2  4

78. P1x 2  2x3  3x2  8x  12

79. P1x 2  x4  2x3  x2  9x  2

80. P1x 2  x5  x4  1

81–86 ■ Zeros of a Polynomial  Find all rational zeros of the 
polynomial, and then find the irrational zeros, if any. Whenever 
appropriate, use the Rational Zeros Theorem, the Upper and Lower 
Bounds Theorem, Descartes’ Rule of Signs, the Quadratic Formula, 
or other factoring techniques.

81. P1x 2  2x4  3x3  4x2  3x  2

82. P1x 2  2x4  15x3  31x2  20x  4

83. P1x 2  4x4  21x2  5

84. P1x 2  6x4  7x3  8x2  5x

85. P1x 2  x5  7x4  9x3  23x2  50x  24

86. P1x 2  8x5  14x4  22x3  57x2  35x  6
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87–90 ■ Polynomials With no Rational Zeros  Show that the 
polynomial does not have any rational  zeros.

 87. P1x 2  x3  x  2

 88. P1x 2  2x4  x3  x  2

 89. P1x 2  3x3  x2  6x  12

 90. P1x 2  x50  5x25  x2  1

91–94 ■ Verifying Zeros using a Graphing Device  The real 
solutions of the given equation are rational. List all possible ratio-
nal roots using the Rational Zeros Theorem, and then graph the 
polynomial in the given viewing rectangle to determine which 
values are actually solutions. (All solutions can be seen in the 
given viewing rectangle.)

 91. x3 3x2  4x  12  0;  34, 44 by 315, 154
 92. x4  5x2  4  0;  34, 44 by 330, 304
 93. 2x4  5x3  14x2  5x  12  0;  32, 54 by 340, 404
 94. 3x3  8x2  5x  2  0;  33, 34 by 310, 104

95–98 ■ Finding Zeros using a Graphing Device  Use a graphing 
device to find all real solutions of the equation, rounded to two 
decimal places.

 95. x4  x  4  0

 96. 2x3  8x2  9x  9  0

 97. 4.00x4  4.00x3  10.96x2  5.88x  9.09  0

 98. x5  2.00x4  0.96x3  5.00x2  10.00x  4.80  0

APPlICATIons
 99. Volume of a silo  A grain silo consists of a cylindrical 

main section and a hemispherical roof. If the total  
volume of the silo (including the part inside the roof  
section) is 15,000 ft3 and the cylindrical part is 30 ft tall, 
what is the radius of the silo, rounded to the nearest tenth 
of a foot?

30 ft

 100. Dimensions of a lot  A rectangular parcel of land has an 
area of 5000 ft2. A diagonal between opposite corners is 
measured to be 10 ft longer than one side of the parcel. 

What are the dimensions of the land, rounded to the nearest 
foot?

x+10

x

 101.  Depth of snowfall  Snow began falling at noon on Sunday. 
The amount of snow on the ground at a certain location at 
time t was given by the function

 h1 t 2  11.60t  12.41t 
2  6.20t 

3

  1.58t4  0.20t 
5  0.01t 

6

   where t is measured in days from the start of the snowfall  
and h1 t 2  is the depth of snow in inches. Draw a graph of  
this function, and use your graph to answer the following  
questions.

(a) What happened shortly after noon on Tuesday?

(b) Was there ever more than 5 in. of snow on the ground? 
If so, on what day(s)?

(c) On what day and at what time (to the nearest hour) did 
the snow disappear completely?

102.  Volume of a Box  An open box with a volume of 1500 cm3  
is to be constructed by taking a piece of cardboard 20 cm by  
40 cm, cutting squares of side length x cm from each corner, 
and folding up the sides. Show that this can be done in two 
different ways, and find the exact dimensions of the box in 
each case.

20 cm

40 cm

x
x

 103.  Volume of a Rocket  A rocket consists of a right circular 
cylinder of height 20 m surmounted by a cone whose height 
and diameter are equal and whose radius is the same as that 
of the cylindrical section. What should this radius be 
(rounded to two decimal places) if the total volume is to be 
500p/3 m3?

20 m
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104.  Volume of a Box  A rectangular box with a volume of  
2 !2 ft3 has a square base as shown below. The diagonal of  
the box (between a pair of opposite corners) is 1 ft longer 
than each side of the base.

(a) If the base has sides of length x feet, show that

x6  2x5  x4  8  0

(b)  Show that two different boxes satisfy the given condi-
tions. Find the dimensions in each case, rounded to the 
nearest hundredth of a foot.

x
x

105.  Girth of a Box  A box with a square base has length plus 
girth of 108 in. (Girth is the distance “around” the box.) 
What is the length of the box if its volume is 2200 in3?

b

l
b

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
106.  DIsCuss ■ DIsCoVeR: How Many Real Zeros Can a Polyno-

mial Have?  Give  examples of polynomials that have the 
following properties, or explain why it is impossible to find 
such a polynomial.

(a)  A polynomial of degree 3 that has no real zeros

(b)  A polynomial of degree 4 that has no real zeros

(c)   A polynomial of degree 3 that has three real zeros, only 
one of which is rational

(d) A polynomial of degree 4 that has four real zeros, none 
of which is rational

  What must be true about the degree of a polynomial with 
integer coefficients if it has no real zeros?

107. DIsCuss ■ PRoVe: The Depressed Cubic  The most gen-
eral cubic (third- degree) equation with rational coefficients 
can be written as

x3  ax2  bx  c  0

(a) Prove that if we replace x by X  a /3 and simplify, we 
end up with an equation that doesn’t have an X 2 term, 
that is, an equation of the form

X 3  pX  q  0

  This is called a depressed cubic, because we have 
“depressed” the quadratic term.

(b)  Use the procedure described in part (a) to depress the 
equation x3  6x2  9x  4  0.

108. DIsCuss: The Cubic Formula  The Quadratic Formula can 
be used to solve any quadratic (or second-degree) equation. 
You might have wondered whether similar formulas exist for 
cubic (third- degree), quartic (fourth-degree), and higher-
degree equations. For the depressed cubic x3  px  q  0, 
Cardano (page 328) found the following formula for one 
solution:

x  É
3 q

2
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27
 É

3 q
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 Å
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  A formula for quartic equations was discovered by the Ital-
ian mathematician Ferrari in 1540. In 1824 the Norwegian 
mathematician Niels Henrik Abel proved that it is impossi-
ble to write a quintic formula, that is, a formula for fifth-
degree equations. Finally, Galois (page 313) gave a criterion 
for determining which equations can be solved by a formula 
involving radicals.

    Use the formula given above to find a solution for the fol-
lowing equations. Then solve the equations using the meth-
ods you learned in this section. Which method is easier?

(a) x3  3x  2  0

(b) x3  27x  54  0

(c) x3  3x  4  0

 109. PRoVe: upper and lower Bounds Theorem  Let P1x 2  be a 
polynomial with real coefficients, and let b  0. Use the 
Division Algorithm to write

P1x 2  1x  b 2 # Q1x 2  r

  Suppose that r  0 and that all the coefficients in Q1x 2  are  
nonnegative. Let z  b.

(a) Show that P1z 2  0.

(b)  Prove the first part of the Upper and Lower Bounds 
 Theorem.

(c)  Use the first part of the Upper and Lower Bounds Theo-
rem to prove the second part.  [Hint: Show that if 
P1x 2  satisfies the second part of the theorem, then 
P1x 2  satisfies the first part.]

 110. PRoVe: number of Rational and Irrational Roots  Show 
that the equation

x5  x4  x3  5x2  12x  6  0

  has exactly one rational root, and then prove that it must 
have either two or four irrational roots.

3.5 CoMPlex ZeRos AnD THe FunDAMenTAl THeoReM oF AlGeBRA
■ The Fundamental Theorem of Algebra and Complete Factorization ■ Zeros and Their 
Multiplicities ■ Complex Zeros Come in Conjugate Pairs ■ linear and Quadratic Factors

We have already seen that an nth-degree polynomial can have at most n real zeros. In the 
complex number system an nth-degree polynomial has exactly n zeros (counting multi-
plicity) and so can be factored into exactly n linear factors. This fact is a consequence of 
the Fundamental Theorem of Algebra, which was proved by the German mathematician 
C. F. Gauss in 1799 (see page 326).

■ The Fundamental Theorem of Algebra  
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and 
solving polynomial equations.

FunDAMenTAl THeoReM oF AlGeBRA

Every polynomial

P1x 2  an  
x n  an1x n1  . . .  a1x  a0  1n  1, an ? 0 2

with complex coefficients has at least one complex zero.

Because any real number is also a complex number, the theorem applies to polyno-
mials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that a 
polynomial can be factored completely into linear factors, as we now prove.

CoMPleTe FACToRIZATIon THeoReM

If P1x 2  is a polynomial of degree n  1, then there exist complex numbers  
a, c1, c2, . . . , cn (with a ? 0) such that

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2

Proof  By the Fundamental Theorem of Algebra, P has at least one zero. Let’s call  
it c1. By the Factor Theorem (see page 308), P1x 2  can be factored as

P1x 2  1x  c1 2Q11x 2
where Q11x 2  is of degree n  1. Applying the Fundamental Theorem to the quotient 
Q11x 2  gives us the factorization

P1x 2  1x  c1 2 1x  c2 2Q21x 2
where Q21x 2  is of degree n  2 and c2 is a zero of Q11x 2 . Continuing this process for 
n steps, we get a final quotient Qn1x 2  of degree 0, a nonzero constant that we will call 
a. This means that P has been factored as

 P1x 2  a1x  c1 2 1x  c2 2c1x  cn 2  ■

To actually find the complex zeros of an nth-degree polynomial, we usually first factor 
as much as possible, then use the Quadratic Formula on parts that we can’t factor further.

Complex numbers are discussed in 
Section 1.5.
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complex number system an nth-degree polynomial has exactly n zeros (counting multi-
plicity) and so can be factored into exactly n linear factors. This fact is a consequence of 
the Fundamental Theorem of Algebra, which was proved by the German mathematician 
C. F. Gauss in 1799 (see page 326).

■ The Fundamental Theorem of Algebra  
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and 
solving polynomial equations.

FunDAMenTAl THeoReM oF AlGeBRA

Every polynomial

P1x 2  an  
x n  an1x n1  . . .  a1x  a0  1n  1, an ? 0 2

with complex coefficients has at least one complex zero.

Because any real number is also a complex number, the theorem applies to polyno-
mials with real coefficients as well.

The Fundamental Theorem of Algebra and the Factor Theorem together show that a 
polynomial can be factored completely into linear factors, as we now prove.

CoMPleTe FACToRIZATIon THeoReM

If P1x 2  is a polynomial of degree n  1, then there exist complex numbers  
a, c1, c2, . . . , cn (with a ? 0) such that

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2

Proof  By the Fundamental Theorem of Algebra, P has at least one zero. Let’s call  
it c1. By the Factor Theorem (see page 308), P1x 2  can be factored as

P1x 2  1x  c1 2Q11x 2
where Q11x 2  is of degree n  1. Applying the Fundamental Theorem to the quotient 
Q11x 2  gives us the factorization

P1x 2  1x  c1 2 1x  c2 2Q21x 2
where Q21x 2  is of degree n  2 and c2 is a zero of Q11x 2 . Continuing this process for 
n steps, we get a final quotient Qn1x 2  of degree 0, a nonzero constant that we will call 
a. This means that P has been factored as

 P1x 2  a1x  c1 2 1x  c2 2c1x  cn 2  ■

To actually find the complex zeros of an nth-degree polynomial, we usually first factor 
as much as possible, then use the Quadratic Formula on parts that we can’t factor further.

Complex numbers are discussed in 
Section 1.5.
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exAMPle 1 ■ Factoring a Polynomial Completely
Let P1x 2  x3  3x2  x  3.

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

soluTIon

(a) We first factor P as follows.

 P1x 2  x3  3x2  x  3     Given

  x21x  3 2  1x  3 2     Group terms

  1x  3 2 1x2  1 2     Factor x  3

  We find the zeros of P by setting each factor equal to 0:

P1x 2  1x  3 2 1x2  1 2

   Setting x  3  0, we see that x  3 is a zero. Setting x2  1  0, we get  
x2  1, so x  i. So the zeros of P are 3, i, and i.

(b)  Since the zeros are 3, i, and i, the complete factorization of P is

 P1x 2  1x  3 2 1x  i 2 3x  1i 2 4
  1x  3 2 1x  i 2 1x  i 2

now Try exercise 7 ■

exAMPle 2 ■ Factoring a Polynomial Completely
Let P1x 2  x3  2x  4.

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

soluTIon

(a)  The possible rational zeros are the factors of 4, which are 1, 2, 4. Using 
synthetic division (see the margin), we find that 2 is a zero, and the polynomial 
factors as

P1x 2  1x  2 2 1x2  2x  2 2

   To find the zeros, we set each factor equal to 0. Of course, x  2  0 means that  
x  2. We use the Quadratic Formula to find when the other factor is 0.

x2  2x  2  0  Set factor equal to 0

 x  
2  !4  8

2
  Quadratic Formula

 x  
2  2i

2
  Take square root

 x  1  i   Simplify

  So the zeros of P are 2, 1  i, and 1  i.

This factor is 0 when x  3 This factor is 0 when x  i or i

 2  ∣ 1 0 2 4

  2 4 4

 1 2 2 0

This factor is 0 when x  2 Use the Quadratic Formula to 
find when this factor is 0
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(b)  Since the zeros are 2, 1  i, and 1  i, the complete factorization of P is

 P1x 2  3x  12 2 4 3x  11  i 2 4 3x  11  i 2 4
  1x  2 2 1x  1  i 2 1x  1  i 2

now Try exercise 9 ■

■ Zeros and Their Multiplicities
In the Complete Factorization Theorem the numbers c1, c2, . . . , cn are the zeros of P. 
These zeros need not all be different. If the factor x  c appears k times in the complete 
factorization of P1x 2 , then we say that c is a zero of multiplicity k (see page 299). For 
example, the polynomial

P1x 2  1x  1 2 31x  2 2 21x  3 2 5
has the following zeros:

1 1multiplicity 3 2  2 1multiplicity 2 2  3 1multiplicity 5 2
The polynomial P has the same number of zeros as its degree: It has degree 10 and has 
10 zeros, provided that we count multiplicities. This is true for all polynomials, as we 
prove in the following theorem.

ZeRos THeoReM

Every polynomial of degree n  1 has exactly n zeros, provided that a zero of 
multiplicity k is counted k times.

Proof  Let P be a polynomial of degree n. By the Complete Factorization  
Theorem

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2
Now suppose that c is any given zero of P. Then

P1c 2  a1c  c1 2 1c  c2 2  . . . 1c  cn 2  0

Thus by the Zero-Product Property, one of the factors c  ci must be 0, so c  ci  
for some i. It follows that P has exactly the n zeros c1, c2, . . . , cn. ■

exAMPle 3 ■ Factoring a Polynomial with Complex Zeros
Find the complete factorization and all five zeros of the polynomial

P1x 2  3x5  24x3  48x

soluTIon  Since 3x is a common factor, we have

 P1x 2  3x1x4  8x2  16 2
  3x1x2  4 2 2

This factor is 0 when x  0 This factor is 0 when  
x  2i or x  2i
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326 CHAPTER 3 ■ Polynomial and Rational Functions

To factor x2  4, note that 2i and 2i are zeros of this polynomial. Thus 
x2  4  1x  2i 2 1x  2i 2 , so

 P1x 2  3x 3 1x  2i 2 1x  2i 2 4 2
  3x1x  2i 2 21x  2i 2 2

The zeros of P are 0, 2i, and 2i. Since the factors x  2i and x  2i each occur 
twice in the complete factorization of P, the zeros 2i and 2i are of multiplicity 2 (or 
double zeros). Thus we have found all five zeros.

now Try exercise 31 ■

The following table gives further examples of polynomials with their complete fac-
torizations and zeros.

Degree Polynomial Zero(s) Number of zeros

1  P1x 2  x  4 4 1

2  P1x 2  x2  10x  25 5 1multiplicity 22 2
  1x  5 2 1x  5 2

3  P1x 2  x3  x 0, i, i 3
  x1x  i 2 1x  i 2

4  P1x 2  x4  18x2  81 3i 1multiplicity 22, 4
  1x  3i 2 21x  3i 2 2  3i 1multiplicity 22

5  P1x 2  x5  2x4  x3 0 1multiplicity 32, 5
  x31x  1 2 2 1 1multiplicity 22

exAMPle 4 ■ Finding Polynomials with specified Zeros
(a)  Find a polynomial P1x 2  of degree 4, with zeros i, i, 2, and 2, and with 

P13 2  25.

(b)  Find a polynomial Q1x 2  of degree 4, with zeros 2 and 0, where 2 is a zero of 
multiplicity 3.

soluTIon

(a) The required polynomial has the form

 P1x 2  a1x  i 2 1x  1i 22 1x  2 2 1x  12 22
  a1x2  1 2 1x2  4 2     Difference of squares

  a1x4  3x2  4 2     Multiply

  We know that P13 2  a134  3 # 32  4 2  50a  25, so a  1
2. Thus

P1x 2  1
2 x4  3

2 x2  2

(b) We require

 Q1x 2  a 3x  12 2 4 31x  0 2
  a1x  2 2 3x
  a1x3  6x2  12x  8 2x     Special Product Formula 4 (Section P.5)

  a1x 4  6x 3  12x2  8x 2

0 is a zero of 
multiplicity 1

2i is a zero of 
multiplicity 2

2i is a zero of 
multiplicity 2

Hi
st
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CArl FriEDriCh GAuSS (1777–1855) 
is considered the greatest mathematician 
of modern times. His contemporaries 
called him the “Prince of Mathematics.” 
He was born into a poor family; his father 
made a living as a mason. As a very small 
child, Gauss found a calculation error in 
his father’s accounts, the first of many 
incidents that gave evidence of his math-
ematical precocity. (See also page 898.) 
At 19, Gauss demonstrated that the regu-
lar 17-sided polygon can be constructed 
with straight-edge and  compass alone. 
This was remarkable because, since the 
time of Euclid, it had been thought that 
the only regular polygons constructible 
in this way were the triangle and penta-
gon. Because of this discovery Gauss 
decided to pursue a career in mathemat-
ics instead of languages, his other pas-
sion. In his doctoral dis sertation, written 
at the age of 22, Gauss proved the  
Fundamental Theorem of Algebra: A 
polynomial of degree n with complex 
co effi cients has n roots. His other ac com-
plishments range over every branch of 
mathematics, as well as physics and 
astronomy.
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  Since we are given no information about Q other than its zeros and their multi-
plicity, we can choose any number for a. If we use a  1, we get

 Q1x 2  x4  6x3  12x2  8x

now Try exercise 37 ■

exAMPle 5 ■ Finding All the Zeros of a Polynomial
Find all four zeros of P1x 2  3x4  2x3  x2  12x  4.

soluTIon  Using the Rational Zeros Theorem from Section 3.4, we obtain the follow-
ing list of possible rational zeros: 1, 2, 4, 1

3, 2
3, 4

3. Checking these using syn-
thetic division, we find that 2 and  

1
3 are zeros, and we get the following fac torization.

 P1x 2  3x4  2x3  x2  12x  4

  1x  2 2 13x3  4x2  7x  2 2     Factor x  2

  1x  2 2 Ax  1
3B 13x2  3x  6 2     Factor x  1

3

  31x  2 2 Ax  1
3B 1x2  x  2 2     Factor 3

The zeros of the quadratic factor are

x 
1  !1  8

2
  

1

2
 i 

!7

2
    Quadratic Formula

so the zeros of P1x 2  are

2,  

1

3
,  

1

2
 i 

!7

2
, and  

1

2
 i 

!7

2

now Try exercise 47 ■

■ Complex Zeros Come in Conjugate Pairs
As you might have noticed from the examples so far, the complex zeros of polynomials 
with real coefficients come in pairs. Whenever a  bi is a zero, its complex conjugate  
a  bi is also a zero.

ConjuGATe ZeRos THeoReM

If the polynomial P has real coefficients and if the complex number z is a zero 
of P, then its complex conjugate z is also a zero of P.

Proof  Let

P1x 2  an  
x n  an1x

n1  . . .  a1x  a0

where each coefficient is real. Suppose that P1z 2  0. We must prove that P1z 2  0. We 
use the facts that the complex conjugate of a sum of two complex numbers is the sum of 
the conjugates and that the conjugate of a product is the product of the conjugates.

 P1z 2  an1z 2 n  an11z 2 n1  . . .  a1z  a0

  an zn  an1 zn1  . . .  a1 z  a0     Because the coefficients are real

  an  
zn  an1 zn1  . . .  a1z  a0

  anzn  an1zn1  . . .  a1z  a0

  P1z 2  0  0

This shows that z is also a zero of P(x), which proves the theorem. ■

Figure 1 shows the graph of the polyno-
mial P in Example 5. The x-intercepts 
correspond to the real zeros of P. The 
imaginary zeros cannot be determined 
from the graph.

40

_20

_2 4

FIGuRe 1 
P1x 2  3x4  2x3  x2  12x  4
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exAMPle 6 ■ A Polynomial with a specified Complex Zero
Find a polynomial P1x 2  of degree 3 that has integer coefficients and zeros 1

2 and 
3  i.

soluTIon  Since 3  i is a zero, then so is 3  i by the Conjugate Zeros Theorem. 
This means that P1x 2  must have the following form.

  P1x 2  aAx  1
2B 3x  13  i 2 4 3x  13  i 2 4

   aAx  1
2B 3 1x  3 2  i 4 3 1x  3 2  i 4  Regroup

   aAx  1
2B 3 1x  3 2 2  i 2 4  Difference of Squares Formula

   aAx  1
2B 1x2  6x  10 2  Expand

   aAx3   13 

2  
x2  13x  5B  Expand

To make all coefficients integers, we set a  2 and get

P1x 2  2x3  13x2  26x  10

Any other polynomial that satisfies the given requirements must be an integer multi-
ple of this one.

now Try exercise 41 ■

■ linear and Quadratic Factors
We have seen that a polynomial factors completely into linear factors if we use complex 
numbers. If we don’t use complex numbers, then a polynomial with real coefficients can 
always be factored into linear and quadratic factors. We use this property in Section 11.7 
when we study partial fractions. A quadratic polynomial with no real zeros is called  
irreducible over the real numbers. Such a polynomial cannot be factored without using 
complex numbers.

lIneAR AnD QuADRATIC FACToRs THeoReM

Every polynomial with real coefficients can be factored into a product of linear 
and irreducible quadratic factors with real coefficients.

Proof  We first observe that if c  a  bi is a complex number, then

 1x  c 2 1x  c 2  3x  1a  bi 2 4 3x  1a  bi 2 4
  3 1x  a 2  bi 4 3 1x  a 2  bi 4
  1x  a 2 2  1bi 2 2
  x2  2ax  1a2  b2 2

The last expression is a quadratic with real coefficients.
Now, if P is a polynomial with real coefficients, then by the Complete Factoriza-

tion Theorem

P1x 2  a1x  c1 2 1x  c2 2  . . . 1x  cn 2
Since the complex roots occur in conjugate pairs, we can multiply the factors 
correspond ing to each such pair to get a quadratic factor with real coefficients. This  
results in P being factored into linear and irreducible quadratic factors. ■
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GErolAMo CArDAno (1501–1576) is 
certainly one of the most colorful figures 
in the history of mathematics. He was the 
best-known physician in Europe in his 
day, yet throughout his life he was 
plagued by numerous maladies, includ-
ing ruptures, hemorrhoids, and an irratio-
nal fear of encountering rabid dogs. He 
was a doting father, but his beloved sons 
broke his heart—his favorite was eventu-
ally beheaded for murdering his own 
wife. Cardano was also a compulsive 
gambler; indeed, this vice might have 
driven him to write the Book on Games of 
Chance, the first study of probability 
from a mathematical point of view.

In Cardano’s major mathematical 
work, the Ars Magna, he detailed the 
solution of the general third- and fourth-
degree polynomial equations. At the time 
of its publication, mathematicians were 
uncomfortable even with negative num-
bers, but Cardano’s formulas paved the 
way for the acceptance not just of nega-
tive numbers, but also of imaginary num-
bers, because they occurred naturally in 
solving polynomial equations. For exam-
ple, for the cubic equation

x 3  15x  4  0

one of his formulas gives the solution

x  "3 2  !121  "3 2  !121

(See page 322, Exercise 108.) This value 
for x actually turns out to be the integer 
4, yet to find it, Cardano had to use the 
imaginary number !121  11i .
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exAMPle 7 ■ Factoring a Polynomial into linear and Quadratic Factors
Let P1x 2  x4  2x2  8.

(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

soluTIon

(a)   P1x 2  x4  2x2  8

     1x2  2 2 1x2  4 2
     1x  !2 2 1x  !2 2 1x2  4 2
  The factor x2  4 is irreducible, since it has no real zeros.

(b) To get the complete factorization, we factor the remaining quadratic factor:

 P1x 2  1x  !2 2 1x  !2 2 1x2  4 2
   1x  !2 2 1x  !2 2 1x  2i 2 1x  2i 2

now Try exercise 67 ■

ConCePTs
 1.  The polynomial P1x 2  5x21x  4 2 31x  7 2  has degree 

     . It has zeros 0, 4, and    . The zero 0 has 

  multiplicity    , and the zero 4 has multiplicity 

     .

 2. (a)  If a is a zero of the polynomial P, then   must 
be a factor of P(x).

  (b)  If a is a zero of multiplicity m of the polynomial P, then 

      must be a factor of P(x) when we factor P 
 completely.

 3. A polynomial of degree n  1 has exactly   zeros if 
a zero of multiplicity m is counted m times.

 4. If the polynomial function P has real coefficients and if a  bi 

  is a zero of P, then   is also a zero of P. So if 3  i 

  is a zero of P, then   is also a zero of P.

5–6 ■ True or False? If False, give a reason. 

 5. Let P1x 2  x4  1.

(a) The polynomial P has four complex zeros.

(b) The polynomial P can be factored into linear factors with 
complex coefficients.

(c) Some of the zeros of P are real.

 6. Let P1x 2  x3  x.

(a) The polynomial P has three real zeros.

(b) The polynomial P has at least one real zero.

(c) The polynomial P can be factored into linear factors with 
real coefficients.

skIlls
7–18 ■ Complete Factorization  A polynomial P is given.  
(a) Find all zeros of P, real and complex. (b) Factor P 
completely.

 7. P1x 2  x4  4x2  8. P1x 2  x5  9x3

 9. P1x 2  x3  2x2  2x 10. P1x 2  x3  x2  x

 11. P1x 2  x4  2x2  1 12. P1x 2  x4  x2  2

 13. P1x 2  x4  16 14. P1x 2  x4  6x2  9

 15. P1x 2  x3  8 16. P1x 2  x3  8

17. P1x 2  x6  1 18. P1x 2  x6  7x3  8

19–36 ■ Complete Factorization  Factor the polynomial  
completely, and find all its zeros. State the multiplicity of  
each zero.

19. P1x 2  x2  25 20. P1x 2  4x2  9

21. Q1x 2  x2  2x  2 22. Q1x 2  x2  8x  17

23. P1x 2  x3  4x 24. P1x 2  x3  x2  x

25. Q1x 2  x4  1 26. Q1x 2  x4  625

27. P1x 2  16x4  81 28. P1x 2  x3  64

29. P1x 2  x3  x2  9x  9 30. P1x 2  x6  729

31. Q1x 2  x4  2x2  1 32. Q1x 2  x4  10x2  25

33. P1x 2  x4  3x2  4 34. P1x 2  x5  7x3

35. P1x 2  x5  6x3  9x 36. P1x 2  x6  16x3  64

3.5 exeRCIses
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37–46 ■ Finding a Polynomial with specified Zeros  Find a 
polynomial with integer coefficients that satisfies the given 
conditions.

 37. P has degree 2 and zeros 1  i and 1  i.

 38. P has degree 2 and zeros 1  i!2 and 1  i!2.

 39. Q has degree 3 and zeros 3, 2i, and 2i.

 40. Q has degree 3 and zeros 0 and i.

 41. P has degree 3 and zeros 2 and i.

 42. Q has degree 3 and zeros 3 and 1  i.

 43. R has degree 4 and zeros 1  2i and 1, with 1 a zero of  
multiplicity 2.

 44. S has degree 4 and zeros 2i and 3i.

 45. T has degree 4, zeros i and 1  i, and constant term 12.

 46. U has degree 5, zeros 1
2, 1, and i, and leading coefficient 

4; the zero 1 has multiplicity 2.

47–64 ■ Finding Complex Zeros  Find all zeros of the 
polynomial.

47. P1x 2  x 3  2x2  4x  8

48. P1x 2  x3  7x2  17x  15

49. P1x 2  x3  2x2  2x  1

50. P1x 2  x3  7x2  18x  18

51. P1x 2  x3  3x2  3x  2

52. P1x 2  x3  x  6

53. P1x 2  2x 3  7x2  12x  9

54. P1x 2  2x 3  8x2  9x  9

55. P1x 2  x4  x3  7x2  9x  18

56. P1x 2  x4  2x3  2x2  2x  3

57. P1x 2  x5  x4  7x3  7x2  12x  12

 58. P1x 2  x5  x3  8x2  8  [Hint: Factor by grouping.]

59. P1x 2  x4  6x3  13x2  24x  36

60. P1x 2  x4  x2  2x  2

61. P1x 2  4x4  4x3  5x2  4x  1

62. P1x 2  4x4  2x3  2x2  3x  1

63. P1x 2  x5  3x4  12x3  28x2  27x  9

64. P1x 2  x5  2x4  2x3  4x2  x  2

65–70 ■ linear and Quadratic Factors  A polynomial P is given. 
(a) Factor P into linear and irreducible quadratic factors with real 
coefficients. (b) Factor P completely into linear factors with com-
plex coefficients.

65. P1x 2  x3  5x2  4x  20

66. P1x 2  x3  2x  4 

67. P1x 2  x4  8x2  9 68. P1x 2  x4  8x2  16

69. P1x 2  x6  64 70. P1x 2  x5  16x

skIlls Plus
 71. number of Real and non-Real solutions  By the Zeros Theo-

rem, every nth-degree polynomial equation has exactly n 
solutions (including possibly some that are repeated). Some 
of these may be real, and some may be non-real. Use a 
graphing device to determine how many real and non-real 
solutions each equation has.

(a) x4  2x3  11x2  12x  0

(b) x4  2x3  11x2  12x  5  0

(c) x4  2x3  11x2  12x  40  0

72–74 ■ Real and non-Real Coefficients  So far, we have 
worked only with polynomials that have real coefficients. These 
exercises involve polynomials with real and imaginary 
coefficients.

 72. Find all solutions of the equation.

(a) 2x  4i  1 (b) x2  ix  0

(c) x2  2ix  1  0 (d) ix2  2x  i  0

 73. (a)  Show that 2i and 1  i are both solutions of the equation

x2  11  i 2x  12  2i 2  0

 but that their complex conjugates 2i and 1  i are not.

(b)  Explain why the result of part (a) does not violate the 
Conjugate Zeros Theorem.

 74. (a)  Find the polynomial with real coefficients of the smallest 
possible degree for which i and 1  i are zeros and in 
which the coefficient of the highest power is 1.

(b)  Find the polynomial with complex coefficients of the 
smallest possible degree for which i and 1  i are zeros 
and in which the coefficient of the highest power is 1.

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
 75. DIsCuss: Polynomials of odd Degree  The Conjugate Zeros 

Theorem says that the complex zeros of a polynomial with 
real coeffi cients occur in complex conjugate pairs. Explain 
how this fact proves that a polynomial with real coefficients 
and odd  degree has at least one real zero.

 76. DIsCuss ■ DIsCoVeR: Roots of unity  There are two 
square roots of 1, namely, 1 and 1. These are the solutions 
of x2  1. The fourth roots of 1 are the solutions of the equa-
tion x4  1 or x4  1  0. How many fourth roots of 1 are 
there? Find them. The cube roots of 1 are the solutions of the 
equation x3  1 or x3  1  0. How many cube roots of 1 
are there? Find them. How would you find the sixth roots of 
1? How many are there? Make a conjecture about the number 
of nth roots of 1.

3.6 RATIonAl FunCTIons
■ Rational Functions and Asymptotes ■ Transformations of y  1/x  ■ Asymptotes  
of Rational Functions ■ Graphing Rational Functions ■ Common Factors in numerator  
and Denominator ■ slant Asymptotes and end Behavior ■ Applications

A rational function is a function of the form

r 1x 2 
P1x 2
Q1x 2

where P and Q are polynomials. We assume that P1x 2  and Q1x 2  have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs 
look quite different from the graphs of polynomial functions.

■ Rational Functions and Asymptotes
The domain of a rational function consists of all real numbers x except those for which 
the denominator is zero. When graphing a rational function, we must pay special atten-
tion to the behavior of the graph near those x-values. We begin by graphing a very 
simple rational function.

exAMPle 1 ■ A simple Rational Function
Graph the rational function f 1x 2  1/x, and state the domain and range.

soluTIon  The function f is not defined for x  0. The following tables show that 
when x is close to zero, the value of 0 f 1x 2 0  is large, and the closer x gets to zero, the 
larger 0 f 1x 2 0  gets.

Approaching 0 Approaching  Approaching 0 Approaching 

x fxxc

0.1 10
0.01 100
0.00001 100,000

x fxxc

0.1 10
0.01 100
0.00001 100,000

We describe this behavior in words and in symbols as follows. The first table shows 
that as x approaches 0 from the left, the values of y  f 1x 2  decrease without bound. 
In symbols,

f 1x 2 S  as x S 0  
“y approaches negative infinity 
as x approaches 0 from the left”

Domains of rational expressions are 
discussed in Section P.7.

For positive real numbers,

 
1

BIG NUMBER
 small number

 
1

small number
 BIG NUMBER
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3.6 RATIonAl FunCTIons
■ Rational Functions and Asymptotes ■ Transformations of y  1/x  ■ Asymptotes  
of Rational Functions ■ Graphing Rational Functions ■ Common Factors in numerator  
and Denominator ■ slant Asymptotes and end Behavior ■ Applications

A rational function is a function of the form

r 1x 2 
P1x 2
Q1x 2

where P and Q are polynomials. We assume that P1x 2  and Q1x 2  have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs 
look quite different from the graphs of polynomial functions.

■ Rational Functions and Asymptotes
The domain of a rational function consists of all real numbers x except those for which 
the denominator is zero. When graphing a rational function, we must pay special atten-
tion to the behavior of the graph near those x-values. We begin by graphing a very 
simple rational function.

exAMPle 1 ■ A simple Rational Function
Graph the rational function f 1x 2  1/x, and state the domain and range.

soluTIon  The function f is not defined for x  0. The following tables show that 
when x is close to zero, the value of 0 f 1x 2 0  is large, and the closer x gets to zero, the 
larger 0 f 1x 2 0  gets.

Approaching 0 Approaching  Approaching 0 Approaching 

x fxxc

0.1 10
0.01 100
0.00001 100,000

x fxxc

0.1 10
0.01 100
0.00001 100,000

We describe this behavior in words and in symbols as follows. The first table shows 
that as x approaches 0 from the left, the values of y  f 1x 2  decrease without bound. 
In symbols,

f 1x 2 S  as x S 0  
“y approaches negative infinity 
as x approaches 0 from the left”

Domains of rational expressions are 
discussed in Section P.7.

For positive real numbers,

 
1

BIG NUMBER
 small number

 
1

small number
 BIG NUMBER

DIsCoVeRy PRojeCT

Managing Traffic

A highway engineer wants to determine the optimal safe driving speed for a road. 
The higher the speed limit, the more cars the road can accommodate, but safety 
requires a greater following distance at higher speeds. In this project we find a 
rational function that models the carrying capacity of a road at a given traffic 
speed.The model can be used to determine the speed limit at which the road has its 
maximum carrying capacity. You can find the project at www.stewartmath.com.©
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The second table shows that as x approaches 0 from the right, the values of f 1x 2  
increase without bound. In symbols,

f 1x 2 S  as x S 0  
“y approaches infinity as x  
approaches 0 from the right”

The next two tables show how f 1x 2  changes as 0  x 0  becomes large.

x fxxc

10 0.1
100 0.01

100,000 0.00001

x fxxc

10 0.1
100 0.01

100,000 0.00001

Approaching  Approaching 0 Approaching  Approaching 0

These tables show that as 0  x 0  becomes large, the value of f 1x 2  gets closer and closer 
to zero. We describe this situation in symbols by writing

 f 1x 2 S 0 as x S   and  f 1x 2 S 0 as x S 

Using the information in these tables and plotting a few additional points, we obtain 
the graph shown in Figure 1.

x

2

2

y

0

f(x)      `
as x      0+

as x      0_

f(x)      0 as
x      `

f(x)      0 as
x      _`

f(x)      _`FIGuRe 1 
f 1x 2  1/x

x fxxc  1/x

2 1
2

1 1
 

1
2 2
1
2 2
1 1
2 1

2

The function f is defined for all values of x other than 0, so the domain is 5x 0  x ? 06 . 
From the graph we see that the range is 5y 0  y ? 06 .

now Try exercise 9 ■

In Example 1 we used the following arrow notation.

Symbol Meaning

x → a x approaches a from the left
x → a x approaches a from the right
x →  x goes to negative infinity; that is, x decreases without bound
x →  x goes to infinity; that is, x increases without bound

The line x  0 is called a vertical asymptote of the graph in Figure 1, and the line  
y  0 is a horizontal asymptote. Informally speaking, an asymptote of a function is  
a line to which the graph of the function gets closer and closer as one travels along 
that line.

Obtaining the domain and range of a 
function from its graph is explained in 
Section 2.3, page 207.
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DeFInITIon oF VeRTICAl AnD HoRIZonTAl AsyMPToTes

1.  The line x  a is a vertical asymptote of the function y  f 1x 2  if y approaches  as x approaches a from the right  
or left.

y      ` as x      a±

xa

y

y      ` as x      a–

xa

y

y      _` as x      a±

xa

y

y      _` as x      a–

xa

y

2. The line y  b is a horizontal asymptote of the function y  f 1x 2  if y approaches b as x approaches .

y      b as x      `

x
b

y

y      b as x      _`

x
b

y

A rational function has vertical asymptotes where the function is undefined, that is, 
where the denominator is zero.

■ Transformations of y  1/x
A rational function of the form

r 1x 2 
ax  b

cx  d

can be graphed by shifting, stretching, and/or reflecting the graph of f 1x 2  1/x shown 
in Figure 1, using the transformations studied in Section 2.6. (Such functions are called 
linear fractional transformations.)

exAMPle 2 ■ using Transformations to Graph Rational Functions
Graph each rational function, and state the domain and range.

(a) r 1x 2 
2

x  3
        (b) s1x 2 

3x  5

x  2

soluTIon

(a) Let f 1x 2  1/x. Then we can express r in terms of f as follows:

 r 1x 2 
2

x  3

  2 a 1

x  3
b     Factor 2

  21f 1x  3 22     Since f 1x 2  1/x

   From this form we see that the graph of r is obtained from the graph of f by shifting 
3 units to the right and stretching vertically by a factor of 2. Thus r has vertical asymp-
tote x  3 and horizontal asymptote y  0. The graph of r is shown in Figure 2.

Recall that for a rational function 
R1x 2  P1x 2 /Q1x 2 , we assume that 
P1x 2  and Q1x 2  have no factor in  
common.

Horizontal
asymptote
y = 0

Vertical
asymptote
x = 3

2
x-3r(x)=

x

1

3

y

0

FIGuRe 2
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334 CHAPTER 3 ■ Polynomial and Rational Functions

   The function r is defined for all x other than 3, so the domain is 5x 0  x ? 36 . From 
the graph we see that the range is 5y 0  y ? 06 .

(b)  Using long division (see the margin), we get s1x 2  3 
1

x  2
. Thus we can 

express s in terms of f as follows.

 s1x 2  3 
1

x  2

   

1

x  2
 3     Rearrange terms

  f 1x  2 2  3    Since f 1x 2  1/x

   From this form we see that the graph of s is obtained from the graph of f by 
shifting 2 units to the left, reflecting in the x-axis, and shifting upward 3 units. 
Thus s has vertical asymptote x  2 and horizontal asymptote y  3. The graph 
of s is shown in Figure 3.

FIGuRe 3

x

3

y

0_2

3x+5
x+2s(x)=

Vertical asymptote
x = _2

Horizontal asymptote
y = 3

    The function s is defined for all x other than 2, so the domain is 5x 0  x ? 26. 
From the graph we see that the range is 5y 0  y ? 36.

now Try exercises 15 and 17 ■

■ Asymptotes of Rational Functions
The methods of Example 2 work only for simple rational functions. To graph more 
complicated ones, we need to take a closer look at the behavior of a rational function 
near its vertical and horizontal asymptotes.

exAMPle 3 ■ Asymptotes of a Rational Function

Graph r 1x 2 
2x2  4x  5

x2  2x  1
, and state the domain and range.

soluTIon

Vertical asymptote.  We first factor the denominator

r 1x 2 
2x2  4x  5

1x  1 2 2
The line x  1 is a vertical asymptote because the denominator of r is zero when 
x  1.

3

x  2q3x  5

3x  6

1
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To see what the graph of r looks like near the vertical asymptote, we make tables 
of values for x-values to the left and to the right of 1. From the tables shown below 
we see that

y S  as x S 1  and  y S  as x S 1

 x S 1 x S 1

Approaching 1– Approaching  Approaching 1+ Approaching 

x y

0 5
0.5 14
0.9 302
0.99 30,002

x y

2 5
1.5 14
1.1 302
1.01 30,002

Thus near the vertical asymptote x  1, the graph of r has the shape shown in  
Figure 4.

Horizontal asymptote.  The horizontal asymptote is the value that y approaches as  
x S  . To help us find this value, we divide both numerator and denominator by 
x2, the highest power of x that appears in the expression:

y 
2x2  4x  5

x2  2x  1
#

1

x2

1

x2



2 
4
x


5

x2

1 
2
x


1

x2

The fractional expressions 
4
x

, 
5

x2
, 

2
x

, and 
1

x2
 all approach 0 as x S   (see Exer- 

cise 90, Section P.2, page 17). So as x S  , we have

y 

2 
4
x


5

x2

1 
2
x


1

x2

  h   
2  0  0

1  0  0
 2

Thus the horizontal asymptote is the line y  2.
Since the graph must approach the horizontal asymptote, we can complete it as in 

 Figure 5.

Domain and range.  The function r is defined for all values of x other than 1, so the 
domain is 5x 0  x ? 16 . From the graph we see that the range is 5y 0  y  26 .

now Try exercise 45 ■

From Example 3 we see that the horizontal asymptote is determined by the leading 
coefficients of the numerator and denominator, since after dividing through by x2 (the 
highest power of x), all other terms approach zero. In general, if r 1x 2  P1x 2 /Q1x 2  and 

These terms approach 0

These terms approach 0

y      ` as
x      1–

y      ` as
x      1±

x

1

5

_1 1 2

y

0

FIGuRe 4

x

1

5

−1 1 2

y

0

y      2 as
x      _`

y      2 as
x      `

FIGuRe 5 

r 1x 2 
2x2  4x  5

x2  2x  1
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the degrees of P and Q are the same (both n, say), then dividing both numerator and 
denominator by xn shows that the horizontal asymptote is

y 
leading coefficient of P

leading coefficient of Q

The following box summarizes the procedure for finding asymptotes.

FInDInG AsyMPToTes oF RATIonAl FunCTIons

Let r be the rational function

r 1x 2 
an  

x n  an1x
n1  . . .  a1x  a0

bm  
x m  bm1x

m1  . . .  b1x  b0

1.  The vertical asymptotes of r are the lines x  a, where a is a zero of the 
 denominator.

2. (a) If n  m, then r has horizontal asymptote y  0.

 (b) If n  m, then r has horizontal asymptote y 
an

bm

.

 (c) If n  m, then r has no horizontal asymptote.

exAMPle 4 ■ Asymptotes of a Rational Function

Find the vertical and horizontal asymptotes of r 1x 2 
3x2  2x  1

2x2  3x  2
.

soluTIon

Vertical asymptotes.  We first factor

r 1x 2 
3x2  2x  1

12x  1 2 1x  2 2

The vertical asymptotes are the lines x  1
2 and x  2.

Horizontal asymptote.  The degrees of the numerator and denominator are the same,  
and

leading coefficient of numerator

leading coefficient of denominator


3

2

Thus the horizontal asymptote is the line y  3
2.

To confirm our results, we graph r using a graphing calculator (see Figure 6).

FIGuRe 6 

r 1x 2 
3x2  2x  1

2x2  3x  2
 

Graph is drawn using dot mode to 
avoid extraneous lines.

10

_10

_6 3

now Try exercises 33 and 35 ■

Recall that for a rational function 
R1x 2  P1x 2 /Q1x 2  we assume that 
P1x 2  and Q1x 2  have no factor in  
common. (See page 331.)

This factor is 0 
when x  1

2

This factor is 0 
when x  2
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■ Graphing Rational Functions
We have seen that asymptotes are important when graphing rational functions. In gen-
eral, we use the following guidelines to graph rational functions.

skeTCHInG GRAPHs oF RATIonAl FunCTIons

1. Factor.  Factor the numerator and denominator.

2. Intercepts.  Find the x-intercepts by determining the zeros of the numerator 
and the y-intercept from the value of the function at x  0.

3. Vertical Asymptotes.  Find the vertical asymptotes by determining the zeros 
of the denominator, and then see whether y S   or y S   on each side 
of each vertical asymptote by using test values.

4. Horizontal Asymptote.  Find the horizontal asymptote (if any), using the  
procedure described in the box on page 336.

5. sketch the Graph.  Graph the information provided by the first four steps. 
Then plot as many additional points as needed to fill in the rest of the graph 
of the function.

A fraction is 0 only if its numerator  
is 0.

exAMPle 5 ■ Graphing a Rational Function

Graph r 1x 2 
2x2  7x  4

x2  x  2
, and state the domain and range.

soluTIon  We factor the numerator and denominator, find the intercepts and as ymp-
totes, and sketch the graph.

Factor.  y 
12x  1 2 1x  4 2
1x  1 2 1x  2 2

x-Intercepts.  The x-intercepts are the zeros of the numerator, x  1
2 and x  4.

y-Intercept.  To find the y-intercept, we substitute x  0 into the original form of the 
function.

r 10 2 
210 2 2  710 2  4

10 22  10 2  2


4

2
 2

The y-intercept is 2.

Vertical asymptotes.  The vertical asymptotes occur where the denominator is 0, 
that is, where the function is undefined. From the factored form we see that the verti-
cal asymptotes are the lines x  1 and x  2.

Behavior near vertical asymptotes.  We need to know whether y S   or y S   on 
each side of each vertical asymptote. To determine the sign of y for x-values near the verti-
cal asymptotes, we use test values. For instance, as x S 1, we use a test value close to 
and to the left of 1 1x  0.9, say 2  to check whether y is positive or negative to the left of  
x  1.

y 
1210.9 2  1 2 110.9 2  4 2
110.9 2  1 2 110.9 2  2 2   whose sign is  

1 2 1 2
1 2 1 2 1negative 2

So y S   as x S 1. On the other hand, as x S 1, we use a test value close to 
and to the right of 1 1x  1.1, say 2 , to get

y 
1211.1 2  1 2 111.1 2  4 2
111.1 2  1 2 111.1 2  2 2   whose sign is  

1 2 1 2
1 2 1 2 1positive 2

When choosing test values, we must 
make sure that there is no x-intercept 
between the test point and the vertical 
asymptote.
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So y S   as x S 1. The other entries in the following table are calculated  
similarly.

As x S 2 2 1 1

the sign of y 
x2x  1c xx 1 4c

xx  1c xx 1 2c
 is

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

so y S    

Horizontal asymptote.  The degrees of the numerator and denominator are the  
same, and

leading coefficient of numerator

leading coefficient of denominator


2

1
 2

Thus the horizontal asymptote is the line y  2.

Graph.  We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 7.

x y

6 0.93
3 1.75
1 4.50

1.5 6.29
2 4.50
3 3.50

x

5

3

y

0

FIGuRe 7 

r 1x 2 
2x2  7x  4

x2  x  2

Domain and range.  The domain is 5x 0  x ? 1, x ? 26 . From the graph we see that 
the range is all real numbers.

now Try exercise 53 ■

exAMPle 6 ■ Graphing a Rational Function

Graph the rational function r 1x 2 
x2  4

2x2  2x
, and state the domain and range.

soluTIon  

Factor.  y 
1x  2 2 1x  2 2

2x1x  1 2
x-intercepts.  2 and 2, from x  2  0 and x  2  0

y-intercept.  None, because r10 2  is undefined

Vertical asymptotes.  x  0 and x  1, from the zeros of the denominator

unbreakable Codes 
If you read spy novels, you know about 
secret codes and how the hero “breaks” 
the code. Today secret codes have a 
much more common use. Most of the 
information that is stored on computers 
is coded to prevent unauthorized use. For 
example, your banking records, medical 
records, and school records are coded. 
Many cellular and cordless phones code 
the signal carrying your voice so that no 
one can listen in. Fortunately, because of 
recent advances in mathematics, today’s 
codes are “unbreakable.”

Modern codes are based on a simple 
principle: Factoring is much harder than 
multiplying. For example, try multiplying  
78 and 93; now try factoring 9991. It 
takes a long time to factor 9991 because 
it is a product of two primes 97  103, so 
to factor it, we have to find one of these 
primes. Now imagine trying to factor a 
number N that is the product of two 
primes p and q, each about 200 digits 
long. Even the fastest computers would 
take many millions of years to factor such 
a number! But the same computer would 
take less than a second to multiply two 
such numbers. This fact was used by Ron 
Rivest, Adi Shamir, and Leonard Adleman 
in the 1970s to devise the RSA code. Their 
code uses an extremely large number to 
encode a message but requires us to 
know its factors to decode it. As you can 
see, such a code is practically 
unbreakable.

The RSA code is an example of a 
“public key encryption” code. In such 
codes, anyone can code a message using 
a publicly known procedure based on N, 
but to decode the message, they must 
know p and q, the factors of N. When the 
RSA code was developed, it was thought 
that a carefully selected 80-digit number 
would provide an unbreakable code. But 
interestingly, recent advances in the 
study of factoring have made much 
larger numbers necessary.

Mathematics in the Modern World
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SECTION 3.6 ■ Rational Functions 339

Behavior near vertical asymptote. 

As x S 1 1 0 0

the sign of y 
xx 1 2c xx  2c

2xxx 1 1c
 is

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

1 2 1 2
1 2 1 2

so y S    

Horizontal asymptote.  y  1
2, because the degree of the numerator and the degree 

of the denominator are the same and

leading coefficient of numerator

leading coefficient of denominator


1

2

Graph.  We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 8.

x y

0.9 17.72
0.5 7.50
0.45 7.67
0.4 8.00
0.3 9.31
0.1 22.17

x

10

1

y

0

FIGuRe 8 

r 1x 2 
x2  4

2x2  2x

Domain and range.  The domain is 5x 0 x ? 0, x ? 16 . From the graph we see that 
the range is 5x 0 x  1

2 or x  7.56 .
now Try exercise 55 ■

exAMPle 7 ■ Graphing a Rational Function

Graph r 1x 2 
5x  21

x2  10x  25
, and state the domain and range.

soluTIon

Factor.  y 
5x  21

1x  5 2 2

x-Intercept.   

21

5
, from 5x  21  0

y-Intercept.  
21

25
, because  r 10 2 

5 # 0  21

02  10 # 0  25

 
 

21

25

Vertical asymptote.  x  5, from the zeros of the denominator
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340 CHAPTER 3 ■ Polynomial and Rational Functions

Behavior near vertical asymptote.

As x S 5 5

the sign of y 
5x 1 21

xx 1 5c 2  is
1 2
1 2 1 2

1 2
1 2 1 2

so y S  

Horizontal asymptote.  y  0, because the degree of the numerator is less than the 
degree of the denominator

Graph.  We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 9.

x y

15 0.5
10 1.2
3 1.5
1 1.0

3 0.6
5 0.5

10 0.3

x

1

5

y

0

FIGuRe 9 

r 1x 2 
5x  21

x2  10x  25

Domain and range.  The domain is 5x 0  x ? 56 . From the graph we see that the 
range is approximately the interval 1, 1.6 4 .

now Try exercise 59 ■

From the graph in Figure 9 we see that,  contrary to common misconception, a graph 
may cross a horizontal asymptote. The graph in Figure 9 crosses the x-axis (the hori-
zontal asymptote) from below, reaches a maximum value near x  3, and then ap-
proaches the x-axis from above as x S  .

■ Common Factors in numerator and Denominator
We have adopted the convention that the numerator and denominator of a rational func-
tion have no factor in common. If s1x 2  p1x 2 /q1x 2  and if p and q do have a factor in 
common, then we may cancel that factor, but only for those values of x for which that 
factor is not zero (because division by zero is not defined). Since s is not defined at those 
values of x, its graph has a “hole” at those points, as the following example illustrates. 

exAMPle 8 ■ Common Factor in numerator and Denominator
Graph the following functions.

(a) s1x 2 
x  3

x2  3x
   (b) t 1x 2 

x3  2x2

x  2

soluTIon 

(a) We factor the numerator and denominator:

s1x 2 
x  3

x2  3x

1x  3 2

x1x  3 2 
1
x

  for x ? 3

   So s has the same graph as the rational function r1x 2  1/x but with a “hole” 
when x is 3, as shown in Figure 10(a).  
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SECTION 3.6 ■ Rational Functions 341

(b) We factor the numerator and denominator: 

t 1x 2 
x3  2x2

x  2


x21x  2 2
x  2

 x2  for x ? 2

   So the graph of t is the same as the graph of r 1x 2  x2 but with a “hole” when x 
is 2, as shown in Figure 10(b).

FIGuRe 10 Graphs with “holes”

(a) s(x)=1/x for x≠3

y

x10

1

s is not defined
for x=3

(b) t(x)=x™ for x≠2

y

x10

1

t is not
defined for
x=2

x-3
x™-3xs(x)=

x£-2x™
x-2t(x)=

now Try  exercise 63 ■

■ slant Asymptotes and end Behavior
If r 1x 2  P1x 2 /Q1x 2  is a rational function in which the degree of the numerator is one 
more than the degree of the denominator, we can use the Division Algorithm to express 
the function in the form

r 1x 2  ax  b 
R1x 2
Q1x 2

where the degree of R is less than the degree of Q and a ? 0. This means that as  
x S  , R1x 2 /Q1x 2 S 0, so for large values of 0  x 0  the graph of y  r 1x 2  approaches 
the graph of the line y  ax  b. In this situation we say that y  ax  b is a slant 
asymptote, or an oblique asymptote.

exAMPle 9 ■ A Rational Function with a slant Asymptote

Graph the rational function r 1x 2 
x2  4x  5

x  3
.

soluTIon

Factor.  y 
1x  1 2 1x  5 2

x  3

x-Intercepts.  1 and 5, from x  1  0 and x  5  0

y-Intercept.  
5

3
, because r 10 2 

02  4 # 0  5

0  3


5

3

Vertical asymptote.  x  3, from the zero of the denominator

Behavior near vertical asymptote.  y S   as x S 3 and y S   as x S 3

Horizontal asymptote.  None, because the degree of the numerator is greater than 
the degree of the denominator
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342 CHAPTER 3 ■ Polynomial and Rational Functions

slant asymptote.  Since the degree of the numerator is one more than the degree of the 
denominator, the function has a slant asymptote. Dividing (see the margin), we obtain

r 1x 2  x  1 
8

x  3

Thus y  x  1 is the slant asymptote.

Graph.  We use the information we have found, together with some additional val-
ues, to sketch the graph in Figure 11.

x y

2 1.4
1 4
2 9
4 5
6 2.33

FIGuRe 11 

x

5

y

2

≈-4x-5
x-3r(x)=

y=x-1

Slant
asymptote

now Try exercise 69 ■

So far, we have considered only horizontal and slant asymptotes as end behaviors for 
rational functions. In the next example we graph a function whose end behavior is like 
that of a parabola.

exAMPle 10 ■ end Behavior of a Rational Function
Graph the rational function

r 1x 2 
x3  2x2  3

x  2

and describe its end behavior.

soluTIon

Factor.  y 
1x  1 2 1x2  3x  3 2

x  2

x-Intercept.  1, from x  1  0 (The other factor in the numerator has no real 
 zeros.)

y-Intercept.   

3

2
, because r 10 2 

03  2 # 02  3

0  2
  

3

2

Vertical asymptote.  x  2, from the zero of the denominator

Behavior near vertical asymptote.  y S   as x S 2 and y S   as x S 2

Horizontal asymptote.  None, because the degree of the numerator is greater than 
the degree of the denominator

end behavior.  Dividing (see the margin), we get

r 1x 2  x2 
3

x  2

This shows that the end behavior of r is like that of the parabola y  x2 because 
3/ 1x  2 2  is small when 0  x 0  is large. That is, 3/ 1x  2 2 S 0 as x S  . This 
means that the graph of r will be close to the graph of y  x2 for large 0  x 0 .

x  1

x  3qx2  4x  5

x2  3x

x  5

x  3

8

x2

x  2qx3  2x2  0x  3

x3  2x2

3
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SECTION 3.6 ■ Rational Functions 343

Graph.  In Figure 12(a) we graph r in a small viewing rectangle; we can see the 
intercepts, the vertical asymptotes, and the local minimum. In Figure 12(b) we graph 
r in a larger viewing rectangle; here the graph looks almost like the graph of a parab-
ola. In Figure 12(c) we graph both y  r 1x 2  and y  x2; these graphs are very close 
to each other  except near the vertical asymptote.

now Try exercise 77 ■

■ Applications
Rational functions occur frequently in scientific applications of algebra. In the next 
example we analyze the graph of a function from the theory of electricity.

exAMPle 11 ■ electrical Resistance
When two resistors with resistances R1 and R2 are connected in parallel, their com-
bined  resistance R is given by the formula

R 
R1R2

R1  R2

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor, as 
shown in Figure 13. If the resistance of the variable resistor is denoted by x, then the 
combined resistance R is a function of x. Graph R, and give a physical interpretation 
of the graph.

soluTIon  Substituting R1  8 and R2  x into the formula gives the function

R1x 2 
8x

8  x

Since resistance cannot be negative, this function has physical meaning only when 
x  0. The function is graphed in Figure 14(a) using the viewing rectangle 30, 204 by 
30, 104. The function has no vertical asymptote when x is restricted to positive values. 
The combined resistance R increases as the variable resistance x increases. If we 
widen the viewing rect angle to 30,1004 by 30, 104, we obtain the graph in Figure 14(b). 
For large x the combined resistance R levels off, getting closer and closer to the hori-
zontal asymptote R  8. No matter how large the variable resis tance x, the combined 
resistance is never greater than 8 ohms.

FIGuRe 14 

R 1x 2 
8x

8  x

10

0 20

(a)

10

0 100

(b)

now Try exercise 87 ■

20

_20

_4 4

(a)

200

_200

_30 30

(b)

20

_5

_8 8

(c)

y=≈

FIGuRe 12 

r 1x 2 
x3  2x2  3

x  2

x

8 ohms

FIGuRe 13
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344 CHAPTER 3 ■ Polynomial and Rational Functions

ConCePTs
 1. If the rational function y  r 1x 2  has the vertical asymptote 

  x  2, then as x S 2, either y S   or  

y S    .

 2. If the rational function y  r 1x 2  has the horizontal 

  asymptote y  2, then y S   as x S .

3–6 ■ The following questions are about the rational function

r 1x 2 
1x  1 2 1x  2 2
1x  2 2 1x  3 2

 3. The function r has x-intercepts   and    .

 4. The function r has y-intercept    .

 5. The function r has vertical asymptotes x    and 

  x     .

 6. The function r has horizontal asymptote y     .

7–8 ■ True or False? 

 7. Let r 1x 2 
x2  x

1x  1 2 12x  4 2 . The graph of r has 

(a) vertical asymptote x  1.

(b) vertical asymptote x  2.

(c) horizontal asymptote y  1.

(d) horizontal asymptote y  1
2.

 8. The graph of a rational function may cross a horizontal 
asymptote.

skIlls
9–12 ■ Table of Values  A rational function is given. (a) Com-
plete each table for the function. (b) Describe the behavior of the 
function near its vertical asymptote, based on Tables 1 and 2.  
(c) Determine the horizontal asymptote, based on Tables 3 and 4.

 TABle 1 TABle 2

 

x rxxc

1.5
1.9
1.99
1.999

 

x rxxc

2.5
2.1
2.01
2.001

 TABle 3 TABle 4

 

x rxxc

  10
  50
 100
1000

 

x rxxc

  10
  50
 100
1000

 9. r 1x 2 
x

x  2
 10. r 1x 2 

4x  1

x  2

 11. r 1x 2 
3x  10

1x  2 2 2  12. r 1x 2 
3x2  1

1x  2 2 2

13–20 ■ Graphing Rational Functions using Transformations   
Use transformations of the graph of y  1/x to graph the rational 
function, and state the domain and range, as in Example 2.

13. r 1x 2 
1

x  1
 14. r 1x 2 

1

x  4

15. s 1x 2 
3

x  1
 16. s 1x 2 

2

x  2

17. t 1x 2 
2x  3

x  2
 18. t 1x 2 

3x  3

x  2

19. r 1x 2 
x  2

x  3
 20. r 1x 2 

2x  9

x  4

21–26 ■ Intercepts of Rational Functions  Find the x- and 
y-intercepts of the rational function.

 21. r 1x 2 
x  1

x  4
 22. s 1x 2 

3x

x  5

 23. t 1x 2 
x2  x  2

x  6
 24. r 1x 2 

2

x2  3x  4

 25. r 1x 2 
x2  9

x2  26. r 1x 2 
x3  8

x2  4

27–30 ■ Getting Information from a Graph  From the graph, 
determine the x- and y-intercepts and the vertical and horizontal 
asymptotes.

27. y

x0

4

4

  28. y

x0
1

2

29. 

10

2

3−3

y

x

  30. 

2

0 x

y

−4 4

−6

31–42 ■ Asymptotes  Find all horizontal and vertical asymp-
totes (if any).

31. r 1x 2 
5

x  2
 32. r 1x 2 

2x  3

x 2  1

3.6 exeRCIses
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33. r 1x 2 
3x  1

4x2  1
 34. r 1x 2 

3x2  5x

x4  1

35. s 1x 2 
6x2  1

2x2  x  1
 36. s 1x 2 

8x2  1

4x2  2x  6

37. r 1x 2 
1x  1 2 12x  3 2
1x  2 2 14x  7 2  38. r 1x 2 

1x  3 2 1x  2 2
15x  1 2 12x  3 2

39. r 1x 2 
6x3  2

2x3  5x2  6x
 40. r 1x 2 

5x3

x3  2x2  5x

41. t 1x 2 
x2  2

x  1
 42. r 1x 2 

x3  3x2

x2  4

43–62 ■ Graphing Rational Functions  Find the intercepts and 
asymptotes, and then sketch a graph of the rational function and 
state the domain and range. Use a graphing device to confirm 
your answer.

43. r 1x 2 
4x  4

x  2
 44. r 1x 2 

2x  6

6x  3

 45. r 1x 2 
3x2  12x  13

x2  4x  4
 46. r 1x 2 

2x2  8x  9

x2  4x  4

47. r 1x 2 
x2  8x  18

x2  8x  16
 48. r 1x 2 

x2  2x  3

2x2  4x  2

49. s 1x 2 
4x  8

1x  4 2 1x  1 2  50. s 1x 2 
6

x2  5x  6

51. s 1x 2 
2x  4

x2  x  2
 52. s 1x 2 

x  2

1x  3 2 1x  1 2

53. r 1x 2 
1x  1 2 1x  2 2
1x  1 2 1x  3 2  54. r 1x 2 

2x2  10x  12

x2  x  6

 55. r 1x 2 
2x2  2x  4

x2  x
 56. r 1x 2 

3x2  6

x2  2x  3

 57. s 1x 2 
x2  2x  1

x3  3x2  58. r 1x 2 
x2  x  6

x2  3x

59. r 1x 2 
x2  2x  1

x2  2x  1
 60. r 1x 2 

4x2

x2  2x  3

 61. r 1x 2 
5x2  5

x2  4x  4
 62. t 1x 2 

x3  x2

x3  3x  2

63–68 ■ Rational Functions with Holes  Find the factors  
that are common in the numerator and the denominator.  
Then find the intercepts and asymptotes, and sketch a graph  
of the rational function. State the domain and range of the 
function.

 63. r 1x 2 
x2  4x  5

x2  x  2

 64. r 1x 2 
x2  3x  10

1x  1 2 1x  3 2 1x  5 2

 65. r 1x 2 
x2  2x  3

x  1

 66. r 1x 2 
x3  2x2  3x

x  3

 67. r 1x 2 
x3  5x2  3x  9

x  1
  

[Hint: Check that x  1 is a factor of the numerator.]

 68. r 1x 2 
x2  4x  5

x3  7x2  10x

69–76 ■ slant Asymptotes  Find the slant asymptote and the 
vertical asymptotes, and sketch a graph of the function.

69. r 1x 2 
x2

x  2
 70. r 1x 2 

x2  2x

x  1

71. r 1x 2 
x2  2x  8

x
 72. r 1x 2 

3x  x2

2x  2

73. r 1x 2 
x2  5x  4

x  3
 74. r 1x 2 

x3  4

2x2  x  1

75. r 1x 2 
x3  x2

x2  4
 76. r 1x 2 

2x3  2x

x2  1

skIlls Plus
77–80 ■ end Behavior  Graph the rational function f, and deter-
mine all vertical asymptotes from your graph. Then graph f and g 
in a sufficiently large viewing rectangle to show that they have 
the same end  behavior.

77. f 1x 2 
2x2  6x  6

x  3
, g1x 2  2x

78. f 1x 2 
x3  6x2  5

x2  2x
, g1x 2  x  4

79. f 1x 2 
x3  2x2  16

x  2
, g1x 2  x2

80. f 1x 2 
x4  2x3  2x

1x  1 2 2 , g1x 2  1  x2

81–86 ■ end Behavior  Graph the rational function, and find all 
vertical asymptotes, x- and y-intercepts, and local extrema, cor-
rect to the nearest tenth. Then use long division to find a polyno-
mial that has the same end behavior as the rational function, and 
graph both functions in a sufficiently large viewing rectangle to 
verify that the end behaviors of the polynomial and the rational 
function are the same.

81. y 
2x2  5x

2x  3

82. y 
x4  3x3  x2  3x  3

x2  3x

83. y 
x 5

x3  1
 84. y 

x4

x2  2

85. r 1x 2 
x4  3x3  6

x  3
 86. r 1x 2 

4  x2  x4

x2  1
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APPlICATIons
 87. Population Growth  Suppose that the rabbit population on 

Mr. Jenkins’ farm follows the formula

p1 t 2 
3000t

t  1

  where t  0 is the time (in months) since the beginning of 
the year.

(a) Draw a graph of the rabbit population.

(b) What eventually happens to the rabbit population?

 88. Drug Concentration  After a certain drug is injected into a 
patient, the concentration c of the drug in the bloodstream is 
monitored. At time t  0 (in minutes since the injection) the 
concentration (in mg/L) is given by

c 1 t 2 
30t

t2  2

(a) Draw a graph of the drug concentration.

(b)  What eventually happens to the concentration of drug in 
the bloodstream?

 89. Drug Concentration  A drug is administered to a patient, and 
the concentration of the drug in the bloodstream is moni-
tored. At time t  0 (in hours since giving the drug) the con-
centration (in mg/L) is given by

c 1 t 2 
5t

t2  1

  Graph the function c with a graphing device.

(a)  What is the highest concentration of drug that is reached 
in the patient’s bloodstream?

(b)  What happens to the drug concentration after a long 
period of time?

(c)  How long does it take for the concentration to drop 
below 0.3 mg/L?

 90. Flight of a Rocket  Suppose a rocket is fired upward from the 
surface of the earth with an initial velocity √ (measured in 
meters per second). Then the maximum height h (in meters) 
reached by the rocket is given by the function

h1√ 2 
R√ 

2

2gR  √ 
2

  where R  6.4  106 m is the radius of the earth and  
g  9.8 m/s2 is the acceleration due to gravity. Use a graph-
ing device to draw a graph of the function h. (Note that h and 
√ must both be positive, so the viewing rectangle need not 
contain negative values.) What does the vertical asymptote 
represent physically?

 91. The Doppler effect  As a train moves toward an observer (see 
the figure), the pitch of its whistle sounds higher to the 
observer than it would if the train were at rest, because the 
crests of the sound waves are compressed closer together. This 
phenomenon is called the Doppler effect. The observed pitch 
P is a function of the speed √ of the train and is given by

P1√ 2  P0 a
s0

s0  √
b

  where P0 is the actual pitch of the whistle at the source and  

s0  332 m/s is the speed of sound in air. Suppose that a  
train has a whistle pitched at P0  440 Hz. Graph the func- 
tion y  P1√ 2  using a graphing device. How can the vertical 
 asymptote of this function be interpreted physically?

 92. Focusing Distance  For a camera with a lens of fixed focal 
length F to focus on an object located a distance x from the 
lens, the film must be placed a distance y behind the lens, 
where F, x, and y are related by

1
x


1
y


1

F

  (See the figure.) Suppose the camera has a 55-mm lens (F  55).

(a) Express y as a function of x, and graph the function.

(b)  What happens to the focusing distance y as the object 
moves far away from the lens?

(c)  What happens to the focusing distance y as the object 
moves close to the lens?

x F

y

DIsCuss ■ DIsCoVeR ■ PRoVe ■ WRITe
 93. DIsCuss: Constructing a Rational Function from Its  

Asymptotes  Give an example of a rational function that 
has vertical asymptote x  3. Now give an example of one 
that has vertical asymptote x  3 and horizontal asymptote  
y  2. Now give an example of a rational function with 
vertical asymptotes x  1 and x  1, horizontal asymp-
tote y  0, and x-intercept 4.

 94. DIsCuss: A Rational Function with no Asymptote  Explain 
how you can tell (without graphing it) that the function

r 1x 2 
x6  10

x4  8x2  15

  has no x-intercept and no horizontal, vertical, or slant asymp-
tote. What is its end behavior?’

3.7 PolynoMIAl AnD RATIonAl IneQuAlITIes
■ Polynomial Inequalities ■ Rational Inequalities

In Section 1.7 we solved basic inequalities. In this section we solve more advanced 
inequalities by using the methods we learned in Section 3.4 for factoring and graphing 
polynomials. 

■ Polynomial Inequalities
An important consequence of the Intermediate Value Theorem (page 295) is that the 
values of a polynomial function P do not change sign between successive zeros. In other 
words, the values of P between successive zeros are either all positive or all negative. 
Graphically, this means that between successive x-intercepts, the graph of P is entirely 
above or entirely below the x-axis. Figure 1 illustrates this property of polynomials. This 
property of polynomials allows us to solve polynomial inequalities like P1x 2  0 by 
finding the zeros of the polynomial and using test points between successive zeros to 
determine the intervals that satisfy the inequality. We use the following guidelines.

solVInG PolynoMIAl IneQuAlITIes

1.  Move All Terms to one side.  Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol.

2. Factor the Polynomial.  Factor the polynomial into irreducible factors, and 
find the real zeros of the polynomial.

3. Find the Intervals.  List the intervals determined by the real zeros.

4. Make a Table or Diagram.  Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the polynomial on that interval. 

5. solve.  Determine the solutions of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)
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 95. DIsCoVeR: Transformations of y  1/x2  In Example 2 we 
saw that some simple rational functions can be graphed by 
shifting, stretching, or reflecting the graph of y  1/x. In 
this exercise we consider rational functions that can be 
graphed by trans forming the graph of y  1/x2.

(a) Graph the function

r 1x 2 
1

1x  2 2 2

  by transforming the graph of y  1/x2.

(b) Use long division and factoring to show that the function

s 1x 2 
2x2  4x  5

x2  2x  1

  can be written as

s 1x 2  2 
3

1x  1 2 2

  Then graph s by transforming the graph of y  1/x2.

(c)  One of the following functions can be graphed by trans-
forming the graph of y  1/x2; the other cannot. Use 
transformations to graph the one that can be, and explain 
why this method doesn’t work for the other one.

p1x 2 
2  3x2

x2  4x  4
   q 1x 2 

12x  3x2

x2  4x  4

y

x

1

10

y= 1
≈

3.7 PolynoMIAl AnD RATIonAl IneQuAlITIes
■ Polynomial Inequalities ■ Rational Inequalities

In Section 1.7 we solved basic inequalities. In this section we solve more advanced 
inequalities by using the methods we learned in Section 3.4 for factoring and graphing 
polynomials. 

■ Polynomial Inequalities
An important consequence of the Intermediate Value Theorem (page 295) is that the 
values of a polynomial function P do not change sign between successive zeros. In other 
words, the values of P between successive zeros are either all positive or all negative. 
Graphically, this means that between successive x-intercepts, the graph of P is entirely 
above or entirely below the x-axis. Figure 1 illustrates this property of polynomials. This 
property of polynomials allows us to solve polynomial inequalities like P1x 2  0 by 
finding the zeros of the polynomial and using test points between successive zeros to 
determine the intervals that satisfy the inequality. We use the following guidelines.

solVInG PolynoMIAl IneQuAlITIes

1.  Move All Terms to one side.  Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol.

2. Factor the Polynomial.  Factor the polynomial into irreducible factors, and 
find the real zeros of the polynomial.

3. Find the Intervals.  List the intervals determined by the real zeros.

4. Make a Table or Diagram.  Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the polynomial on that interval. 

5. solve.  Determine the solutions of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)

FIGuRe 1 P1x 2  0 or P1x 2  0 for x 
between successive zeros of P 

P(x)=4(x-2)(x+1)(x-0.5)(x+2)
y

x10

20
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348 CHAPTER 3 ■ Polynomial and Rational Functions

exAMPle 1 ■ solving a Polynomial Inequality
Solve the inequality 2x3  x2  6  13x.

soluTIon  We follow the preceding guidelines.

Move all terms to one side.  We move all terms to the left-hand side of the inequal-
ity to get 

2x3  x2  13x  6  0

The left-hand side is a polynomial.

Factor the polynomial.  This polynomial is factored in Example 2, Section 3.4, on 
page 313. We get

1x  2 2 12x  1 2 1x  3 2  0

The zeros of the polynomial are 3, 1
2, and 2.

Find the intervals.  The intervals determined by the zeros of the polynomial are

1, 3 2 , A3, 12B , A12, 2B , 12,  2
Make a table or diagram.  We make a diagram indicating the sign of each factor on 
each interval.

Sign of x-2

Sign of 2x-1

Sign of x  3 

Sign of (x-2)(2x-1)(x  3)

3

-

-

+

+

-

-

-

2

-

+

--

+

+

+

+

+

2
1

solve.  From the diagram we see that the inequality is satisfied on the intervals 
A3, 12B  and 12,  2 . Checking the endpoints, we see that 3, 1

2, and 2 satisfy the 
inequality, so the solution is  C3, 12 

D < 32,  2 . The graph in Figure 2 confirms our 
solution.

now Try exercise 7 ■

exAMPle 2 ■ solving a Polynomial Inequality
Solve the inequality 3x4  x2  4  2x3  12x.

soluTIon  We follow the above guidelines.

Move all terms to one side.  We move all terms to the left-hand side of the inequal-
ity to get 

3x4  2x3  x2  12x  4  0

The left-hand side is a polynomial.

Factor the polynomial.  This polynomial is factored into linear and irreducible qua-
dratic factors in Example 5, Section 3.5, page 327. We get 

1x  2 2 13x  1 2 1x2  x  2 2  0

From the first two factors we obtain the zeros 2 and 1
3. The third factor has no real 

zeros. 

FIGuRe 2

y

0 x1

20
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SECTION 3.7 ■ Polynomial and Rational Inequalities 349

Find the intervals.  The intervals determined by the zeros of the polynomial are

A, 1
3B , A1

3, 2B , 12,  2
Make a table or diagram.  We make a sign diagram.

Sign of x-2

Sign of 3x 1

Sign of x2  x 2 

Sign of (x-2)(3x 1)(x2  x 2)

2

-

+

+

-

-

-

+

+

+

+

+

+

3
1

solve.  From the diagram we see that the inequality is satisfied on the interval 
A1

3, 2B . You can check that the two endpoints do not satisfy the inequality, so the 
solution is  A1

3, 2B . The graph in Figure 3 confirms our solution.

now Try exercise 13 ■

■ Rational Inequalities
Unlike polynomial functions, rational functions are not necessarily continuous. The 
vertical asymptotes of a rational function r break up the graph into separate “branches.” 
So the intervals on which r does not change sign are determined by the vertical asymp-
totes as well as the zeros of r. This is the reason for the following definition: If 
r1x 2  P1x 2 /Q1x 2  is a rational function, the cut points of r are the values of x at which 
either P1x 2  0 or Q1x 2  0. In other words, the cut points of r are the zeros of the 
numerator and the zeros of the denominator (see Figure 4). So to solve a rational in-
equality like r 1x 2  0, we use test points between successive cut points to determine 
the intervals that satisfy the inequality. We use the following guidelines.

solVInG RATIonAl IneQuAlITIes

1.  Move All Terms to one side.  Rewrite the inequality so that all nonzero 
terms appear on one side of the inequality symbol. Bring all quotients to a 
common denominator. 

2.  Factor numerator and Denominator.  Factor the numerator and denominator 
into irreducible factors, and then find the cut points. 

3. Find the Intervals.  List the intervals determined by the cut points.

4.  Make a Table or Diagram.  Use test values to make a table or diagram of the 
signs of each factor in each interval. In the last row of the table determine 
the sign of the rational function on that interval. 

5. solve.  Determine the solution of the inequality from the last row of the 
table. Check whether the endpoints of these intervals satisfy the inequality. 
(This may happen if the inequality involves  or .)

exAMPle 3 ■ solving a Rational Inequality
Solve the inequality 

1  2x

x2  2x  3
 1

FIGuRe 3

y

0 x1

10

FIGuRe 4 r1x 2  0 or r1x 2  0 for x 
between successive cut points of r 

y

x20

1

x-2
(x-4)(x+3)r(x)=
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350 CHAPTER 3 ■ Polynomial and Rational Functions

soluTIon  We follow the above guidelines.

Move all terms to one side.  We move all terms to the left-hand side of the 
inequality. 

 
1  2x

x2  2x  3
 1  0    Move terms to LHS

 
11  2x 2  1x2  2x  3 2

x2  2x  3
 0    Common denominator

 
4  x2

x2  2x  3
 0    Simplify

The left-hand side of the inequality is a rational function.

Factor numerator and denominator.  Factoring the numerator and denominator, we get

12  x 2 12  x 2
1x  3 2 1x  1 2  0

The zeros of the numerator are 2 and 2, and the zeros of the denominator are 1 
and 3, so the cut points are 2, 1, 2, and 3.

Find the intervals.  The intervals determined by the cut points are

1, 2 2 , 12, 1 2 , 11, 2 2 , 12, 3 2 , 13,  2
Make a table or diagram.  We make a sign diagram.

Sign of 2-x

Sign of 2 x

Sign of x  3 

(2-x)(2  x)
(x  3)(x  1)

2 2

Sign of x  1 

+

+

-

+

-

+

-

-

-

-

+

-

-

+

+

-

+

-

+

+

Sign of

1 3

-

+

+

-

+

solve.  From the diagram we see that the inequality is satisfied on the intervals 
12, 1 2  and 12, 3 2 . Checking the endpoints, we see that 2 and 2 satisfy the 
inequality, so the solution is  32, 1 2 < 32, 3 2 . The graph in Figure 5 confirms our 
solution.

now Try exercise 27 ■

exAMPle 4 ■ solving a Rational Inequality
Solve the inequality 

x2  4x  3

x2  4x  5
 0

soluTIon  Since all nonzero terms are already on one side of the inequality symbol, 
we begin by factoring.

Factor numerator and denominator.  Factoring the numerator and denominator, we get

1x  3 2 1x  1 2
1x  5 2 1x  1 2  0

The cut points are 1, 1, 3, and 5.

FIGuRe 5

y

x1

1

0
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Find the intervals.  The intervals determined by the cut points are

1, 1 2 , 11, 1 2 , 11, 3 2 , 13, 5 2 , 15,  2
Make a table or diagram.  We make a sign diagram.

Sign of x-5

Sign of x 3

Sign of x  1 

(x-3)(x  1)
(x  5)(x  1)

1 3

Sign of x  1 

-

-

-

-

+

-

-

-

+

-

-

+

+

-

+

-

+

+

-

+

Sign of

1 5

+

+

+

+

+

solve.  From the diagram we see that the inequality is satisfied on the intervals 
1, 1 2 , 11, 3 2 ,  and 15,  2 . Checking the endpoints, we see that 1 and 3 satisfy the 
inequality, so the solution is 1, 1 2 < 31, 3 4 < 15,  2 . The graph in Figure 6 con-
firms our solution.

now Try exercise 23 ■

We can also solve polynomial and rational inequalities graphically (see pages 120  
and 172). In the next example we graph each side of the inequality and compare the 
values of left- and right-hand sides graphically.

exAMPle 5 ■ solving a Rational Inequality Graphically
Two light sources are 10 m apart. One is three times as intense as the other. The light 
intensity L (in lux) at a point x meters from the weaker source is given by 

L1x 2 
10

x2 
30

110  x 2 2
(See Figure 7.) Find the points at which the light intensity is 4 lux or less.

soluTIon  We need to solve the inequality 

10

x2 
30

110  x 2 2  4

We solve the inequality graphically by graphing the two functions 

y1 
10

x2 
30

110  x 2 2   and  y2  4

In this physical problem the possible values of x are between 0 and 10, so we graph 
the two functions in a viewing rectangle with x-values between 0 and 10, as shown in 
Figure 8. We want those values of x for which y1  y2. Zooming in (or using the 
intersect command), we find that the graphs intersect at x  1.67431  and at 
x  7.19272, and between these x-values the graph of y1 lies below the graph of y2. 
So the solution of the inequality is the interval 11.67, 7.19 2 , rounded to two decimal 
places. Thus the light intensity is less than or equal to 4 lux when the distance from 
the weaker source is between 1.67 m and 7.19 m.

now Try exercises 45 and 55 ■

See Appendix D, Using the  
TI-83/84 Graphing Calculator,  
for specific instructions.

y

x2

5

0

FIGuRe 6

x 10-x

FIGuRe 7

10

0 10

y⁄

y2

FIGuRe 8
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ConCePTs
 1. To solve a polynomial inequality, we factor the polynomial 

  into irreducible factors and find all the real   of the 
polynomial. Then we find the intervals determined by the 

  real   and use test points in each interval to find the 
sign of the polynomial on that interval. Let 

P1x 2  x1x  2 2 1x  1 2 .
  Fill in the diagram below to find the intervals on which 

P1x 2  0. 

x

Sign of

x+2

x-1 

x(x+2)(x-1)

2 10

  From the diagram above we see that P1x 2  0 on the 

  intervals   and    .

 2. To solve a rational inequality, we factor the numerator and 
the denominator into irreducible factors. The cut points are 

  the real   of the numerator and the real    
denominator. Then we find the intervals determined by the 

       , and we use test points to find the sign 
of the rational function on each interval. Let 

r1x 2 
1x  2 2 1x  1 2
1x  3 2 1x  4 2

  Fill in the diagram below to find the intervals on which 
r 1x 2  0.

x+2

Sign of

x-1

x-3 

(x+2)(x-1)
(x-3)(x+4)

4 1

x+4 

2 3

  From the diagram we see that r 1x 2  0 on the intervals 

   ,    , and    .

skIlls
3–16 ■ Polynomial Inequalities  Solve the inequality. 

 3. 1x  3 2 1x  5 2 12x  5 2  0 

 4. 1x  1 2 1x  2 2 1x  3 2 1x  4 2  0

 5. 1x  5 2 21x  3 2 1x  1 2  0 

 6. 12x  7 2 41x  1 2 31x  1 2  0

 7. x3  4x2  4x  16  8. 2x3  18x  x2  9

 9. 2x3  x2  9  18x 10. x4  3x3  x  3

 11. x4  7x2  18  0 12. 4x4  25x2  36  0

 13. x3  x2  17x  15  0 

 14. x4  3x3  3x2  3x  4  0

 15. x11  x2 2 3  711  x2 2 3 16. x217  6x 2  1

17–36 ■ Rational Inequalities  Solve the inequality. 

 17. 
x  1

x  10
 0 18. 

3x  7

x  2
 0

 19. 
2x  5

x2  2x  35
 0 20. 

4x2  25

x2  9
 0

 21. 
x

x2  2x  2
 0 22. 

x  1

2x2  4x  1
 0

 23. 
x2  2x  3

3x2  7x  6
 0 24. 

x  1

x3  1
 0

 25. 
x3  3x2  9x  27

x  4
 0 26. 

x2  16

x4  16
 0

 27. 
x  3

2x  5
 1 28. 

1
x


1

x  1


2

x  2

 29. 2 
1

1  x


3
x

 30. 
1

x  3


1

x  2


2x

x2  x  2

 31. 
1x  1 2 2

1x  1 2 1x  2 2  0 32. 
x2  2x  1

x3  3x2  3x  1
 0

 33. 
6

x  1


6
x

 1 34. 
x

2


5

x  1
 4

35. 
x  2

x  3


x  1

x  2
 36. 

1

x  1


1

x  2


1

x  3

37–40 ■ Graphs of Two Functions  Find all values of x for 
which the graph of f lies above the graph of g. 

 37. f 1x 2  x2; g1x 2  3x  10 

38. f 1x 2 
1
x

; g1x 2 
1

x  1

 39. f 1x 2  4x; g1x 2 
1
x

 40. f 1x 2  x2  x; g1x 2 
2
x

41–44 ■ Domain of a Function  Find the domain of the given 
function. 

 41. f 1x 2  "6  x  x2 42. g1x 2  Å
5  x

5  x

 43. h1x 2  "4 x4  1 44. f 1x 2 
1

"x4  5x2  4

3.7 exeRCIses
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CHAPTER 3 ■ Review 353

45–50 ■ solving Inequalities Graphically  Use a graphing device 
to solve the inequality, as in Example 5. Express your answer 
using interval notation, with the endpoints of the intervals 
rounded to two decimals. 

 45. x3  2x2  5x  6  0 46. 2x3  x2  8x  4  0

 47. 2x3  3x  1  0 48. x4  4x3  8x  0

 49. 5x4  8x3 50. x5  x3  x2  6x

skIlls Plus
51–52 ■ Rational Inequalities  Solve the inequality. (These 
exercises involve expressions that arise in calculus.)

 51. 
11  x 2 2

!x
 4!x1x  1 2

 52. 2
3 x1/31x  2 2 1/2  1

2 x2/31x  2 21/2  0

 53. General Polynomial Inequality  Solve the inequality 

1x  a 2 1x  b 2 1x  c 2 1x  d 2  0

  where a  b  c  d.

 54. General Rational Inequality  Solve the inequality 

x2  1a  b 2x  ab

x  c
 0

  where 0  a  b  c.

APPlICATIons
 55. Bonfire Temperature  In the vicinity of a bonfire the temper-

ature T (in °C) at a distance of x meters from the center of 
the fire is given by

T1x 2 
500,000

x2  400

  At what range of distances from the fire’s center is the tem-
perature less than 3008C?

 56. stopping Distance  For a certain model of car the distance d 
required to stop the vehicle if it is traveling at √ mi/h is given 
by the function

d1 t 2  √ 
√2

25

  where d is measured in feet. Kerry wants her stopping dis-
tance not to exceed 175 ft. At what range of speeds can she 
travel?

 57. Managing Traffic  A highway engineer develops a formula to 
estimate the number of cars that can safely travel a particular 
highway at a given speed. She finds that the number N of cars 
that can pass a given point per minute is modeled by the 
function

N1x 2 
88x

17  17a x

20
b

2

  Graph the function in the viewing rectangle 30, 100 4  by 
30, 60 4 . If the number of cars that pass by the given point 
is greater than 40, at what range of speeds can the cars 
travel?

 58. estimating solar Panel Profits  A solar panel manufacturer 
estimates that the profit y (in dollars) generated by producing 
x solar panels per month is given by the equation 

S1x 2  8x  0.8x2  0.002x3  4000

  Graph the function in the viewing rectangle 30, 400 4  by 
310,000, 20,000 4 . For what range of values of x is the com-
pany’s profit greater than $12,000?

Quadratic Functions (pp. 282–287)
A quadratic function is a function of the form 

f 1x 2  ax2  bx  c

It can be expressed in the standard form

f 1x 2  a1x  h 2 2  k

by completing the square.

The graph of a quadratic function in standard form is a parabola 
with vertex 1h, k 2 .
If a  0, then the quadratic function f has the minimum value k 
at x  h  b/ 12a 2 .

If a  0, then the quadratic function f has the maximum value k 
at x  h  b/ 12a 2 .

Polynomial Functions (p. 290)
A polynomial function of degree n is a function P of the form

P 1x 2  an x n  an1x
n1  . . .  a1x  a0

(where an ? 0). The numbers ai are the coefficients of the poly-
nomial; an is the leading coefficient, and a0 is the constant coef-
ficient (or constant term).

The graph of a polynomial function is a smooth, continuous 
curve.

■ PRoPeRTIes AnD FoRMulAs

CHAPTeR 3 ■ ReVIeW
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Real Zeros of Polynomials (p. 295)
A zero of a polynomial P is a number c for which P 1c 2  0.  
The following are equivalent ways of describing real zeros of 
polynomials:

1. c is a real zero of P.

2. x  c is a solution of the equation P1x 2  0.

3. x  c is a factor of P1x 2 .
4. c is an x-intercept of the graph of P.

Multiplicity of a Zero (p. 299)
A zero c of a polynomial P has multiplicity m if m is the highest 
power for which 1x  c 2m is a factor of P1x 2 .

local Maxima and Minima (p. 300)
A polynomial function P of degree n has n  1 or fewer local 
 extrema (i.e., local maxima and minima).

Division of Polynomials (p. 305)
If P and D are any polynomials (with D1x 2 ? 0), then we can 
divide P by D using either long division or (if D is linear) syn-
thetic division. The result of the division can be expressed in one 
of the following equivalent forms:

 P 1x 2  D 1x 2 # Q 1x 2  R 1x 2

 
P 1x 2
D 1x 2  Q 1x 2 

R 1x 2
D 1x 2

In this division, P is the dividend, D is the divisor, Q is the quo-
tient, and R is the remainder. When the division is continued to 
its completion, the degree of R will be less than the degree of D 
(or R1x 2  0).

Remainder Theorem (p. 308)
When P1x 2  is divided by the linear divisor D1x 2  x  c, the  
remainder is the constant P1c 2 . So one way to evaluate a poly-
nomial function P at c is to use synthetic division to divide P1x 2  
by x  c and observe the value of the remainder.

Rational Zeros of Polynomials (pp. 311–312)
If the polynomial P given by

P 1x 2  an x n  an1x
n1  . . .  a1x  a0

has integer coefficients, then all the rational zeros of P have the 
form

x   

p

q

where p is a divisor of the constant term a0 and q is a divisor of 
the leading coefficient an.

So to find all the rational zeros of a polynomial, we list all the 
possible rational zeros given by this principle and then check to 
see which actually are zeros by using synthetic division.

Descartes’ Rule of signs (pp. 314–315)
Let P be a polynomial with real coefficients. Then:

The number of positive real zeros of P either is the number of 
changes of sign in the coefficients of P1x 2  or is less than that by  
an even number.

The number of negative real zeros of P either is the number of 
changes of sign in the coefficients of P1x 2  or is less than that  
by an even number.

upper and lower Bounds Theorem (p. 315)
Suppose we divide the polynomial P by the linear expression 
x  c and arrive at the result

P1x 2  1x  c 2 # Q1x 2  r

If c  0 and the coefficients of Q, followed by r, are all nonnega-
tive, then c is an upper bound for the zeros of P.

If c  0 and the coefficients of Q, followed by r (including zero  
coefficients), are alternately nonnegative and nonpositive, then c 
is a lower bound for the zeros of P.

The Fundamental Theorem of Algebra, Complete 
Factorization, and the Zeros Theorem (p. 323)
Every polynomial P of degree n with complex coefficients has 
exactly n complex zeros, provided that each zero of multiplicity 
m is counted m times. P factors into n linear factors as follows:

P1x 2  a1x  c1 2 1x  c2 2 # # # 1x  cn 2
where a is the leading coefficient of P and c1, c1, . . . , cn are the  
zeros of P.

Conjugate Zeros Theorem (p. 327)
If the polynomial P has real coefficients and if a  bi is a zero of 
P, then its complex conjugate a  bi is also a zero of P.

linear and Quadratic Factors Theorem (p. 328)
Every polynomial with real coefficients can be factored into lin-
ear and irreducible quadratic factors with real coefficients.

Rational Functions (p. 331)
A rational function r is a quotient of polynomial functions:

r 1x 2 
P1x 2
Q1x 2

We generally assume that the polynomials P and Q have no fac-
tors in common.

Asymptotes (pp. 332–333)
The line x  a is a vertical asymptote of the function y  f1x 2  if

y S    or  y S    as  x S a  or  x S a

The line y  b is a horizontal asymptote of the function  
y  f1x 2  if

y S b  as  x S    or  x S 

Asymptotes of Rational Functions (pp. 334–336)

Let r 1x 2 
P1x 2
Q1x 2  be a rational function.

The vertical asymptotes of r are the lines x  a where a is a  
zero of Q.

If the degree of P is less than the degree of Q, then the horizontal 
asymptote of r is the line y  0.
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If the degrees of P and Q are the same, then the horizontal 
asymptote of r is the line y  b, where

b 
leading coefficient of P

leading coefficient of Q

If the degree of P is greater than the degree of Q, then r has no  
horizontal asymptote.

Polynomial and Rational Inequalities (pp. 347, 349)
A polynomial inequality is an inequality of the form P1x 2  0, 
where P is a polynomial. We solve P1x 2  0 by finding the zeros 

of P and using test points between successive zeros to determine 
the intervals that satisfy the inequality.

A rational inequality is an inequality of the form r 1x 2  0, 
where 

r 1x 2 
P1x 2
Q1x 2

is a rational function. The cut points of r are the values of x at 
which either P1x 2  0 or Q1x 2  0. We solve r 1x 2  0 by using 
test points between successive cut points to determine the inter-
vals that satisfy the inequality.

 1. (a)  What is the degree of a quadratic function f? What is the 
standard form of a quadratic function? How do you put a 
quadratic function into standard form?

(b)  The quadratic function f 1x 2  a1x  h 2 2  k is in stan-
dard form. The graph of f is a parabola. What is the ver-
tex of the graph of f? How do you determine whether 
f 1h 2  k is a minimum or a maximum value?

(c)  Express f 1x 2  x2  4x  1 in standard form. Find the 
vertex of the graph and the maximum or minimum value 
of f.

 2. (a)  Give the general form of polynomial function P of 
degree n.

(b)  What does it mean to say that c is a zero of P? Give two 
equivalent conditions that tell us that c is a zero of P.

 3. Sketch graphs showing the possible end behaviors of polyno-
mials of odd degree and of even degree.

 4. What steps do you follow to graph a polynomial function P?

 5. (a)  What is a local maximum point or local minimum point 
of a polynomial P?

(b)  How many local extrema can a polynomial P of degree n 
have?

 6. When we divide a polynomial P1x 2  by a divisor D1x 2 , the 
Division Algorithm tells us that we can always obtain a quo-
tient Q1x 2  and a remainder R1x 2 . State the two forms in 
which the result of this division can be written.

 7. (a) State the Remainder Theorem. 

(b) State the Factor Theorem. 

(c) State the Rational Zeros Theorem.

 8. What steps would you take to find the rational zeros of a 
polynomial P?

 9. Let P1x 2  2x4  3x3  x  15.

(a)  Explain how Descartes’ Rule of Signs is used to deter-
mine the possible number of positive and negative real 
roots of P.

(b)  What does it mean to say that a is a lower bound and b is 
an upper bound for the zeros of a polynomial?

(c)  Explain how the Upper and Lower Bounds Theorem is 
used to show that all the real zeros of P lie between 3 
and 3. 

 10. (a) State the Fundamental Theorem of Algebra.

(b) State the Complete Factorization Theorem. 

(c) State the Zeros Theorem. 

(d) State the Conjugate Zeros Theorem. 

 11. (a) What is a rational function?

(b)  What does it mean to say that x  a is a vertical asymp-
tote of y  f 1x 2 ?

(c)  What does it mean to say that y  b is a horizontal 
asymptote of y  f 1x 2 ?

 12. (a)  How do you find vertical asymptotes of rational 
functions? 

(b)  Let s be the rational function 

s1x 2 
anx

n  an1x
n1  . . .  a1x  a0

bmxm  bm1x
m1  . . .  b1x  b0

  How do you find the horizontal asymptote of s? 

(c)  Find the vertical and horizontal asymptotes of 

f 1x 2 
5x2  3

x2  4

 13. (a)  Under what circumstances does a rational function have 
a slant asymptote? 

(b)  How do you determine the end behavior of a rational 
function? 

 14. (a)  Explain how to solve a polynomial inequality.

(b) What are the cut points of a rational function? Explain 
how to solve a rational inequality. 

(c)  Solve the inequality x2  9  8x.

■ ConCePT CHeCk

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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1–4 ■ Graphs of Quadratic Functions  A quadratic function is 
given. (a) Express the function in standard form. (b) Graph the 
function.

 1. f 1x 2  x2  6x  2  2. f 1x 2  2x2  8x  4

 3. f 1x 2  1  10x  x2  4. g1x 2  2x2  12x

5–6 ■ Maximum and Minimum Values  Find the maximum or 
minimum value of the quadratic function.

 5. f 1x 2  x2  3x  1  6. f 1x 2  3x2  18x  5

 7. Height of a stone  A stone is thrown upward from the top of 
a building. Its height (in feet) above the ground after t sec-
onds is given by the function h1 t 2  16t2  48t  32. 
What maximum height does the stone reach?

 8. Profit  The profit P (in dollars) generated by selling x units 
of a certain commodity is given by the function

P1x 2  1500  12x  0.004x2

  What is the maximum profit, and how many units must be 
sold to generate it?

9–14 ■ Transformations of Monomials  Graph the polynomial 
by transforming an appropriate graph of the form y  xn. Show 
clearly all x- and y-intercepts.

 9. P1x 2  x3  64 10. P1x 2  2x3  16

 11. P1x 2  21x  1 2 4  32 12. P1x 2  81  1x  3 2 4
 13. P1x 2  32  1x  1 2 5 14. P1x 2  31x  2 2 5  96

15–18 ■ Graphing Polynomials in Factored Form  A polynomial 
function P is given. (a) Describe the end behavior. (b) Sketch a 
graph of P. Make sure your graph shows all intercepts.

15. P1x 2  1x  3 2 1x  1 2 1x  5 2
16. P1x 2  1x  5 2 1x2  9 2 1x  2 2
17. P1x 2  1x  1 2 21x  4 2 1x  2 2 2
18. P1x 2  x21x2  4 2 1x2  9 2

19–20 ■ Graphing Polynomials  A polynomial function P  
is given. (a) Determine the multiplicity of each zero of P.  
(b) Sketch a graph of P.

 19. P1x 2  x31x  2 2 2 20. P1x 2  x1x  1 2 31x  1 2 2

21–24 ■ Graphing Polynomials  Use a graphing device to graph 
the polynomial. Find the x- and y-intercepts and the coordinates 
of all local extrema, correct to the nearest decimal. Describe the 
end behavior of the polynomial .

 21. P1x 2  x3  4x  1 22. P1x 2  2x 3  6x2  2

 23. P1x 2  3x4  4x3  10x  1

 24. P1x 2  x5  x4  7x3  x2  6x  3

 25. strength of a Beam  The strength S of a wooden beam of 
width x and depth y is given by the formula S  13.8xy 2.  

A beam is to be cut from a log of diameter 10 in., as shown 
in the figure.

(a) Express the strength S of this beam as a function of x only.

(b) What is the domain of the function S?

(c) Draw a graph of S.

(d) What width will make the beam the strongest?

 26. Volume  A small shelter for delicate plants is to be con-
structed of thin plastic material. It will have square ends and a 
rectangular top and back, with an open bottom and front, as 
shown in the figure. The total area of the four plastic sides is to 
be 1200 in2.

(a)  Express the volume V of the shelter as a function of the 
depth x.

(b) Draw a graph of V.

(c)  What dimensions will maximize the volume of the 
shelter?

x

y

x

27–34 ■ Division of Polynomials  Find the quotient and 
remainder.

 27. 
x2  5x  2

x  3
 28. 

3x2  x  5

x  2

 29. 
2x3  x2  3x  4

x  5
 30. 

x3  2x  4

x  7

 31. 
x4  8x2  2x  7

x  5  
32. 

2x4  3x3  12

x  4

 33. 
2x3  x2  8x  15

x2  2x  1  
34. 

x4  2x2  7x

x2  x  3

35–38 ■ Remainder Theorem  These exercises involve the 
Remainder Theorem.

 35. If P1x 2  2x3  9x2  7x  13, find P15 2 .
 36. If Q1x 2  x4  4x3  7x2  10x  15, find Q13 2 .

■ exeRCIses
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 37. What is the remainder when the polynomial 
P1x 2  x500  6x101  x2  2x  4 is divided by x  1?

 38. What is the remainder when the polynomial 
Q1x 2  x101  x4  2 is divided by x  1?

39–40 ■ Factor Theorem  Use the Factor Theorem to show that 
the statement in the exercise is true.

 39. Show that 1
2  is a zero of the polynomial

P1x 2  2x4  x3  5x2  10x  4

 40. Show that x  4 is a factor of the polynomial

P1x 2  x 5  4x 4  7x 3  23x2  23x  12

41–44 ■ number of Possible Zeros  A polynomial P is given. 
(a) List all possible rational zeros (without testing to see  
whether they actually are zeros). (b) Determine the possible  
number of positive and negative real zeros using Descartes’  
Rule of Signs.

 41. P1x 2  x 5  6x 3  x2  2x  18

 42. P1x 2  6x4  3x3  x2  3x  4

 43. P1x 2  3x7  x5  5x4  x3  8

 44. P1x 2  6x10  2x8  5x3  2x2  12

45–52 ■ Finding Real Zeros and Graphing Polynomials  A poly-
nomial P is given. (a) Find all real zeros of P, and state their mul-
tiplicities. (b) Sketch the graph of P.

 45. P1x 2  x3  16x 46. P1x 2  x3  3x2  4x

 47. P1x 2  x4  x3  2x2 48. P1x 2  x4  5x2  4

49. P1x 2  x4  2x3  7x2  8x  12 

 50. P1x 2  x4  2x3  2x2  8x  8

 51. P1x 2  2x 4  x 3  2x2  3x  2

 52. P1x 2  9x5  21x4  10x3  6x2  3x  1

53–56 ■ Polynomials with specified Zeros  Find a polynomial 
with real coefficients of the specified degree that satisfies the 
given conditions. 

 53. Degree 3; zeros 1
2, 2, 3; constant coefficient 12

 54. Degree 4; zeros 4 (multiplicity 2) and 3i; integer  
coefficients; coefficient of x2  is 25 

 55. Complex Zeros of Polynomials  Does there exist a polyno-
mial of degree 4 with integer coefficients that has zeros i, 2i, 
3i, and 4i? If so, find it. If not, explain why.

 56. Polynomial with no Real Roots  Prove that the equation 
3x4  5x2  2  0 has no real root.

57–68 ■ Finding Real and Complex Zeros of Polynomials  Find 
all rational, irrational, and complex zeros (and state their multi-
plicities). Use Descartes’ Rule of Signs, the Upper and Lower 
Bounds Theorem, the Quadratic Formula, or other factoring tech-
niques to help you whenever possible.

57. P1x 2  x3  x2  x  1 58. P1x 2  x3  8

59. P1x 2  x3  3x2  13x  15

 60. P1x 2  2x 3  5x2  6x  9

 61. P1x 2  x4  6x3  17x2  28x  20

 62. P1x 2  x4  7x3  9x2  17x  20

 63. P1x 2  x5  3x4  x3  11x2  12x  4

 64. P1x 2  x4  81

 65. P1x 2  x6  64

 66. P1x 2  18x3  3x2  4x  1

 67. P1x 2  6x4  18x3  6x2  30x  36

 68. P1x 2  x4  15x2  54

69–72 ■ solving Polynomials Graphically  Use a graphing 
device to find all real solutions of the equation.

 69. 2x2  5x  3

 70. x3  x2  14x  24  0

 71. x4  3x3  3x2  9x  2  0

 72. x5  x  3

73–74 ■ Complete Factorization  A polynomial function P  
is given. Find all the real zeros of P, and factor P completely  
into linear and irreducible quadratic factors with real  
coefficients.

 73. P1x 2  x3  2x  4 74. P1x 2  x4  3x2  4

75–78 ■ Transformations of y  1/x   A rational function is 
given. (a) Find all vertical and horizontal asymptotes, all x- and 
y-intercepts, and state the domain and range. (b) Use transforma-
tions of the graph of y  1/x to sketch a graph of the rational 
function, and state the domain and range of r.

75. r 1x 2 
3

x  4  
76. r 1x 2 

1

x  5

77. r 1x 2 
3x  4

x  1
 78. r 1x 2 

2x  5

x  2

79–84 ■ Graphing Rational Functions  Graph the rational func-
tion. Show clearly all x- and y-intercepts and asymptotes, and 
state the domain and range of r.

79. r 1x 2 
3x  12

x  1
 80. r 1x 2 

1

1x  2 2 2

81. r 1x 2 
x  2

x2  2x  8
 82. r 1x 2 

x3  27

x  4

83. r 1x 2 
x2  9

2x2  1
 84. r 1x 2 

2x2  6x  7

x  4

85–88 ■ Rational Functions with Holes  Find the common fac-
tors of the numerator and denominator of the rational function. 
Then find the intercepts and asymptotes, and sketch a graph. State 
the domain and range.

 85. r 1x 2 
x2  5x  14

x  2

 86. r 1x 2 
x3  3x2  10x

x  2
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 87. r 1x 2 

x2  3x  18

x2  8x  15

 88.r 1x 2 
x2  2x  15

x3  4x2  7x  10

89–92 ■ Graphing Rational Functions  Use a graphing device to 
analyze the graph of the rational function. Find all x- and 
y-intercepts and all vertical, horizontal, and slant asymptotes. If 
the function has no horizontal or slant asymptote, find a polyno-
mial that has the same end behavior as the rational function.

 89. r 1x 2 
x  3

2x  6 
 90. r 1x 2 

2x  7

x2  9

 91. r 1x 2 
x3  8

x2  x  2 
 92. r 1x 2 

2x 3  x2

x  1

93–96 ■ Polynomial Inequalities  Solve the inequality. 

 93. 2x2  x  3  94. x3  3x2  4x  12  0

 95. x4  7x2  18  0  96. x8  17x4  16  0

97–100 ■ Rational Inequalities  Solve the inequality. 

 97. 
5

x3  x2  4x  4
 0  98. 

3x  1

x  2


2

3

 99. 
1

x  2


2

x  3


3
x

 100. 
1

x  2


3

x  3


4
x

101–102 ■ Domain of a Function  Find the domain of the given 
function. 

 101. f 1x 2  "24  x  3x2 102. g1x 2 
1

"4 x  x4

103–104 ■ solving Inequalities Graphically  Use a graphing 
device to solve the inequality. Express your answer using interval 
notation, with the endpoints of the intervals rounded to two 
decimals. 

 103. x4  x3  5x2  4x  5 

 104. x5  4x4  7x3  12x  2  0

 105. Application of Descartes’ Rule of signs  We use  
Descartes’ Rule of Signs to show that a polynomial 
Q1x 2  2x3  3x2  3x  4 has no positive real zeros.

(a) Show that 1 is a zero of the polynomial 
P1x 2  2x4  5x3  x  4.

(b) Use the information from part (a) and Descartes’  
Rule of Signs to show that the polynomial 
Q1x 2  2x3  3x2  3x  4 has no positive real  
zeros.  [Hint: Compare the coefficients of the latter 
polynomial to your synthetic division table from  
part (a).]

 106. Points of Intersection  Find the coordinates of all points of 
intersection of the graphs of 

y  x4  x2  24x  and  y  6x3  20
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 1. Express the quadratic function f 1x 2  x2  x  6 in standard form, and sketch its graph.

 2. Find the maximum or minimum value of the quadratic function g1x 2  2x2  6x  3.

 3. A cannonball fired out to sea from a shore battery follows a parabolic trajectory given by 
the graph of the equation

h1x 2  10x  0.01x2

  where h1x 2  is the height of the cannonball above the water when it has traveled a horizon-
tal distance of x feet.

(a) What is the maximum height that the cannonball reaches?

(b) How far does the cannonball travel horizontally before splashing into the water?

 4. Graph the polynomial P1x 2  1x  2 2 3  27, showing clearly all x- and y-intercepts.

 5.  (a)  Use synthetic division to find the quotient and remainder when x4  4x2  2x  5 is  
divided by x  2.

  (b)  Use long division to find the quotient and remainder when 2x5  4x4  x3  x2  7 
is divided by 2x2  1.

 6. Let P1x 2  2x 3  5x2  4x  3.

(a) List all possible rational zeros of P.

(b) Find the complete factorization of P.

(c) Find the zeros of P.

(d) Sketch the graph of P.

 7. Find all real and complex zeros of P1x 2  x3  x2  4x  6.

 8. Find the complete factorization of P1x 2  x 4  2x 3  5x2  8x  4.

 9. Find a fourth-degree polynomial with integer coefficients that has zeros 3i and 1, with 
1 a zero of multiplicity 2.

 10. Let P1x 2  2x 4  7x 3  x2  18x  3.

(a)  Use Descartes’ Rule of Signs to determine how many positive and how many negative 
real zeros P can have.

(b) Show that 4 is an upper bound and 1 is a lower bound for the real zeros of P.

(c)  Draw a graph of P, and use it to estimate the real zeros of P, rounded to two decimal 
places.

(d) Find the coordinates of all local extrema of P, rounded to two decimals.

 11. Consider the following rational functions:

r 1x 2 
2x  1

x2  x  2    
s1x 2 

x3  27

x2  4      
t 1x 2 

x3  9x

x  2
  

  
u1x 2 

x2  x  6

x2  25
    „1x 2 

x3  6x2  9x

x  3

(a) Which of these rational functions has a horizontal asymptote?

(b) Which of these functions has a slant asymptote?

(c) Which of these functions has no vertical asymptote?

(d) Which of these functions has a “hole”?

(e) What are the asymptotes of the function r 1x 2 ?
(f)  Graph y  u1x 2 , showing clearly any asymptotes and x- and y-intercepts the function  

may have.

(g)  Use long division to find a polynomial P that has the same end behavior as t. Graph 
both P and t on the same screen to verify that they have the same end behavior.

h(x)

x

CHAPTeR 3 TesT
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 12. Solve the rational inequality x 

6  x

2x  5
.

 13. Find the domain of the function f 1x 2 
1

"4  2x  x2
.

 14. (a)  Choosing an appropriate viewing rectangle, graph the following function and find all 
its x-intercepts and local extrema, rounded to two decimals.

P1x 2  x4  4x3  8x

(b) Use your graph from part (a) to solve the inequality 

x4  4x3  8x  0

  Express your answer in interval form, with the endpoints rounded to two decimals.
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We have learned how to fit a line to data (see Focus on Modeling, page 174). The line 
models the increasing or decreasing trend in the data. If the data exhibit more variabil-
ity, such as an increase followed by a decrease, then to model the data, we need to use 
a curve rather than a line. Figure 1 shows a scatter plot with three possible models that 
appear to fit the data. Which model fits the data best?

FIGuRe 1

y

x

y

x
Linear model Quadratic model Cubic model

y

x

■ Polynomial Functions as Models
Polynomial functions are ideal for modeling data for which the scatter plot has peaks 
or valleys (that is, local maxima or minima). For example, if the data have a single peak 
as in Figure 2(a), then it may be appropriate to use a quadratic polynomial to model the 
data. The more peaks or valleys the data exhibit, the higher the degree of the polynomial 
needed to model the data (see Figure 2).

(a) (b) (c)

y

x

y

x

y

x

FIGuRe 2

Graphing calculators are programmed to find the polynomial of best fit of a 
specified degree. As is the case for lines (see page 175), a polynomial of a given degree 
fits the data best if the sum of the squares of the distances between the graph of the 
polynomial and the data points is minimized.

exAMPle 1 ■ Rainfall and Crop yield
Rain is essential for crops to grow, but too much rain can diminish crop yields. The 
data on the next page give rainfall and cotton yield per acre for several seasons in a 
certain county.

(a)  Make a scatter plot of the data. What degree polynomial seems appropriate for 
modeling the data?

(b)  Use a graphing calculator to find the polynomial of best fit. Graph the polynomial 
on the scatter plot.

(c) Use the model that you found to estimate the yield if there are 25 in. of rainfall.

Fitting Polynomial Curves to Data FoCus on MoDelInG
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362 Focus on Modeling

Season Rainfall (in.) Yield (kg/acre)

 1 23.3 5311
 2 20.1 4382
 3 18.1 3950
 4 12.5 3137
 5 30.9 5113
 6 33.6 4814
 7 35.8 3540
 8 15.5 3850
 9 27.6 5071
10 34.5 3881

soluTIon

(a)  The scatter plot is shown in Figure 3. The data appear to have a peak, so it is 
appropriate to model the data by a quadratic polynomial (degree 2).

FIGuRe 3 Scatter plot of yield versus 
rainfall data

6000

1500
4010

(b)  Using a graphing calculator, we find that the quadratic polynomial of best fit is

y  12.6x2  651.5x  3283.2

  The calculator output and the scatter plot, together with the graph of the quadratic 
model, are shown in Figure 4.

6000

1500
4010

(a) (b)FIGuRe 4

(c) Using the model with x  25, we get

y  12.6125 2 2  651.5125 2  3283.2  5129.3

 We estimate the yield to be about 5130 kg/acre. ■

exAMPle 2 ■ length-at-Age Data for Fish
Otoliths (“earstones”) are tiny structures that are found in the heads of fish. Microscopic 
growth rings on the otoliths, not unlike growth rings on a tree, record the age of a fish. 
The following table gives the lengths of rock bass caught at different ages, as deter-
mined by the otoliths. Scientists have proposed a cubic polynomial to model this data.

(a) Use a graphing calculator to find the cubic polynomial of best fit for the data.

(b) Make a scatter plot of the data, and graph the polynomial from part (a).

(c)  A fisherman catches a rock bass 20 in. long. Use the model to estimate its age.Otoliths for several fish species

Cod Redfish Hake
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  Fitting Polynomial Curves to Data 363

Age (yr) Length (in.) Age (yr) Length (in.)

1  4.8  9 18.2
2  8.8  9 17.1
2  8.0 10 18.8
3  7.9 10 19.5
4 11.9 11 18.9
5 14.4 12 21.7
6 14.1 12 21.9
6 15.8 13 23.8
7 15.6 14 26.9
8 17.8 14 25.1

soluTIon

(a)   Using a graphing calculator (see Figure 5(a)), we find the cubic polynomial of  
best fit:

y  0.0155x3  0.372x2  3.95x  1.21

(b)  The scatter plot of the data and the cubic polynomial are graphed in Figure 5(b).

30

0 15

(a) (b)FIGuRe 5

(c)  Moving the cursor along the graph of the polynomial, we find that y  20 when  
x  10.8. Thus the fish is about 11 years old. ■

PRoBleMs
 1. Tire Inflation and Treadwear  Car tires need to be inflated properly. Overinflation or 

underinflation can cause premature treadwear. The data in the margin show tire life for dif-
ferent inflation values for a certain type of tire.

(a)  Find the quadratic polynomial that best fits the data.

(b)  Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)  Use your result from part (b) to estimate the pressure that gives the longest tire life.

 2.  Too Many Corn Plants per Acre?  The more corn a farmer plants per acre, the greater 
is the yield the farmer can expect, but only up to a point. Too many plants per acre can 
cause overcrowding and decrease yields. The data give crop yields per acre for various 
densities of corn plantings, as found by researchers at a university test farm.

(a)  Find the quadratic polynomial that best fits the data.

(b)  Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)  Use your result from part (b) to estimate the yield for 37,000 plants per acre.

Density (plants/acre) 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

Crop yield (bushels/acre) 43 98 118 140 142 122 93 67

Pressure 
(lb/in2)

Tire life  
(mi)

26 50,000
28 66,000
31 78,000
35 81,000
38 74,000
42 70,000
45 59,000
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364 Focus on Modeling

 3.  How Fast Can you list your Favorite Things?  If you are asked to make a list of objects in 
a certain category, how fast you can list them follows a predictable pattern. For example, if 
you try to name as many vegetables as you can, you’ll probably think of several right away—
for example, carrots, peas, beans, corn, and so on. Then after a pause you might think of ones 
you eat less frequently—perhaps zucchini, eggplant, and asparagus. Finally, a few more ex-
otic vegetables might come to mind—artichokes, jicama, bok choy, and the like. A psycholo-
gist performs this experiment on a number of subjects. The table below gives the average 
number of vegetables that the subjects named by a given number of seconds.

(a)  Find the cubic polynomial that best fits the data.

(b)  Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)  Use your result from part (b) to estimate the number of vegetables that subjects would 
be able to name in 40 s.

(d)  According to the model, how long (to the nearest 0.1 s) would it take a person to name 
five vegetables?

Seconds
Number of 
vegetables

 1  2
 2  6
 5 10
10 12
15 14
20 15
25 18
30 21

 4.  Height of a Baseball  A baseball is thrown upward, and its height is measured at  
0.5-s intervals using a strobe light. The resulting data are given in the table.

(a)  Draw a scatter plot of the data. What degree polynomial is appropriate for modeling  
the data?

(b)  Find a polynomial model that best fits the data, and graph it on the scatter plot.

(c)  Find the times when the ball is 20 ft above the ground.

(d)  What is the maximum height attained by the ball?

 5.  Torricelli’s law  Water in a tank will flow out of a small hole in the bottom faster when 
the tank is nearly full than when it is nearly empty. According to Torricelli’s Law, the 
height h1 t 2  of water remaining at time t is a quadratic function of t.

    A certain tank is filled with water and allowed to drain. The height of the water is mea-
sured at different times as shown in the table.

(a)  Find the quadratic polynomial that best fits the data.

(b)  Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c)  Use your graph from part (b) to estimate how long it takes for the tank to drain  
completely.

Time (min) Height (ft)

 0 5.0
 4 3.1
 8 1.9
12 0.8
16 0.2

Time (s) Height (ft)

0 4.2
0.5 26.1
1.0 40.1
1.5 46.0
2.0 43.9
2.5 33.7
3.0 15.8
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In this chapter  we study exponential functions. These are functions like 
f 1x 2  2x, where the independent variable is in the exponent. Exponential 
functions are used in modeling many real-world phenomena, such as the 
growth of a population, the growth of an investment that earns compound 
interest, or the decay of a radioactive substance. Once an exponential 
model has been obtained, we can use the model to predict the size of a 
population, calculate the amount of an investment, or find the amount of a 
radioactive substance that remains. The inverse functions of exponential 
functions are called logarithmic functions. With exponential models and 
logarithmic functions we can answer questions such as these: When will 
my city be as crowded as the city street pictured here?  When will my 
bank account have a million dollars? When will radiation from a 
radioactive spill decay to a safe level?

In the Focus on Modeling at the end of the chapter we learn how to fit 
exponential and power curves to data.

365

Exponential and Logarithmic 
Functions4

4.1 Exponential Functions
4.2 The Natural Exponential 

Function
4.3 Logarithmic Functions
4.4 Laws of Logarithms
4.5 Exponential and 

Logarithmic Equations
4.6 Modeling with Exponential 

Functions
4.7 Logarithmic Scales

FocuS oN ModELiNg
 Fitting Exponential and 

Power curves to data

© TonyV3112/Shutterstock.com
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366 CHAPTER 4 ■ Exponential and Logarithmic Functions

4.1 ExPoNENTiaL FuNcTioNS
■ Exponential Functions ■ graphs of Exponential Functions ■ compound interest

In this chapter we study a new class of functions called exponential functions. For  example,

f 1x 2  2x

is an exponential function (with base 2). Notice how quickly the values of this function 
 increase.

 f 13 2  23  8

 f 110 2  210  1024

 f 130 2  230  1,073,741,824

Compare this with the function g1x 2  x2, where g130 2  302  900. The point is that 
when the variable is in the exponent, even a small change in the variable can cause a 
dramatic change in the value of the function.

■ Exponential Functions
To study exponential functions, we must first define what we mean by the exponential 
expression ax when x is any real number. In Section P.4 we defined ax for a  0 and x 
a rational number, but we have not yet defined irrational powers. So what is meant by 
5!3 or 2p? To define ax when x is irrational, we approximate x by rational numbers.

For example, since

!3 < 1.73205. . .

is an irrational number, we successively approximate a!3 by the following rational powers:

a1.7, a1.73, a1.732, a1.7320, a1.73205, . . .

Intuitively, we can see that these rational powers of a are getting closer and closer to 
a!3. It can be shown by using advanced mathematics that there is exactly one number 
that these powers approach. We define a!3 to be this number.

For example, using a calculator, we find

 5!3 < 51.732

 < 16.2411. . .

The more decimal places of !3 we use in our calculation, the better our approximation 
of 5!3.

It can be proved that the Laws of Exponents are still true when the exponents are real 
numbers.

ExPoNENTiaL FuNcTioNS

The exponential function with base a is defined for all real numbers x by

f 1x 2  ax

where a  0 and a ? 1.

We assume that a 2 1 because the function f 1x 2  1x  1 is just a constant func-
tion. Here are some examples of exponential functions:

f 1x 2  2x  g1x 2  3x  h1x 2  10 x

The Laws of Exponents are listed on 
page 19.

Base 2 Base 3 Base 10
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SECTION 4.1 ■ Exponential Functions 367

ExaMPLE 1 ■ Evaluating Exponential Functions
Let f 1x 2  3x, and evaluate the following:

(a) f 15 2  (b) f A 
2
3B

(c) f 1p 2  (d) f A!2B
SoLuTioN  We use a calculator to obtain the values of f.

   Calculator keystrokes Output

(a) f 15 2  35  243 3  ^  5  enter  243

(b) f A 
2
3B  32/3 < 0.4807 3  ^  (  (_)  2    3  )  enter  0.4807498

(c) f 1p 2  3p < 31.544 3  ^  p  enter  31.5442807

(d) f A!2 B  3!2 < 4.7288 3  ^  1  2  enter  4.7288043

Now Try Exercise 7 ■

■ graphs of Exponential Functions
We first graph exponential functions by plotting points. We will see that the graphs of 
such functions have an easily recognizable shape.

ExaMPLE 2 ■ graphing Exponential Functions by Plotting Points
Draw the graph of each function.

(a) f 1x 2  3x        (b) g1x 2  a 1

3
b

x

SoLuTioN  We calculate values of f 1x 2  and g1x 2  and plot points to sketch the graphs 
in Figure 1.

x f xxc 5 3x gxxc 5 x 1 

3c
x

3  1
 27 

 27
2  1

 9 
 9

1  1
 3 

 3
0  1  1
1  3  1

 3 

2  9  1
 9 

3  27  1
 27 0 x

y

1

1

y=3˛y=!  @˛1
3

FigurE 1

Notice that

g1x 2  a 1

3
b

x


1

3x  3x  f 1x 2

so we could have obtained the graph of g from the graph of f by reflecting in the 
y-axis.

Now Try Exercise 17 ■

Figure 2 shows the graphs of the family of exponential functions f 1x 2  ax for 
various values of the base a. All of these graphs pass through the point 10, 1 2  because 

Reflecting graphs is explained in  
Section 2.6.
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368 CHAPTER 4 ■ Exponential and Logarithmic Functions

a0  1 for a 2 0. You can see from Figure 2 that there are two kinds of exponential 
functions: If 0  a  1, the exponential function decreases rapidly. If a  1, the func-
tion increases rapidly (see the margin note).

0 x

y

1

2

y=2˛y=5˛y=10˛ y=3˛y=!  @˛1
5y=!  @˛1

2 y=!  @˛1
3 y=!  @˛1

10

FigurE 2 A family of exponential 
functions

The x-axis is a horizontal asymptote for the exponential function f 1x 2  ax. This is 
because when a  1, we have ax S 0 as x S ` , and when 0  a  1, we have  
ax S 0 as x S `  (see Figure 2). Also, ax  0 for all x [ R, so the function f 1x 2  ax 
has domain R and range 10, ` 2 . These observations are summarized in the following box.

graPhS oF ExPoNENTiaL FuNcTioNS

The exponential function

f 1x 2  ax  a  0, a ? 1

has domain R and range 10, ` 2 . The line y  0 (the x-axis) is a horizontal 
asymptote of f. The graph of f has one of the following shapes.

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

ExaMPLE 3 ■ identifying graphs of Exponential Functions
Find the exponential function f 1x 2  a 

x whose graph is given.

(a)   (b)

 
0 x

y
(2, 25)

5

_1 1 2 0 x

y

1

_3

1
8!3,   @

3

To see just how quickly f 1x 2  2x  
increases, let’s perform the following 
thought experiment. Suppose we  
start with a piece of paper that is a 
thousandth of an inch thick, and we 
fold it in half 50 times. Each time we 
fold the paper, the thickness of the  
paper stack doubles, so the thickness  
of the resulting stack would be 
250/1000 inches. How thick do you 
think that is? It works out to be more 
than 17 million miles!

See Section 3.6, page 331, where the  
arrow notation used here is explained.
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SECTION 4.1 ■ Exponential Functions 369

SoLuTioN

(a)  Since f 12 2  a2  25, we see that the base is a  5. So f 1x 2  5x.

(b)  Since f 13 2  a3  1
8, we see that the base is a  1

2. So f 1x 2  A12B x.
Now Try Exercise 21 ■

In the next example we see how to graph certain functions, not by plotting points, 
but by taking the basic graphs of the exponential functions in Figure 2 and applying the 
shifting and reflecting transformations of Section 2.6.

ExaMPLE 4 ■ Transformations of Exponential Functions
Use the graph of f 1x 2  2x to sketch the graph of each function. State the domain, 
range, and asymptote.

(a) g1x 2  1  2x
    (b) h1x 2  2x

    (c) k1x 2  2x1

SoLuTioN

(a)  To obtain the graph of g1x 2  1  2x, we start with the graph of f 1x 2  2x and 
shift it upward 1 unit to get the graph shown in Figure 3(a). From the graph we 
see that the domain of g is the set R of real numbers, the range is the interval 
11,  ` 2 , and the line y  1 is a horizontal asymptote.

(b)  Again we start with the graph of f 1x 2  2x, but here we reflect in the x-axis to 
get the graph of h1x 2  2x shown in Figure 3(b). From the graph we see that 
the domain of h is the set R of all real numbers, the range is the interval 1`,  0 2 , 
and the line y  0 is a horizontal asymptote.

(c)  This time we start with the graph of f 1x 2  2x and shift it to the right by 1 unit 
to get the graph of k1x 2  2x1 shown in Figure 3(c). From the graph we see that 
the domain of k is the set R of all real numbers, the range is the interval 10,  ` 2 , 
and the line y  0 is a horizontal asymptote.

0 x

y

(c)

1

y=2˛

y=2˛–¡11

0 x

y

(b)

1

y=2˛

y=_2˛_1
0 x

y

y=2˛

(a)

1

y=1+2˛

2

Horizontal
asymptote

FigurE 3

Now Try Exercises 27, 29, and 31 ■

ExaMPLE 5 ■ comparing Exponential and Power Functions
Compare the rates of growth of the exponential function f 1x 2  2x and the power  
function g1x 2  x2 by drawing the graphs of both functions in the following viewing 
 rectangles.

(a) 30, 3 4  by 30, 8 4       (b) 30, 6 4  by 30, 25 4       (c) 30, 20 4  by 30, 1000 4

Shifting and reflecting of graphs are  
explained in Section 2.6.
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370 CHAPTER 4 ■ Exponential and Logarithmic Functions

SoLuTioN

(a)  Figure 4(a) shows that the graph of g1x 2  x2 catches up with, and becomes 
higher than, the graph of f 1x 2  2x at x  2.

(b)  The larger viewing rectangle in Figure 4(b) shows that the graph of f 1x 2  2x 
overtakes that of g1x 2  x2 when x  4.

(c)  Figure 4(c) gives a more global view and shows that when x is large, f 1x 2  2x is 
much larger than g1x 2  x2.

8

0 3

(a)

˝=≈
Ï=2x

1000

0 20

(c)

˝=≈

Ï=2x

25

0 6

(b)

˝=≈
Ï=2x

FigurE 4

Now Try Exercise 45 ■

■ compound interest
Exponential functions occur in calculating compound interest. If an amount of money 
P, called the principal, is invested at an interest rate i per time period, then after one 
time period the interest is Pi, and the amount A of money is

A  P  Pi  P11  i 2
If the interest is reinvested, then the new principal is P11  i 2 , and the amount after 
another time period is A  P11  i 2 11  i 2  P11  i 2 2. Similarly, after a third time 
period the amount is A  P11  i 2 3. In general, after k periods the amount is

A  P11  i 2 k
Notice that this is an exponential function with base 1  i.

If the annual interest rate is r and if interest is compounded n times per year, then in 
each time period the interest rate is i  r/n, and there are nt time periods in t years. This 
leads to the following formula for the amount after t years.

coMPouNd iNTErEST

Compound interest is calculated by the formula

A1 t 2  Pa 1 
r
n
b

nt

where  A1 t 2  amount after t years

  P  principal

  r  interest rate per year

  n  number of times interest is compounded per year

  t  number of years

r is often referred to as the nominal  
annual interest rate.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 4.1 ■ Exponential Functions 371

ExaMPLE 6 ■ calculating compound interest
A sum of $1000 is invested at an interest rate of 12% per year. Find the amounts in  
the account after 3 years if interest is compounded annually, semiannually, quarterly, 
monthly, and daily.

SoLuTioN  We use the compound interest formula with P  $1000, r  0.12, and t  3.

Compounding n Amount after 3 years

Annual   1 1000a1 
0.12

1
b

1132  

 $1404.93

Semiannual   2 1000a1 
0.12

2
b

2132  

 $1418.52

Quarterly   4 1000a1 
0.12

4
b

4132  

 $1425.76

Monthly  12 1000a1 
0.12

12
b

12132  

 $1430.77

Daily 365 1000a1 
0.12

365
b

365132 
 $1433.24

Now Try Exercise 57 ■

If an investment earns compound interest, then the annual percentage yield 
(APY) is the simple interest rate that yields the same amount at the end of one year.

ExaMPLE 7 ■ calculating the annual Percentage Yield
Find the annual percentage yield for an investment that earns interest at a rate of  
6% per year, compounded daily.

SoLuTioN  After one year, a principal P will grow to the amount

A  Pa 1 
0.06

365
b

365

 P11.06183 2

The formula for simple interest is

A  P11  r 2
Comparing, we see that 1  r  1.06183, so r  0.06183. Thus the annual percent-
age yield is 6.183%.

Now Try Exercise 63 ■

Simple interest is studied in Section P.9.

diScovErY ProjEcT

So You Want to Be a Millionaire?

In this project we explore how rapidly the values of an exponential function 
increase by examining some real-world situations. For example, if you save a 
penny today, two pennies tomorrow, four pennies the next day, and so on, how 
long do you have to continue saving in this way before you  become a million-
aire? You can find out the surprising answer to this and other questions by com-
pleting this discovery project. You can find the project at www.stewartmath.com.
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372 CHAPTER 4 ■ Exponential and Logarithmic Functions

coNcEPTS
 1. The function f 1x 2  5x is an exponential function with base 

     ; f 12 2     , f 10 2     , 

  f 12 2     , and f 16 2     .

 2. Match the exponential function with one of the graphs 
labeled I, II, III, or IV, shown below.

(a) f 1x 2  2x (b) f 1x 2  2x      

(c) f 1x 2  2x (d) f 1x 2  2x

I y 

x 0 1 
2 

y

x0 1
2

y 

x 0 1 
2

II

III y

x0 1
2

IV

 3. (a)  To obtain the graph of g1x 2  2x  1, we start with

   the graph of f 1x 2  2x and shift it    
 (upward/downward) 1 unit.

(b)  To obtain the graph of h1x 2  2x1, we start with the 

graph of f 1x 2  2x and shift it to the   
(left/right) 1 unit.

 4. In the formula A1 t 2  PA1  r
n Bnt

 for compound interest the 

  letters P, r, n, and t stand for    ,    , 

     , and    , respectively, and 

  A1 t 2  stands for    . So if $100 is invested at an  
interest rate of 6% compounded quarterly, then the amount 

  after 2 years is    .

 5. The exponential function f 1x 2  A12 Bx has the 

    asymptote y     . This means 

  that as x S ` , we have A12 Bx S    . 

 6. The exponential function f 1x 2  A12 Bx  3 has the 

    asymptote y     . This means 

  that as x S ` , we have A12 Bx  3 S    .

SkiLLS
7–10 ■ Evaluating Exponential Functions  Use a calculator to 
evaluate the function at the indicated values. Round your answers 
to three decimals.

 7. f 1x 2  4x; f A12 B, f A!5 B, f 12 2 , f 10.3 2
 8. f 1x 2  3x1; f A12 B, f 12.5 2 , f 11 2 , f A14 B
 9. g1x 2  A13 B x1

; gA12 B, gA!2 B, g13.5 2 , g11.4 2
 10. g1x 2  A43 B3x

; gA1
2 B, gA!6 B, g13 2 , gA43 B

11–16 ■ graphing Exponential Functions  Sketch the graph of the 
function by making a table of values. Use a calculator if necessary.

 11. f 1x 2  2x 12. g1x 2  8x

 13. f 1x 2  A13 B x 14. h1x 2  11.1 2 x
 15. g1x 2  311.3 2 x 16. h1x 2  2A14 Bx

17–20 ■ graphing Exponential Functions  Graph both functions 
on one set of axes.

 17. f 1x 2  2x and g1x 2  2x

 18. f 1x 2  3x and g1x 2  A13 B
x

 19. f 1x 2  4x and g1x 2  7x

 20. f 1x 2  A34 Bx and g1x 2  1.5x

21–24 ■ Exponential Functions from a graph  Find the expo-
nential function f 1x 2  ax whose graph is given.

 21.   22. 22. y

0 x3_3

1

(2, 9)
  

x

y

0 3_3

1
5!_1,   @

1

 23.  24. 

1
16!2,    @

x0 3_3

y

1

 
x

y

0 3
1

_3

(_3, 8)

25–26 ■ Exponential Functions from a graph  Match the expo-
nential function with one of the graphs labeled I or II.

 25. f 1x 2  5x1 26. f 1x 2  5x  1

 

I y

x0 1

1

 

y

x0 1

1

II

4.1 ExErciSES
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SECTION 4.1 ■ Exponential Functions 373

27–40 ■ graphing Exponential Functions  Graph the function, 
not by plotting points, but by starting from the graphs in Figure 2. 
State the domain, range, and  asymptote.

 27. g1x 2  2x  3 28. h1x 2  4  A12 Bx

 29. f 1x 2  3x 30. f 1x 2  10x

 31. f 1x 2  10x3
 32. g1x 2  2x3

33. y  5x  1 34. h1x 2  6  3x

 35. y  2  A13 Bx  36. y  5x  3

 37. h1x 2  2x4  1 38. y  3  10x1

39. g1x 2  1  3x 40. y  3  A15 Bx

41–42 ■ comparing Exponential Functions  In these exercises 
we compare the graphs of two exponential functions.

41. (a) Sketch the graphs of f 1x 2  2x and g1x 2  312x 2 .
(b) How are the graphs related?

 42. (a) Sketch the graphs of f 1x 2  9x/2 and g1x 2  3x.

(b)  Use the Laws of Exponents to explain the relationship  
between these graphs.

43–44 ■ comparing Exponential and Power Functions  Com-
pare the graphs of the power function f and exponential function 
g by evaluating both of them for x  0, 1, 2, 3, 4, 6, 8, and 10. 
Then draw the graphs of f and g on the same set of axes.

 43. f 1x 2  x3; g1x 2  3x  44. f 1x 2  x4; g1x 2  4x 

45–46 ■ comparing Exponential and Power Functions  In these 
exercises we use a graphing calculator to compare the rates of 
growth of the graphs of a power function and an exponential 
function.

 45. (a)  Compare the rates of growth of the functions f 1x 2  2x 
and g1x 2  x5 by drawing the graphs of both functions 
in the following viewing rectangles.

 (i) 30, 5 4  by 30, 20 4
 (ii) 30, 25 4  by 30, 107 4
 (iii) 30, 50 4  by 30, 108 4

(b)  Find the solutions of the equation 2x  x5, rounded to 
one decimal place.

 46. (a)  Compare the rates of growth of the functions f 1x 2  3x 
and g1x 2  x4 by drawing the graphs of both functions 
in the following viewing rectangles:

 (i) 34, 44 by 30, 204    
 (ii) 30, 104 by 30, 50004
 (iii) 30, 204 by 30, 1054

(b)  Find the solutions of the equation 3x  x4, rounded to 
two decimal places.

SkiLLS Plus
47–48 ■ Families of Functions  Draw graphs of the given family 
of functions for c  0.25, 0.5, 1, 2, 4. How are the graphs related?

 47. f 1x 2  c2x
 48. f 1x 2  2cx

49–50 ■ getting information from a graph  Find, rounded to 
two decimal places, (a) the intervals on which the function is 
increasing or decreasing and (b) the range of the function.

 49. y  10xx2

 50.  y  x2x

51–52 ■ difference Quotients  These exercises involve a differ-
ence quotient for an exponential function.

 51. If f 1x 2  10x, show that 

f 1x  h 2  f 1x 2
h

 10x a 10h  1

h
b

 52. If f 1x 2  3x1, show that 

f 1x  h 2  f 1x 2
h

 3x1 a 3h  1

h
b

aPPLicaTioNS
53. Bacteria growth  A bacteria culture contains 1500 bacteria 

initially and doubles every hour.

(a)  Find a function N that models the number of bacteria 
after t hours.

(b) Find the number of bacteria after 24 hours.

 54. Mouse Population  A certain breed of mouse was introduced 
onto a small island with an initial population of 320 mice, 
and scientists estimate that the mouse population is doubling 
every year.  

(a)  Find a function N that models the number of mice after  
t years.

(b) Estimate the mouse population after 8 years.

55–56 ■ compound interest  An investment of $5000 is depos-
ited into an account in which interest is compounded monthly. 
Complete the table by filling in the amounts to which the invest-
ment grows at the indicated times or interest rates.

 55. r  4% 56. t  5 years

 

Time 
(years) Amount

1
2
3
4
5
6

Rate 
per year Amount

1%
2%
3%
4%
5%
6%

 57. compound interest  If $10,000 is invested at an interest rate 
of 3% per year, compounded semiannually, find the value of 
the investment after the given number of years.

(a) 5 years (b) 10 years (c) 15 years

58. compound interest  If $2500 is invested at an interest rate 
of 2.5% per year, compounded daily, find the value of the 
investment after the given number of years.

(a) 2 years (b) 3 years (c) 6 years

59. compound interest  If $500 is invested at an interest rate of 
3.75% per year, compounded quarterly, find the value of the 
investment after the given number of years.

(a) 1 year (b) 2 years (c) 10 years

 60. compound interest  If $4000 is borrowed at a rate of 5.75% 
interest per year, compounded quarterly, find the amount due 
at the end of the given number of years.

(a) 4 years (b) 6 years (c) 8 years
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374 CHAPTER 4 ■ Exponential and Logarithmic Functions

61–62 ■ Present value  The present value of a sum of money 
is the amount that must be invested now, at a given rate of inter-
est, to produce the desired sum at a later date.

 61.  Find the present value of $10,000 if interest is paid at a  
rate of 9% per year, compounded semiannually, for  
3 years.

 62.  Find the present value of $100,000 if interest is paid  
at a rate of 8% per year, compounded monthly, for  
5 years.

 63. annual Percentage Yield  Find the annual percentage  
yield for an investment that earns 8% per year, compounded 
monthly.

 64. annual Percentage Yield  Find the annual percentage  
yield for an investment that earns 5 1

2% per year, compounded 
quarterly.

diScuSS ■ diScovEr ■ ProvE ■ WriTE
 65. diScuSS ■ diScovEr: growth of an Exponential Function   

Suppose you are offered a job that lasts one month, and you 
are to be very well paid. Which of the following methods of 
payment is more profitable for you?

(a) One million dollars at the end of the month

(b)  Two cents on the first day of the month, 4 cents on the 
second day, 8 cents on the third day, and, in general,  
2 n cents on the nth day

 66. diScuSS ■ diScovEr: The height of the graph of an  
Exponential Function  Your mathematics instructor asks  
you to sketch a graph of the exponential function

  f 1x 2  2x

  for x between 0 and 40, using a scale of 10 units to one inch. 
What are the dimensions of the sheet of paper you will need 
to sketch this graph?

4.2 ThE NaTuraL ExPoNENTiaL FuNcTioN
■ The Number e ■ The Natural Exponential Function ■ continuously compounded interest

Any positive number can be used as a base for an exponential function. In this section 
we study the special base e, which is convenient for applications involving calculus. 

■ The Number e
The number e is defined as the value that 11  1/n 2 n approaches as n becomes large. 
(In calculus this idea is made more precise through the concept of a limit.) The table 
shows the values of the expression 11  1/n 2 n for increasingly large values of n. 

n a1 1
1
n
b

n

1 2.00000
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828

It appears that, rounded to five decimal places, e ^ 2.71828; in fact, the approximate 
value to 20 decimal places is

e < 2.71828182845904523536

It can be shown that e is an irrational number, so we cannot write its exact value in 
decimal form.

■ The Natural Exponential Function
The number e is the base for the natural exponential function. Why use such a strange 
base for an exponential function? It might seem at first that a base such as 10 is easier 
to work with. We will see, however, that in certain applications the number e is the best 

The notation e was chosen by Leonhard 
Euler (see page 130), probably  because it 
is the first letter of the word exponential.

©
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The Gateway Arch in St. Louis, Missouri, is 
shaped in the form of the graph of a com-
bination of exponential functions (not a 
parabola, as it might first appear). 
Specifically, it is a catenary, which is the 
graph of an equation of the form

y  a1ebx  ebx 2
(see Exercises 17 and 19). This shape was 
chosen because it is optimal for distribut-
ing the internal structural forces of the 
arch. Chains and cables suspended 
between two points (for example, the 
stretches of cable between pairs of tele-
phone poles) hang in the shape of a 
catenary.
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SECTION 4.2 ■ The Natural Exponential Function 375

possible base. In this section we study how e occurs in the description of compound 
interest.

ThE NaTuraL ExPoNENTiaL FuNcTioN 

The natural exponential function is the exponential function

f 1x 2  ex

with base e. It is often referred to as the exponential function.

Since 2  e  3, the graph of the natural exponential function lies between the 
graphs of y  2x and y  3x, as shown in Figure 1.

Scientific calculators have a special key for the function f 1x 2  ex. We use this key 
in the next example.

ExaMPLE 1 ■ Evaluating the Exponential Function
Evaluate each expression rounded to five decimal places.

(a) e3      (b) 2e0.53      (c) e4.8

SoLuTioN  We use the ex  key on a calculator to evaluate the exponential function.

(a) e3 ^ 20.08554   (b) 2e0.53 ^ 1.17721   (c) e4.8 ^ 121.51042

Now Try Exercise 3 ■

ExaMPLE 2 ■ graphing the Exponential Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a) f 1x 2  ex        (b) g1x 2  3e 0.5x

SoLuTioN

(a)  We start with the graph of y  ex and reflect in the y-axis to obtain the graph of  
y  ex as in Figure 2. From the graph we see that the domain of f is the set R of 
all real numbers, the range is the interval 10, ` 2 , and the line y  0 is a horizon-
tal asymptote.

(b)  We calculate several values, plot the resulting points, then connect the points with 
a smooth curve. The graph is shown in Figure 3. From the graph we see that the 
domain of g is the set R of all real numbers, the range is the interval 10, ` 2 , and 
the line y  0 is a horizontal asymptote.

FigurE 3

0 x

y

3

3

y=3e0.5x

_3

6

9

12x fxxc 5 3e0.5x

3  0.67
2  1.10
1  1.82

0  3.00
1  4.95
2  8.15
3 13.45

Now Try Exercises 5 and 7 ■

0 x

y

1

y=3˛

1

y=2˛

y=e˛

FigurE 1 Graph of the natural  
exponential function

0 x

y

1

1

y=e˛y=e–˛

FigurE 2
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376 CHAPTER 4 ■ Exponential and Logarithmic Functions

ExaMPLE 3 ■ an Exponential Model for the Spread of a virus
An infectious disease begins to spread in a small city of population 10,000. After t days, 
the number of people who have succumbed to the virus is modeled by the function

√ 1 t 2 
10,000

5  1245e0.97t

(a) How many infected people are there initially (at time t  0)?

(b) Find the number of infected people after one day, two days, and five days.

(c) Graph the function √, and describe its behavior.

SoLuTioN

(a)  Since √ 10 2  10,000/15  1245e0 2  10,000/1250  8, we conclude that 8 
people initially have the disease.

(b)  Using a calculator, we evaluate √ 11 2 , √ 12 2 , and √ 15 2  and then round off to obtain 
the following values.

Days Infected people

1  21
2  54
5 678

(c)  From the graph in Figure 4 we see that the number of infected people first rises 
slowly, then rises quickly between day 3 and day 8, and then levels off when 
about 2000 people are infected.

Now Try Exercise 27 ■

The graph in Figure 4 is called a logistic curve or a logistic growth model. Curves 
like it occur frequently in the study of population growth. (See Exercises 27–30.)

■ continuously compounded interest
In Example 6 of Section 4.1 we saw that the interest paid increases as the number of 
compounding periods n increases. Let’s see what happens as n increases indefinitely. If 
we let m  n/r, then

A1 t 2  Pa 1 
r
n
b

nt

 P c a 1 
r
n
b

n/r

d
rt

 P c a 1 
1
m
b

m

d
rt

Recall that as m becomes large, the quantity 11  1/m 2m approaches the number e. 
Thus the amount approaches A  Pert. This expression gives the amount when the in-
terest is compounded at “every instant.”

coNTiNuouSLY coMPouNdEd iNTErEST

Continuously compounded interest is calculated by the formula

A1 t 2  Pert

where   A1 t 2  amount after t years

  P  principal

  r  interest rate per year

  t  number of years

3000

0 12

FigurE 4 

√1 t 2 
10,000

5  1245e0.97t

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 4.2 ■ The Natural Exponential Function 377

ExaMPLE 4 ■ calculating continuously compounded interest
Find the amount after 3 years if $1000 is invested at an interest rate of 12% per year, 
compounded continuously.

SoLuTioN  We use the formula for continuously compounded interest with P  $1000, 
r  0.12, and t  3 to get

A13 2  1000e 10.1223  1000e0.36  $1433.33

Compare this amount with the amounts in Example 6 of Section 4.1.

Now Try Exercise 33 ■

coNcEPTS
 1. The function f 1x 2  ex is called the   exponential 

  function. The number e is approximately equal to    .

 2. In the formula A1 t 2  Pert for continuously compound inter-

est, the letters P, r , and t stand for    ,    , and 

   , respectively, and A1 t 2  stands for    . So if 
  $100 is invested at an interest rate of 6% compounded continu-

  ously, then the amount after 2 years is    .

SkiLLS
3–4 ■ Evaluating Exponential Functions  Use a calculator to 
evaluate the function at the indicated values. Round your answers 
to three decimals.

 3. h1x 2  ex; h11 2 , h1p 2 , h13 2 , hA!2 B
 4. h1x 2  e3x; hA13 B, h11.5 2 , h11 2 , h1p 2

5–6 ■ graphing Exponential Functions  Complete the table of 
values, rounded to two decimal places, and sketch a graph of the 
function.

 5. 
x f xxc 5 1.5ex

2
1
0.5

0
0.5
1
2

 6. 
x f xxc 5 4e2x/3

3
2
1

0
1
2
3

7–16 ■ graphing Exponential Functions  Graph the function, 
not by plotting points, but by starting from the graph of y  ex in 
Figure 1. State the domain, range, and asymptote.

 7. g1x 2  2  ex  8. h1x 2  ex  3

 9. f 1x 2  ex 10. y  1  ex

 11. y  ex  1 12. f 1x 2  ex

 13. f 1x 2  ex2 14. y  ex3  4

15. h1x 2  e 
x1  3 16. g1x 2  ex1  2

SkiLLS Plus
 17. hyperbolic cosine Function  The hyperbolic cosine function 

is defined by

cosh1x 2 
ex  ex

2

(a)  Sketch the graphs of the functions y  1
2 ex and y  1

2 ex 
on the same axes, and use graphical addition (see Sec- 
tion 2.7) to sketch the graph of y  cosh1x 2 .

(b) Use the definition to show that cosh(x)  cosh(x).

 18. hyperbolic Sine Function  The hyperbolic sine function is 
defined by

sinh1x 2 
ex  ex

2

(a)  Sketch the graph of this function using graphical addition 
as in Exercise 17.

(b) Use the definition to show that sinh(x)  sinh(x)

19. Families of Functions  
(a) Draw the graphs of the family of functions

f 1x 2 
a

2
 1ex/a  ex/a 2

  for a  0.5, 1, 1.5, and 2.

(b) How does a larger value of a affect the graph?

20. The definition of e  Illustrate the definition of the number e 
by graphing the curve y  11  1/x 2 x and the line y  e on 
the same screen, using the viewing rectangle 30, 404 by 30, 44.

21–22 ■ Local Extrema  Find the local maximum and minimum 
values of the function and the value of x at which each occurs. 
State each answer rounded to two decimal places.

 21. g1x 2  x x, x  0

 22. g1x 2  ex  e2x

4.2 ExErciSES
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aPPLicaTioNS
 23. Medical drugs  When a certain medical drug is administered 

to a patient, the number of milligrams remaining in the 
 pa tient’s bloodstream after t hours is modeled by

D1 t 2  50e0.2t

  How many milligrams of the drug remain in the patient’s 
bloodstream after 3 hours?

 24. radioactive decay  A radioactive substance decays in such a 
way that the amount of mass remaining after t days is given 
by the function

m1 t 2  13e0.015t

  where m1 t 2  is measured in kilograms.

(a) Find the mass at time t  0.

(b) How much of the mass remains after 45 days?

 25. Sky diving  A sky diver jumps from a reasonable height 
above the ground. The air resistance she experiences is pro-
portional to her velocity, and the constant of proportionality 
is 0.2. It can be shown that the downward velocity of the sky 
diver at time t is given by

√ 1 t 2  18011  e0.2t 2
  where t is measured in seconds (s) and √ 1 t 2  is measured in 

feet per second (ft/s).

(a) Find the initial velocity of the sky diver.

(b) Find the velocity after 5 s and after 10 s.

(c) Draw a graph of the velocity function √1 t 2 .
(d)  The maximum velocity of a falling object with wind 

resistance is called its terminal velocity. From the  
graph in part (c) find the terminal velocity of this sky 
diver.

√(t)=180(1-e_º.™t)

 26. Mixtures and concentrations  A 50-gal barrel is filled com-
pletely with pure water. Salt water with a concentration of 
0.3 lb/gal is then pumped into the barrel, and the resulting 
mixture overflows at the same rate. The amount of salt in the 
barrel at time t is given by

Q1 t 2  1511  e0.04t 2
  where t is measured in minutes and Q1 t 2  is measured in 

pounds.

(a) How much salt is in the barrel after 5 min?

(b) How much salt is in the barrel after 10 min?

(c) Draw a graph of the function Q1 t 2 .

(d)  Use the graph in part (c) to determine the value that the 
amount of salt in the barrel approaches as t becomes 
large. Is this what you would expect?

Q(t)=15(1-e_º.º¢t )

 27. Logistic growth  Animal populations are not capable of 
unrestricted growth because of limited habitat and food sup-
plies. Under such conditions the population follows a logistic 
growth model:

P1 t 2 
d

1  kect

  where c, d, and k are positive constants. For a certain fish 
population in a small pond d  1200, k  11, c  0.2, and t 
is  measured in years. The fish were introduced into the pond 
at time t  0.

(a) How many fish were originally put in the pond?

(b) Find the population after 10, 20, and 30 years.

(c)  Evaluate P1 t 2  for large values of t. What value does the 
population approach as t S `? Does the graph shown 
confirm your calculations?

t

P

0 10 20 4030

1200

1000

800

600

400

200

 28. Bird Population  The population of a certain species of  
bird is limited by the type of habitat required for nesting.  
The population behaves according to the logistic growth 
model

n1 t 2 
5600

0.5  27.5e0.044t

  where t is measured in years.

(a) Find the initial bird population.

(b) Draw a graph of the function n1 t 2 .
(c)  What size does the population approach as time  

goes on?
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 29. World Population  The relative growth rate of world popula-
tion has been decreasing steadily in recent years. On the basis 
of this, some population models predict that world population 
will eventually stabilize at a level that the planet can support. 
One such logistic model is

P1 t 2 
73.2

6.1  5.9e0.02t

  where t  0 is the year 2000 and population is measured in 
 billions.

(a)  What world population does this model predict for the 
year 2200? For 2300?

(b)  Sketch a graph of the function P for the years 2000 to 
2500.

(c)  According to this model, what size does the world popu-
lation seem to approach as time goes on?

30. Tree diameter  For a certain type of tree the diameter  
D (in feet) depends on the tree’s age t (in years) according  
to the logistic growth model

D1 t 2 
5.4

1  2.9e0.01t

  Find the diameter of a 20-year-old tree.

t

D

0 100 700300 500

5

4

3

2

1

31–32 ■ compound interest  An investment of $7000 is depos-
ited into an account in which interest is compounded continu-
ously. Complete the table by filling in the amounts to which the 
investment grows at the indicated times or interest rates.

 31. r  3% 32. t  10 years

  

Time 
(years) Amount

1
2
3
4
5
6

  

Rate  
per year Amount

1%
2%
3%
4%
5%
6%

 33. compound interest  If $2000 is invested at an interest rate 
of 3.5% per year, compounded continuously, find the value  
of the investment after the given number of years.

(a) 2 years    

(b) 4 years    

(c) 12 years

34. compound interest  If $3500 is invested at an interest rate 
of 6.25% per year, compounded continuously, find the value 
of the investment after the given number of years.

(a) 3 years    

(b) 6 years    

(c) 9 years

35. compound interest  If $600 is invested at an interest rate  
of 2.5% per year, find the amount of the investment at the 
end of 10 years for the following compounding methods.

(a) Annually    

(b) Semiannually  

(c) Quarterly    

(d) Continuously

36. compound interest  If $8000 is invested in an account for 
which interest is compounded continuously, find the amount 
of the investment at the end of 12 years for the following 
interest rates.

(a) 2%    

(b) 3%    

(c) 4.5%    

(d) 7%

37. compound interest  Which of the given interest rates  
and compounding periods would provide the best 
investment?

(a) 2 
1
2% per year, compounded semiannually

(b) 2 
1
4% per year, compounded monthly

(c) 2% per year, compounded continuously

38. compound interest  Which of the given interest rates  
and compounding periods would provide the better 
investment?

(a) 5 
1
8% per year, compounded semiannually

(b) 5% per year, compounded continuously

39. investment  A sum of $5000 is invested at an interest rate  
of 9% per year, compounded continuously.

(a) Find the value A1 t 2  of the investment after t years.

(b) Draw a graph of A1 t 2 .
(c)  Use the graph of A1 t 2  to determine when this investment 

will amount to $25,000.
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380 CHAPTER 4 ■ Exponential and Logarithmic Functions

4.3 LogariThMic FuNcTioNS
■ Logarithmic Functions ■ graphs of Logarithmic Functions ■ common Logarithms  
■ Natural Logarithms

In this section we study the inverses of exponential functions.

■ Logarithmic Functions
Every exponential function f 1x 2  ax, with a  0 and a 2 1, is a one-to-one function by 
the Horizontal Line Test (see Figure 1 for the case a  1) and therefore has an inverse 
function. The inverse function f 1 is called the logarithmic function with base a and is 
denoted by loga. Recall from Section 2.8 that f1 is defined by

f 
11x 2  y 3 f 1y 2  x

This leads to the following definition of the logarithmic function.

dEFiNiTioN oF ThE LogariThMic FuNcTioN

Let a be a positive number with a ? 1. The logarithmic function with base a, 
 denoted by loga, is defined by

loga x  y 3 ay  x

So loga x is the exponent to which the base a must be raised to give x.

We read loga x  y as “log base a of  
x is y.”

When we use the definition of logarithms to switch back and forth between the 
logarithmic form loga x  y and the exponential form ay  x, it is helpful to notice 
that, in both forms, the base is the same.

Logarithmic form  Exponential form

 loga x  y ay  x

ExaMPLE 1 ■ Logarithmic and Exponential Forms
The logarithmic and exponential forms are equivalent equations: If one is true, then  
so is the other. So we can switch from one form to the other as in the following 
illustrations.

Logarithmic form Exponential form

log10 100,000  5 105  100,000
log2 8  3 23  8
log2 A18 B  3 23  1

8  
log5 s  r 5r  s

Now Try Exercise 7 ■

By tradition the name of the logarith-
mic function is loga, not just a single 
letter. Also, we usually omit the paren-
theses in the function notation and 
write

loga1x 2  loga x

Base

ExponentExponent

Base

0 x

y
f(x)=a˛,

a>1

FigurE 1 f 1x 2  ax is  
one-to-one.
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SECTION 4.3 ■ Logarithmic Functions 381

It is important to understand that loga x is an exponent. For example, the numbers in 
the right-hand column of the table in the margin are the logarithms (base 10) of the 
numbers in the left-hand column. This is the case for all bases, as the following example 
illustrates.

ExaMPLE 2 ■ Evaluating Logarithms
(a) log10 1000  3 because  103  1000

(b) log2 32  5 because  25  32

(c) log10 0.1  1 because  101  0.1

(d) log16 4  1
2 because  161/2  4

Now Try Exercises 9 and 11 ■

When we apply the Inverse Function Property described on page 258 to f 1x 2  ax 
and f 

11x 2  loga x, we get

 loga1ax 2  x  x [ R

 aloga x  x  x  0

We list these and other properties of logarithms discussed in this section.

ProPErTiES oF LogariThMS

Property Reason

1. loga1  0 We must raise a to the power 0 to get 1.

2. loga a  1 We must raise a to the power 1 to get a.

3. loga a
x  x We must raise a to the power x to get ax.

4. aloga x  x loga x is the power to which a must be raised to get x.

ExaMPLE 3 ■ applying Properties of Logarithms
We illustrate the properties of logarithms when the base is 5.

log5 1  0   Property 1    log5 5  1     Property 2

log5 5
8  8  Property 3    5log5 12  12    Property 4

Now Try Exercises 25 and 31 ■

■ graphs of Logarithmic Functions
Recall that if a one-to-one function f has domain A and range B, then its inverse function 
f1 has domain B and range A. Since the exponential function f 1x 2  ax with a 2 1 has 
domain R and range 10, ` 2 , we conclude that its inverse function, f 

11x 2  loga x, has 
domain 10, ` 2  and range R.

The graph of f 
11x 2  loga x is obtained by reflecting the graph of f 1x 2  ax in the 

line y  x. Figure 2 shows the case a  1. The fact that y  ax (for a  1) is a very 
rapidly increasing function for x  0 implies that y  loga x is a very slowly increasing 
function for x  1 (see Exercise 102).

Since loga 1  0, the x-intercept of the function y  loga x is 1. The y-axis is a ver-
tical asymptote of y  loga x because loga x S `  as x S 0.

x log10 x

104 4
103 3
102 2
10 1
 1 0
101 1
102 2
103 3
104 4

Inverse Function Property:

f11f 1x 22  x

f 1f11x 22  x

y=a˛,  a>1

y=loga x

y=x

x

y

1

1

FigurE 2 Graph of the logarithmic 
function f 1x 2  loga x
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382 CHAPTER 4 ■ Exponential and Logarithmic Functions

ExaMPLE 4 ■  graphing a Logarithmic Function by Plotting Points
Sketch the graph of f 1x 2  log2 x.

SoLuTioN  To make a table of values, we choose the x-values to be powers of 2 so 
that we can easily find their logarithms. We plot these points and connect them with a 
smooth curve as in Figure 3.

x log2 x

23 3
22 2
2 1
1 0
21 1
22 2
23 3
24 4

x

y

1
2
3

1 2 4 6 8_1
_2
_3
_4

f(x)=log¤ x

FigurE 3

Now Try Exercise 49 ■

Figure 4 shows the graphs of the family of logarithmic functions with bases 2, 3, 5, 
and 10. These graphs are drawn by reflecting the graphs of y  2x, y  3x, y  5x, and 
y  10x (see Figure 2 in Section 4.1) in the line y  x. We can also plot points as an 
aid to sketching these graphs, as illustrated in Example 4.

y=log2 x 

y=log‹ x 

y=logfi x 

y=log⁄‚ x 

0 x

y

1

1

FigurE 4 A family of logarithmic 
functions

In the next two examples we graph logarithmic functions by starting with the basic 
graphs in Figure 4 and using the transformations of Section 2.6.

ExaMPLE 5 ■ reflecting graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a) g1x 2  log2 x   (b) h1x 2  log21x 2
SoLuTioN

(a)  We start with the graph of f 1x 2  log2 x and reflect in the x-axis to get the graph 
of g1x 2  log2 x in Figure 5(a). From the graph we see that the domain of g is 
10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a vertical 
asymptote.
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SECTION 4.3 ■ Logarithmic Functions 383

(b)  We start with the graph of f 1x 2  log2 x and reflect in the y-axis to get the graph 
of h1x 2  log21x 2  in Figure 5(b). From the graph we see that the domain of h 
is 1`, 0 2 , the range is the set R of all real numbers, and the line x  0 is a ver-
tical asymptote.

f(x)=log¤ x f(x)=log¤ x

g(x)=_log¤ x
h(x)=log¤(_x)

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

FigurE 5

Now Try Exercise 61 ■

ExaMPLE 6 ■ Shifting graphs of Logarithmic Functions
Sketch the graph of each function. State the domain, range, and asymptote.

(a) g1x 2  2  log5 x   (b) h1x 2  log101x  3 2
SoLuTioN

(a)  The graph of g is obtained from the graph of f 1x 2  log5 x (Figure 4) by shifting 
 upward 2 units, as shown in Figure 6. From the graph we see that the domain of g 
is 10, ` 2 , the range is the set R of all real numbers, and the line x  0 is a verti-
cal asymptote.

3

0 x

y

1

1

2

g(x)=2+logfi x

f(x)=logfi x

FigurE 6

(b)  The graph of h is obtained from the graph of f 1x 2  log10 x (Figure 4) by shift-
ing to the right 3 units, as shown in Figure 7. From the graph we see that the 
domain of h is 13, ` 2 , the range is the set R of all real numbers, and the line 
x  3 is a vertical asymptote.

f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1
Asymptote
x=3

FigurE 7

Now Try Exercises 63 and 67 ■

Law Enforcement
Mathematics aids law enforcement in 
numerous and surprising ways, from the 
reconstruction of bullet trajectories to 
determining the time of death to calcu-
lating the probability that a DNA sample 
is from a particular person. One interest-
ing use is in the search for missing per-
sons. A person who has been missing for 
several years might look quite different 
from his or her most recent available 
photograph. This is particularly true if the 
missing person is a child. Have you ever 
wondered what you will look like 5, 10, or 
15 years from now?

Researchers have found that different 
parts of the body grow at different rates. 
For example, you have no doubt noticed 
that a baby’s head is much larger relative 
to its body than an adult’s. As another 
example, the ratio of arm length to 
height is 1

3  in a child but about 2
5  in an 

adult. By collecting data and analyzing 
the graphs, researchers are able to deter-
mine the functions that model growth. 
As in all growth phenomena, exponential 
and logarithmic functions play a crucial 
role. For instance, the formula that relates 
arm length l to height h is l  aekh where 
a and k are constants. By studying vari-
ous physical characteristics of a person, 
mathematical biologists model each 
characteristic by a function that de  scribes 
how it changes over time. Models of 
facial characteristics can be programmed 
into a computer to give a picture of how 
a person’s appearance changes over time. 
These pictures aid law enforcement 
agencies in locating missing  persons.

Mathematics in the Modern World

Bettmann/CORBIS Hulton-Deutsch Collection/
Historical/Corbis
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384 CHAPTER 4 ■ Exponential and Logarithmic Functions

■ common Logarithms
We now study logarithms with base 10.

coMMoN LogariThM

The logarithm with base 10 is called the common logarithm and is denoted by 
omitting the base:

log x  log10 x

From the definition of logarithms we can easily find that

log 10  1  and  log 100  2

But how do we find log 50? We need to find the exponent y such that 10 y  50. Clearly, 
1 is too small and 2 is too large. So

1  log 50  2

To get a better approximation, we can experiment to find a power of 10 closer to 50. 
Fortunately, scientific calculators are equipped with a log  key that directly gives val-
ues of common logarithms.

ExaMPLE 7 ■ Evaluating common Logarithms
Use a calculator to find appropriate values of f 1x 2  log x, and use the values to 
sketch the graph.

SoLuTioN  We make a table of values, using a calculator to evaluate the function at 
those values of x that are not powers of 10. We plot those points and connect them by 
a smooth curve as in Figure 8.

x log x

 0.01 2
 0.1 1
 0.5 0.301
 1 0
 4 0.602
 5 0.699
10 1

FigurE 8

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

Now Try Exercise 51 ■

Scientists model human response to stimuli (such as sound, light, or pressure) using 
logarithmic functions. For example, the intensity of a sound must be increased many-
fold before we “feel” that the loudness has simply doubled. The psychologist Gustav 
Fechner formulated the law as

S  k log a I

I0
b

where S is the subjective intensity of the stimulus, I is the physical intensity of the 
stimulus, I0 stands for the threshold physical intensity, and k is a constant that is differ-
ent for each sensory stimulus.
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John nAPiER (1550–1617) was a Scot-
tish landowner for whom mathematics 
was a hobby. We know him today 
because of his key invention: logarithms, 
which he published in 1614 under the 
title A Description of the Marvelous Rule of 
Logarithms. In Napier’s time, logarithms 
were used exclusively for simplifying 
complicated calculations. For example, to 
multiply two large numbers, we would 
write them as powers of 10. The expo-
nents are simply the logarithms of the 
numbers. For instance,

4532  57783

      < 103.65629  104.76180

       108.41809

      < 261,872,564

The idea is that multiplying powers of 
10 is easy (we simply add their exponents). 
Napier produced extensive tables giving 
the logarithms (or exponents) of numbers. 
Since the advent of calculators and com-
puters, logarithms are no longer used for 
this purpose. The logarithmic functions, 
however, have found many applications, 
some of which are described in this 
chapter.

Napier wrote on many topics. One of 
his most colorful works is a book entitled  
A Plaine Discovery of the Whole Revelation of 
Saint John, in which he predicted that the 
world would end in the year 1700.

Human response to sound and light  
intensity is logarithmic.
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SECTION 4.3 ■ Logarithmic Functions 385

ExaMPLE 8 ■ common Logarithms and Sound
The perception of the loudness B (in decibels, dB) of a sound with physical intensity I 
(in W/m2) is given by

B  10  log a I

I0
b

where I0 is the physical intensity of a barely audible sound. Find the decibel level 
(loudness) of a sound whose physical intensity I is 100 times that of I0.

SoLuTioN  We find the decibel level B by using the fact that I  100I0.

 B  10  log a I

I0
b     Definition of B

  10  log a 100I0

I0
b     I  100I0

  10  log 100     Cancel I0

  10 # 2  20     Definition of log

The loudness of the sound is 20 dB.

Now Try Exercise 97 ■

■ Natural Logarithms
Of all possible bases a for logarithms, it turns out that the most convenient choice for 
the purposes of calculus is the number e, which we defined in Section 4.2.

NaTuraL LogariThM

The logarithm with base e is called the natural logarithm and is denoted by ln:

ln x  loge x

The natural logarithmic function y  ln x is the inverse function of the natural expo-
nential function y  ex. Both functions are graphed in Figure 9. By the definition of 
inverse functions we have

ln x  y 3 ey  x

If we substitute a  e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.

ProPErTiES oF NaTuraL LogariThMS

Property Reason

1. ln 1  0 We must raise e to the power 0 to get 1.

2. ln e  1 We must raise e to the power 1 to get e.

3. ln ex  x We must raise e to the power x to get ex.

4. eln x  x ln x is the power to which e must be raised to get x.

We study the decibel scale in more  
detail in Section 4.7.

The notation ln is an abbreviation for 
the Latin name logarithmus naturalis.

FigurE 9 Graph of the natural  
logarithmic function

y=x

y=e˛

y=ln x

x

y

1

1
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386 CHAPTER 4 ■ Exponential and Logarithmic Functions

Calculators are equipped with an ln  key that directly gives the values of natural 
 logarithms.

ExaMPLE 9 ■ Evaluating the Natural Logarithm Function
(a) ln e8  8 Definition of natural logarithm

(b) ln a 1

e 2 b  ln e2  2 Definition of natural logarithm

(c) ln 5 ^ 1.609 Use ln  key on calculator

Now Try Exercise 47 ■

ExaMPLE 10 ■ Finding the domain of a Logarithmic Function
Find the domain of the function f 1x 2  ln14  x2 2 .
SoLuTioN  As with any logarithmic function, ln x is defined when x  0. Thus the 
domain of f is

 5x 0  4  x2  06  5x 0  x2  46  5x @ 0 x 0  26
  5x 0  2  x  26  12, 2 2

Now Try Exercise 73 ■

ExaMPLE 11 ■ drawing the graph of a Logarithmic Function
Draw the graph of the function y  x ln14  x2 2 , and use it to find the asymptotes 
and local maximum and minimum values.

SoLuTioN  As in Example 10 the domain of this function is the interval 12, 2 2 , so 
we choose the viewing rectangle 33, 34 by 33, 34. The graph is shown in Figure 10, 
and from it we see that the lines x  2 and x  2 are vertical asymptotes.

3

_3

_3 3

FigurE 10 

y  x ln14  x2 2

diScovErY ProjEcT

orders of Magnitude

In this project we explore how to compare the sizes of real-world objects using 
logarithms. For example, how much bigger is an elephant than a flea? How much 
smaller is a man than a giant redwood? It is difficult to compare objects of such 
enormously varying sizes. In this project we learn how logarithms can be used to 
define the concept of “order of magnitude,” which provides a simple and mean-
ingful way of comparison. You can find the project at www.stewartmath.com.
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SECTION 4.3 ■ Logarithmic Functions 387

coNcEPTS
 1. log x is the exponent to which the base 10 must be raised to get

     . So we can complete the following table for log x.

x 103 102 101 100 101 102 103 101/2

log x

 2. The function f 1x 2  log9 x is the logarithm function  

with base    . So f 19 2     ,  

f 11 2     , f A19 B     , f 181 2     , 

and f 13 2     .

 3. (a) 53  125, so log   

  (b) log5 25  2, so   

 4. Match the logarithmic function with its graph.

(a) f 1x 2  log2 
 x (b) f 1x 2  log21x 2     

(c) f 1x 2  log2 x (d) f 1x 2  log21x 2

I y

x0 2

1

II y

x0 2

1

IV y

x0 2

1

III y

x0 2

1

 5. The natural logarithmic function f 1x 2  ln x has the  

  asymptote x     . 

 6. The logarithmic function f 1x 2  ln1x  1 2  has the  

  asymptote x     . 

SkiLLS
7–8 ■ Logarithmic and Exponential Forms  Complete the table 
by finding the appropriate logarithmic or exponential form of the 
equation, as in Example 1.

 7. 
Logarithmic 

form
Exponential  

form

log8 8  1

log8 64  2

82/3  4

83  512

log8A18 B  1

82  1
64

 8. 
Logarithmic 

form
Exponential  

form

43  64

log 4 2  1
2

43/2 8

log4A 1
16 B   2

log4A12 B  1
2

45/2  1
32

9–16 ■ Exponential Form  Express the equation in exponential 
form.

 9. (a) log3 81  4 (b) log3 1  0

 10. (a) log5A15 B  1 (b) log4 64  3

 11. (a) log8 2  1
3 (b) log10 0.01  2

 12. (a) log5A 1
125 B  3 (b) log8 4  2

3

 13. (a) log3 5  x (b) log713y 2  2

14. (a) log6 z  1 (b) log10 3  2t

15. (a) ln 5  3y (b) ln1 t  1 2  1

 16. (a) ln1x  1 2  2 (b) ln1x  1 2  4

17–24 ■ Logarithmic Form  Express the equation in logarithmic 
form.

 17. (a) 104  10,000 (b) 52  1
25

 18. (a) 62  36 (b) 101  1
10

4.3 ExErciSES

The function has a local maximum point to the right of x  1 and a local minimum 
point to the left of x  1. By zooming in and tracing along the graph with the cur-
sor, we find that the local maximum value is approximately 1.13 and this occurs when  
x ^ 1.15. Similarly (or by noticing that the function is odd), we find that the local 
minimum value is about 1.13, and it occurs when x ^ 1.15.

Now Try Exercise 79 ■
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388 CHAPTER 4 ■ Exponential and Logarithmic Functions

 19. (a) 81  1
8 (b) 23  1

8

 20. (a) 43/2  0.125 (b) 73  343

21. (a) 4x  70 (b) 35  „

22. (a) 32x  10 (b) 104x  0.1

 23. (a) ex  2 (b) e3  y

 24. (a) ex1  0.5 (b) e0.5x  t

25–34 ■ Evaluating Logarithms  Evaluate the expression.

 25. (a) log2 2 (b) log5 1 (c) log6 6
5

 26. (a) log3 3
7 (b) log4 64 (c) log5 125

 27. (a) log6 36 (b) log9 81 (c) log7 7
10

 28. (a) log2 32 (b) log8 8
17 (c) log6 1

 29. (a) log3A 1
 27 
B  (b) log10 !10 (c) log5 0.2

 30. (a) log5 125 (b) log49 7 (c) log9 !3

 31. (a) 3log3 5 (b) 5log5 27 (c) eln 10

32. (a) eln !3 (b) eln11/p2 (c) 10log 13

 33. (a) log8 0.25 (b) ln e4 (c) ln11/e 2
 34. (a) log4 !2 (b) log4A12 B  (c) log4 8

35–44 ■ Logarithmic Equations  Use the definition of the loga-
rithmic function to find x.

 35. (a) log4 x  3 (b) log10 0.01  x

 36. (a) log3 x  2 (b) log5 125  x

37. (a) ln x  3 (b) ln e2  x

38. (a) ln x  1 (b) ln11/e 2  x

 39. (a) log7A 1
49 B  x (b) log2 x  5

 40. (a) log4 2  x (b) log4 x  2

 41. (a) log2A12 B  x (b) log10 x  3

42. (a) logx 1000  3 (b) logx 25  2

 43. (a) logx 16  4 (b) logx 8  3
2

 44. (a) logx 6  1
2 (b) logx 3  1

3

45–48 ■ Evaluating Logarithms  Use a calculator to evaluate the 
expression, correct to four decimal places.

 45. (a) log 2 (b) log 35.2 (c) logA23 B
 46. (a) log 50 (b) log !2 (c) log13 !2 2
 47. (a) ln 5 (b) ln 25.3 (c) ln11  !3 2
 48. (a) ln 27 (b) ln 7.39 (c) ln 54.6

49–52 ■ graphing Logarithmic Functions  Sketch the graph of 
the function by plotting points.

 49. f 1x 2  log3 x 50. g1x 2  log4 x

 51. f 1x 2  2 log x 52. g1x 2  1  log x

53–56 ■ Finding Logarithmic Functions  Find the function of 
the form y  loga x whose graph is given.

 53. 

x

y

0 1 5

(5, 1)1

 54. 

0 x

y

1

!   , _1@1
2

_1

1

55. 

0 x

y

1 3

1 !3,   @1
2

 56. 

0 x

y

1 963

(9, 2)

1

57–58 ■ graphing Logarithmic Functions  Match the logarith-
mic function with one of the graphs  labeled I or II.

 57. f 1x 2  2  ln x 58. f 1x 2  ln1x  2 2

y

(1, 2)

x0 1

2

I

 

II y

(3, 0)

x1 30

x=2

 59. graphing  Draw the graph of y  4x, then use it to draw the 
graph of y  log4 x.

 60. graphing  Draw the graph of y  3x, then use it to draw the 
graph of y  log3 x.

61–72 ■ graphing Logarithmic Functions  Graph the function, 
not by plotting points, but by starting from the graphs in Figures 
4 and 9. State the domain, range, and asymptote.

61. g1x 2  log51x 2  62. f 1x 2  log10 x

63. f 1x 2  log21x  4 2  64. g1x 2  ln1x  2 2
65. h1x 2  ln1x  5 2  66. g1x 2  log61x  3 2
 67. y  2  log3 x 68. y  1  log10 x

69. y  log31x  1 2  2 70. y  1  ln1x 2
 71. y  0  ln x 0  72. y  ln 0  x 0

73–78 ■ domain  Find the domain of the function.

 73. f 1x 2  log101x  3 2  74. f 1x 2  log518  2x 2
75. g1x 2  log31x2  1 2  76. g1x 2  ln1x  x2 2
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SECTION 4.3 ■ Logarithmic Functions 389

 77. h1x 2  ln x  ln12  x 2
 78. h1x 2  !x  2  log5110  x 2

79–84 ■ graphing Logarithmic Functions  Draw the graph of 
the function in a suitable viewing rectangle, and use it to find the 
domain, the asymptotes, and the local maximum and minimum 
values.

 79. y  log1011  x2 2  80. y  ln1x2  x 2
 81. y  x  ln x 82. y  x1 ln x 2 2

 83. y 
ln x

x
 84. y  x log101x  10 2

SkiLLS Plus
85–88 ■ domain of a composition  Find the functions f + g and 
g + f  and their domains.

85. f 1x 2  2x,  g1x 2  x  1 

86. f 1x 2  3x,  g1x 2  x2  1

87. f 1x 2  log2 x, g1x 2  x  2 

88. f 1x 2  log x, g1x 2  x2

 89. rates of growth  Compare the rates of growth of the func-
tions f 1x 2  ln x and g1x 2  !x by drawing their graphs on 
a common screen using the viewing rectangle 31, 304 by 
31, 64.

 90. rates of growth  
(a) By drawing the graphs of the functions

f 1x 2  1  ln11  x 2  and  g1x 2  !x

   in a suitable viewing rectangle, show that even when a 
 logarithmic function starts out higher than a root func-
tion, it is ultimately overtaken by the root function.

(b)  Find, rounded to two decimal places, the solutions of the 
equation !x  1  ln11  x 2 .

91–92 ■ Family of Functions  A family of functions is given.  
(a) Draw graphs of the family for c  1, 2, 3, and 4. (b) How are 
the graphs in part (a)  related?

 91. f 1x 2  log1cx 2  92. f 1x 2  c log x

93–94 ■ inverse Functions  A function f 1x 2  is given. (a) Find 
the domain of the function f. (b) Find the inverse function of f.

 93. f 1x 2  log21 log10  x 2  94. f 1x 2  ln1 ln1 ln x 22
 95. inverse Functions  

(a) Find the inverse of the function f 1x 2 
2x

1  2x .

(b) What is the domain of the inverse function?

aPPLicaTioNS
 96. absorption of Light  A spectrophotometer measures the con-

centration of a sample dissolved in water by shining a light 
through it and recording the amount of light that emerges. In 

  other words, if we know the amount of light that is absorbed, 
we can calculate the concentration of the sample. For a certain 
substance the concentration (in moles per liter, mol/L) is 
found by using the  formula

C  2500 lna I

I0
b

  where I0 is the intensity of the incident light and I is the  
intensity of light that emerges. Find the concentration of the 
substance if the intensity I is 70% of I0.

I0 I

 97. carbon dating  The age of an ancient artifact can be deter-
mined by the amount of radioactive carbon-14 remaining in it. 
If D0 is the original amount of carbon-14 and D is the amount 
remaining, then the artifact’s age A (in years) is given by

A  8267 lna D

D0
b

  Find the age of an object if the amount D of carbon-14 that  
remains in the object is 73% of the original amount D0.

 98. Bacteria colony  A certain strain of bacteria divides every  
3 hours. If a colony is started with 50 bacteria, then the time 
t (in hours) required for the colony to grow to N bacteria is 
given by

t  3 

log1N/50 2
log 2

  Find the time required for the colony to grow to a million 
 bacteria.

 99. investment  The time required to double the amount of an 
investment at an interest rate r compounded continuously is 
given by

t 
ln 2

r

  Find the time required to double an investment at 6%, 7%,  
and 8%.

 100. charging a Battery  The rate at which a battery charges is 
slower the closer the battery is to its maximum charge C0. 
The time (in hours) required to charge a fully discharged 
battery to a charge C is given by

t  k ln a1 
C

C0
b

  where k is a positive constant that depends on the battery.  
For a certain battery, k  0.25. If this battery is fully dis-
charged, how long will it take to charge to 90% of its maxi-
mum charge C0?
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390 CHAPTER 4 ■ Exponential and Logarithmic Functions

 101.  difficulty of a Task  The difficulty in “acquiring a target” 
(such as using your mouse to click on an icon on your  
computer screen) depends on the distance to the target and 
the size of the target. According to Fitts’s Law, the index of 
difficulty (ID) is given by

ID 
log12A/W 2

log 2

  where W is the width of the target and A is the distance to  
the center of the target. Compare the difficulty of clicking 
on an icon that is 5 mm wide to clicking on one that is  
10 mm wide. In each case, assume that the mouse is  
100 mm from the icon.

diScuSS ■ diScovEr ■ ProvE ■ WriTE
 102.  diScuSS: The height of the graph of a Logarithmic Function 

Suppose that the graph of y  2x is drawn on a coordinate 
plane where the unit of measurement is an inch.

(a)  Show that at a distance 2 ft to the right of the origin the 
height of the graph is about 265 mi.

(b)  If the graph of y  log2 x is drawn on the same set of 
axes, how far to the right of the origin do we have to go 
before the height of the curve reaches 2 ft?

 103.  diScuSS: The googolplex  A googol is 10100, and a  
googolplex is 10googol. Find

log1 log1googol 22     and    log1 log1 log1googolplex 222
 104.  diScuSS: comparing Logarithms  Which is larger, log4 17 

or log5 24? Explain your reasoning.

 105.  diScuSS ■ diScovEr: The Number of digits in an integer   
Compare log 1000 to the number of digits in 1000. Do the 
same for 10,000. How many digits does any number 
between 1000 and 10,000 have? Between what two values 
must the common logarithm of such a number lie? Use your 
observations to explain why the number of digits in any 
positive integer x is “log x‘  1. (The symbol “n‘ is the 
greatest integer function defined in Section 2.2.) How many 
digits does the number 2100 have?

4.4 LaWS oF LogariThMS
■ Laws of Logarithms ■ Expanding and combining Logarithmic Expressions  
■ change of Base Formula

In this section we study properties of logarithms. These properties give logarithmic 
functions a wide range of applications, as we will see in Sections 4.6 and 4.7.

■ Laws of Logarithms
Since logarithms are exponents, the Laws of Exponents give rise to the Laws of 
Logarithms .

LaWS oF LogariThMS

Let a be a positive number, with a 2 1. Let A, B, and C be any real numbers with A  0 and B  0.

Law Description

1. loga1AB 2  loga A  loga B  The logarithm of a product of numbers is the sum of the logarithms of the 
numbers.

2. loga a A

B
b  loga A  loga B  The logarithm of a quotient of numbers is the difference of the logarithms of the 

numbers.

3. loga1AC 2  C loga A  The logarithm of a power of a number is the exponent times the logarithm of the 
number.
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SECTION 4.4 ■ Laws of Logarithms 391

Proof  We make use of the property loga a
x  x from Section 4.3.

Law 1   Let loga A  u and loga B  √. When written in exponential form, these 
equations become

au  A  and  a√  B

Thus  loga1AB 2  loga1aua√ 2  loga1au√ 2
  u  √  loga A  loga B

Law 2  Using Law 1, we have

loga A  loga c a A

B
bB d  loga a A

B
b  loga B

so loga a A

B
b  loga A  loga B

Law 3  Let loga A  u. Then au  A, so

 loga1AC 2  loga1au 2C  loga1auC 2  uC  C loga A ■

ExaMPLE 1 ■  using the Laws of Logarithms to Evaluate Expressions
Evaluate each expression.
(a) log4 2  log4 32

(b) log2 80  log2 5

(c)  
1
3 log 8

SoLuTioN

(a)  log4 2  log4 32  log412 # 32 2  Law 1

    log4 64  3 Because 64  43

(b)  log2 80  log2 5  log2A  80 

5 B  Law 2

    log2 16  4 Because 16  24

(c)   
1
3 log 8  log 81/3 Law 3

    logA12B  Property of negative exponents

   < 0.301  Calculator

Now Try Exercises 9, 11, and 13 ■

■ Expanding and combining Logarithmic Expressions
The Laws of Logarithms allow us to write the logarithm of a product or a quotient as 
the sum or difference of logarithms. This process, called expanding a logarithmic ex-
pression, is  illustrated in the next example.

ExaMPLE 2 ■ Expanding Logarithmic Expressions
Use the Laws of Logarithms to expand each expression.

(a) log216x 2       (b) log51x3y6 2       (c) ln a ab

!3 c
b

SoLuTioN

(a) log216x 2  log2 6  log2 x Law 1

(b)  log51x3y6 2  log5 x
3  log5 y6  Law 1

    3 log5 x  6 log5 y Law 3
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392 CHAPTER 4 ■ Exponential and Logarithmic Functions

(c)  ln a ab

!3 c
b  ln1ab 2  ln !3 c  Law 2

    ln a  ln b  ln c1/3 Law 1

    ln a  ln b  1
3 ln c  Law 3

Now Try Exercises 23, 31, and 37 ■

The Laws of Logarithms also allow us to reverse the process of expanding that was 
done in Example 2. That is, we can write sums and differences of logarithms as a single 
logarithm. This process, called combining logarithmic expressions, is illustrated in the 
next  example.

ExaMPLE 3 ■ combining Logarithmic Expressions
Use the Laws of Logarithms to combine each expression into a single logarithm.

(a) 3 log x  1
2 log1x  1 2

(b) 3 ln s  1
2 ln t  4 ln1 t2  1 2

SoLuTioN

(a)  3 log x  1
2 log1x  1 2  log x3  log1x  1 2 1/2 Law 3

    log1x31x  1 2 1/2 2  Law 1

(b)  3 ln s  1
2 ln t  4 ln1 t 

2  1 2  ln s3  ln t1/2  ln1 t 
2  1 2 4    Law 3

    ln1s3t1/2 2  ln1 t 
2  1 2 4     Law 1

    ln a s3!t

1 t 
2  1 2 4 b     Law 2

Now Try Exercises 51 and 53 ■

Warning  Although the Laws of Logarithms tell us how to compute the logarithm of a 
product or a quotient, there is no corresponding rule for the logarithm of a sum or a 
difference. For instance,

 loga1x  y 2  loga x  loga y

In fact, we know that the right side is equal to loga1xy 2 . Also, don’t improperly simplify 
quotients or powers of logarithms. For instance,

 
log 6

log 2
 log a 6

2
b  and  1 log2 x 2 3  3 log2 x

Logarithmic functions are used to model a variety of situations involving human 
behavior. One such behavior is how quickly we forget things we have learned. For ex-
ample, if you learn algebra at a certain performance level (say, 90% on a test) and then 
don’t use algebra for a while, how much will you retain after a week, a month, or a 
year? Hermann Ebbinghaus (1850–1909) studied this phenomenon and formulated the 
law described in the next example.

ExaMPLE 4 ■ The Law of Forgetting
If a task is learned at a performance level P0, then after a time interval t the perfor-
mance level P satisfies

log P  log P0  c log1 t  1 2
where c is a constant that depends on the type of task and t is measured in months.

(a) Solve for P.

(b)  If your score on a history test is 90, what score would you expect to get on a sim-
ilar test after two months? After a year? (Assume that c  0.2.)

Forgetting what we’ve learned depends 
on how long ago we learned it.
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SECTION 4.4 ■ Laws of Logarithms 393

SoLuTioN

(a) We first combine the right-hand side.

 log P  log P0  c log1 t  1 2     Given equation

 log P  log P0  log1 t  1 2 c     Law 3

 log P  log 
P0

1 t  1 2 c     Law 2

 P 
P0

1 t  1 2 c     Because log is one-to-one

(b) Here P0  90, c  0.2, and t is measured in months.

 In 2 months:   t  2   and   P 
90

12  1 2 0.2 < 72

 In 1 year:   t  12   and   P 
90

112  1 2 0.2 < 54

   Your expected scores after 2 months and after 1 year are 72 and 54, 
respectively.

Now Try Exercise 73 ■

■ change of Base Formula
For some purposes we find it useful to change from logarithms in one base to loga-
rithms in another base. Suppose we are given loga x and want to find logb x. Let

y  logb x

We write this in exponential form and take the logarithm, with base a, of each side.

 by  x     Exponential form

 loga1by 2  loga x     Take loga of each side

 y loga b  loga x     Law 3

 y 
loga x

loga b
    Divide by loga b

This proves the following formula.

chaNgE oF BaSE ForMuLa

logb x 
loga x

loga b

In particular, if we put x  a, then loga a  1, and this formula becomes

logb a 
1

loga b

We can now evaluate a logarithm to any base by using the Change of Base Formula 
to express the logarithm in terms of common logarithms or natural logarithms and then 
using a calculator.

We may write the Change of Base 
 Formula as

logb x  a 1

loga b
b loga x

So logb x is just a constant multiple  

of loga x; the constant is 
1

loga b
.
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394 CHAPTER 4 ■ Exponential and Logarithmic Functions

ExaMPLE 5 ■  Evaluating Logarithms with the change  
of Base Formula

Use the Change of Base Formula and common or natural logarithms to evaluate each 
logarithm, rounded to five decimal places.

(a) log8 5        (b) log9 20

SoLuTioN

(a) We use the Change of Base Formula with b  8 and a  10:

log8 5 
log10 5

log10 8
< 0.77398

(b) We use the Change of Base Formula with b  9 and a  e:

log9 20 
ln 20

ln 9
< 1.36342

Now Try Exercises 59 and 61 ■

ExaMPLE 6 ■  using the change of Base Formula to graph   
a Logarithmic Function

Use a graphing calculator to graph f 1x 2  log6 x.

SoLuTioN  Calculators don’t have a key for log6, so we use the Change of Base For-
mula to write

f 1x 2  log6 x 
ln x

ln 6

Since calculators do have an ln  key, we can enter this new form of the function and  
graph it. The graph is shown in Figure 1.

Now Try Exercise 67 ■

coNcEPTS
 1. The logarithm of a product of two numbers is the same as

  the   of the logarithms of these numbers. So 

  log5125 # 125 2        .

 2. The logarithm of a quotient of two numbers is the same  

as the   of the logarithms of these numbers. So 

log5 
A 25
125 B         .

 3. The logarithm of a number raised to a power is the same as  

the   times the logarithm of the number. So  

log512510 2    #     .

 4. We can expand log a x2 y

z
b  to get    .

 5.  We can combine 2 log x  log y  log z to get  .

 6. (a)  Most calculators can find logarithms with base   

and base    . To find logarithms with different 

bases, we use the   Formula. To find 
log712, we write

log7 12 
log     

log     
<  

  (b)  Do we get the same answer if we perform the calculation 
in part (a) using ln in place of log?

7–8 ■ True or False?

 7. (a) log1A  B 2  is the same as log A  log B.

(b) log AB is the same as log A  log B.

 8. (a)  log 
A

B
 is the same as log A  log B.

(b) 
log A

log B
 is the same as log A  log B.

4.4 ExErciSES

2

_1

0 36

FigurE 1 

f 1x 2  log6 x 
ln x

ln 6
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SkiLLS
9–22 ■ Evaluating Logarithms  Use the Laws of Logarithms to 
evaluate the expression.

 9. log 50  log 200 10. log6 9  log6 24

 11. log2 60  log2 15 12. log3 135  log3 45

 13. 1
4 log3 81 14.  

1
3 log3 27

 15. log5 !5 16. log5 
1

!125

 17. log2 6  log215  log2 20

 18. log3 100  log3 18  log3 50

 19. log4 16100 20. log2 8
33

 21. log1 log 1010,000 2  22. ln1 ln ee200 2

23–48 ■ Expanding Logarithmic Expressions  Use the Laws of 
Logarithms to expand the expression.

 23. log3 8x 24. log6 7r

 25. log3 2xy 26. log5 4st

27. ln a3 28. log "t5

29. log21xy 2 10
 30. ln !ab

 31. log21AB2 2  32. log3Ax !y B

 33. log3
2x

y
 34. ln 

r

3s

35. log5 a 3x2

y3 b  36. log2 a s5

7t2 b

37. log3 

"3x5

y
 38. log 

y3

!2x

 39. log a x3y4

z6 b  
40. loga a x2

yz3 b

41. ln "x4  2 42. log "3 x2  4

 43. ln a x Ä
y

z
b  44. ln 

3x2

1x  1 2 10

 45. log "4 x2  y2 46. log a x

!3 1  x
b

 47. log Å
x2  4

1x2  1 2 1x3  7 2 2  48. log #x"y!z

49–58 ■ combining Logarithmic Expressions  Use the Laws of 
Logarithms to combine the expression.

 49. log4 6  2 log4 7 

50. 1
2 log2 5  2 log2 7

 51. 2 log x  3 log1x  1 2
52. 3 ln 2  2 ln x  1

2 ln1x  4 2
 53. 4  log x  1

3  log1x2  1 2  2  log1x  1 2
 54. log51x2  1 2  log51x  1 2
 55. ln1a  b 2  ln1a  b 2  2  ln c

 56. 21 log5 x  2  log5 y  3 log5 z 2

 57. 1
3 log1x  2 2 3  1

2 3 log x4  log1x2  x  6 2 2 4
 58. loga b  c loga d  r loga s

59–66 ■ change of Base Formula  Use the Change of  
Base Formula and a calculator to evaluate the logarithm, 
rounded to six decimal places. Use either natural or common 
logarithms.

 59. log2 5 60. log5 2

 61. log3 16 62. log6 92

 63. log7 2.61 64. log6 532

 65. log4 125 66. log12 2.5

 67. change of Base Formula  Use the Change of Base Formula 
to show that

log3 x 
ln x

ln 3

  Then use this fact to draw the graph of the function 
f 1x 2  log3 x.

SkiLLS Plus
 68. Families of Functions  Draw graphs of the family of func-

tions y  loga x for a  2, e, 5, and 10 on the same screen, 
using the viewing rectangle 30, 54 by 33, 34. How are these 
graphs related?

 69. change of Base Formula  Use the Change of Base Formula 
to show that

log e 
1

ln 10

 70. change of Base Formula  Simplify: 1 log2 5 2 1 log5 7 2
 71. a Logarithmic identity  Show that 

ln1x  "x2  1 2  ln1x  "x2  1 2

aPPLicaTioNS
 72. Forgetting  Use the Law of Forgetting (Example 4) to esti-

mate a student’s score on a biology test two years after he got 
a score of 80 on a test covering the same material. Assume 
that c  0.3 and t is measured in months.

 73. Wealth distribution  Vilfredo Pareto (1848–1923) observed 
that most of the wealth of a country is owned by a few mem-
bers of the population. Pareto’s Principle is

log P  log c  k log W

  where W is the wealth level (how much money a person has) 
and P is the number of people in the population having that 
much money.

(a) Solve the equation for P.

(b)  Assume that k  2.1 and c  8000, and that W is mea-
sured in millions of dollars. Use part (a) to find the num-
ber of people who have $2 million or more. How many 
people have $10 million or more?
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 74. Biodiversity  Some biologists model the number of species S 
in a fixed area A (such as an island) by the species-area 
relationship

log S  log c  k log A

  where c and k are positive constants that depend on the type 
of species and habitat.

(a) Solve the equation for S.

(b)  Use part (a) to show that if k  3, then doubling the area 
increases the number of species eightfold.

 75. Magnitude of Stars  The magnitude M of a star is a measure 
of how bright a star appears to the human eye. It is defined 
by 

M  2.5 loga B

B0
b

  where B is the actual brightness of the star and B0 is a 
constant.

(a) Expand the right-hand side of the equation.

(b)  Use part (a) to show that the brighter a star, the less its 
magnitude.

(c)  Betelgeuse is about 100 times brighter than Albiero. Use 
part (a) to show that Betelgeuse is 5 magnitudes less 
bright than Albiero.

diScuSS ■ diScovEr ■ ProvE ■ WriTE
 76. diScuSS: True or False?  Discuss each equation, and determine 

whether it is true for all possible values of the variables. (Ignore 
values of the variables for which any term is undefined.)

(a) log a x

y
b 

log x

log y

(b) log21x  y 2  log2 x  log2 y

(c) log5 a
a

b2 b  log5 a  2 log5 b

(d) log 2z  z log 2

(e) 1 log P 2 1 log Q 2  log P  log Q

(f ) 
log a

log b
 log a  log b

(g) 1 log2 7 2 x  x log2 7

(h) loga a
a  a

(i) log1x  y 2 
log x

log y

( j) ln a 1

A
b  ln A

 77. diScuSS: Find the Error  What is wrong with the following 
argument?

 log 0.1  2 log 0.1

  log10.1 2 2
  log 0.01

 log 0.1  log 0.01

 0.1  0.01

 78. ProvE: Shifting, Shrinking, and Stretching graphs of  
Functions  Let f 1x 2  x2. Show that f 12x 2  4f 1x 2 , and 
explain how this shows that shrinking the graph of f horizon-
tally has the same effect as stretching it vertically. Then use 
the identities e2x  e2ex and ln12x 2  ln 2  ln x to show 
that for g1x 2  ex a horizontal shift is the same as a vertical 
stretch and for h1x 2  ln x a horizontal shrinking is the same 
as a vertical shift.

4.5 ExPoNENTiaL aNd LogariThMic EQuaTioNS
■ Exponential Equations ■ Logarithmic Equations ■ compound interest

In this section we solve equations that involve exponential or logarithmic functions. The 
techniques that we develop here will be used in the next section for solving applied 
 problems.

■ Exponential Equations
An exponential equation is one in which the variable occurs in the exponent. Some 
exponential equations can be solved by using the fact that exponential functions are 
one-to-one. This means that 

ax  ay 1 x  y

We use this property in the next example. 
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SECTION 4.5 ■ Exponential and Logarithmic Equations 397

ExaMPLE 1 ■ Exponential Equations
Solve the exponential equation.

(a) 5x  125      (b) 52x  5x1

SoLuTioN

(a)  We first express 125 as a power of 5 and then use the fact that the exponential 
function f1x 2  5x is one-to-one.

 5x  125    Given equation

 5x  53     Because 125  53

 x  3     One-to-one property

  The solution is x  3.

(b)  We first use the fact that the function f1x 2  5x is one-to-one.

 52x  5x1     Given equation

 2x  x  1    One-to-one property

 x  1     Solve for x

  The solution is x  1.

Now Try Exercises 3 and 7 ■

The equations in Example 1 were solved by comparing exponents. This method is 
not suitable for solving an equation like 5x  160 because 160 is not easily expressed 
as a power of the base 5. To solve such equations, we take the logarithm of each side 
and use Law 3 of logarithms to “bring down the exponent.” The following guidelines 
describe the process.

guidELiNES For SoLviNg ExPoNENTiaL EQuaTioNS

1. Isolate the exponential expression on one side of the equation.

2.  Take the logarithm of each side, then use the Laws of Logarithms to “bring 
down the exponent.”

3. Solve for the variable.

ExaMPLE 2 ■ Solving an Exponential Equation
Consider the exponential equation 3x2  7. 

(a) Find the exact solution of the equation expressed in terms of logarithms.

(b)  Use a calculator to find an approximation to the solution rounded to six decimal 
places.

Law 3: loga A
C  C loga A

diScovErY ProjEcT

Super origami

Origami is the traditional Japanese art of folding paper to create illustrations. In 
this project we explore some thought experiments about folding paper. Suppose 
that you fold a sheet of paper in half, then fold it in half again, and continue to 
fold the paper in half. How many folds are needed to obtain a mile-high stack 
of paper? To answer this question, we need to solve an exponential equation. In 
this project we use logarithms to answer this and other thought questions about 
folding paper. You can find the project at www.stewartmath.com.
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398 CHAPTER 4 ■ Exponential and Logarithmic Functions

SoLuTioN 

(a) We take the common logarithm of each side and use Law 3.

 3x2  7   Given equation

 log13x2 2  log 7   Take log of each side

 1x  2 2 log 3  log 7   Law 3 (bring down exponent)

 x  2 
log 7

log 3
  Divide by log 3

 x 
log 7

log 3
 2  Subtract 2

  The exact solution is x 
log 7

log 3
 2.

(b)  Using a calculator, we find the decimal approximation x < 0.228756.

Now Try Exercise 15 ■

ExaMPLE 3 ■ Solving an Exponential Equation
Solve the equation 8e2x  20.

SoLuTioN  We first divide by 8 to isolate the exponential term on one side of the 
equation.

 8e2x  20   Given equation

 e2x  20
8   Divide by 8

 ln e2x  ln 2.5   Take ln of each side

 2x  ln 2.5   Property of ln

 x 
ln 2.5

2
  Divide by 2 (exact solution)

 < 0.458   Calculator (approximate solution)

Now Try Exercise 17 ■

ExaMPLE 4 ■  Solving an Exponential Equation algebraically  
and graphically

Solve the equation e32x  4 algebraically and graphically.

SoLuTioN 1: algebraic
Since the base of the exponential term is e, we use natural logarithms to solve this 
 equation.

 e32x  4   Given equation

 ln1e32x 2  ln 4   Take ln of each side

 3  2x  ln 4   Property of ln

 2x  3  ln 4   Subtract 3

 x  1
2 13  ln 4 2 < 0.807  Multiply by  

1
2

You should check that this answer satisfies the original equation.

We could have used natural logarithms 
instead of common logarithms. In  
fact, using the same steps, we get

x 
ln 7

ln 3
 2 < 0.228756

chEck Your aNSWEr

Substituting x  0.228756 into the 
original equation and using a calcula-
tor, we get

310.22875622 < 7 ✓

chEck Your aNSWEr

Substituting x  0.458 into the original 
equation and using a calculator, we get

8e210.4582 < 20 ✓
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SoLuTioN 2: graphical
We graph the equations y  e32x and y  4 in the same viewing rectangle as in  
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point of  
intersection of the two graphs, we see that x ^ 0.81.

Now Try Exercise 21 ■

ExaMPLE 5 ■ an Exponential Equation of Quadratic Type
Solve the equation e2x  ex  6  0.

SoLuTioN  To isolate the exponential term, we factor.

  e2x  ex  6  0  Given equation

  1ex 2 2  ex  6  0  Law of Exponents

  1ex  3 2 1ex  2 2  0  Factor (a quadratic in ex)

 ex  3  0  or   ex  2  0  Zero-Product Property

 ex  3  ex  2

The equation ex  3 leads to x  ln 3. But the equation ex  2 has no solution 
because ex  0 for all x. Thus x  ln 3 ^ 1.0986 is the only solution. You should 
check that this answer satisfies the original equation.

Now Try Exercise 39 ■

ExaMPLE 6 ■ an Equation involving Exponential Functions
Solve the equation  3xex  x2ex  0.

SoLuTioN  First we factor the left side of the equation.

  3xex  x2ex  0 Given equation

  x13  x 2ex  0 Factor out common factors

  x13  x 2  0 Divide by ex (because ex 2 0)

 x  0  or  3  x  0 Zero-Product Property

Thus the solutions are x  0 and x  3.

Now Try Exercise 45 ■

■ Logarithmic Equations
A logarithmic equation is one in which a logarithm of the variable occurs. Some loga-
rithmic equations can be solved by using the fact that logarithmic functions are one-to-
one. This means that 

loga x  loga y 1 x  y

We use this property in the next example. 

ExaMPLE 7 ■ Solving a Logarithmic Equation
Solve the equation log1x2  1 2  log1x  2 2  log1x  3 2 .

If we let „  ex, we get the quadratic 
equation

„2  „  6  0

which factors as

1„  3 2 1„  2 2  0

5

0
2

y=4

y=e3_2x

FigurE 1

chEck Your aNSWEr

x  0:

  310 2e0  02e0  0 ✓

x  3:

 313 2e3  13 2 2e3

      9e3  9e3  0 ✓
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400 CHAPTER 4 ■ Exponential and Logarithmic Functions

SoLuTioN  First we combine the logarithms on the right-hand side, and then we use 
the one-to-one property of logarithms.  

 log51x2  1 2  log51x  2 2  log51x  3 2     Given equation

 log51x2  1 2  log5 3 1x  2 2 1x  3 2 4     Law 1: loga AB  loga A  loga B

 log51x2  1 2  log51x2  x  6 2     Expand 

 x2  1  x2  x  6     log is one-to-one (or raise 5 to each side)

 x  7     Solve for x

The solution is x  7. (You can check that x  7 satisfies the original equation.)

Now Try Exercise 49 ■

The method of Example 7 is not suitable for solving an equation like log5 x  13 
because the right-hand side is not expressed as a logarithm (base 5). To solve such equa-
tions, we use the following guidelines.

guidELiNES For SoLviNg LogariThMic EQuaTioNS

1.  Isolate the logarithmic term on one side of the equation; you might first 
need to combine the logarithmic terms.

2.  Write the equation in exponential form (or raise the base to each side of the 
equation).

3. Solve for the variable.

ExaMPLE 8 ■ Solving Logarithmic Equations
Solve each equation for x.

(a) ln x  8        

(b) log2125  x 2  3

SoLuTioN

(a)    ln x  8     Given equation

     x  e8    Exponential form

  Therefore x  e8 ^ 2981.
    We can also solve this problem another way.

 ln x  8   Given equation

 eln x  e8  Raise e to each side

 x  e8  Property of ln

(b) The first step is to rewrite the equation in exponential form.

 log2125  x 2  3   Given equation

 25  x  23   Exponential form (or raise 2 to each side)

 25  x  8

 x  25  8  17

Now Try Exercises 55 and 59 ■

chEck Your aNSWEr

If x  17, we get

log2125  17 2  log2 8  3 ✓
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ExaMPLE 9 ■ Solving a Logarithmic Equation
Solve the equation 4  3 log12x 2  16.

SoLuTioN  We first isolate the logarithmic term. This allows us to write the equation 
in exponential form.

 4  3 log12x 2  16   Given equation

 3 log12x 2  12   Subtract 4

 log12x 2  4   Divide by 3

 2x  104   Exponential form (or raise 10 to each side)

 x  5000  Divide by 2

Now Try Exercise 61 ■

ExaMPLE 10 ■  Solving a Logarithmic Equation algebraically  
and graphically

Solve the equation log1x  2 2  log1x  1 2  1 algebraically and graphically.

SoLuTioN 1: algebraic
We first combine the logarithmic terms, using the Laws of Logarithms.

 log 3 1x  2 2 1x  1 2 4  1   Law 1

 1x  2 2 1x  1 2  10  Exponential form (or raise 10 to each side)

 x2  x  2  10  Expand left side

 x2  x  12  0   Subtract 10

 1x  4 2 1x  3 2  0   Factor

 x  4  or  x  3

We check these potential solutions in the original equation and find that x  4 is 
not a solution (because logarithms of negative numbers are undefined), but x  3 is a 
solution. (See Check Your Answers.)

SoLuTioN 2: graphical
We first move all terms to one side of the equation:

log1x  2 2  log1x  1 2  1  0

Then we graph

y  log1x  2 2  log1x  1 2  1

as in Figure 2. The solutions are the x-intercepts of the graph. Thus the only solution 
is x ^ 3.

Now Try Exercise 63 ■

ExaMPLE 11 ■ Solving a Logarithmic Equation graphically
Solve the equation x2  2 ln1x  2 2 .
SoLuTioN  We first move all terms to one side of the equation.

x2  2 ln1x  2 2  0

Then we graph

y  x2  2 ln1x  2 2

In Example 11 it’s not possible to iso-
late x algebraically, so we must solve 
the equation graphically.

chEck Your aNSWEr

If x  5000, we get

 4  3 log 215000 2  4  3 log 10,000

  4  314 2
  16 ✓

chEck Your aNSWErS

x  4:

log14  2 2  log14  1 2
 log12 2  log15 2

 undefined ✗

x  3:

 log13  2 2  log13  1 2
   log 5  log 2  log15 # 2 2
   log 10  1 ✓

FigurE 2

3

0 6

_3
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402 CHAPTER 4 ■ Exponential and Logarithmic Functions

as in Figure 3. The solutions are the x-intercepts of the graph. Zooming in on the  
x- intercepts, we see that there are two solutions:

x < 0.71  and  x < 1.60

Now Try Exercise 69 ■

Logarithmic equations are used in determining the amount of light that reaches 
various depths in a lake. (This information helps biologists to determine the types of 
life a lake can support.) As light passes through water (or other transparent materials 
such as glass or plastic), some of the light is absorbed. It’s easy to see that the murkier 
the water, the more light is absorbed. The exact relationship between light absorption 
and the distance light travels in a material is described in the next example.

ExaMPLE 12 ■ Transparency of a Lake
If I0 and I denote the intensity of light before and after going through a material  
and x is the distance (in feet) the light travels in the material, then according to the 
Beer- Lambert Law,

 

1

k
 ln a I

I0
b  x

where k is a constant depending on the type of material.

(a) Solve the equation for I.

(b)  For a certain lake k  0.025, and the light intensity is I0  14 lumens (lm). Find 
the light intensity at a depth of 20 ft.

SoLuTioN

(a) We first isolate the logarithmic term.

  

1

k
 ln a I

I0
b  x   Given equation

 ln a I

I0
b  kx   Multiply by k

 
I

I0
 ekx   Exponential form

 I  I0ekx  Multiply by I0

(b) We find I using the formula from part (a).

 I  I0ekx   From part (a)

  14e 10.02521202  I0  14, k  0.025, x  20

 < 8.49   Calculator

  The light intensity at a depth of 20 ft is about 8.5 lm.

Now Try Exercise 99 ■

■ compound interest
Recall the formulas for interest that we found in Section 4.1. If a principal P is invested at 
an interest rate r for a period of t years, then the amount A of the investment is given by

 A  P11  r 2   Simple interest (for one year)

 A1 t 2  Pa 1 
r
n
b

nt

  Interest compounded n times per year

 A1 t 2  Pert   Interest compounded continuously

The intensity of light in a lake  
diminishes with depth.

2

_2 3

_2

FigurE 3
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SECTION 4.5 ■ Exponential and Logarithmic Equations 403

We can use logarithms to determine the time it takes for the principal to increase to 
a given amount.

ExaMPLE 13 ■ Finding the Term for an investment to double
A sum of $5000 is invested at an interest rate of 5% per year. Find the time required for 
the money to double if the interest is compounded according to the following methods.

(a) Semiannually         (b) Continuously

SoLuTioN

(a)  We use the formula for compound interest with P  $5000, A1t 2  $10,000,  
r  0.05, and n  2, and solve the resulting exponential equation for t.

 5000 a 1 
0.05

2
b

2t

 10,000   P a1 
r

n
b

nt

 A

 11.025 2 2t  2   Divide by 5000

 log 1.0252t  log 2   Take log of each side

 2t log 1.025  log 2   Law 3 (bring down the exponent)

 t 
log 2

2 log 1.025
  Divide by 2 log 1.025

 t < 14.04   Calculator

  The money will double in 14.04 years.

(b)  We use the formula for continuously compounded interest with P  $5000, 
A1 t 2  $10,000, and r  0.05 and solve the resulting exponential equation for t.

 5000e0.05t  10,000  Pert  A

 e0.05t  2   Divide by 5000

 ln e0.05t  ln 2   Take ln of each side

 0.05t  ln 2   Property of ln

 t 
ln 2

0.05
  Divide by 0.05

 t < 13.86   Calculator

  The money will double in 13.86 years.

Now Try Exercise 89 ■

ExaMPLE 14 ■ Time required to grow an investment
A sum of $1000 is invested at an interest rate of 4% per year. Find the time required 
for the amount to grow to $4000 if interest is compounded continuously.

SoLuTioN  We use the formula for continuously compounded interest with P  $1000, 
A1 t 2  $4000, and r  0.04 and solve the resulting exponential equation for t.

 1000e0.04t  4000   Pert  A

 e0.04t  4   Divide by 1000

 0.04t  ln 4   Take ln of each side

 t 
ln 4

0.04
  Divide by 0.04

 t < 34.66  Calculator

The amount will be $4000 in about 34 years and 8 months.

Now Try Exercise 91 ■

Radiocarbon Dating is a method that 
archeologists use to determine the age of 
ancient objects. The carbon dioxide in 
the atmosphere always contains a fixed 
fraction of radioactive carbon, carbon-14 
(14C), with a half-life of about 5730 years. 
Plants absorb carbon dioxide from the 
atmosphere, which then makes its way to 
animals through the food chain. Thus, all 
living creatures contain the same fixed 
proportions of 14C to nonradioactive 12C 
as the  atmosphere.

After an organism dies, it stops assim-
ilating 14C, and the amount of 14C in it 
begins to decay exponentially. We can 
then determine the time that has elapsed 
since the death of the organism by mea-
suring the amount of 14C left in it.

For example, if a donkey bone con-
tains 73% as much 14C as a living donkey 
and it died t years ago, then by the for-
mula for radioactive decay (Section 4.6),

0.73  (1.00)e(t ln 2)/5730

We solve this exponential equation to 
find t < 2600, so the bone is about  
2600 years old.
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coNcEPTS
 1. Let’s solve the exponential equation 2ex  50.

(a)  First, we isolate ex to get the equivalent equation 

   .

(b)  Next, we take ln of each side to get the equivalent

 equation    .

(c) Now we use a calculator to find x <    .

 2. Let’s solve the logarithmic equation 

log 3  log1x  2 2  log x

(a)  First, we combine the logarithms on the LHS to get the 

 equivalent equation    .

(b) Next, we use the fact that log is one-to-one to get the

 equivalent equation    .

(c) Now we find x     .

SkiLLS
3–10 ■ Exponential Equations  Find the solution of the expo-
nential equation, as in Example 1.

 3. 5x1  125  4. e x2

 e9

 5. 52x3  1  6. 102x3  1
10

 7. 72x3  765x  8. e12x  e3x5

 9. 6x21  61x2

 10. 102x23  109x2

11–38 ■ Exponential Equations  (a) Find the exact solution of 
the exponential equation in terms of logarithms. (b) Use a calcu-
lator to find an approximation to the solution rounded to six deci-
mal places.

 11. 10x  25 12. 10x  4

 13. e5x  10 14. e0.4x  8

 15. 21x  3 16. 32x1  5

 17. 3ex  10 18. 2e12x  17

19. 30011.025 2 12t  1000 20. 1011.375 2 10t  50

 21. e14x  2 22. e35x  16

 23. 257x  15 24. 23x  34

 25. 3x/14  0.1 26. 5x/100  2

27. 411  105x 2  9 28. 215  3x1 2  100

29. 8  e14x  20 30. 1  e4x1  20

31. 4x  212x  50 32. 125x  53x1  200

 33. 5x  4x1 34. 101x  6x

35. 23x1  3x2 36. 7x/2  51x

 37. 
50

1  ex  4 38. 
10

1  ex  2

39–44 ■ Exponential Equations of Quadratic Type  Solve the 
equation.

 39. e2x  3ex  2  0 40. e2x  e x  6  0

 41. e4x  4e2x  21  0 42. 34x  32x  6  0

43. 2x  1012x 2  3  0 44. e x  15ex  8  0

45–48 ■ Equations involving Exponential Functions  Solve the 
equation.

 45. x22x  2x  0 46. x210x  x10x  2110x 2
47. 4x3e3x  3x4e3x  0 48. x2e x  xe x  e x  0

49–54 ■ Logarithmic Equations  Solve the logarithmic equation 
for x, as in Example 7.

 49. log x  log1x  1 2  log14x 2
50. log5  x  log51x  1 2  log5 20

51. 2 log x  log 2  log13x  4 2
52. lnAx  1

2 B  ln 2  2 ln x

53. log2 3  log2 x  log2 5  log21x  2 2
54. log41x  2 2  log4 3  log4 5  log412x  3 2

55–68 ■ Logarithmic Equations  Solve the logarithmic equation 
for x.

 55. ln x  10 56. ln12  x 2  1

 57. log x  2 58. log1x  4 2  3

 59. log13x  5 2  2 60. log312  x 2  3

 61. 4  log13  x 2  3

 62. log21x2  x  2 2  2

 63. log2 x  log21x  3 2  2

 64. log x  log1x  3 2  1

65. log9 1x  5 2  log9 1x  3 2  1

66. ln1x  1 2  ln1x  2 2  1

67. log51x  1 2  log51x  1 2  2

 68. log31x  15 2  log31x  1 2  2

69–76 ■ Solving Equations graphically  Use a graphing device 
to find all solutions of the  equation, rounded to two decimal 
places.

 69. ln x  3  x 70. log x  x2  2

 71. x3  x  log1x  1 2  72. x  ln14  x2 2
 73. e x  x 74. 2x  x  1

75. 4x  !x 76. e x2

 2  x3  x

77–78 ■ More Exponential and Logarithmic Equations  Solve 
the equation for x.

77. 22/log5 x  1
16  78. log2 1 log3 x 2  4

4.5 ExErciSES
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SkiLLS Plus

79–82 ■ Solving inequalities  Solve the inequality.

 79. log1x  2 2  log19  x 2  1

 80. 3 # log2 x # 4

 81. 2  10x  5

 82. x 2ex  2ex  0

83–86 ■ inverse Functions  Find the inverse function of f.

83. f 1x 2  22x

 84. f 1x 2  3x1

85. f 1x 2  log21x  1 2
 86. f 1x 2  log 3x

87–88 ■ Special Logarithmic Equations  Find the value(s) of x 
for which the equation is true.

 87. log1x  3 2  log x  log 3

 88. 1 log x 2 3  3 log x

aPPLicaTioNS
 89. compound interest  A man invests $5000 in an account that 

pays 8.5% interest per year, compounded quarterly.

(a) Find the amount after 3 years.

(b) How long will it take for the investment to double?

 90. compound interest  A woman invests $6500 in an account 
that pays 6% interest per year, compounded continuously.

(a) What is the amount after 2 years?

(b) How long will it take for the amount to be $8000?

 91. compound interest  Find the time required for an invest-
ment of $5000 to grow to $8000 at an interest rate of 7.5% 
per year, compounded quarterly.

 92. compound interest  Nancy wants to invest $4000 in saving 
certificates that bear an interest rate of 9.75% per year, com-
pounded semiannually. How long a time period should she 
choose to save an amount of $5000?

 93. doubling an investment  How long will it take for an invest-
ment of $1000 to double in value if the interest rate is 8.5% 
per year, compounded continuously?

 94. interest rate  A sum of $1000 was invested for 4 years,  
and the interest was compounded semiannually. If this sum 
amounted to $1435.77 in the given time, what was the inter-
est rate?

 95. radioactive decay  A 15-g sample of radioactive iodine 
 decays in such a way that the mass remaining after  
t days is given by m1 t 2  15e0.087t, where m1 t 2  is  
measured in grams. After how many days are there only  
5 g remaining?

 96. Sky diving  The velocity of a sky diver t seconds after 
 jumping is given by √ 1 t 2  8011  e0.2t 2 . After how many 
seconds is the velocity 70 ft/s?

 97. Fish Population  A small lake is stocked with a certain 
 species of fish. The fish population is modeled by the 
function

P 
10

1  4e0.8t

  where P is the number of fish in thousands and t is  
measured in years since the lake was stocked.

(a) Find the fish population after 3 years.

(b)  After how many years will the fish population reach 
5000 fish?

 98. Transparency of a 
Lake  Environmental sci-
entists measure the inten-
sity of light at various 
depths in a lake to find the 
“transparency” of the 
water. Certain levels of 
transparency are required 
for the biodiversity of the 
submerged macrophyte 
population. In a certain 
lake the intensity of light 
at depth x is given by

I  10e0.008x

  where I is measured in lumens and x in feet.

(a) Find the intensity I at a depth of 30 ft.

(b) At what depth has the light intensity dropped to I  5?

 99. atmospheric Pressure  Atmospheric pressure P (in kilopas-
cals, kPa) at altitude h (in kilometers, km) is governed by 
the  formula

lna P

P0
b   

h

k

  where k  7 and P0  100 kPa are constants.

(a) Solve the equation for P.

(b) Use part (a) to find the pressure P at an altitude of  
4 km.

 100. cooling an Engine  Suppose you’re driving your car on a 
cold winter day (20F outside) and the engine overheats (at 
about 220F). When you park, the engine begins to cool 
down. The temperature T of the engine t minutes after you 
park satisfies the equation

ln a T  20

200
b  0.11t

(a) Solve the equation for T.

(b)  Use part (a) to find the temperature of the engine after  
20 min 1t  202.

 101. Electric circuits  An electric circuit contains a battery that 
produces a voltage of 60 volts (V), a resistor with a resis-
tance of 13 ohms (), and an inductor with an inductance 
of 5 henrys (H), as shown in the figure on the following 
page. Using calculus, it can be shown that the current 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



406 CHAPTER 4 ■ Exponential and Logarithmic Functions

I  I1 t 2  (in amperes, A) t seconds after the switch is closed 
is I  60

13 11  e13t/5 2 .
(a)  Use this equation to express the time t as a function of 

the current I.

(b) After how many seconds is the current 2 A?

60 V

13 �

5 H

Switch

 102. Learning curve  A learning curve is a graph of a function 
P1 t 2  that measures the performance of someone learning a 
skill as a function of the training time t. At first, the rate of 
learning is rapid. Then, as performance increases and 
approaches a maximal value M, the rate of learning 
decreases. It has been found that the function

P1 t 2  M  Cekt

  where k and C are positive constants and C  M is a rea-
sonable model for learning.

(a)  Express the learning time t as a function of the per-
formance level P.

(b)  For a pole-vaulter in training, the learning curve is  
given by

P1 t 2  20  14e0.024t

  where P1 t 2  is the height he is able to pole-vault after 
t months. After how many months of training is he able 
to vault 12 ft?

(c) Draw a graph of the learning curve in part (b).

diScuSS ■ diScovEr ■ ProvE ■ WriTE
 103. diScuSS: Estimating a Solution  Without actually solving 

the equation, find two whole numbers between which the 
solution of 9x  20 must lie. Do the same for 9x  100. 
Explain how you reached your conclusions.

 104.  diScuSS ■ diScovEr: a Surprising Equation  Take loga-
rithms to show that the equation

x1/log x  5

  has no solution. For what values of k does the equation

x1/log x  k

   have a solution? What does this tell us about the graph of 
the function f 1x 2  x1/log x? Confirm your answer using a 
graphing device.

 105.  diScuSS: disguised Equations  Each of these equations 
can be transformed into an equation of linear or quadratic 
type by applying the hint. Solve each equation.

(a) 1x  1 2 log1x12  1001x  1 2
 [Hint: Take log of each side.]

(b) log2 x  log4 x  log8 x  11
 [Hint: Change all logs to base 2.]

(c) 4x  2x1  3
 [Hint: Write as a quadratic in 2x.]

4.6 ModELiNg WiTh ExPoNENTiaL FuNcTioNS
■ Exponential growth (doubling Time) ■ Exponential growth (relative growth rate)  
■ radioactive decay ■ Newton’s Law of cooling

Many processes that occur in nature, such as population growth, radioactive decay, heat 
diffusion, and numerous others, can be modeled by using exponential functions. In this 
section we study exponential models.

■ Exponential growth (doubling Time)
Suppose we start with a single bacterium, which divides every hour. After one hour we 
have 2 bacteria, after two hours we have 22 or 4 bacteria, after three hours we have 23 
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SECTION 4.6 ■ Modeling with Exponential Functions 407

or 8 bacteria, and so on (see Figure 1). We see that we can model the bacteria population 
after t hours by f 1 t 2  2t.

FigurE 1 Bacteria population

0 1 2 3 4 5 6

If we start with 10 of these bacteria, then the population is modeled by f 1 t 2  10 # 2t. 
A slower-growing strain of bacteria doubles every 3 hours; in this case the population 
is modeled by f 1 t 2  10 # 2t/3. In general, we have the following.

ExPoNENTiaL groWTh (douBLiNg TiME)

If the initial size of a population is n0 and the doubling time is a, then the size 
of the population at time t is 

n1 t 2  n02t/a

where a and t are measured in the same time units (minutes, hours, days, years, 
and so on).

ExaMPLE 1 ■ Bacteria Population 
Under ideal conditions a certain bacteria population doubles every three hours. Ini-
tially, there are 1000 bacteria in a colony.

(a) Find a model for the bacteria population after t hours.

(b) How many bacteria are in the colony after 15 hours?

(c) After how many hours will the bacteria count reach 100,000?

SoLuTioN  

(a) The population at time t is modeled by 

n1 t 2  1000 # 2t/3

  where t is measured in hours.

(b) After 15 hours the number of bacteria is 

n115 2  1000 # 215/3  32,000

(c)  We set n1 t 2  100,000 in the model that we found in part (a) and solve the 
resulting exponential equation for t.

 100,000  1000 # 2t/3     n1 t 2  1000 # 2t/3

 100  2t/3     Divide by 1000

 log 100  log 2t/3     Take log of each side

 2 
t

3
  log 2     Properties of log

 t 
6

log 2
< 19.93    Solve for t

  The bacteria level reaches 100,000 in about 20 hours.

Now Try Exercise 1 ■
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408 CHAPTER 4 ■ Exponential and Logarithmic Functions

ExaMPLE 2 ■ rabbit Population 
A certain breed of rabbit was introduced onto a small island 8 months ago. The  
current rabbit population on the island is estimated to be 4100 and doubling every  
3 months. 

(a) What was the initial size of the rabbit population?

(b) Estimate the population 1 year after the rabbits were introduced to the island.

(c) Sketch a graph of the rabbit population.

SoLuTioN  

(a) The doubling time is a  3, so the population at time t is 

n1 t 2  n02t/3    Model

   where n0 is the initial population. Since the population is 4100 when t is  
8 months, we have 

 n18 2  n028/3    From model

 4100  n028/3    Because n18 2  4100

 n0 
4100

28/3
    Divide by 28/3 and switch sides

 n0 < 645     Calculator

  Thus we estimate that 645 rabbits were introduced onto the island. 

(b)  From part (a) we know that the initial population is n0  645, so we can model 
the population after t months by 

n1 t 2  645 # 2t/3    Model

  After 1 year t  12, so

n112 2  645 # 212/3  10,320

  So after 1 year there would be about 10,000 rabbits.

(c) We first note that the domain is t $ 0. The graph is shown in Figure 2.

0 20

20,000

FigurE 2 n1 t 2  645 # 2t/3

Now Try Exercise 3 ■

■ Exponential growth (relative growth rate)
We have used an exponential function with base 2 to model population growth (in terms 
of the doubling time). We could also model the same population with an exponential 
function with base 3 (in terms of the tripling time). In fact, we can find an exponential 
model with any base. If we use the base e, we get a population model in terms of the 
relative growth rate r: the rate of population growth expressed as a proportion of the 
population at any time. In this case r is the “instantaneous” growth rate. (In calculus  
the concept of instantaneous rate is given a precise meaning.) For instance, if r  0.02, 
then at any time t the growth rate is 2% of the population at time t.

The growth of a population with rela-
tive growth rate r is analogous to the 
growth of an investment with continu-
ously compounded interest rate r.
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SECTION 4.6 ■ Modeling with Exponential Functions 409

ExPoNENTiaL groWTh (rELaTivE groWTh raTE)

A population that experiences exponential growth increases according to the 
model

n1 t 2  n0e rt

where  n1 t 2  population at time t

  n0  initial size of the population

  r   relative rate of growth (expressed as a proportion of the 
 population)

  t  time

Notice that the formula for population growth is the same as that for continuously 
compounded interest. In fact, the same principle is at work in both cases: The growth 
of a population (or an investment) per time period is proportional to the size of  
the population (or the amount of the investment). A population of 1,000,000 will 
increase more in one year than a population of 1000; in exactly the same way, an 
investment of $1,000,000 will increase more in one year than an investment of 
$1000.

In the following examples we assume that the populations grow exponentially.

ExaMPLE 3 ■ Predicting the Size of a Population
The initial bacterium count in a culture is 500. A biologist later makes a sample  
count of bacteria in the culture and finds that the relative rate of growth is 40%  
per hour.

(a) Find a function that models the number of bacteria after t hours.

(b) What is the estimated count after 10 hours?

(c) After how many hours will the bacteria count reach 80,000?

(d) Sketch a graph of the function n1 t 2 .
SoLuTioN

(a) We use the exponential growth model with n0  500 and r  0.4 to get

n1 t 2  500e0.4t

  where t is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is

n110 2  500e0.4 1102  500e4 < 27,300

(c) We set n1 t 2  80,000 and solve the resulting exponential equation for t.

 80,000  500 # e0.4t     n1 t 2  500 # e0.4t

 160  e0.4t     Divide by 500

 ln 160  0.4t     Take ln of each side

 t 
ln 160

0.4
< 12.68    Solve for t

  The bacteria level reaches 80,000 in about 12.7 hours.

(d) The graph is shown in Figure 3.

Now Try Exercise 5 ■

0

5000

6
500

n(t)=500eº—¢‰

FigurE 3
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ExaMPLE 4 ■ comparing different rates of Population growth
In 2000 the population of the world was 6.1 billion, and the relative rate of growth 
was 1.4% per year. It is claimed that a rate of 1.0% per year would make a significant 
 difference in the total population in just a few decades. Test this claim by estimating 
the population of the world in the year 2050 using a relative rate of growth of  
(a) 1.4% per year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative growth 
rates in the same viewing rectangle.

SoLuTioN

(a) By the exponential growth model we have

n1 t 2  6.1e0.014t

   where n1 t 2  is measured in billions and t is measured in years since 2000. Because 
the year 2050 is 50 years after 2000, we find

n150 2  6.1e0.014 1502  6.1e0.7 < 12.3

  The estimated population in the year 2050 is about 12.3 billion.

(b) We use the function

 n1 t 2  6.1e0.010t

  and find
 n150 2  6.1e0.010 1502  6.1e0.50 < 10.1

  The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 4 show that a small change in the relative rate of growth will, 
over time, make a large difference in population size.

Now Try Exercise 7 ■

ExaMPLE 5 ■ Expressing a Model in Terms of e 
A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

(a)  Find a function n1 t 2  n02t/a that models the number of bacteria after t hours.

(b)  Find a function n1 t 2  n0ert that models the number of bacteria after t hours.

(c) Sketch a graph of the number of bacteria at time t.

SoLuTioN  

(a)  The initial population is n0  10,000. The doubling time is a  40 min  2/3 h. 
Since 1/a  3/2  1.5, the model is

n1 t 2  10,000 # 21.5t

(b)  The initial population is n0  10,000. We need to find the relative growth rate r. 
Since there are 20,000 bacteria when t  2/3 h, we have

 20,000  10,000er 12/32     n1 t 2  10,000ert

 2  er 12/32     Divide by 10,000

 ln 2  ln er 12/32     Take ln of each side

 ln 2  r 12/3 2     Property of ln

 r 
3 ln 2

2
< 1.0397    Solve for r

  Now that we know the relative growth rate r, we can find the model:

n1 t 2  10,000e1.0397t

The relative growth of world popula-
tion has been declining over the past 
few decades—from 2% in 1995 to 
1.1% in 2013.

Standing Room only
The population of the world was about 
6.1 billion in 2000 and was increasing at 
1.4% per year. Assuming that each per-
son occupies an average of 4 ft2 of the 
surface of the earth, the exponential 
model for population growth projects 
that by the year 2801 there will be stand-
ing room only! (The total land surface 
area of the world is about 1.8  1015 ft2.)

30

0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

FigurE 4
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SECTION 4.6 ■ Modeling with Exponential Functions 411

(c)  We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 5.

FigurE 5 Graphs of y  10,000 # 21.5t  
and y  10,000e1.0397t 0 4

500,000

Now Try Exercise 9 ■

■ radioactive decay
Radioactive substances decay by spontaneously emitting radiation. The rate of decay is 
proportional to the mass of the substance. This is analogous to population growth except that 
the mass decreases. Physicists express the rate of decay in terms of half-life, the time it takes 
for a sample of the substance to decay to half its original mass. For example, the half-life of 
radium-226 is 1600 years, so a 100-g sample decays to 50 g Aor 12  100 gB  in 1600 years, 
then to 25 g Aor 12  1

2  100 gB  in 3200 years, and so on. In general, for a radioactive 
substance with mass m0 and half-life h, the amount remaining at time t is modeled by

m1 t 2  m02t/h

where h and t are measured in the same time units (minutes, hours, days, years, and so on). 
To express this model in the form m1 t 2  m0ert, we need to find the relative decay 

rate r. Since h is the half-life, we have

 m1 t 2  m0ert     Model

 
m0

2
 m0erh    h is the half-life

 
1

2
 erh     Divide by m0

 ln 
1

2
 rh     Take ln of each side

 r 
ln 2

h
    Solve for r

This last equation allows us to find the relative decay rate r from the half-life h.

The half-lives of radioactive elements 
vary from very long to very short. Here 
are some examples.

Element half-life

Thorium-232 14.5 billion years
Uranium-235 4.5 billion years
Thorium-230 80,000 years
Plutonium-239 24,360 years
Carbon-14 5,730 years
Radium-226 1,600 years
Cesium-137 30 years
Strontium-90 28 years
Polonium-210 140 days
Thorium-234 25 days
Iodine-135 8 days
Radon-222 3.8 days
Lead-211 3.6 minutes
Krypton-91 10 seconds

diScovErY ProjEcT

Modeling radiation with coins and dice

Radioactive elements decay when their atoms spontaneously emit radiation  
and change into smaller, stable atoms. But if atoms decay randomly, how is  
it possible to find a function that models their behavior? We’ll try to answer  
this question by experimenting with randomly tossing coins and rolling dice. 
The experiments allow us to experience how a very large number of random 
events can result in predictable exponential results. You can find the project at 
www.stewartmath.com.
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412 CHAPTER 4 ■ Exponential and Logarithmic Functions

radioacTivE dEcaY ModEL

If m0 is the initial mass of a radioactive substance with half-life h, then the 
mass remaining at time t is modeled by the function

m1 t 2  m0ert

where r 
ln 2

h
 is the relative decay rate.

ExaMPLE 6 ■ radioactive decay
Polonium-210 1 210Po 2  has a half-life of 140 days. Suppose a sample of this  
substance has a mass of 300 mg.

(a)  Find a function m1 t 2  m02t/h that models the mass remaining after  
t days.

(b)  Find a function m1 t 2  m0ert that models the mass remaining after  
t days.

(c) Find the mass remaining after one year.

(d) How long will it take for the sample to decay to a mass of 200 mg?

(e) Draw a graph of the sample mass as a function of time.

SoLuTioN

(a)  We have m0  300 and h  140, so the amount remaining after t days is

m1 t 2  300 # 2t/140

(b)  We have m0  300 and r  ln 2/140 < 0.00495, so the amount remaining 
after t days is

m1 t 2  300 # e0.00495t

(c) We use the function we found in part (a) with t  365 (1 year):

m1365 2  300e0.0049513652 < 49.256

  Thus approximately 49 mg of 210Po remains after 1 year.

(d)  We use the function that we found in part (b) with m1 t 2  200 and solve the 
resulting exponential equation for t:

 300e0.00495t  200   m1 t 2  m0 ert

 e0.00495t  2
3   Divide by 300

 ln e0.00495t  ln 23   Take ln of each side

 0.00495t  ln 23   Property of ln

 t   

ln 23
0.00495

  Solve for t

 t < 81.9   Calculator

  The time required for the sample to decay to 200 mg is about 82 days.

(e)  We can graph the model in part (a) or the one in part (b). The graphs are identi-
cal. See Figure 6.

Now Try Exercise 17 ■

In parts (c) and (d) we can also use the 
model found in part (a). Check that the 
result is the same using either model.
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m(t)=300 e_0.00495t
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FigurE 6
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■ Newton’s Law of cooling
Newton’s Law of Cooling states that the rate at which an object cools is proportional to 
the temperature difference between the object and its surroundings, provided that the 
temperature difference is not too large. By using calculus, the following model can be 
deduced from this law.

NEWToN’S LaW oF cooLiNg

If D0 is the initial temperature difference between an object and its surround-
ings, and if its surroundings have temperature Ts, then the temperature of the 
object at time t is modeled by the function

T1 t 2  Ts  D0ekt

where k is a positive constant that depends on the type of object.

ExaMPLE 7 ■ Newton’s Law of cooling
A cup of coffee has a temperature of 200F and is placed in a room that has a temper-
ature of 70F. After 10 min the temperature of the coffee is 150F.

(a)  Find a function that models the temperature of the coffee at time t.

(b) Find the temperature of the coffee after 15 min.

(c)  After how long will the coffee have cooled to 100F?

(d)  Illustrate by drawing a graph of the temperature function.

SoLuTioN

(a)  The temperature of the room is Ts  70F, and the initial temperature  
difference is

D0  200  70  130°F

   So by Newton’s Law of Cooling, the temperature after t minutes is modeled by 
the function

T1 t 2  70  130ekt

     We need to find the constant k associated with this cup of coffee. To do  
this, we use the fact that when t  10, the temperature is T110 2  150. So  
we have

 70  130e10k  150   Ts  D0ekt  T1 t 2
 130e10k  80   Subtract 70

 e10k  8
13   Divide by 130

 10k  ln 8
13   Take ln of each side

 k   
1

10  ln 8
13  Solve for k

 k < 0.04855   Calculator

  Substituting this value of k into the expression for T1 t 2 , we get

T1 t 2  70  130e0.04855t

(b) We use the function that we found in part (a) with t  15.

T115 2  70  130e0.048551152 < 133°F
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radioactive Waste
Harmful radioactive isotopes are pro-
duced whenever a nuclear reaction 
occurs, whether as the result of an atomic 
bomb test, a nuclear accident such as the 
one at Fukushima Daiichi in 2011, or the 
uneventful production of electricity at a 
nuclear power plant.

One radioactive material that is pro-
duced in atomic bombs is the isotope 
strontium-90 1 90Sr2, with a half-life of  
28 years. This is deposited like calcium in 
human bone tissue, where it can cause 
leukemia and other cancers. However, in 
the decades since atmospheric testing of 
nuclear weapons was halted, 90Sr levels in 
the environment have fallen to a level that 
no longer poses a threat to health.

Nuclear power plants produce 
 radioactive plutonium-239 1239Pu2, which 
has a half-life of 24,360 years. Because of 
its long half-life, 239Pu could pose a threat 
to the environment for thousands of years. 
So great care must be taken to dispose of 
it properly. The difficulty of ensuring the 
safety of the disposed radioactive waste is 
one reason that nuclear power plants 
remain controversial.
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(c)  We use the function that we found in part (a) with T1 t 2  100 and solve the 
resulting exponential equation for t.

 70  130e0.04855t  100   Ts  D0ekt  T1 t 2
 130e0.04855t  30   Subtract 70

 e0.04855t  3
13   Divide by 130

 0.04855t  ln 3
13   Take ln of each side

 t 
ln 3

13

0.04855
  Solve for t

 t < 30.2   Calculator

  The coffee will have cooled to 100F after about half an hour.

(d)  The graph of the temperature function is sketched in Figure 7. Notice that the line  
t  70 is a horizontal asymptote. (Why?)

Now Try Exercise 25 ■

T=70+130e_0.04855t

70

0 10 20 30 40

200

T=70

t (min)

T (˚F)

FigurE 7 Temperature of coffee  
after t minutes

aPPLicaTioNS
1–16 ■ Population growth  These exercises use the population 
growth model.

 1. Bacteria culture  A certain culture of the bacterium Strepto-
coccus A initially has 10 bacteria and is observed to double 
every 1.5 hours.

(a)  Find an exponential model n1 t 2  n0 2t/a for the number 
of bacteria in the culture after t hours.

(b) Estimate the number of bacteria after 35 hours.

(c) After how many hours will the bacteria count reach 
10,000?
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Streptococcus A  
112,000  magnification 2

 2. Bacteria culture  A certain culture of the bacterium Rhodo-
bacter sphaeroides initially has 25 bacteria and is observed to 
double every 5 hours.

(a)  Find an exponential model n1 t 2  n0 2t/a for the number 
of bacteria in the culture after t hours.

(b) Estimate the number of bacteria after 18 hours.

(c)  After how many hours will the bacteria count reach  
1 million?

 3. Squirrel Population  A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.  
Biologists observe that the population doubles every 6 years, 
and now the population is 100,000.

(a) What was the initial size of the squirrel population?

(b) Estimate the squirrel population 10 years from now.

(c) Sketch a graph of the squirrel population.

 4. Bird Population  A certain species of bird was introduced in 
a certain county 25 years ago.  Biologists observe that the 
population doubles every 10 years, and now the population is 
13,000.

(a) What was the initial size of the bird population?

(b) Estimate the bird population 5 years from now.

(c) Sketch a graph of the bird population.

 5. Fox Population  The fox population in a certain region has a 
relative growth rate of 8% per year. It is estimated that the 
population in 2013 was 18,000.

(a)  Find a function n1 t 2  n0 ert that models the population  
t years after 2013.

(b)  Use the function from part (a) to estimate the fox popula-
tion in the year 2021.

(c)  After how many years will the fox population reach 
25,000?

(d)  Sketch a graph of the fox population function for the 
years 2013–2021.

4.6 ExErciSES
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SECTION 4.6 ■ Modeling with Exponential Functions 415

 6. Fish Population  The population of a certain species of fish 
has a relative growth rate of 1.2% per year. It is estimated 
that the population in 2010 was 12 million. 

(a)  Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2010.

(b) Estimate the fish population in the year 2015.

(c)  After how many years will the fish population reach  
14 million?

(d) Sketch a graph of the fish population.

 7. Population of a country  The population of a country has a 
relative growth rate of 3% per year. The government is trying 
to reduce the growth rate to 2%. The population in 2011 was 
approximately 110 million. Find the projected population for 
the year 2036 for the following conditions.

(a) The relative growth rate remains at 3% per year.

(b) The relative growth rate is reduced to 2% per year.

 8. Bacteria culture  It is observed that a certain bacteria culture 
has a relative growth rate of 12% per hour, but in the presence 
of an antibiotic the relative growth rate is reduced to 5% per 
hour.  The initial number of bacteria in the culture is 22. Find 
the projected population after 24 hours for the following 
conditions.

(a)  No antibiotic is present, so the relative growth rate  
is 12%.

(b)  An antibiotic is present in the culture, so the relative 
growth rate is reduced to 5%.

 9. Population of a city  The population of a certain city was 
112,000 in 2014, and the observed doubling time for the pop-
ulation is 18 years. 

(a)  Find an exponential model n1 t 2  n0 2t/a for the popula-
tion t years after 2014.

(b)  Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2014.

(c) Sketch a graph of the population at time t.

(d) Estimate how long it takes the population to reach 
500,000.

 10. Bat Population  The bat population in a certain Midwestern 
county was 350,000 in 2012, and the observed doubling time 
for the population is 25 years. 

(a)  Find an exponential model n1 t 2  n0 2t/a for the popula-
tion t years after 2012.

(b)  Find an exponential model n1 t 2  n0 ert for the popula-
tion t years after 2012.

(c) Sketch a graph of the population at time t.

(d) Estimate how long it takes the population to reach  
2 million.

 11. deer Population  The graph shows the deer population in a 
Pennsylvania county between 2010 and 2014. Assume that 
the population grows exponentially.

(a) What was the deer population in 2010?

(b)  Find a function that models the deer population t years 
 after 2010.

(c) What is the projected deer population in 2018?

(d) Estimate how long it takes the population to reach 
100,000.

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000
(4, 31,000)

Years since 2010

 12. Frog Population  Some bullfrogs were introduced into a small 
pond.  The graph shows the bullfrog population for the next few 
years.  Assume that the population grows exponentially.

(a) What was the initial bullfrog population?

(b)  Find a function that models the bullfrog population  
t years since the bullfrogs were put into the pond.

(c) What is the projected bullfrog population after  
15 years?

(d) Estimate how long it takes the population to reach 
75,000.

400
500

300
200
100

2 3 40 t

700

(2, 225)

600
Frog

population

n

51 6

13. Bacteria culture  A culture starts with 8600 bacteria. After  
1 hour the count is 10,000.

(a)  Find a function that models the number of bacteria n1 t 2   
after t hours.

(b) Find the number of bacteria after 2 hours.

(c)  After how many hours will the number of bacteria 
double?

 14. Bacteria culture  The count in a culture of bacteria was 400 
after 2 hours and 25,600 after 6 hours.

(a)  What is the relative rate of growth of the bacteria popula-
tion? Express your answer as a percentage.

(b) What was the initial size of the culture?

(c)  Find a function that models the number of bacteria n1 t 2  
 after t hours.

(d) Find the number of bacteria after 4.5 hours.

(e)  After how many hours will the number of bacteria reach 
50,000?
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416 CHAPTER 4 ■ Exponential and Logarithmic Functions

4.7 LogariThMic ScaLES
■ The ph Scale ■ The richter Scale ■ The decibel Scale

When a physical quantity varies over a very large range, it is often convenient to take 
its logarithm in order to work with more manageable numbers. On a logarithmic scale, 
numbers are represented by their logarithms. For example, the table in the margin gives 
the weights W of some animals (in kilograms) and their logarithms (log W ).

The weights (W) vary enormously, but on a logarithmic scale, the weights are rep-
resented by more manageable numbers (log W ). Figure 1 shows that it is difficult to 
compare the weights W graphically but easy to compare them on a logarithmic scale. 

FigurE 1 Weight graphed on the real 
line (top) and on a logarithmic scale 
(bottom)
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We discuss three commonly used logarithmic scales:  the pH scale, which measures 
acidity; the Richter scale, which measures the  intensity of earthquakes; and the decibel 
scale, which measures the loudness of sounds. Other quantities that are measured on 
logarithmic scales are light intensity, information  capacity, and radiation.

■ The ph Scale
Chemists measured the acidity of a solution by giving its hydrogen ion concentration until 
Søren Peter Lauritz Sørensen, in 1909, proposed a more convenient measure. He defined

pH  log 3H 4

where 3H 4  is the concentration of hydrogen ions measured in moles per liter (M). He 
did this to avoid very small numbers and negative exponents. For instance,

if    3H 4  104 M,    then    pH  log101104 2  14 2  4

Solutions with a pH of 7 are defined as neutral, those with pH  7 are acidic, and 
those with pH  7 are basic. Notice that when the pH increases by one unit, 3H 4  
decreases by a factor of 10.

ExaMPLE 1 ■ ph Scale and hydrogen ion concentration
(a)  The hydrogen ion concentration of a sample of human blood was measured to be 
3H 4  3.16  108 M. Find the pH, and classify the blood as acidic or basic.

(b)  The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was 
2.4. Find the hydrogen ion concentration.

 15. Population of california  The population of California was 
29.76 million in 1990 and 33.87 million in 2000. Assume 
that the population grows exponentially.

(a)  Find a function that models the population t years after 
1990.

(b) Find the time required for the population to double.

(c)  Use the function from part (a) to predict the population 
of  California in the year 2010. Look up California’s 
actual population in 2010, and compare.

 16. World Population  The population of the world was  
7.1 billion in 2013, and the observed relative growth rate was 
1.1% per year.

(a) Estimate how long it takes the population to double.

(b) Estimate how long it takes the population to triple.

17–24 ■ radioactive decay  These exercises use the radioactive 
decay model.

 17. radioactive radium  The half-life of radium-226 is 1600 
years. Suppose we have a 22-mg sample.

(a)  Find a function m1 t 2  m0 2t/h
 that models the mass 

remaining after t years.

(b)  Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c) How much of the sample will remain after 4000 years?

(d)  After how many years will only 18 mg of the sample  
remain?

18. radioactive cesium  The half-life of cesium-137 is  
30 years. Suppose we have a 10-g sample.

(a)  Find a function m1 t 2  m0 2t/h
 that models the mass 

remaining after t years.

(b)  Find a function m1 t 2  m0 ert that models the mass 
remaining after t years.

(c) How much of the sample will remain after 80 years?

(d) After how many years will only 2 g of the sample 
remain?

 19. radioactive Strontium  The half-life of strontium-90 is  
28 years. How long will it take a 50-mg sample to decay to a 
mass of 32 mg?

 20. radioactive radium  Radium-221 has a half-life of 30 s. 
How long will it take for 95% of a sample to decay?

 21. Finding half-Life  If 250 mg of a radioactive element decays 
to 200 mg in 48 hours, find the half-life of the element.

 22. radioactive radon  After 3 days a sample of radon-222 has 
decayed to 58% of its original amount.

(a) What is the half-life of radon-222?

(b)  How long will it take the sample to decay to 20% of its 
original amount?

 23. carbon-14 dating  A wooden artifact from an ancient  
tomb contains 65% of the carbon-14 that is present in living 
trees. How long ago was the artifact made? (The half-life of 
carbon-14 is 5730 years.)

 24. carbon-14 dating  The burial cloth of an Egyptian mummy 
is estimated to contain 59% of the carbon-14 it contained 
originally. How long ago was the mummy buried? (The half-
life of carbon-14 is 5730 years.)

25–28 ■ Law of cooling  These exercises use Newton’s Law of 
Cooling.

 25. cooling Soup  A hot bowl of soup is served at a dinner 
party. It starts to cool according to Newton’s Law of Cooling, 
so its temperature at time t is given by

   T1 t 2  65  145e0.05t

  where t is measured in minutes and T is measured in F.

(a) What is the initial temperature of the soup?

(b) What is the temperature after 10 min?

(c) After how long will the temperature be 100F?

 26. Time of death  Newton’s Law of Cooling is used in homicide 
investigations to determine the time of death. The normal 
body temperature is 98.6 F. Immediately following death, the 
body begins to cool. It has been determined experimentally 
that the constant in Newton’s Law of Cooling is approxi-
mately k  0.1947, assuming that time is measured in hours. 
Suppose that the temperature of the surroundings is 60F.

(a)  Find a function T 1 t 2  that models the temperature t hours 
after death.

(b)  If the temperature of the body is now 72F, how long ago 
was the time of death?

 27. cooling Turkey  A roasted turkey is taken from an oven 
when its temperature has reached 185F and is placed on a 
table in a room where the temperature is 75F.

(a)  If the temperature of the turkey is 150F after half an 
hour, what is its temperature after 45 min?

(b) After how many hours will the turkey cool to 100F?

 28. Boiling Water  A kettle full of water is brought to a boil in a 
room with temperature 20C. After 15 min the temperature of 
the water has decreased from 100C to 75C. Find the tem-
perature after another 10 min. Illustrate by graphing the tem-
perature function.
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SECTION 4.7 ■ Logarithmic Scales 417

4.7 LogariThMic ScaLES
■ The ph Scale ■ The richter Scale ■ The decibel Scale

When a physical quantity varies over a very large range, it is often convenient to take 
its logarithm in order to work with more manageable numbers. On a logarithmic scale, 
numbers are represented by their logarithms. For example, the table in the margin gives 
the weights W of some animals (in kilograms) and their logarithms (log W ).

The weights (W ) vary enormously, but on a logarithmic scale, the weights are rep-
resented by more manageable numbers (log W ). Figure 1 shows that it is difficult to 
compare the weights W graphically but easy to compare them on a logarithmic scale. 

FigurE 1 Weight graphed on the real 
line (top) and on a logarithmic scale 
(bottom)
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We discuss three commonly used logarithmic scales:  the pH scale, which measures 
acidity; the Richter scale, which measures the  intensity of earthquakes; and the decibel 
scale, which measures the loudness of sounds. Other quantities that are measured on 
logarithmic scales are light intensity, information  capacity, and radiation.

■ The ph Scale
Chemists measured the acidity of a solution by giving its hydrogen ion concentration until 
Søren Peter Lauritz Sørensen, in 1909, proposed a more convenient measure. He defined

pH  log 3H 4

where 3H 4  is the concentration of hydrogen ions measured in moles per liter (M). He 
did this to avoid very small numbers and negative exponents. For instance,

if    3H 4  104 M,    then    pH  log101104 2  14 2  4

Solutions with a pH of 7 are defined as neutral, those with pH  7 are acidic, and 
those with pH  7 are basic. Notice that when the pH increases by one unit, 3H 4  
decreases by a factor of 10.

ExaMPLE 1 ■ ph Scale and hydrogen ion concentration
(a)  The hydrogen ion concentration of a sample of human blood was measured to be 
3H 4  3.16  108 M. Find the pH, and classify the blood as acidic or basic.

(b)  The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was 
2.4. Find the hydrogen ion concentration.

Animal W (kg) log W

Ant 0.000003 5.5
Elephant 4000 3.6
Whale 170,000 5.2

ph for Some Common  
Substances
Substance ph

Milk of magnesia 10.5
Seawater 8.0–8.4
Human blood 7.3–7.5
Crackers 7.0–8.5
Hominy 6.9–7.9
Cow’s milk 6.4–6.8
Spinach 5.1–5.7
Tomatoes 4.1–4.4
Oranges 3.0–4.0
Apples 2.9–3.3
Limes 1.3–2.0
Battery acid 1.0
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418 CHAPTER 4 ■ Exponential and Logarithmic Functions

SoLuTioN

(a) A calculator gives

pH  log 3H 4  log13.16  108 2 < 7.5

  Since this is greater than 7, the blood is basic.

(b)  To find the hydrogen ion concentration, we need to solve for 3H 4  in the loga-
rithmic equation

log 3H 4  pH

  So we write it in exponential form:

3H 4  10pH

  In this case pH  2.4, so

3H 4  102.4 < 4.0  103 M

Now Try Exercises 1 and 3 ■

■ The richter Scale
In 1935 the American geologist Charles Richter (1900–1984) defined the magnitude M 
of an earthquake to be

M  log 
I

S

where I is the intensity of the earthquake (measured by the amplitude of a seismograph 
reading taken 100 km from the epicenter of the earthquake) and S is the intensity of a 
“standard” earthquake (whose amplitude is 1 micron  104 cm). (In practice, seismo-
graph stations may not be exactly 100 km from the epicenter, so appropriate adjust-
ments are made in calculating the magnitude of an earthquake.) The magnitude of a 
standard earthquake is

M  log 
S

S
 log 1  0

Richter studied many earthquakes that occurred between 1900 and 1950. The largest 
had magnitude 8.9 on the Richter scale, and the smallest had magnitude 0. This corre-
sponds to a ratio of intensities of 800,000,000, so the Richter scale provides more 

Largest Earthquakes
Location date Magnitude

Chile 1960 9.5
Alaska 1964 9.2
Japan 2011 9.1
Sumatra 2004 9.1
Kamchatka 1952 9.0
Chile 2010 8.8
Ecuador 1906 8.8
Alaska 1965 8.7
Alaska 1957 8.6
Sumatra 2005 8.6
Sumatra 2012 8.6
Tibet 1950 8.6
Indonesia 1938 8.5
Kamchatka 1923 8.5

Source: U.S. Geological Society

diScovErY ProjEcT

The Even-Tempered clavier

Poets, writers, philosophers, and even politicians have extolled the virtues of 
music—its beauty and its power to communicate emotion. But at the heart of 
music is a logarithmic scale. The tones that we are familiar with from our 
everyday listening can all be reproduced by the keys of a piano. The keys of a 
piano, in turn, are “evenly tempered” using a logarithmic scale. In this project 
we explore how exponential and logarithmic functions are used in properly tun-
ing a piano. You can find the project at www.stewartmath.com.Ro
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SECTION 4.7 ■ Logarithmic Scales 419

manageable numbers to work with. For instance, an earthquake of magnitude 6 is ten 
times stronger than an earthquake of magnitude 5.

ExaMPLE 2 ■ Magnitude and intensity
(a)  Find the magnitude of an earthquake that has an intensity of 3.75 (that is, the 

amplitude of the seismograph reading is 3.75 cm).

(b)  An earthquake was measured to have a magnitude of 5.1 on the Richter scale. 
Find the intensity of the earthquake.

SoLuTioN

(a) From the definition of magnitude we see that

M  log 
I

S
 log 

3.75

104  log 37500 < 4.6

  Thus the magnitude is 4.6 on the Richter scale.

(b) To find the intensity, we need to solve for I in the logarithmic equation

M  log 
I

S
 

  So we write it in exponential form:

10M 
I

S

  In this case S  104 and M  5.1, so

 105.1 
I

104     M  5.1, S  104

 1104 2 1105.1 2  I     Multiply by 104

 I  101.1 < 12.6    Add exponents

  Thus the intensity of the earthquake is about 12.6, which means that the ampli-
tude of the seismograph reading is about 12.6 cm.

Now Try Exercise 9 ■

ExaMPLE 3 ■ Magnitude of Earthquakes
The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the 
Richter scale. In the same year a powerful earthquake occurred on the Colombia-
Ecuador border that was four times as intense. What was the magnitude of the 
Colombia-Ecuador earthquake on the Richter scale?

SoLuTioN  If I is the intensity of the San Francisco earthquake, then from the 
definition of magnitude we have

M  log 
I

S
 8.3

The intensity of the Colombia-Ecuador earthquake was 4I, so its magnitude was

M  log 
4I

S
 log 4  log 

I

S
 log 4  8.3 < 8.9

Now Try Exercise 11 ■

There are several other logarithmic 
scales used to calculate the magnitude 
of earthquakes. For instance, the U.S. 
Geological Survey uses the moment 
magnitude scale.
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420 CHAPTER 4 ■ Exponential and Logarithmic Functions

ExaMPLE 4 ■ intensity of Earthquakes
The 1989 Loma Prieta earthquake that shook San Francisco had a magnitude of 7.1 
on the Richter scale. How many times more intense was the 1906 earthquake (see  
Example 3) than the 1989 event?

SoLuTioN  If I1 and I2 are the intensities of the 1906 and 1989 earthquakes, then we 
are required to find I1/I2. To relate this to the definition of magnitude, we divide the 
numerator and denominator by S.

 log 
I1

I2
 log 

I1/S

I2/S
  Divide numerator and denominator by S

  log 
I1

S
 log 

I2

S
  Law 2 of logarithms

  8.3  7.1  1.2  Definition of earthquake magnitude

Therefore

I1

I2
 10log1I1/I22  101.2 < 16

The 1906 earthquake was about 16 times as intense as the 1989 earthquake.

Now Try Exercise 13 ■

■ The decibel Scale
The ear is sensitive to an extremely wide range of sound intensities. We take as  
a reference intensity I0  1012 W/m2 (watts per square meter) at a frequency of  
1000 hertz, which measures a sound that is just barely audible (the threshold of 
 hearing). The psychological sensation of loudness varies with the logarithm of the 
intensity (the  Weber-Fechner Law), so the decibel level B, measured in decibels (dB), 
is defined as

B  10 log 
I

I0

The decibel level of the barely audible reference sound is

B  10 log 
I0

I0
 10 log 1  0 dB

ExaMPLE 5 ■ decibel Level and intensity
(a)  Find the decibel level of a jet engine at takeoff if the intensity was measured at 

100 W/m2.

(b)  Find the intensity level of a motorcycle engine at full throttle if the decibel level 
was measured at 90 dB.

SoLuTioN

(a) From the definition of decibel level we see that

B  10 log 
I

I0
 10 log 

102

1012  10 log 1014  140 dB

  Thus the decibel level is 140 dB.
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SECTION 4.7 ■ Logarithmic Scales 421

(b) To find the intensity, we need to solve for I in the logarithmic equation

 B  10 log 
I

I0
    Definition of decibel level

 
B

10
 log I  log 1012    Divide by 10, I0  1012

 
B

10
 log I  12     Definition of logarithm

B

10
 12  log I     Subtract 12

 log I 
90

10
 12  3     B  90

 I  103     Exponential form

  Thus the intensity is 103 W/m2.

Now Try Exercises 15 and 17 ■

The table in the margin lists decibel levels for some common sounds ranging from 
the threshold of human hearing to the jet takeoff of Example 5. The threshold of pain 
is about 120 dB.

The decibel levels of sounds that we 
can hear vary from very loud to very soft. 
Here are some examples of the decibel 
levels of commonly heard sounds.

Source of sound B (dB)

Jet takeoff 140
Jackhammer 130
Rock concert 120
Subway 100
Heavy traffic 80
Ordinary traffic 70
Normal conversation 50
Whisper 30
Rustling leaves 10–20
Threshold of hearing 0

aPPLicaTioNS
 1. Finding ph  The hydrogen ion concentration of a sample of 

each substance is given. Calculate the pH of the substance.

(a) Lemon juice: 3H 4  5.0  103 M

(b) Tomato juice: 3H 4  3.2  104 M

(c) Seawater: 3H 4  5.0  109 M

 2. Finding ph  An unknown substance has a hydrogen ion con-
centration of 3H 4  3.1  108 M. Find the pH and clas-
sify the substance as acidic or basic.

 3. ion concentration  The pH reading of a sample of each sub-
stance is given. Calculate the hydrogen ion concentration of 
the substance.

(a) Vinegar: pH  3.0 (b) Milk: pH  6.5

 4. ion concentration  The pH reading of a glass of liquid is 
given. Find the hydrogen ion concentration of the liquid.

(a) Beer: pH  4.6 (b) Water: pH  7.3

 5. Finding ph  The hydrogen ion concentrations in cheeses 
range from 4.0  107 M to 1.6  105 M. Find the corre-
sponding range of pH readings.

 6. ion concentration in Wine  The pH readings for wines vary 
from 2.8 to 3.8. Find the corresponding range of hydrogen 
ion concentrations.

 7. ph of Wine  If the pH of a wine is too high, say, 4.0 or 
above, the wine becomes unstable and has a flat taste.

(a) A certain California red wine has a pH of 3.2, and a  
certain Italian white wine has a pH of 2.9. Find the  
corresponding hydrogen ion concentrations of the two 
wines.

(b) Which wine has the lower hydrogen ion concentration?

 8. ph of Saliva  The pH of saliva is normally in the range of 
6.4 to 7.0. However, when a person is ill, the person’s saliva 
becomes more acidic.

(a) When Marco is sick, he tests the pH of his saliva and 
finds that it is 5.5. What is the hydrogen ion concentra-
tion of his saliva?

(b) Will the hydrogen ion concentration in Marco’s saliva 
increase or decrease as he gets better?

(c) After Marco recovers, he tests the pH of his saliva, and it 
is 6.5. Was the saliva more acidic or less acidic when he 
was sick?

 9. Earthquake Magnitude and intensity 
(a) Find the magnitude of an earthquake that has an intensity 

that is 31.25 (that is, the amplitude of the seismograph 
reading is 31.25 cm).

(b) An earthquake was measured to have a magnitude of  
4.8 on the Richter scale. Find the intensity of the 
earthquake.

4.7 ExErciSES
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422 CHAPTER 4 ■ Exponential and Logarithmic Functions

10. Earthquake Magnitude and intensity 
(a) Find the magnitude of an earthquake that has an intensity 

that is 72.1 (that is, the amplitude of the seismograph 
reading is 72.1 cm).

(b) An earthquake was measured to have a magnitude of 5.8 
on the Richter scale. Find the intensity of the earthquake.

 11. Earthquake Magnitudes  If one earthquake is 20 times as 
intense as another, how much larger is its magnitude on the 
Richter scale?

 12. Earthquake Magnitudes  The 1906 earthquake in San Fran-
cisco had a magnitude of 8.3 on the Richter scale. At the 
same time in Japan an earthquake with magnitude 4.9 caused 
only minor damage. How many times more intense was the 
San Francisco earthquake than the Japan earthquake? 

 13. Earthquake Magnitudes  The Japan earthquake of 2011 had 
a magnitude of 9.1 on the Richter scale. How many times 
more intense was this than the 1906 San Francisco earth-
quake? (See Exercise 12.)

 14. Earthquake Magnitudes  The Northridge, California, earth-
quake of 1994 had a magnitude of 6.8 on the Richter scale. A 
year later, a 7.2-magnitude earthquake struck Kobe, Japan. 
How many times more intense was the Kobe earthquake than 
the Northridge earthquake?

 15. Traffic Noise  The intensity of the sound of traffic at a busy 
intersection was measured at 2.0  105 W/m2. Find the 
decibel level.

16. Leaf Blower  The intensity of the sound from a certain leaf 
blower is measured at 3.2  102 W/m2. Find the decibel level.

 17. hair dryer  The decibel level of the sound from a certain hair 
dryer is measured at 70 dB. Find the intensity of the sound.

18. Subway Noise  The decibel level of the sound of a subway 
train was measured at 98 dB. Find the intensity in watts per 
square meter (W/m2).

19. hearing Loss from MP3 Players  Recent research has shown 
that the use of earbud-style headphones packaged with MP3 
players can cause permanent hearing loss.

(a) The intensity of the sound from the speakers of a  
certain MP3 player (without earbuds) is measured at 
3.1  105 W/m2. Find the decibel level.

(b) If earbuds are used with the MP3 player in part (a), the 
decibel level is 95 dB. Find the intensity. 

(c) Find the ratio of the intensity of the sound from the MP3 
player with earbuds to that of the sound without earbuds.

20. comparing decibel Levels  The noise from a power mower 
was measured at 106 dB. The noise level at a rock concert 
was measured at 120 dB. Find the ratio of the intensity of the 
rock music to that of the power mower.

diScuSS ■ diScovEr ■ ProvE ■ WriTE
 21. ProvE: inverse Square Law for Sound  A law of physics 

states that the intensity of sound is inversely proportional to 
the square of the distance d from the source: I  k/d 2.

(a) Use this model and the equation

B  10 log 
I

I0

  (described in this section) to show that the decibel levels 
B1 and B2 at distances d1 and d2 from a sound source are 
related by the equation

B2  B1  20 log 
d1

d2

(b)  The intensity level at a rock concert is 120 dB at a dis-
tance 2 m from the speakers. Find the intensity level at a 
distance of 10 m.

Exponential Functions (pp. 366–368)
The exponential function f with base a (where a  0, a ? 1) is 
defined for all real numbers x by

f 1x 2  ax

The domain of f is R, and the range of f is 10, ` 2  The graph of f 
has one of the following shapes, depending on the value of a:

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

The Natural Exponential Function (p. 375)
The natural exponential function is the exponential function 
with base e:

f 1x 2  ex

The number e is defined to be the number that the expression 
11  1/n 2 n approaches as n S `. An approximate value for the  
irrational number e is

e < 2.7182818284590c

compound interest (pp. 370, 376)
If a principal P is invested in an account paying an annual interest 
rate r, compounded n times a year, then after t years the amount 
A1 t 2  in the account is

A1 t 2  P Q1 
r

n
R

nt

If the interest is compounded continuously, then the amount is

A1 t 2  Pert

■ ProPErTiES aNd ForMuLaS

chaPTEr 4 ■ rEviEW
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Logarithmic Functions (pp. 380–381)
The logarithmic function loga with base a (where a  0, a ? 1)  
is defined for x  0 by

loga x  y 3 ay  x

So loga x is the exponent to which the base a must be raised to  
give y.

The domain of loga is 10, ` 2 , and the range is R. For a  1, the 
graph of the function loga has the following shape:

x

y

0 1

y=loga x, a>1

common and Natural Logarithms (pp. 384–385)
The logarithm function with base 10 is called the common 
 logarithm and is denoted log. So

log x  log10  x

The logarithm function with base e is called the natural loga-
rithm and is denoted ln. So

ln x  loge  x

Properties of Logarithms (pp. 381, 385)
1. loga 1  0 2. loga a  1

3. loga a
x  x 4. aloga 

x  x

Laws of Logarithms (p. 390)
Let a be a logarithm base 1a  0, a ? 1 2 , and let A, B, and C be 
any real numbers or algebraic expressions that represent real 
numbers, with A  0 and B  0. Then:

1. loga1AB 2  loga A  loga B

2. loga1A/B 2  loga 
 A  loga B

3. loga1AC 2  C loga A

change of Base Formula (p. 393)

logb x 
loga x

loga b

guidelines for Solving Exponential Equations (p. 397)
1. Isolate the exponential term on one side of the equation.

2.  Take the logarithm of each side, and use the Laws of Loga-
rithms to “bring down the exponent.”

3. Solve for the variable.

guidelines for Solving Logarithmic Equations (p. 400)
1.  Isolate the logarithmic term(s) on one side of the equation, and 

use the Laws of Logarithms to combine logarithmic terms if 
necessary.

2. Rewrite the equation in exponential form.

3. Solve for the variable.

Exponential growth Model (p. 409)
A population experiences exponential growth if it can be mod-
eled by the exponential function

n1 t 2  n0 ert

where n1 t 2  is the population at time t, n0 is the initial population 
(at time t = 0), and r is the relative growth rate (expressed as a 
proportion of the population).

radioactive decay Model (pp. 411–412)
If a radioactive substance with half-life h has initial mass m0, 
then at time t the mass m1 t 2  of the substance that remains is mod-
eled by the exponential function

m1 t 2  m0 ert

where r 
ln 2

h
.

Newton’s Law of cooling (p. 413)
If an object has an initial temperature that is D0 degrees warmer 
than the surrounding temperature Ts, then at time t the tempera-
ture T1 t 2  of the object is modeled by the function

T1 t 2  Ts  D0 ekt

where the constant k  0 depends on the size and type of the object.

Logarithmic Scales (pp. 417–421)
The pH scale measures the acidity of a solution:

pH  log 3H 4
The Richter scale measures the intensity of earthquakes:

M  log  

I

S

The decibel scale measures the intensity of sound:

B  10 log  

I

I0
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ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ coNcEPT chEck

 1. Let f be the exponential function with base a.

(a) Write an equation that defines f. 

(b) Write an equation for the exponential function f with 
base 3.

 2. Let f be the exponential function f 1x 2  ax, where a  0.

(a) What is the domain of f?

(b) What is the range of f?

(c) Sketch graphs of f for the following cases.

 (i) a  1  (ii) 0  a  1

 3. If x is large, which function grows faster, f 1x 2  2x or 
g1x 2  x2?

 4. (a) How is the number e defined?

(b) Give an approximate value of e, rounded to five decimal 
places.

(c) What is the natural exponential function?

 5. (a) How is loga x defined?

(b) Find log3 9.

(c) What is the natural logarithm?

(d) What is the common logarithm?

(e) Write the exponential form of the equation  
log7 49  2.

 6. Let f be the logarithmic function f 1x 2  loga x.

(a) What is the domain of f?

(b) What is the range of f?

(c) Sketch a graph of the logarithmic function for the case 
that a  1.

 7. State the three Laws of Logarithms.

 8. (a) State the Change of Base Formula. 

(b) Find log7 30.

 9. (a) What is an exponential equation?

(b) How do you solve an exponential equation?

(c) Solve for x: 2x  19

 10. (a) What is a logarithmic equation?

(b) How do you solve a logarithmic equation?

(c) Solve for x: 4 log3 x  7

 11. Suppose that an amount P is invested at an interest rate r and 
A1 t 2  is the amount of the investment after t years. Write a 
formula for A1 t 2  in the following cases.

(a) Interest is compounded n times per year.

(b) Interest is compounded continuously.

 12. Suppose that the initial size of a population is n0 and the 
population grows exponentially. Let n1 t 2  be the size of the 
population at time t. 

(a) Write a formula for n1 t 2  in terms of the doubling time a.

(b) Write a formula for n1 t 2  in terms of the relative growth 
rate r. 

 13. Suppose that the initial mass of a radioactive substance is m0 
and the half-life of the substance is h. Let m1 t 2  be the mass 
remaining at time t. 

(a) What is meant by the half-life h?

(b) Write a formula for m1 t 2  in terms of the half-life h.

(c) Write a formula for the relative decay rate r in terms of 
the half-life h.

(d) Write a formula for m1 t 2  in terms of the relative decay 
rate r. 

 14. Suppose that the initial temperature difference between an 
object and its surroundings is D0 and the surroundings have 
temperature Ts. Let T1 t 2  be the temperature at time t. State 
Newton’s Law of Cooling for T1 t 2 .

 15. What is a logarithmic scale? If we use a logarithmic scale 
with base 10, what do the following numbers correspond to 
on the logarithmic scale? 

(i) 100  (ii) 100,000  (iii) 0.0001

 16. (a) What does the pH scale measure?

(b) Define the pH of a substance with hydrogen ion concen-
tration of 3H4.

 17. (a) What does the Richter scale measure?

(b) Define the magnitude M of an earthquake in terms of the 
intensity I of the earthquake and the intensity S of a stan-
dard earthquake.  

 18. (a) What does the decibel scale measure?

(b) Define the decibel level B of a sound in terms of the 
intensity I of the sound and the intensity I0 of a barely 
audible sound. 

■ ExErciSES

1–4 ■ Evaluating Exponential Functions  Use a calculator to 
find the indicated values of the exponential function, rounded to 
three decimal places.

 1. f 1x 2  5x; f 11.5 2 , f A!2 B, f 12.5 2
 2. f 1x 2  3 # 2x; f 12.2 2 , f A!7 B, f 15.5 2
 3. g1x 2  4e x2; g10.7 2 , g11 2 , g1p 2
 4. g1x 2  7

4 e x1; g12 2 , gA!3 B, g13.6 2

5–16 ■ graphing Exponential and Logarithmic Functions   
Sketch the graph of the function. State the domain, range, and 
asymptote.

  5. f 1x 2  3x2   6. f 1x 2  2x1

 7. g1x 2  3  2x  8. g1x 2  5x  5

 9. F1x 2  ex1  1 10. G1x 2  e x1  2
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 11. f 1x 2  log31x  1 2  12. g1x 2  log1x 2
 13. f 1x 2  2  log2 x 14. f 1x 2  3  log51x  4 2
 15. g1x 2  2 ln  x 16. g1x 2  ln1x2 2

17–20 ■ domain  Find the domain of the function.

 17. f 1x 2  10x2

 log11  2x 2  
18. g1x 2  log12  x  x2 2
 19. h1x 2  ln1x2  4 2  
 20. k1x 2  ln 0  x 0

21–24 ■ Exponential Form  Write the equation in exponential 
form.

 21. log2 1024  10 22. log6 37  x

 23. log  x  y 24. ln c  17

25–28 ■ Logarithmic Form  Write the equation in logarithmic 
form.

 25. 26  64 26. 491/2  1
7

 27. 10x  74 28. ek  m

29–44 ■ Evaluating Logarithmic Expressions  Evaluate the 
expression without using a calculator.

 29. log2 128 30. log8 1

 31. 10log 45 32. log 0.000001

 33. ln1e6 2  34. log4 8

 35. log3A 1
 27 
B  36. 2log2 13

 37. log5!5 38. e2 ln 7

 39. log 25  log 4 40. log3 !243

 41. log2 1623 42. log5 250  log5 2

 43. log8 6  log8 3  log8 2 44. log log 10100

45–50 ■ Expanding Logarithmic Expressions  Expand the loga-
rithmic expression.

 45. log1AB2C3 2  46. log2 1x "x2  1 2

 47. ln Å
x2  1

x2  1
 48. log a 4x3

y21x  1 2 5 b

 49. log5 a
x211  5x 2 3/2

"x3  x
b  50. ln a "3 x4  12

1x  16 2  !x  3
b

51–56 ■ combining Logarithmic Expressions  Combine into a 
single logarithm.

 51. log 6  4 log 2

 52. log x  log 1x2y 2  3 log y

 53. 3
2 log2 1x  y 2  2 log2 1x2  y2 2

 54. log5 2  log5 1x  1 2  1
3 log5 13x  7 2

 55. log1x  2 2  log1x  2 2  1
2 log1x2  4 2

 56. 1
2 3 ln1x  4 2  5 ln1x2  4x 2 4

57–70 ■ Exponential and Logarithmic Equations  Solve the 
equation. Find the exact solution if possible; otherwise, use a cal-
culator to approximate to two decimals.

 57. 32x7  27 58. 54x  1
125

 59. 23x5  7 60. 1063x  18

 61. 41x  32x5 62. e3x/4  10

 63. x2e2x  2xe2x  8e2x 64. 32x  3x  6  0

65. log x  log1x  1 2  log 12

66. ln1x  2 2  ln 3  ln15x  7 2
 67. log211  x 2  4

68. ln12x  3 2  1  0

69. log31x  8 2  log3 x  2

 70. log81x  5 2  log81x  2 2  1  

71–74 ■ Exponential Equations  Use a calculator to find the 
solution of the equation,  rounded to six decimal places.

 71. 52x/3  0.63 72. 23x5  7

 73. 52x1  34x1 74. e15k  10,000

75–78 ■ Local Extrema and asymptotes  Draw a graph of the 
function and use it to determine the asymptotes and the local 
maximum and minimum values.

 75. y  ex/1x22 76. y  10x  5x

 77. y  log1x3  x 2  78. y  2x2  ln x

79–80 ■ Solving Equations  Find the solutions of the equation, 
rounded to two decimal places.

 79. 3 log  x  6  2x 80. 4  x2  e2x

81–82 ■ Solving inequalities  Solve the inequality graphically.

 81. ln x  x  2 82. ex  4x2

 83. increasing and decreasing  Use a graph of 
f 1x 2  e x  3ex  4x to find, approximately, the intervals 
on which f is increasing and on which f is  decreasing.

 84. Equation of a Line  Find an equation of the line shown in the 
figure.

xea

y=ln x

y

0

85–88 ■ change of Base  Use the Change of Base Formula to 
evaluate the logarithm, rounded to six decimal places.

 85. log4 15 86. log7 A34 B
 87. log9 0.28 88. log100 250
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chaPTEr 4
  89. comparing Logarithms  Which is larger, log4 258 or  

log5 620?

  90.  inverse Function  Find the inverse of the function 
f 1x 2  23x

, and state its domain and range.

  91.  compound interest  If $12,000 is invested at an interest 
rate of 10% per year, find the amount of the investment at 
the end of 3 years for each compounding method.

(a) Semiannually (b) Monthly

(c) Daily (d) Continuously

  92.  compound interest  A sum of $5000 is invested at an inter-
est rate of 8 1

2 % per year, compounded semiannually.

(a) Find the amount of the investment after 11
2  years.

(b) After what period of time will the investment amount 
to $7000?

(c)  If interest were compounded continously instead of 
semiannually, how long would it take for the amount to 
grow to $7000?

  93.  compound interest  A money market account pays  
5.2% annual interest, compounded daily. If $100,000 is 
invested in this account, how long will it take for the 
account to accumulate $10,000 in  interest?

  94.  compound interest  A retirement savings plan pays  
4.5% interest, compounded continuously. How long will it 
take for an investment in this plan to double?

95–96 ■ aPY  Determine the annual percentage yield (APY) for  
the given nominal annual interest rate and compounding  
frequency.

  95. 4.25%;  daily

 96. 3.2%;  monthly

  97.  cat Population  The stray-cat population in a small town 
grows exponentially. In 1999 the town had 30 stray cats, 
and the relative growth rate was 15% per year.

(a)   Find a function that models the stray-cat population 
n1 t 2  after t years.

(b) Find the projected population after 4 years.

(c) Find the number of years required for the stray-cat pop-
ulation to reach 500.

  98.  Bacterial growth  A culture contains 10,000 bacteria ini-
tially. After 1 hour the bacteria count is 25,000.

(a) Find the doubling period.

(b) Find the number of bacteria after 3 hours.

  99.  radioactive decay  Uranium-234 has a half-life of  
2.7  105 years.

(a) Find the amount remaining from a 10-mg sample after a 
thousand years.

(b) How long will it take this sample to decompose until its 
mass is 7 mg?

 100.  radioactive decay  A sample of bismuth-210 decayed to 
33% of its original mass after 8 days.

(a) Find the half-life of this element.

(b)  Find the mass remaining after 12 days.

 101.  radioactive decay  The half-life of radium-226 is  
1590 years.

(a) If a sample has a mass of 150 mg, find a function that 
models the mass that remains after t years.

(b) Find the mass that will remain after 1000 years.

(c) After how many years will only 50 mg remain?

 102.  radioactive decay  The half-life of palladium-100 is  
4 days. After 20 days a sample has been reduced to a mass 
of 0.375 g.

(a) What was the initial mass of the sample?

(b)  Find a function that models the mass remaining after 
t days.

(c) What is the mass after 3 days?

(d) After how many days will only 0.15 g remain?

 103. Bird Population  The graph shows the population of a rare 
species of bird, where t represents years since 2009 and n1 t 2  
is measured in thousands.

(a)  Find a function that models the bird population at time t 
in the form n1 t 2  n0 e rt.

(b)  What is the bird population expected to be in the year 
2020?

0 t

n(t)
4000

1 5432

1000

2000

3000
Bird

population

Years since 2009

(5, 3200)

 104.  Law of cooling  A car engine runs at a temperature of 
190F. When the engine is turned off, it cools according to 
Newton’s Law of Cooling with constant k  0.0341, where 
the time is measured in minutes. Find the time needed for 
the engine to cool to 90F if the surrounding temperature is 
60F.

 105.  ph  The hydrogen ion concentration of fresh egg whites 
was  measured as

3H 4  1.3  108 M

  Find the pH, and classify the substance as acidic or basic.

 106.  ph  The pH of lime juice is 1.9. Find the hydrogen ion 
 concentration.

 107.  richter Scale  If one earthquake has magnitude 6.5 on the 
Richter scale, what is the magnitude of another quake that is 
35 times as  intense?

 108.  decibel Scale  The drilling of a jackhammer was measured 
at 132 dB. The sound of whispering was measured at 28 dB. 
Find the ratio of the intensity of the drilling to that of the 
whispering.
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 1. Sketch the graph of each function, and state its domain, range, and asymptote. Show the  
x- and y-intercepts on the graph.

(a) f 1x 2  2x  4 (b) g1x 2  log31x  3 2
 2. Find the domain of the function.

(a) f 1 t 2  ln12t  3 2  (b) g1x 2  log1x2  1 2
 3. (a) Write the equation 62x  25 in logarithmic form.

(b) Write the equation ln A  3 in exponential form.

 4. Find the exact value of the expression.

(a) 10log 36 (b) ln e3 (c) log3!27

(d) log2 80  log2 10 (e) log8 4 (f) log6 4  log6 9

 5. Use the Laws of Logarithms to expand the expression.

(a) loga xy3

z2 b  (b) ln Ä
x

y  
(c) log  Ä

3 x  2

x41x2  4 2
 6. Use the Laws of Logarithms to combine the expression into a single logarithm.

(a) log a  2 log b (b) ln1x2  25 2  ln1x  5 2  (c) log2 3  3 log2 x  1
2 log21x  1 2

 7. Find the solution of the exponential equation, rounded to two decimal places.

(a) 34x  3100   (b) e3x2  ex2

   (c) 5x/10  1  7   (d) 10x3  62x

 8. Solve the logarithmic equation for x.

(a) log12x 2  3 (b) log1x  1 2  log 2  log15x 2
(c) 5 ln13  x 2  4 (d) log21x  2 2  log21x  1 2  2

 9. Use the Change of Base Formula to evaluate log12 27.

 10. The initial size of a culture of bacteria is 1000. After 1 hour the bacteria count is 8000.

(a) Find a function n1 t 2  n0 ert that models the population after t hours.

(b) Find the population after 1.5 hours.

(c) After how many hours will the number of bacteria reach 15,000?

(d) Sketch the graph of the population function.

 11. Suppose that $12,000 is invested in a savings account paying 5.6% interest per year.

(a)  Write the formula for the amount in the account after t years if interest is compounded 
monthly.

(b) Find the amount in the account after 3 years if interest is compounded daily.

(c)  How long will it take for the amount in the account to grow to $20,000 if interest is 
compounded continuously?

 12. The half-life of krypton-91 1 91Kr 2  is 10 s. At time t = 0 a heavy canister contains 3 g of 
this radioactive gas.

(a)  Find a function m1 t 2  m0 2t/h that models the amount of 91Kr remaining in the  
canister after t seconds.

(b)  Find a function m1 t 2  m0 ert that models the amount of 91Kr remaining in the  
canister after t seconds.

(c) How much 91Kr remains after 1 min?

(d)  After how long will the amount of 91Kr remaining be reduced to 1 mg (1 microgram, 
or 106 g)?

 13. An earthquake measuring 6.4 on the Richter scale struck Japan in July 2007, causing 
extensive damage. Earlier that year, a minor earthquake measuring 3.1 on the Richter scale 
was felt in parts of Pennsylvania. How many times more intense was the Japanese earth-
quake than the Pennsylvania earthquake?

chaPTEr 4 TEST
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In a previous Focus on Modeling (page 361) we learned that the shape of a scatter plot  
helps us to choose the type of curve to use in modeling data. The first plot in Figure 1 
strongly suggests that a line be fitted through it, and the second one points to a cubic 
polynomial. For the third plot it is tempting to fit a second-degree polynomial. But what 
if an exponential curve fits better? How do we decide this? In this section we learn how 
to fit exponential and power curves to data and how to decide which type of curve fits 
the data better. We also learn that for scatter plots like those in the last two plots in 
Figure 1, the data can be modeled by logarithmic or logistic functions.

FigurE 1

■ Modeling with Exponential Functions
If a scatter plot shows that the data increase rapidly, we might want to model the data 
using an exponential model, that is, a function of the form

f 1x 2  Cekx

where C and k are constants. In the first example we model world population by  
an exponential model. Recall from Section 4.6 that population tends to increase 
exponentially.

ExaMPLE 1 ■ an Exponential Model for World Population
Table 1 gives the population of the world in the 20th century.

(a) Draw a scatter plot, and note that a linear model is not appropriate.

(b) Find an exponential function that models population growth.

(c)  Draw a graph of the function that you found together with the scatter plot. How 
well does the model fit the data?

(d) Use the model that you found to predict world population in the year 2020.

SoLuTioN

(a)  The scatter plot is shown in Figure 2. The plotted points do not appear to lie 
along a straight line, so a linear model is not appropriate.

FigurE 2 Scatter plot of world population

2000

6500

0
1900

0
1900 2000

Fitting Exponential and Power curves to dataFocuS oN ModELiNg

TaBLE 1
World population

Year 
x tc

World population 
(P in millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
2000 6060
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(b)  Using a graphing calculator and the ExpReg command (see Figure 3(a)), we get 
the exponential model

P1 t 2  10.0082543 2 # 11.0137186 2 t
   This is a model of the form y  Cbt. To convert this to the form y  Cekt, we use 

the properties of exponentials and logarithms as follows.

 1.0137186t  eln 1.0137186 t

    A  eln A

  et  ln  1.0137186    ln AB  B ln A

  e0.013625t     ln 1.0137186 ^ 0.013625

 Thus we can write the model as

P1 t 2  0.0082543e0.013625t

(c)  From the graph in Figure 3(b) we see that the model appears to fit the data fairly 
well. The period of relatively slow population growth is explained by the depres-
sion of the 1930s and the two world wars.

(a)

2000

6500

0
1900

(b)

FigurE 3 Exponential model for world population

(d) The model predicts that the world population in 2020 will be

  P12020 2  0.0082543e 10.0136252  120202

  < 7,405,400,000  ■

■ Modeling with Power Functions
If the scatter plot of the data we are studying resembles the graph of y  ax2, y  ax1.32, 
or some other power function, then we seek a power model, that is, a function of the form

f 1x 2  ax n

where a is a positive constant and n is any real number.
In the next example we seek a power model for some astronomical data. In astron-

omy, distance in the solar system is often measured in astronomical units. An astro-
nomical unit (AU) is the mean distance from the earth to the sun. The period of a planet 
is the time it takes the planet to make a complete revolution around the sun (measured 
in earth years). In this example we derive the remarkable relationship, first discovered 
by Johannes Kepler (see page 852), between the mean distance of a planet from the sun 
and its period.

ExaMPLE 2 ■ a Power Model for Planetary Periods
Table 2 (see next page) gives the mean distance d of each planet from the sun in  
astronomical units and its period T in years.

Mercury

Sun

Mars

Venus

Earth

Saturn

Jupiter

Ch
ab

ru
ke

n/
Th

e 
Im

ag
e 

Ba
nk

/G
et

ty
 Im

ag
es

The population of the world  
increases exponentially.
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430 Focus on Modeling

(a) Sketch a scatter plot. Is a linear model appropriate?

(b) Find a power function that models the data.

(c)  Draw a graph of the function you found and the scatter plot on the same graph. 
How well does the model fit the data?

(d)  Use the model that you found to calculate the period of an asteroid whose mean 
distance from the sun is 5 AU.

SoLuTioN

(a)  The scatter plot shown in Figure 4 indicates that the plotted points do not lie 
along a straight line, so a linear model is not appropriate.

FigurE 4 Scatter plot  
of planetary data 45

260

0

(b)  Using a graphing calculator and the PwrReg command (see Figure 5(a)), we get 
the power model

T  1.000396d1.49966

   If we round both the coefficient and the exponent to three significant figures, we 
can write the model as

T  d1.5

    This is the relationship discovered by Kepler (see page 852). Sir Isaac Newton  
(page 927) later used his Law of Gravity to derive this relationship theoretically, 
thereby providing strong scientific evidence that the Law of Gravity must be true.

(c)  The graph is shown in Figure 5(b). The model appears to fit the data very well.

(a) (b)

45

260

0FigurE 5 Power model for  
planetary data

(d) In this case d  5 AU, so our model gives

T  1.00039 # 51.49966 < 11.22

 The period of the asteroid is about 11.2 years. ■

■ Linearizing data
We have used the shape of a scatter plot to decide which type of model to use: linear, 
exponential, or power. This works well if the data points lie on a straight line. But it’s 
difficult to distinguish a scatter plot that is exponential from one that requires a power 
model. So to help decide which model to use, we can linearize the data, that is, apply 

TaBLE 2
Distances and periods of the planets

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784
Pluto* 39.507 248.350

*Pluto is a “dwarf planet.”
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  Fitting Exponential and Power Curves to Data 431

a function that “straightens” the scatter plot. The inverse of the linearizing function is 
then an appropriate model. We now describe how to linearize data that can be modeled 
by exponential or power functions.

■  Linearizing Exponential data
If we suspect that the data points 1x, y 2  lie on an exponential curve y  Cekx, then the 
points

1x, ln y 2
should lie on a straight line. We can see this from the following calculations.

 ln y  ln Cekx     Assume that y  Cekx and take ln

  ln ekx  ln C    Property of ln

  kx  ln C     Property of ln

To see that ln y is a linear function of x, let Y  ln y and A  ln C; then

Y  kx  A

We apply this technique to the world population data 1 t, P 2  to obtain the points 1 t, ln P 2  
in Table 3. The scatter plot of 1 t, ln P 2  in Figure 6, called a semi-log plot, shows that 
the linearized data lie approximately on a straight line, so an exponential model should 
be appropriate.

FigurE 6 Semi-log  
plot of data in Table 3

2010

23

21
1900

■  Linearizing Power data
If we suspect that the data points 1x,  y 2  lie on a power curve y  axn, then the points

1 ln x, ln y 2
should be on a straight line. We can see this from the following calculations.

 ln y  ln axn     Assume that y  axn and take ln

  ln a  ln xn     Property of ln

  ln a  n  ln x    Property of ln

To see that ln y is a linear function of ln x, let Y  ln y, X  ln x, and A  ln a; then

Y  nX  A

We apply this technique to the planetary data 1d, T 2  in Table 2 to obtain the points 
1 ln d, ln T 2  in Table 4. The scatter plot of 1 ln d, ln T 2  in Figure 7, called a log-log plot, 
shows that the data lie on a straight line, so a power model seems appropriate.

FigurE 7 Log-log plot 
of data in Table 4

4

6

_2

_2

TaBLE 3
World population data

t
Population P 
(in millions) ln P

1900 1650 21.224
1910 1750 21.283
1920 1860 21.344
1930 2070 21.451
1940 2300 21.556
1950 2520 21.648
1960 3020 21.829
1970 3700 22.032
1980 4450 22.216
1990 5300 22.391
2000 6060 22.525

TaBLE 4
Log-log table

ln d ln T

0.94933 1.4230
0.32435 0.48613

0 0
0.42068 0.6318
1.6492 2.4733
2.2556 3.3829
2.9544 4.4309
3.4041 5.1046
3.6765 5.5148
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432 Focus on Modeling

■ an Exponential or Power Model?
Suppose that a scatter plot of the data points 1x,  y 2  shows a rapid increase. Should we 
use an exponential function or a power function to model the data? To help us decide, 
we draw two scatter plots: one for the points 1x, ln y 2  and the other for the points 
1 ln x, ln y 2 . If the first scatter plot appears to lie along a line, then an exponential model 
is appropriate. If the second plot appears to lie along a line, then a power model is ap-
propriate.

ExaMPLE 3 ■ an Exponential or Power Model?
Data points 1x,  y 2  are shown in Table 5.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)  Is an exponential function or a power function appropriate for modeling this data?

(d) Find an appropriate function to model the data.

SoLuTioN

(a) The scatter plot of the data is shown in Figure 8.

FigurE 8 0 11

140

(b) We use the values from Table 6 to graph the scatter plots in Figures 9 and 10.

FigurE 9 Semi-log plot

11

6

0

FigurE 10 Log-log plot

2.5

5

0

(c)  The scatter plot of 1x, ln y 2  in Figure 9 does not appear to be linear, so an expo-
nential model is not appropriate. On the other hand, the scatter plot of 1 ln x, ln y 2  
in Figure 10 is very nearly linear, so a power model is appropriate.

(d)  Using the PwrReg command on a graphing calculator, we find that the power 
function that best fits the data point is

y  1.85x 1.82

 The graph of this function and the original data points are shown in Figure 11. ■

Before graphing calculators and statistical software became common, exponential 
and power models for data were often constructed by first finding a linear model for the 
linearized data. Then the model for the actual data was found by taking exponentials. 
For instance, if we find that ln y  A ln x  B, then by taking exponentials we get the 
model y  eB # eA ln x, or y  CxA (where C  eB). Special graphing paper called “log 
paper” or “log-log paper” was used to facilitate this process.

TaBLE 5

x y

 1   2
 2   6
 3  14
 4  22
 5  34
 6  46
 7  64
 8  80
 9 102
10 130

FigurE 11

0 11

140

TaBLE 6

x ln x ln y

 1 0 0.7
 2 0.7 1.8
 3 1.1 2.6
 4 1.4 3.1
 5 1.6 3.5
 6 1.8 3.8
 7 1.9 4.2
 8 2.1 4.4
 9 2.2 4.6
10 2.3 4.9
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■ Modeling with Logistic Functions
A logistic growth model is a function of the form

f 1 t 2 
c

1  aebt

where a, b, and c are positive constants. Logistic functions are used to model popula-
tions where the growth is constrained by available resources. (See Exercises 27–30 of  
Section 4.2.)

ExaMPLE 4 ■ Stocking a Pond with catfish
Much of the fish that is sold in supermarkets today is raised on commercial fish farms, 
not caught in the wild. A pond on one such farm is initially stocked with 1000 catfish, 
and the fish population is then sampled at 15-week intervals to estimate its size. The 
population data are given in Table 7.

(a) Find an appropriate model for the data.

(b)  Make a scatter plot of the data and graph the model that you found in part (a) on 
the scatter plot.

(c) How does the model predict that the fish population will change with time?

SoLuTioN

(a)  Since the catfish population is restricted by its habitat (the pond), a logistic model 
is appropriate. Using the logistic command on a calculator (see Figure 12(a)), 
we find the following model for the catfish population P1 t 2 :

P1 t 2 
7925

1  7.7e0.052t

FigurE 12

0

(a) (b)  Catfish population y = P(t)

180

9000

(b) The scatter plot and the logistic curve are shown in Figure 12(b).

(c)  From the graph of P in Figure 12(b) we see that the catfish population increases 
rapidly until about t  80 weeks. Then growth slows down, and at about t  120 
weeks the population levels off and remains more or less constant at slightly  
over 7900. ■

The behavior that is exhibited by the catfish population in Example 4 is typical of 
 logistic growth. After a rapid growth phase, the population approaches a constant level 
called the carrying capacity of the environment. This occurs because as t S ` , we 
have ebt → 0 (see Section 4.2), and so

P1 t 2 
c

1  aebt h  
c

1  0
 c

Thus the carrying capacity is c.

TaBLE 7

Week Catfish

  0 1000
 15 1500
 30 3300
 45 4400
 60 6100
 75 6900
 90 7100
105 7800
120 7900
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434 Focus on Modeling

ProBLEMS
 1.  u.S. Population  The U.S. Constitution requires a census every 10 years. The census 

data for 1790–2010 are given in the table.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model for the data.

(c) Use your model to predict the population at the 2020 census.

(d) Use your model to estimate the population in 1965.

Year
Population 

(in millions) Year
Population 

(in millions) Year
Population 

(in millions)

1790  3.9 1870  38.6 1950 151.3
1800  5.3 1880  50.2 1960 179.3
1810  7.2 1890  63.0 1970 203.3
1820  9.6 1900  76.2 1980 226.5
1830 12.9 1910  92.2 1990 248.7
1840 17.1 1920 106.0 2000 281.4
1850 23.2 1930 123.2 2010 308.7
1860 31.4 1940 132.2

 2. a Falling Ball  In a physics experiment a lead ball is dropped from a height of 5 m. The 
students record the distance the ball has fallen every one-tenth of a second. (This can be 
done by using a camera and a strobe light.) Their data are shown in the margin.

(a) Make a scatter plot of the data.

(b) Use a calculator to find a power model.

(c) Use your model to predict how far a dropped ball would fall in 3 s.

 3. half-Life of radioactive iodine  A student is trying to determine the half-life of  
radioactive iodine-131. He measures the amount of iodine-131 in a sample solution every  
8 hours. His data are shown in the table below.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model.

(c) Use your model to find the half-life of iodine-131.

Time xhc Amount of 131I xgc

 0 4.80
 8 4.66
16 4.51
24 4.39
32 4.29
40 4.14
48 4.04

 4. The Beer-Lambert Law  As sunlight passes through the waters of lakes and oceans, the 
light is absorbed, and the deeper it penetrates, the more its intensity diminishes. The light  
intensity I at depth x is given by the Beer-Lambert Law:

I  I0 ekx

  where I0 is the light intensity at the surface and k is a constant that depends on the murki-
ness of the water (see page 402). A biologist uses a photometer to investigate light penetra-
tion in a northern lake, obtaining the data in the table.

Time 
(s) 

Distance 
(m)

0.1 0.048
0.2 0.197
0.3 0.441
0.4 0.882
0.5 1.227
0.6 1.765
0.7 2.401
0.8 3.136
0.9 3.969
1.0 4.902

Light intensity decreases exponentially 
with depth.
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  Fitting Exponential and Power Curves to Data 435

(a)  Use a graphing calculator to find an exponential function of the form given by the 
Beer-Lambert Law to model these data. What is the light intensity I0 at the surface on 
this day, and what is the “murkiness” constant k for this lake?  [Hint: If your calcula-
tor gives you a function of the form I  abx, convert this to the form you want using 
the identities bx  eln 1bx 2  ex ln b. See Example 1(b).]

(b)  Make a scatter plot of the data, and graph the function that you found in part (a) on 
your scatter plot.

(c)  If the light intensity drops below 0.15 lumen (lm), a certain species of algae can’t sur-
vive because photosynthesis is impossible. Use your model from part (a) to determine 
the depth below which there is insufficient light to support this algae.

Depth 
(ft)

Light intensity 
(lm)

Depth 
(ft)

Light intensity 
(lm)

 5 13.0 25 1.8
10  7.6 30 1.1
15  4.5 35 0.5
20  2.7 40 0.3

 5. Experimenting with “Forgetting” curves  Every one of us is all too familiar with the phe-
nomenon of forgetting. Facts that we clearly understood at the time we first learned them some-
times fade from our memory by the time the final exam rolls around. Psychologists have pro-
posed several ways to model this process. One such model is Ebbinghaus’ Law of Forgetting, 
described on page 392. Other models use exponential or logarithmic functions. To develop her 
own model, a psychologist performs an experiment on a group of volunteers by asking them to 
memorize a list of 100 related words. She then tests how many of these words they can recall 
after various periods of time. The average results for the group are shown in the table.

(a)  Use a graphing calculator to find a power function of the form y  at b that models the 
average number of words y that the volunteers remember after t hours. Then find an 
exponential function of the form y  abt to model the data.

(b)  Make a scatter plot of the data, and graph both the functions that you found in part (a) 
on your scatter plot.

(c) Which of the two functions seems to provide the better model?

 6. Modeling the Species-area relation  The table gives the areas of several caves in 
central Mexico and the number of bat species that live in each cave.*

(a) Find a power function that models the data.

(b)  Draw a graph of the function you found in part (a) and a scatter plot of the data on the 
same graph. Does the model fit the data well?

(c)  The cave called El Sapo near Puebla, Mexico, has a surface area of A  205 m2. Use 
the model to estimate the number of bat species you would expect to find in that cave.

Cave Area xm2 c

Number 
of species

La Escondida  18 1
El Escorpion  19 1
El Tigre  58 1
Mision Imposible  60 2
San Martin 128 5
El Arenal 187 4
La Ciudad 344 6
Virgen 511 7

Time Words recalled

15 min 64.3
1 h 45.1
8 h 37.3
1 day 32.8
2 days 26.9
3 days 25.6
5 days 22.9

The number of different bat species 
in a cave is related to the size  
of the cave by a power function.
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*A. K. Brunet and R. A. Medallin, “The Species-Area Relationship in Bat Assemblages of Tropical Caves.” 
Journal of Mammalogy, 82(4):1114–1122, 2001.
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436 Focus on Modeling

 7. auto Exhaust Emissions  A study by the U.S. Office of Science and Technology in 1972 es-
timated the cost of reducing automobile emissions by certain percentages. Find an exponential 
model that captures the “diminishing returns” trend of these data shown in the table below.

Reduction in 
emissions (%)

Cost per 
car ($)

50  45
55  55
60  62
65  70
70  80
75  90
80 100
85 200
90 375
95 600

 8. Exponential or Power Model?  Data points 1x, y 2  are shown in the table.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)  Which is more appropriate for modeling this data: an exponential function or a power 

 function?

(d) Find an appropriate function to model the data.

x 2 4 6 8 10 12 14 16

y 0.08 0.12 0.18 0.25 0.36 0.52 0.73 1.06

 9. Exponential or Power Model?  Data points 1x, y 2  are shown in the table in the margin.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of 1x, ln y 2  and 1 ln x, ln y 2 .
(c)  Which is more appropriate for modeling this data: an exponential function or a power 

function?

(d) Find an appropriate function to model the data.

x 10 20 30 40 50 60 70 80 90

y 29 82 151 235 330 430 546 669 797

 10. Logistic Population growth  The table and scatter plot give the population of black 
flies in a closed laboratory container over an 18-day period.

(a) Use the logistic command on your calculator to find a logistic model for these data.

(b) Use the model to estimate the time when there were 400 flies in the container.

400

300

200

100

4 6 80 t
Days

500

Number
of flies

N

102 12 14 16 18

Time 
(days) 

Number 
of flies

 0  10
 2  25
 4  66
 6 144
 8 262
10 374
12 446
16 492
18 498
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Suppose we want to find  the distance from the earth to the sun. Using a 
tape measure is obviously impractical, so we need something other than 
simple measurements to tackle this problem. Angles are easier to measure 
than distances. For example, we can find the angle formed by the sun, 
earth, and moon by simply pointing to the sun with one arm and to the 
moon with the other and estimating the angle between them. The key idea 
is to find relationships between angles and distances. So if we had a way 
of determining distances from angles, we would be able to find the 
distance to the sun without having to go there. The trigonometric functions 
that we study in this chapter provide us with just the tools we need. 

The trigonometric functions can be defined in two different but 
equivalent ways: as functions of angles (Chapter 5) or as functions of real 
numbers (Chapter 6). The two approaches are independent of each other, 
so either Chapter 5 or Chapter 6 may be studied first. We study both 
approaches because the different approaches are required for different 
applications.

437

Trigonometric Functions: 
Right Triangle Approach5

5.1 Angle Measure
5.2 Trigonometry of Right 

Triangles
5.3 Trigonometric Functions  

of Angles
5.4 Inverse Trigonometric 

Functions and Right 
Triangles

5.5 The Law of Sines
5.6 The Law of Cosines

FoCuS on ModeLIng 
 Surveying

john pacetti/Alamy
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438 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

5.1 AngLe MeASuRe
■ Angle Measure ■ Angles in Standard Position ■ Length of a Circular Arc  
■ Area of a Circular Sector ■ Circular Motion

An angle AOB consists of two rays R1 and R2 with a common vertex O (see Figure 1). 
We often interpret an angle as a rotation of the ray R1 onto R2. In this case R1 is called 
the initial side, and R2 is called the terminal side of the angle. If the rota tion is coun-
terclockwise, the angle is considered positive, and if the rotation is clock wise, the angle 
is considered negative.

R⁄

R¤

terminal
side

Positive angle

initial side A

B

O

R⁄

R¤

Negative angle

terminal side

initial side

A

B

O

FIguRe 1

■ Angle Measure
The measure of an angle is the amount of rotation about the vertex required to move R1 
onto R2. Intuitively, this is how much the angle “opens.” One unit of measurement for 
angles is the degree. An angle of measure 1 degree is formed by rotating the initial side 

1
360 of a complete revolution. In calculus and other branches of mathematics a more 
natural method of measuring angles is used: radian measure. The amount an angle opens 
is measured along the arc of a circle of radius 1 with its center at the vertex of the angle.

deFInITIon oF RAdIAn MeASuRe

If a circle of radius 1 is drawn with the vertex of an angle at its center, then the 
measure of this angle in radians (abbreviated rad) is the length of the arc that 
subtends the angle (see Figure 2).

The circumference of the circle of radius 1 is 2p, so a complete revolution has mea-
sure 2p rad, a straight angle has measure p rad, and a right angle has measure p/2 rad. 
An angle that is subtended by an arc of length 2 along the unit circle has radian measure 
2 (see Figure 3).

O 1

π rad

O 1

2 rad1
1

O 1

rad
π
2

O 1

1 rad

FIguRe 3 Radian measure

Since a complete revolution measured in degrees is 360 and measured in radians is  
2p rad, we get the following simple relationship between these two methods of angle 
measurement.

¨
Radian
measure
of ¨

1

FIguRe 2
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SECTION 5.1 ■ Angle Measure 439

ReLATIonShIP beTween degReeS And RAdIAnS

180°  p rad  1 rad  a 180
p
b °
  1° 

p

180
  rad

1. To convert degrees to radians, multiply by 
p

180
.

2. To convert radians to degrees, multiply by 
180
p

.

To get some idea of the size of a radian, notice that

1 rad  57.296°  and  1°  0.01745 rad

An angle u of measure 1 rad is shown in Figure 4.

exAMPLe 1 ■ Converting between Radians and degrees

(a) Express 60 in radians.     (b) Express 
p

6
 rad in degrees.

SoLuTIon  The relationship between degrees and radians gives

(a) 60°  60 a p

180
b  rad 

p

3
  rad

     
(b) 

p

6
  rad  ap

6
b a 180

p
b  30°

now Try exercises 5 and 17 ■

A note on terminology: We often use a phrase such as “a 30 angle” to mean an 
angle whose measure is 30. Also, for an angle u we write u  30 or u  p/6 to mean 
the measure of u is 30 or p/6 rad. When no unit is given, the angle is assumed to be 
measured in radians.

■ Angles in Standard Position
An angle is in standard position if it is drawn in the xy-plane with its vertex at the 
origin and its initial side on the positive x-axis. Figure 5 gives examples of angles in 
standard position.

y

x0

(a)

y

x0

(b)

y

x0

(d)

y

x0

(c)

FIguRe 5 Angles in standard position

Two angles in standard position are coterminal if their sides coincide. In Figure 5 
the angles in (a) and (c) are coterminal.

exAMPLe 2 ■ Coterminal Angles
(a) Find angles that are coterminal with the angle u  30 in standard position.

(b) Find angles that are coterminal with the angle u 
p

3
 in standard position.

¨
1

1

Measure of ¨=1 rad
Measure of ¨Å57.296*

FIguRe 4
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440 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

SoLuTIon

(a)  To find positive angles that are coterminal with u, we add any multiple of 360. 
Thus

30°  360°  390°  and  30°  720°  750°

   are coterminal with u  30. To find negative angles that are coterminal with u, 
we subtract any multiple of 360. Thus

30°  360°  330°  and  30°  720°  690°

  are coterminal with u. (See Figure 6.)

y

x0

_330*

y

x0

390*

y

x0

30*

FIguRe 6

(b)  To find positive angles that are coterminal with u, we add any multiple of 2p. 
Thus

p

3
 2p 

7p

3
  and  

p

3
 4p 

13p

3

   are coterminal with u  p/3. To find negative angles that are coterminal with u, 
we subtract any multiple of 2p. Thus

p

3
 2p   

5p

3
  and  

p

3
 4p   

11p

3

  are coterminal with u. (See Figure 7.)

y

x0

5π
3_

7π
3

y

x0

y

x0

π
3

FIguRe 7

now Try exercises 29 and 31 ■

exAMPLe 3 ■ Coterminal Angles
Find an angle with measure between 0 and 360 that is coterminal with the angle of 
measure 1290 in standard position.

SoLuTIon  We can subtract 360 as many times as we wish from 1290, and the 
resulting angle will be coterminal with 1290. Thus 1290  360  930 is cotermi-
nal with 1290, and so is the angle 1290  2(360)  570.

To find the angle we want between 0 and 360, we subtract 360 from 1290 as 
many times as necessary. An efficient way to do this is to determine how many times 
360 goes into 1290, that is, divide 1290 by 360, and the remainder will be the angle 
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SECTION 5.1 ■ Angle Measure 441

we are looking for. We see that 360 goes into 1290 three times with a remainder of 
210. Thus 210 is the desired angle (see Figure 8).

y

x0

210*

y

x
0

1290*

FIguRe 8

now Try exercise 41 ■

■ Length of a Circular Arc
An angle whose radian measure is u is subtended by an arc that is the fraction u/ 12p 2  
of the circumference of a circle. Thus in a circle of radius r the length s of an arc that 
subtends the angle u (see Figure 9) is

 s 
u

2p
 circumference of circle

  
u

2p
  12pr 2  ur

LengTh oF A CIRCuLAR ARC

In a circle of radius r the length s of an arc that subtends a central angle of  
u radians is

s  r u

Solving for u, we get the important formula

u 
s
r

This formula allows us to define radian measure using a circle of any radius r: The ra-
dian measure of an angle u is s/r, where s is the length of the circular arc that subtends 
u in a circle of radius r (see Figure 10).

2 rad

r
r

r

1 rad
r

rFIguRe 10 The radian measure of u is 
the number of “radiuses” that can fit in 
the arc that subtends u; hence the term 
radian.

exAMPLe 4 ■ Arc Length and Angle Measure
(a)  Find the length of an arc of a circle with radius 10 m that subtends a central 

angle of 30.

(b)  A central angle u in a circle of radius 4 m is subtended by an arc of length 6 m. 
Find the measure of u in radians.

¨
s

r

FIguRe 9 s  ur
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442 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

SoLuTIon

(a) From Example 1(b) we see that 30  p/6 rad. So the length of the arc is

s  r u  110 2p
6


5p

3
  m

(b) By the formula u  s/r we have

u 
s
r


6

4


3

2
  rad

now Try exercises 57 and 59 ■

■ Area of a Circular Sector
The area of a circle of radius r is A  pr 2. A sector of this circle with central angle u 
has an area that is the fraction u/ 12p 2  of the area of the entire circle (see Figure 11). 
So the area of this sector is

 A 
u

2p
 area of circle

  
u

2p
1pr 2 2 

1

2
 r 2u

AReA oF A CIRCuLAR SeCToR

In a circle of radius r the area A of a sector with a central angle of u radians is

A 
1

2
 r2u

exAMPLe 5 ■ Area of a Sector
Find the area of a sector of a circle with central angle 60 if the radius of the circle  
is 3 m.

SoLuTIon  To use the formula for the area of a circular sector, we must find the cen-
tral angle of the sector in radians: 60°  601p/180 2  rad  p/3 rad. Thus the area of 
the sector is

A 
1

2
 r2u 

1

2
 13 2 2 ap

3
b 

3p

2
  m2

now Try exercise 63 ■

■ Circular Motion
Suppose a point moves along a circle as shown in Figure 12. There are two ways  
to describe the motion of the point: linear speed and angular speed. Linear speed is the 
rate at which the distance traveled is changing, so linear speed is the distance traveled 
divided by the time elapsed. Angular speed is the rate at which the central angle u is 
changing, so angular speed is the number of radians this angle changes divided by the 
time elapsed.

 The formula s  ru is true only 
when u is measured in radians.

 The formula A  1
2 r2u is true only 

when u is measured in radians.

¨
r

A

FIguRe 11  

A  1
2 r2u

¨
s

r

FIguRe 12
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SECTION 5.1 ■ Angle Measure 443

LIneAR SPeed And AnguLAR SPeed

Suppose a point moves along a circle of radius r and the ray from the center of 
the circle to the point traverses u radians in time t. Let s  ru be the distance 
the point travels in time t. Then the speed of the object is given by

Angular speed  v 
u

t

Linear speed  √ 
s

t

exAMPLe 6 ■ Finding Linear and Angular Speed
A boy rotates a stone in a 3-ft-long sling at the rate of 15 revolutions every 10 sec-
onds. Find the angular and linear velocities of the stone.

SoLuTIon  In 10 s the angle u changes by 15 # 2p  30p rad. So the angular speed 
of the stone is

v 
u

t


30p rad

10 s
 3p rad/s

The distance traveled by the stone in 10 s is s  15  2pr  15  2p  3  90p ft. So 
the linear speed of the stone is

√ 
s

t


90p ft

10 s
 9p ft/s

now Try exercise 85 ■

Notice that angular speed does not depend on the radius of the circle; it depends only 
on the angle u. However, if we know the angular speed v and the radius r, we can find 
linear speed as follows: √  s/t  ru/t  r 1u/t 2  rv.

ReLATIonShIP beTween LIneAR And AnguLAR SPeed

If a point moves along a circle of radius r with angular speed v, then its linear 
speed √ is given by

√  rv

exAMPLe 7 ■ Finding Linear Speed from Angular Speed
A woman is riding a bicycle whose wheels are 26 in. in diameter. If the wheels rotate 
at 125 revolutions per minute (rpm), find the speed (in mi/h) at which she is traveling.

SoLuTIon  The angular speed of the wheels is 2p # 125  250p rad/min. Since the 
wheels have radius 13 in. (half the diameter), the linear speed is

√  rv  13 # 250p  10,210.2 in./min

Since there are 12 inches per foot, 5280 feet per mile, and 60 minutes per hour, her 
speed in miles per hour is

 
10,210.2 in./min  60 min/h

12 in./ft  5280 ft/mi


612,612 in./h

63,360 in./mi

  9.7 mi/h

now Try exercise 87 ■

The symbol v is the Greek letter 
“omega.”
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444 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

ConCePTS
 1. (a) The radian measure of an angle u is the length of the

     that subtends the angle in a circle of radius 

      .

  (b) To convert degrees to radians, we multiply by    .

  (c) To convert radians to degrees, we multiply by    .

 2. A central angle u is drawn in a circle of radius r, as in the 
figure below.

  (a)  The length of the arc subtended by u is s     .

  (b) The area of the sector with central angle u is 

   A     .

¨
r

s
A

 3. Suppose a point moves along a circle with radius r as shown 
in the figure below. The point travels a distance s along the 
circle in time t. 

(a) The angular speed of the point is v 
  
     .

(b) The linear speed of the point is √ 
     
  .

(c) The linear speed √ and the angular speed v are related by 

the equation √     .

¨
s

r

 4. Object A is traveling along a circle of radius 2, and Object B 
is traveling along a circle of radius 5. The objects have the 
same angular speed. Do the objects have the same linear 
speed? If not, which object has the greater linear speed?

SkILLS
5–16 ■ From degrees to Radians  Find the radian measure of 
the angle with the given degree measure. Round your answer to 
three decimal places.

 5. 15  6. 36  7. 54  8. 75

 9. 45 10. 30 11. 100 12. 200

 13. 1000 14. 3600 15. 70 16. 150

17–28 ■ From Radians to degrees  Find the degree measure of 
the angle with the given radian measure.

 17. 
5p

3
 18. 

3p

4
 19. 

5p

6

 20.  

3p

2
 21. 3 22. 2

 23. 1.2 24. 3.4 25. 
p

10

 26. 
5p

18
 27.  

2p

15
 28.  

13p

12

29–34 ■ Coterminal Angles  The measure of an angle in stan-
dard position is given. Find two positive angles and two negative 
angles that are coterminal with the given angle.

29. 50 30. 135 31. 
3p

4

 32. 
11p

6
 33.  

p

4
 34. 45

35–40 ■ Coterminal Angles?  The measures of two angles in 
standard position are given. Determine whether the angles are 
coterminal.

35. 70,  430 36. 30,  330

37. 
5p

6
, 

17p

6
 38. 

32p

3
, 

11p

3

39. 155,  875 40. 50,  340

41–46 ■ Finding a Coterminal Angle  Find an angle between 0 
and 360 that is coterminal with the given angle.

41. 400° 42. 375°

 43. 780° 44. 100

 45. 800 46. 1270

47–52 ■ Finding a Coterminal Angle  Find an angle between 0 
and 2p that is coterminal with the given angle.

47. 
19p

6
 48.  

5p

3
 49. 25p

 50. 10 51. 
17p

4
 52. 

51p

2

53–62 ■ Circular Arcs  Find the length s of the circular arc, the 
radius r of the circle, or the central angle u, as indicated. 

53. 

9

s

5π
6

 54. 

140*

5

s

5.1 exeRCISeS
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55. 

¨

5

10  56. 

2 rad

r

8

57. Find the length s of the arc that subtends a central angle of 
measure 3 rad in a circle of radius 5 cm.

58. Find the length s of the arc that subtends a central angle of 
measure 40 in a circle of radius 12 m.

59. A central angle u in a circle of radius 9 m is subtended by  
an arc of length 14 m. Find the measure of u in degrees and 
radians.

60. An arc of length 15 ft subtends a central angle u in a circle 
of radius 9 ft. Find the measure of u in degrees and radians.

61. Find the radius r of the circle if an arc of length 15 m on the 
circle subtends a central angle of 5p/6.

62. Find the radius r of the circle if an arc of length 20 cm on the 
circle subtends a central angle of 50.

63–70 ■ Area of a Circular Sector   These exercises involve the 
formula for the area of a circular sector.

63. Find the area of the sector shown in each figure.

(a) 

80*

8

0.5 rad

10

64. Find the radius of each circle if the area of the sector  
is 12.

(a) 

0.7 rad 150*

65. Find the area of a sector with central angle 2p/3 rad in a  
circle of radius 10 m.

66. A sector of a circle has a central angle of 145. Find the area 
of the sector if the radius of the circle is 6 ft.

67. The area of a sector of a circle with a central angle of 140 is 
70 m2. Find the radius of the circle.

68. The area of a sector of a circle with a central angle of  
5p/12 rad is 20 m2. Find the radius of the circle.

69. A sector of a circle of radius 80 mi has an area of 1600 mi2. 
Find the central angle (in radians) of the sector.

70. The area of a circle is 600 m2. Find the area of a sector of 
this circle that subtends a central angle of 3 rad.

(b)

(b)

SkILLS Plus
71. Area of a Sector of a Circle  Three circles with radii 1, 2, and 

3 ft are externally tangent to one another, as shown in the 
figure. Find the area of the sector of the circle of radius 1 that 
is cut off by the line segments joining the center of that circle 
to the centers of the other two circles.

72. Comparing a Triangle and a Sector of a Circle  Two wood 
sticks and a metal rod, each of length 1, are connected to form 
a triangle with angle u1 at the point P, as shown in the first  
figure below. The rod is then bent to form an arc of a circle 
with center P, resulting in a smaller angle  u2 at the point P,  
as shown in the second figure. Find u1, u2, and u1  u2.

¨¤¨⁄ P 1

1

1

P 1

1

1

73–74 ■ Clocks and Angles  In 1 h the minute hand on a clock 
moves through a complete circle, and the hour hand moves 
through 1

12 of a circle. 

12 1

2

3

6

9

10

4

57

8

11 12 1

2

3

6

10

4

57

8

11

9

12 1

2

3

6

9

10

4

57

8

11

73. Through how many radians do the minute hand and the hour 
hand move between 1:00 p.m. and 1:45 p.m. (on the same day)?

74. Through how many radians do the minute hand and the hour 
hand move between 1:00 p.m. and 6:45 p.m. (on the same day)?

APPLICATIonS
75. Travel distance  A car’s wheels are 28 in. in diameter. How 

far (in mi.) will the car travel if its wheels revolve 10,000 
times without slipping?

76. wheel Revolutions  How many revolutions will a car wheel of 
diameter 30 in. make as the car travels a distance of one mile?
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446 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

77. Latitudes  Pittsburgh, Pennsylvania, and Miami, Florida, lie 
approximately on the same meridian. Pittsburgh has a latitude 
of 40.5 N, and Miami has a latitude of 25.5 N. Find the dis-
tance between these two cities. (The radius of the earth is 
3960 mi.)

Pittsburgh
Miami

78. Latitudes  Memphis, Tennessee, and New Orleans, 
Louisiana, lie approximately on the same meridian. Memphis 
has a latitude of 35 N, and New Orleans has a latitude of 
30 N. Find the distance between these two cities. (The radius 
of the earth is 3960 mi.)

79. orbit of the earth  Find the distance that the earth travels in 
one day in its path around the sun. Assume that a year has 
365 days and that the path of the earth around the sun is a 
circle of radius 93 million miles. [Note: The path of the 
earth around the sun is actually an ellipse with the sun at one 
focus (see Section 12.2). This ellipse, however, has very 
small eccentricity, so it is nearly circular.]

sun

80. Circumference of the earth  The Greek mathematician  
Eratosthenes (ca. 276–195 b.c.) measured the circumference 
of the earth from the following observations. He noticed that 
on a certain day the sun shone directly down a deep well in 
Syene (modern Aswan). At the same time in Alexandria, 
500 miles north (on the same meridian), the rays of the sun 
shone at an angle of 7.2 to the zenith. Use this information 
and the figure to find the radius and circumference of the 
earth.

Syene

Alexandria
Rays of sun

7.2*
500 mi

81. nautical Miles  Find the distance along an arc on the surface 
of the earth that subtends a central angle of 1 minute 
11 minute  1

60  degree 2 . This distance is called a nautical 
mile. (The radius of the earth is 3960 mi.)

82. Irrigation  An irrigation system uses a straight sprinkler pipe 
300 ft long that pivots around a central point as shown. 
Because of an obstacle the pipe is allowed to pivot through 
280 only. Find the area irrigated by this system.

280*

30
0 f

t

83. windshield wipers  The top and bottom ends of a wind-
shield wiper blade are 34 in. and 14 in., respectively, from 
the pivot point. While in operation, the wiper sweeps through 
135. Find the area swept by the blade.

135*
34 in.

14 in.

84. The Tethered Cow  A cow is tethered by a 100-ft rope to the 
inside corner of an L-shaped building, as shown in the figure. 
Find the area that the cow can graze.

50 ft

60 ft

10
0 f

t

50 ft

20 ft

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 5.1 ■ Angle Measure 447

85. Fan  A ceiling fan with 16-in. blades rotates at 45 rpm.

(a) Find the angular speed of the fan in rad/min.

(b) Find the linear speed of the tips of the blades in in./min.

86. Radial Saw  A radial saw has a blade with a 6-in. radius. 
Suppose that the blade spins at 1000 rpm.

(a) Find the angular speed of the blade in rad/min.

(b) Find the linear speed of the sawteeth in ft/s.

87. winch  A winch of radius 2 ft is used to lift heavy loads.  
If the winch makes 8 revolutions every 15 s, find the speed at 
which the load is rising.

88. Speed of a Car  The wheels of a car have radius 11 in. and 
are rotating at 600 rpm. Find the speed of the car in mi/h.

89. Speed at the equator  The earth rotates about its axis once 
every 23 h 56 min 4 s, and the radius of the earth is 3960 mi. 
Find the linear speed of a point on the equator in mi/h.

90. Truck wheels  A truck with 48-in.-diameter wheels is  
traveling at 50 mi/h.

(a) Find the angular speed of the wheels in rad/min.

(b) How many revolutions per minute do the wheels  
make?

91. Speed of a Current  To measure the speed of a current, scien-
tists place a paddle wheel in the stream and observe the rate 
at which it rotates. If the paddle wheel has radius 0.20 m and 
rotates at 100 rpm, find the speed of the current in m/s.

92. bicycle wheel  The sprockets and chain of a bicycle are 
shown in the figure. The pedal sprocket has a radius of 4 in., 
the wheel sprocket a radius of 2 in., and the wheel a radius of 
13 in. The cyclist pedals at 40 rpm.

(a) Find the angular speed of the wheel sprocket.

(b) Find the speed of the bicycle. (Assume that the wheel 
turns at the same rate as the wheel sprocket.)

4 in.

2 in.2 in.

13 in.

93. Conical Cup  A conical cup is made from a circular piece of 
paper with radius 6 cm by cutting out a sector and joining the 
edges as shown below. Suppose u  5p/3.

(a) Find the circumference C of the opening of the cup.

(b) Find the radius r of the opening of the cup.  [Hint: Use  
C  2pr.]

(c) Find the height h of the cup.  [Hint: Use the 
Pythagorean Theorem.]

(d) Find the volume of the cup.

6 cm

6 cm
6 cm

¨
h

r

94. Conical Cup  In this exercise we find the volume of the coni-
cal cup in Exercise 93 for any angle u.

(a) Follow the steps in Exercise 93 to show that the volume 
of the cup as a function of u is

V1u 2 
9

p2  u2"4p2  u2,  0  u  2p

(b) Graph the function V.

(c) For what angle u is the volume of the cup a maximum?

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
95. wRITe: different ways of Measuring Angles  The custom of 

measuring angles using degrees, with 360 in a circle, dates 
back to the ancient Babylonians, who used a number system 
based on groups of 60. Another system of measuring angles 
divides the circle into 400 units, called grads. In this system 
a right angle is 100 grad, so this fits in with our base 10 num-
ber system.

    Write a short essay comparing the advantages and disad-
vantages of these two systems and the radian system of mea-
suring angles. Which system do you prefer? Why?
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448 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

5.2 TRIgonoMeTRy oF RIghT TRIAngLeS
■ Trigonometric Ratios ■ Special Triangles; Calculators ■ Applications of Trigonometry  
of Right Triangles

In this section we study certain ratios of the sides of right triangles, called trigonomet-
ric ratios, and give several applications.

■ Trigonometric Ratios
Consider a right triangle with u as one of its acute angles. The trigonometric ratios are 
defined as follows (see Figure 1).

The TRIgonoMeTRIC RATIoS

sin u 
opposite

hypotenuse
   cos u 

adjacent

hypotenuse
   tan u 

opposite

adjacent

csc u 
hypotenuse

opposite
   sec u 

hypotenuse

adjacent
   cot u 

adjacent

opposite

The symbols we use for these ratios are abbreviations for their full names: sine, cosine, 
tangent, cosecant, secant, cotangent. Since any two right triangles with angle u are  
similar, these ratios are the same, regardless of the size of the triangle; the trigonomet-
ric ratios depend only on the angle u (see Figure 2).

¨
4

3
5

ß ¨=3
5

¨
40

30

50

ß ¨=30
50

3
5

=
FIguRe 2

exAMPLe 1 ■ Finding Trigonometric Ratios
Find the six trigonometric ratios of the angle u in Figure 3.

SoLuTIon  By the definition of trigonometric ratios, we get

sin u 
2

3
   cos u 

!5

3
   tan u 

2

!5

csc u 
3

2
   sec u 

3

!5
   cot u 

!5

2

now Try exercise 3 ■

exAMPLe 2 ■ Finding Trigonometric Ratios
If cos a  3

4, sketch a right triangle with acute angle a, and find the other five trigo-
nometric ratios of a.

œ∑

3 2

¨
5

FIguRe 3

adjacent

opposite
hypotenuse

¨

FIguRe 1
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SECTION 5.2 ■ Trigonometry of Right Triangles 449

SoLuTIon  Since cos a is defined as the ratio of the adjacent side to the hypotenuse, 
we sketch a triangle with hypotenuse of length 4 and a side of length 3 adjacent to a. 
If the opposite side is x, then by the Pythagorean Theorem, 32  x2  42 or x2  7, 
so x  !7. We then use the triangle in Figure 4 to find the ratios.

sin a 
!7

4
   cos a 

3

4
   tan a 

!7

3

csc a 
4

!7
   sec a 

4

3
   cot a 

3

!7

now Try exercise 23 ■

■ Special Triangles; Calculators
There are special trigonometric ratios that can be calculated from certain triangles (which 
we call special triangles). We can also use a calculator to find trigonometric ratios.

Special Ratios  Certain right triangles have ratios that can be calculated easily from the 
Pythagorean Theorem. Since they are used frequently, we mention them here.

The first triangle is obtained by drawing a diagonal in a square of side 1 (see  
Figure 5). By the Pythagorean Theorem this diagonal has length !2. The resulting 
triangle has angles 45, 45, and 90 (or p/4, p/4, and p/2). To get the second triangle, 
we start with an equilateral triangle ABC of side 2 and draw the perpendicular bisector 
DB of the base, as in Figure 6. By the Pythagorean Theorem the length of DB is !3. 
Since DB bisects angle ABC, we obtain a triangle with angles 30, 60, and 90 (or p/6, 
p/3, and p/2).

1

1

œ∑2

45*

45*

FIguRe 5

1

2

A C

B

D

60*

œ∑330*

FIguRe 6

We can now use the special triangles in Figures 5 and 6 to calculate the trigonomet-
ric ratios for angles with measures 30, 45, and 60 (or p/6, p/4, and p/3). These are 
listed in the table below.

SPeCIAL VALueS oF The TRIgonoMeTRIC FunCTIonS

The following values of the trigonometric functions are  
obtained from the special triangles. 

u in  
degrees

u in  
radians sin u cos u tan u csc u sec u cot u

0 0 0 1 0 — 1 —

30 p
6

1
2

!3
2

!3
3 2 2!3

3 !3

45 p
4

!2
2

!2
2 1 !2 !2 1

60 p
3

!3
2

1
2 !3 2!3

3 2 !3
3

90 p
2 1 0 — 1 — 0

1

1

œ∑2

45*

45*

1

2

60*

œ∑3

30*

HipparcHus (circa 140 b.c.) is consid-
ered the founder of trigonometry. He con-
structed tables for a function closely 
related to the modern sine function and 
evaluated for angles at half-degree inter-
vals. These are considered the first trigo-
nometric tables. He used his tables mainly 
to calculate the paths of the planets 
through the heavens.

3

4
œ∑

å

7

FIguRe 4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



450 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

It’s useful to remember these special trigonometric ratios because they occur often. 
Of course, they can be recalled easily if we remember the triangles from which they are 
obtained.

using a Calculator  To find the values of the trigonometric ratios for other angles, we use 
a calculator. Mathematical methods (called numerical methods) used in finding the trigo-
nometric ratios are programmed directly into scientific calculators. For instance, when the 
SIN  key is pressed, the calculator computes an approximation to the value of the sine of 
the given angle. Calculators give the values of sine, cosine, and tangent; the other ratios 
can be easily calculated from these by using the following reciprocal relations:

csc t 
1

sin t
   sec t 

1

cos t
   cot t 

1

tan t

You should check that these relations follow immediately from the definitions of the 
trigonometric ratios.

We follow the convention that when we write sin t, we mean the sine of the angle 
whose radian measure is t. For instance, sin 1 means the sine of the angle whose radian 
measure is 1. When using a calculator to find an approximate value for this number, set 
your calculator to radian mode; you will find that sin 1  0.841471. If you want to find 
the sine of the angle whose measure is 1, set your calculator to degree mode; you will 
find that sin 1°  0.0174524.

exAMPLe 3 ■ using a Calculator 
Using a calculator, find the following.

(a) tan 40   (b) cos 20°   (c) cot 14°   (d) csc 80°

SoLuTIon  Making sure our calculator is set in degree mode and rounding the results 
to six decimal places, we get the following:

(a) tan 40°  0.839100 (b) cos 20°  0.939693

(c) cot 14 
1

tan 14
 4.010781 (d) csc 80 

1

sin 80
 1.015427

now Try exercise 11 ■

■ Applications of Trigonometry of Right Triangles
A triangle has six parts: three angles and three sides. To solve a triangle means to de-
termine all of its parts from the information known about the triangle, that is, to deter-
mine the lengths of the three sides and the measures of the three angles.

For an explanation of numerical meth-
ods, see the margin note on page 535.

dISCoVeRy PRojeCT

Similarity

Similarity of triangles is the basic concept underlying the definition of the  
trigonometric functions. The ratios of the sides of a triangle are the same as the 
corresponding ratios in any similar triangle. But the concept of similarity of  
figures applies to all shapes, not just triangles. In this project we explore how 
areas and volumes of similar figures are related. These relationships allow us to 
determine whether an ape the size of King Kong (that is, an ape similar to, but 
much larger than, a real ape) can actually exist. You can find the project at 
www.stewartmath.com.

Hu
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SECTION 5.2 ■ Trigonometry of Right Triangles 451

exAMPLe 4 ■ Solving a Right Triangle
Solve triangle ABC, shown in Figure 7.

SoLuTIon  It’s clear that B  60°. From Figure 7 we have

 sin 30° 
a

12
  Definition of sine

 a  12 sin 30°  Multiply by 12

  12A12B  6  Evaluate

Also from Figure 7 we have

 cos 30° 
b

12
  Definition of cosine

 b  12 cos 30   Multiply by 12

  12 a !3

2
b  6!3  Evaluate

now Try exercise 37 ■

Figure 8 shows that if we know the hypotenuse r and an acute angle u in a right 
triangle, then the legs a and b are given by

a  r sin u  and  b  r cos u

The ability to solve right triangles by using the trigonometric ratios is fundamental 
to many problems in navigation, surveying, astronomy, and the measurement of dis-
tances. The applications we consider in this section always involve right triangles, but 
as we will see in the next three sections, trigonometry is also useful in solving triangles 
that are not right triangles.

To discuss the next examples, we need some terminology. If an observer is looking 
at an object, then the line from the eye of the observer to the object is called the line of 
sight (Figure 9). If the object being observed is above the horizontal, then the angle 
between the line of sight and the horizontal is called the angle of elevation. If the object 
is below the horizontal, then the angle between the line of sight and the horizontal is 
called the angle of depression. In many of the examples and exercises in this chapter, 
angles of elevation and depression will be given for a hypothetical observer at ground 
level. If the line of sight follows a physical object, such as an inclined plane or a hill-
side, we use the term angle of inclination.

Angle of
elevation

Horizontal

Line of
sight Angle of

depression

Horizontal

Line of
sight

FIguRe 9

The next example gives an important application of trigonometry to the problem of 
measurement: We measure the height of a tall tree without having to climb it! Although 
the example is simple, the result is fundamental to understanding how the trigonometric 
ratios are applied to such problems.

¨

a
r

b

FIguRe 8  
a  r sin u, b  r cos u

30*
b

a
12

A C

B

FIguRe 7

aristarcHus of samos (310–230 
b.c.) was a famous Greek scientist, musi-
cian, astronomer, and geometer. He 
observed that the angle between the sun 
and moon can be measured directly (see 
the figure below). In his book On the Sizes 
and Distances of the Sun and the Moon he 
estimated the distance to the sun by 
observing that when the moon is exactly 
half full, the triangle formed by the sun, 
the moon, and the earth has a right 
angle at the moon. His method was simi-
lar to the one described in Exercise 67 in 
this section. Aristarchus was the first to 
advance the theory that the earth and 
planets move around the sun, an idea 
that did not gain full acceptance until 
after the time of Copernicus, 1800 years 
later. For this reason Aristarchus is often 
called “the Copernicus of antiquity.”

¨
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452 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

exAMPLe 5 ■ Finding the height of a Tree
A giant redwood tree casts a shadow 532 ft long. Find the height of the tree if the 
angle of elevation of the sun is 25.7.

SoLuTIon  Let the height of the tree be h. From Figure 10 we see that

 
h

532
 tan 25.7°   Definition of tangent

 h  532 tan 25.7°   Multiply by 532

  53210.48127 2  256  Use a calculator

Therefore the height of the tree is about 256 ft.

532 ft

h

25.7*

FIguRe 10

now Try exercise 53 ■

exAMPLe 6 ■ A Problem Involving Right Triangles
From a point on the ground 500 ft from the base of a building, an observer finds that 
the angle of elevation to the top of the building is 24 and that the angle of elevation 
to the top of a flagpole atop the building is 27. Find the height of the building and 
the length of the flagpole.

SoLuTIon  Figure 11 illustrates the situation. The height of the building is found in 
the same way that we found the height of the tree in Example 4.

 
h

500
 tan 24°   Definition of tangent

 h  500 tan 24°   Multiply by 500

  50010.4452 2  223  Use a calculator

The height of the building is approximately 223 ft.
To find the length of the flagpole, let’s first find the height from the ground to the 

top of the pole.

 
k

500
 tan 27°   Definition of tangent

 k  500 tan 27°   Multiply by 500

  50010.5095 2   Use a calculator

  255

To find the length of the flagpole, we subtract h from k. So the length of the pole is 
approximately 255  223  32 ft.

now Try exercise 61 ■

tHales of miletus (circa 625–547 b.c.) 
is the legendary founder of Greek geom-
etry. It is said that he calculated the 
height of a Greek column by comparing 
the length of the shadow of his staff with 
that of the column. Using properties of 
similar triangles, he argued that the ratio 
of the height h of the column to the 
height h of his staff was equal to the 
ratio of the length s of the column’s 
shadow to the length s of the staff’s 
shadow:

h
h r


s
s r

Since three of these quantities are 
known, Thales was able to calculate the 
height of the column.

According to legend, Thales used a 
similar method to find the height of the 
Great Pyramid in Egypt, a feat that 
impressed Egypt’s king. Plutarch wrote 
that “although he [the king of Egypt] 
admired you [Thales] for other things, yet 
he particularly liked the manner by which 
you measured the height of the pyramid 
without any trouble or instrument.”  The 
principle Thales used, the fact that ratios 
of corresponding sides of similar triangles 
are equal, is the foundation of the subject 
of trigonometry.

500 ft

h
k

24*
27*

FIguRe 11
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SECTION 5.2 ■ Trigonometry of Right Triangles 453

ConCePTS
 1. A right triangle with an angle u is shown in the figure.

¨

(a)  Label the “opposite” and “adjacent” sides of u and the 
hypotenuse of the triangle.

(b)  The trigonometric functions of the angle u are defined as 
follows:

sin u 
             

         cos u 
             

         tan u 
             

     

(c)  The trigonometric ratios do not depend on the size of the 
triangle. This is because all right triangles with the same 

 acute angle u are    . 

 2. The reciprocal identities state that 

csc u 
1

            sec u 
1

            cot u 
1

        

SkILLS
3–8 ■ Trigonometric Ratios  Find the exact values of the six 
trigonometric ratios of the angle u in the triangle.

 3. 

4

¨5
3

 4. 

24
¨
25

7

 5. 

41
¨

40  6. 

¨

15

8

 7. 

3 2

¨  8. 
8

7

¨

9–10 ■ Trigonometric Ratios  Find (a) sin a and cos b,  
(b) tan a and cot b, and (c) sec a and csc b.

 9. 
∫

5

3

å

 10. 

7

4

∫

å

11–14 ■ using a Calculator  Use a calculator to evaluate the 
expression. Round your answer to five decimal places.

11. (a) sin 22° (b) cot 23°

12. (a) cos 37° (b) csc 48°

13. (a) sec 13° (b) tan 51°

14. (a) csc 10° (b) sin 46°

15–20 ■ Finding an unknown Side  Find the side labeled x. In 
Exercises 17 and 18 state your answer rounded to five decimal 
places.

 15. 

30*

25
x

 16. 
12

x
45*

17. 

13

x

60*

 18. 

30*

4

x

19. 

36*

12

x

 20. 

53* 25

x

21–22 ■ Trigonometric Ratios  Express x and y in terms of trig-
onometric ratios of u.

21. 

¨

28

x

y

 22. 

¨
4

x
y

23–28 ■ Trigonometric Ratios  Sketch a triangle that has acute 
angle u, and find the other five trigonometric ratios of u.

23. tan u  5
6 24. cos u  12

13 25. cot u  1

 26. tan u  !3 27. csc u  11
6  28. cot u  5

3

5.2 exeRCISeS
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454 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

29–36 ■ evaluating an expression  Evaluate the expression 
without using a calculator.

29. sin 
p

6
 cos 

p

6

 30. sin 30  csc 30

31. sin 30°  cos 60°  sin 60° cos 30°

32. 1sin 60° 2 2  1cos 60° 2 2
33. 1cos 30° 2 2  1sin 30° 2 2

34. a sin 
p

3
  cos 

p

4
 sin 

p

4
  cos 

p

3
b

2

35. a cos 
p

4
 sin 

p

6
b

2

 36. a sin 
p

3
 tan 

p

6
 csc 

p

4
b

2

37–44 ■ Solving a Right Triangle  Solve the right triangle.

37. 

16
45*

 38. 

100
75*

39. 

35

52*
 40. 1000

68˚

41. 33.5
π
8

 42. 
72.3

π
6

43. 

106

π
5

 44. 
425 3π

8

SkILLS Plus
45. using a Ruler to estimate Trigonometric Ratios  Use a ruler to 

carefully measure the sides of the triangle, and then use your 
measurements to estimate the six trigonometric ratios of u.

¨

46. using a Protractor to estimate Trigonometric Ratios  Using a 
protractor, sketch a right triangle that has the acute angle 40. 
Measure the sides carefully, and use your results to estimate 
the six trigonometric ratios of 40.

47–50 ■ Finding an unknown Side  Find x rounded to one deci-
mal place.

47. 

60* 30*

100

x

48. 

60* 30*

85

x

49. 

60*
65*

50

x

 50. 

30*

5

x

51. Trigonometric Ratios  Express the length x in terms of the 
trigonometric ratios of u.

10

¨

x

52. Trigonometric Ratios  Express the lengths a, b, c, and d in 
the figure in terms of the trigonometric ratios of u.

1

¨
a

b

d

c

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 5.2 ■ Trigonometry of Right Triangles 455

APPLICATIonS
53. height of a building  The angle of elevation to the top of the 

Empire State Building in New York is found to be 11 from 
the ground at a distance of 1 mi from the base of the build-
ing. Using this information, find the height of the Empire 
State Building.

54. gateway Arch  A plane is flying within sight of the  
Gateway Arch in St. Louis, Missouri, at an elevation of 
35,000 ft. The pilot would like to estimate her distance  
from the Gateway Arch. She finds that the angle of  
depression to a point on the ground below the arch  
is 22.

(a) What is the distance between the plane and the  
arch?

(b) What is the distance between a point on the ground  
directly below the plane and the arch?

55. deviation of a Laser beam  A laser beam is to be directed 
toward the center of the moon, but the beam strays 0.5 from 
its intended path.

(a) How far has the beam diverged from its assigned target 
when it reaches the moon? (The distance from the earth 
to the moon is 240,000 mi.)

(b) The radius of the moon is about 1000 mi. Will the beam 
strike the moon?

56. distance at Sea  From the top of a 200-ft lighthouse, the 
angle of depression to a ship in the ocean is 23. How far is 
the ship from the base of the lighthouse?

57. Leaning Ladder  A 20-ft ladder leans against a building so 
that the angle between the ground and the ladder is 72. How 
high does the ladder reach on the building?

58. height of a Tower  A 600-ft guy wire is attached to the  
top of a communications tower. If the wire makes an angle  
of 65 with the ground, how tall is the communications  
tower?

59. elevation of a kite  A man is lying on the beach, flying  
a kite. He holds the end of the kite string at ground level  
and estimates the angle of elevation of the kite to be 50.  
If the string is 450 ft long, how high is the kite above the 
ground?

60. determining a distance  A woman standing on a hill sees  
a flagpole that she knows is 60 ft tall. The angle of depres-
sion to the bottom of the pole is 14, and the angle of eleva-
tion to the top of the pole is 18. Find her distance x from 
the pole.

x
18*

14*

61. height of a Tower  A water tower is located 325 ft from a 
building (see the figure). From a window in the building, an 
observer notes that the angle of elevation to the top of the 
tower is 39 and that the angle of depression to the bottom of 
the tower is 25. How tall is the tower? How high is the 
window?

39*
25*

325 ft

62. determining a distance  An airplane is flying at an elevation 
of 5150 ft, directly above a straight highway. Two motorists 
are driving cars on the highway on opposite sides of the 
plane. The angle of depression to one car is 35, and that to 
the other is 52. How far apart are the cars?

63. determining a distance  If both cars in Exercise 62 are on 
one side of the plane and if the angle of depression to one car 
is 38 and that to the other car is 52, how far apart are the 
cars?

64. height of a balloon  A hot-air balloon is floating above a 
straight road. To estimate their height above the ground, the 
balloonists simultaneously measure the angle of depression to 
two consecutive mileposts on the road on the same side of 
the balloon. The angles of depression are found to be 20 and 
22. How high is the balloon?

65. height of a Mountain  To estimate the height of a  
mountain above a level plain, the angle of elevation to the 
top of the mountain is measured to be 32. One thousand 
feet closer to the mountain along the plain, it is found that 
the angle of elevation is 35. Estimate the height of the 
mountain.

66. height of Cloud Cover  To measure the height of the cloud 
cover at an airport, a worker shines a spotlight upward at an 
angle 75 from the horizontal. An observer 600 m away mea-
sures the angle of elevation to the spot of light to be 45. Find 
the height h of the cloud cover.

45* 75*

600 m

h
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456 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

67. distance to the Sun  When the moon is exactly half full, the 
earth, moon, and sun form a right angle (see the figure). At 
that time the angle formed by the sun, earth, and moon is 
measured to be 89.85. If the distance from the earth to the 
moon is 240,000 mi, estimate the distance from the earth to 
the sun.

sun
earth

moon

68. distance to the Moon  To find the distance to the sun  
as in Exercise 67, we needed to know the distance to the 
moon. Here is a way to estimate that distance: When the  
moon is seen at its zenith at a point A on the earth, it is 
observed to be at the horizon from point B (see the following 
figure). Points A and B are 6155 mi apart, and the radius of 
the earth is 3960 mi.

(a) Find the angle u in degrees.

(b) Estimate the distance from point A to the moon.

A

B 6155 mi

¨

earth moon

69. Radius of the earth  In Exercise 80 of Section 5.1 a method 
was given for finding the radius of the earth. Here is a more 
modern method: From a satellite 600 mi above the earth it is 
observed that the angle formed by the vertical and the line of 
sight to the horizon is 60.276. Use this information to find 
the radius of the earth.

60.276*

70. Parallax  To find the distance to nearby stars, the method of 
parallax is used. The idea is to find a triangle with the star at 
one vertex and with a base as large as possible. To do this, 
the star is observed at two different times exactly 6 months 
apart, and its apparent change in position is recorded. From 
these two observations E1SE2 can be calculated. (The  
times are chosen so that E1SE2 is as large as possible, 
which guarantees that E1OS is 90.) The angle E1SO is 
called the parallax of the star. Alpha Centauri, the star near-
est the earth, has a parallax of 0.000211. Estimate the dis-
tance to this star. (Take the distance from the earth to the sun 
to be 9.3  107 mi.)

0.000211*
O S

E2

E1

71. distance from Venus to the Sun  The elongation a of a 
planet is the angle formed by the planet, earth, and sun  
(see the figure). When Venus achieves its maximum  
elongation of 46.3, the earth, Venus, and the sun form a  
triangle with a right angle at Venus. Find the distance 
between Venus and the sun in astronomical units (AU).  
(By definition the distance between the earth and the sun  
is 1 AU.)

Venus
å

earth

1 AU

sun

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
72. dISCuSS: Similar Triangles  If two triangles are similar, 

what properties do they share? Explain how these properties 
make it possible to define the trigonometric ratios without 
regard to the size of the triangle.

5.3 TRIgonoMeTRIC FunCTIonS oF AngLeS
■ Trigonometric Functions of Angles ■ evaluating Trigonometric Functions at Any Angle  
■ Trigonometric Identities ■ Areas of Triangles

In Section 5.2 we defined the trigonometric ratios for acute angles. Here we extend the 
trigonometric ratios to all angles by defining the trigonometric functions of angles. With 
these functions we can solve practical problems that involve angles that are not neces-
sarily acute.

■ Trigonometric Functions of Angles
Let POQ be a right triangle with acute angle u as shown in Figure 1(a). Place u in stan-
dard position as shown in Figure 1(b).

y

xO Q

P(x, y)

¨

y

x

r

O

Q

P

¨

opposite

adjacent

hypotenuse

(a) (b)

FIguRe 1

Then P  P1x, y 2  is a point on the terminal side of u. In triangle POQ the opposite side 
has length y and the adjacent side has length x. Using the Pythagorean Theorem, we see

that the hypotenuse has length r  "x2  y2. So

sin u 
y

r
   cos u 

x
r
   tan u 

y

x

The other trigonometric ratios can be found in the same way.
These observations allow us to extend the trigonometric ratios to any angle. We 

define the trigonometric functions of angles as follows (see Figure 2).

deFInITIon oF The TRIgonoMeTRIC FunCTIonS

Let u be an angle in standard position, and let P1x, y 2  be a point on the terminal 

side. If r  "x2  y2 is the distance from the origin to the point P1x, y 2 , then

sin u 
y

r
  cos u 

x
r

  tan u 
y

x
 1x ? 0 2

csc u 
r
y
 1 y ? 0 2   sec u 

r
x
 1x ? 0 2   cot u 

x
y
 1 y ? 0 2

Since division by 0 is an undefined operation, certain trigonometric functions are not 
defined for certain angles. For example, tan 90  y/x is undefined because x  0. The 
angles for which the trigonometric functions may be undefined are the angles for which 
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5.3 TRIgonoMeTRIC FunCTIonS oF AngLeS
■ Trigonometric Functions of Angles ■ evaluating Trigonometric Functions at Any Angle  
■ Trigonometric Identities ■ Areas of Triangles

In Section 5.2 we defined the trigonometric ratios for acute angles. Here we extend the 
trigonometric ratios to all angles by defining the trigonometric functions of angles. With 
these functions we can solve practical problems that involve angles that are not neces-
sarily acute.

■ Trigonometric Functions of Angles
Let POQ be a right triangle with acute angle u as shown in Figure 1(a). Place u in stan-
dard position as shown in Figure 1(b).

y

xO Q

P(x, y)

¨

y

x

r

O

Q

P

¨

opposite

adjacent

hypotenuse

(a) (b)

FIguRe 1

Then P  P1x, y 2  is a point on the terminal side of u. In triangle POQ the opposite side 
has length y and the adjacent side has length x. Using the Pythagorean Theorem, we see

that the hypotenuse has length r  "x2  y2. So

sin u 
y

r
   cos u 

x
r
   tan u 

y

x

The other trigonometric ratios can be found in the same way.
These observations allow us to extend the trigonometric ratios to any angle. We 

define the trigonometric functions of angles as follows (see Figure 2).

deFInITIon oF The TRIgonoMeTRIC FunCTIonS

Let u be an angle in standard position, and let P1x, y 2  be a point on the terminal 

side. If r  "x2  y2 is the distance from the origin to the point P1x, y 2 , then

sin u 
y

r
  cos u 

x
r

  tan u 
y

x
 1x ? 0 2

csc u 
r
y
 1 y ? 0 2   sec u 

r
x
 1x ? 0 2   cot u 

x
y
 1 y ? 0 2

Since division by 0 is an undefined operation, certain trigonometric functions are not 
defined for certain angles. For example, tan 90  y/x is undefined because x  0. The 
angles for which the trigonometric functions may be undefined are the angles for which 

P(x, y)

y

x0

¨
r

FIguRe 2
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458 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

You may have already studied the trigonometric 
functions defined by using the unit circle (Chap-
ter 6). To see how they relate to the trigonometric 
functions of an angle, let’s start with the unit circle in 
the coordinate plane.

0 1

P(x, y)

t

P(x, y) is the terminal
point determined by t.

y

x

Let P 1x, y 2  be the terminal point determined by an 
arc of length t on the unit circle. Then t subtends an 
angle u at the center of the circle. If we drop a per-
pendicular from P onto the point Q on the x-axis, 
then triangle nOPQ is a right triangle with legs of 
length x and y, as shown in the figure.

O Q 1

P(x, y)

¨
x

yr

Triangle OPQ is
a right triangle.

x

y

Now, by the definition of the trigonometric func-
tions of the real number t we have

sin t  y

cos t  x

By the definition of the trigonometric functions of 
the angle u we have

 sin u 
opp
hyp


y
1

 y

 cos u 
adj
hyp


x
1

 x

If u is measured in radians, then u  t. (See the 
figure below.) Comparing the two ways of defining 
the trigonometric functions, we see that they are 
identical. In other words, as functions they assign 
identical values to a given real number. (The real 
number is the radian measure of u in one case or the 
length t of an arc in the other.)

0 1

P(x, y)

t
¨

The radian measure
of angle ¨ is t.

y

x

Why then do we study trigonometry in two differ-
ent ways? Because different applications require that 
we view the trigonometric functions differently. (See 
Focus on Modeling, pages 499, 568, and 617, and 
Sections 5.2, 5.5, and 5.6.)

Relationship to the Trigonometric  
Functions of Real numbers
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SECTION 5.3 ■ Trigonometric Functions of Angles 459

either the x- or y-coordinate of a point on the terminal side of the angle is 0. These are 
quadrantal angles—angles that are coterminal with the coordinate axes.

It is a crucial fact that the values of the trigonometric functions do not depend on the 
choice of the point P1x, y 2 . This is because if P r 1x r, y r 2  is any other point on the ter-
minal side, as in Figure 3, then triangles POQ and POQ are similar.

■ evaluating Trigonometric Functions at Any Angle
From the definition we see that the values of the trigonometric functions are all positive 
if the angle u has its terminal side in Quadrant I. This is because x and y are positive in 
this quadrant. [Of course, r is always positive, since it is simply the distance from the 
origin to the point P1x, y 2 .] If the terminal side of u is in Quadrant II, however, then x 
is negative and y is positive. Thus in Quadrant II the functions sin u and csc u are 
positive, and all the other trigonometric functions have negative values. You can check 
the other entries in the following table.

SIgnS oF The TRIgonoMeTRIC FunCTIonS

Quadrant positive functions Negative functions

I all none

II sin, csc cos, sec, tan, cot

III tan, cot sin, csc, cos, sec

IV cos, sec sin, csc, tan, cot

We now turn our attention to finding the values of the trigonometric functions for 
angles that are not acute.

exAMPLe 1 ■ Finding Trigonometric Functions of Angles
Find (a) cos 135  and (b) tan 390 .

SoLuTIon

(a)  From Figure 4 we see that cos 135  x/r. But cos 45  x/r, and since 
cos 45°  !2/2, we have

cos 135 °   

!2

2

(b)  The angles 390 and 30 are coterminal. From Figure 5 it’s clear that  
tan 390   tan 30 , and since tan 30 °  !3/3, we have

tan 390° 
!3

3

(x, y)
(_x, y)

y

x0 x

y
r

45*
135*

r

_x

FIguRe 4

(x, y)

y

x

y

x
30*

390*

0

FIguRe 5

now Try exercises 13 and 15 ■

The following mnemonic device can be 
used to remember which trigonometric 
functions are positive in each quadrant: 
All of them, Sine, Tangent, or Cosine.

y

x

AllSine

CosineTangent

You can remember this as “All  
Students Take Calculus.”

P(x, y)

P'(x', y')

y

xO
¨

Q Q'

FIguRe 3
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460 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

From Example 1 we see that the trigonometric functions for angles that aren’t acute 
have the same value, except possibly for sign, as the corresponding trigonometric func-
tions of an acute angle. That acute angle will be called the reference angle.

ReFeRenCe AngLe

Let u be an angle in standard position. The reference angle u associated with u 
is the acute angle formed by the terminal side of u and the x-axis.

Figure 6 shows that to find a reference angle u, it’s useful to know the quadrant in 
which the terminal side of the angle u lies.

x

y

0

¨

¨x

y

0

¨

¨

y

x0
¨=¨

y

x0

¨
¨

FIguRe 6 The reference 
angle u for an angle u

exAMPLe 2 ■ Finding Reference Angles

Find the reference angle for (a) u 
5p

3
 and (b) u  870°.

SoLuTIon

(a)  The reference angle is the acute angle formed by the terminal side of the angle 
5p/3 and the x-axis (see Figure 7). Since the terminal side of this angle is in  
Quadrant IV, the reference angle is

u  2p 
5p

3


p

3

(b)  The angles 870 and 150 are coterminal [because 870  21360 2  150]. Thus 
the terminal side of this angle is in Quadrant II (see Figure 8). So the reference 
angle is

u  180°  150°  30°

now Try exercises 5 and 9 ■

eVALuATIng TRIgonoMeTRIC FunCTIonS FoR Any AngLe

To find the values of the trigonometric functions for any angle u, we carry out 
the following steps.

1. Find the reference angle u associated with the angle u.

2.  Determine the sign of the trigonometric function of u by noting the quadrant 
in which u lies.

3. The value of the trigonometric function of u is the same, except possibly for 
sign, as the value of the trigonometric function of u.

y

x0

5π
3

¨

FIguRe 7

y

x0

870*
¨

FIguRe 8
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SECTION 5.3 ■ Trigonometric Functions of Angles 461

exAMPLe 3 ■  using the Reference Angle to evaluate  
Trigonometric Functions

Find (a) sin 240  and (b) cot 495.

SoLuTIon

(a)  This angle has its terminal side in Quadrant III, as shown in Figure 9. The reference 
angle is therefore 240  180  60, and the value of sin 240 is negative. Thus

sin 240°  sin 60°   

!3

2

(b)  The angle 495 is coterminal with the angle 135, and the terminal side of  
this angle is in Quadrant II, as shown in Figure 10. So the reference angle is  
180  135  45, and the value of cot 495 is negative. We have

cot 495 °  cot 135 °  cot 45 °  1

now Try exercises 19 and 21 ■

exAMPLe 4 ■  using the Reference Angle to evaluate  
Trigonometric Functions

Find (a) sin 
16p

3
 and (b) seca 

p

4
b .

SoLuTIon

(a)  The angle 16p/3 is coterminal with 4p/3, and these angles are in Quadrant III 
(see Figure 11). Thus the reference angle is 14p/3 2  p  p/3. Since the value 
of sine is negative in Quadrant III, we have

sin 
16p

3
 sin 

4p

3
 sin 

p

3
  

!3

2

(b)  The angle p/4 is in Quadrant IV, and its reference angle is p/4 (see Figure 12). 
Since secant is positive in this quadrant, we get

seca 

p

4
b  sec 

p

4
 !2

now Try exercises 25 and 27 ■

■ Trigonometric Identities
The trigonometric functions of angles are related to each other through several impor-
tant equations called trigonometric identities. We’ve already encountered the recipro-
cal identities. These identities continue to hold for any angle u, provided that both 

Sign Reference angle

Sign Reference angleCoterminal angles

Sign Reference angleCoterminal angles

Sign Reference angle

y

x0

240*

¨

FIguRe 9  
S  A

T  C
  sin 240 is negative.

y

x0

495*
¨

FIguRe 10  
S  A

T  C
   tan 495  is negative,  

so cot 495  is negative.

0 π
4_

y

x
¨

FIguRe 12  
S  A

T  C
   cos1 

p
4 2  is positive,  

so sec1 
p
4 2  is positive.

0

4π
3

¨

y

x

FIguRe 11  
S  A

T  C
   sin 16p

3  is negative.
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462 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

sides of the equation are defined. The Pythagorean identities are a consequence of the 
Pythagorean Theorem.*

FundAMenTAL IdenTITIeS

reciprocal identities

csc u 
1

sin u
   sec u 

1

cos u 

   cot u 
1

tan u

tan u 
sin u

cos u
   cot u 

cos u

sin u

pythagorean identities

sin2 u  cos2 u  1   tan2 u  1  sec2 u   1  cot2 u  csc2 u

Proof  Let’s prove the first Pythagorean identity. Using x2  y2  r2 (the Pythago-
rean Theorem) in Figure 13, we have

sin2
 u  cos2

 u  a y

r
b

2

 a x
r
b

2


x2  y2

r2 
r2

r2  1

Thus sin2u  cos2u  1. (Although the figure indicates an acute angle, you should 
check that the proof holds for all angles u.) ■

See Exercise 76 for the proofs of the other two Pythagorean identities.

exAMPLe 5 ■  expressing one Trigonometric Function  
in Terms of Another

(a) Express sin u in terms of cos u.

(b) Express tan u in terms of sin u, where u is in Quadrant II.

SoLuTIon

(a) From the first Pythagorean identity we get

sin u  6"1  cos2
 u

   where the sign depends on the quadrant. If u is in Quadrant I or II, then sin u is 
positive, so

sin u  "1  cos2
 u

  whereas if u is in Quadrant III or IV, sin u is negative, so

sin u  "1  cos2
 u

(b) Since tan u  sin u/cos u, we need to write cos u in terms of sin u. By part (a)

cos u  6"1  sin2
 u

  and since cos u is negative in Quadrant II, the negative sign applies here. Thus

tan u 
sin u

cos u


sin u

"1  sin2
 u

now Try exercise 41 ■

*We follow the usual convention of writing sin2
 u for 1sin u 2 2. In general, we write sinnu for 1sin u 2 n for all 

integers n except n  1. The superscript n  1 will be assigned another meaning in Section 5.4. Of 
course, the same convention applies to the other five trigonometric functions.

(x, y)
y

x0 x

y
r

¨

FIguRe 13
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SECTION 5.3 ■ Trigonometric Functions of Angles 463

exAMPLe 6 ■ evaluating a Trigonometric Function
If tan u  2

3 and u is in Quadrant III, find cos u.

SoLuTIon 1  We need to write cos u in terms of tan u. From the identity  
tan2

 u  1  sec2
 u we get sec u  6"tan2

 u  1. In Quadrant III, sec u is  
negative, so

sec u  "tan2
 u  1

Thus  cos u 
1

sec u


1

"tan2
 u  1

  
1

#A23B2  1


1

#13
9

  

3

!13

SoLuTIon 2  This problem can be solved more easily by using the method of Exam- 
ple 2 of Section 5.2. Recall that, except for sign, the values of the trigonometric func-
tions of any angle are the same as those of an acute angle (the reference angle). So, 
ignoring the sign for the moment, let’s sketch a right triangle with an acute angle u 
satisfying tan u  2

3 (see Figure 14). By the Pythagorean Theorem the hypotenuse of 
this triangle has length !13. From the triangle in Figure 14 we immediately see that 
cos u  3/!13. Since u is in Quadrant III, cos u is negative, so

cos u   

3

!13

now Try exercise 47 ■

exAMPLe 7 ■ evaluating Trigonometric Functions
If sec u  2 and u is in Quadrant IV, find the other five trigonometric functions of u.

SoLuTIon  We sketch a triangle as in Figure 15 so that sec u  2. Taking into 
account the fact that u is in Quadrant IV, we get

 sin u   

!3

2
   cos u 

1

2
   tan u  !3

 csc u   

2

!3
   sec u  2   cot u   

1

!3

now Try exercise 49 ■

■ Areas of Triangles
We conclude this section with an application of the trigonometric functions that  
involves angles that are not necessarily acute. More extensive applications appear in 
Sections 5.5 and 5.6.

The area of a triangle is   1
2  base  height. If we know two sides and the in-

cluded angle of a triangle, then we can find the height using the trigonometric functions, 
and from this we can find the area.

If u is an acute angle, then the height of the triangle in Figure 16(a) is given by  
h  b sin u. Thus the area is

  1
2  base  height  1

2  ab sin u

If the angle u is not acute, then from Figure 16(b) we see that the height of the triangle is

h  b sin1180°  u 2  b sin u

If you wish to rationalize the denomi-
nator, you can express cos u as

 

3

!13
# !13

!13
  

3!13

13

3

2
œ∑∑13

¨

FIguRe 14

1

2 œ∑3

¨

FIguRe 15

¨

b

a

h

(a)

b

a

h

(b)

¨

¨=180* _ ̈

FIguRe 16
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464 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

This is so because the reference angle of u is the angle 180  u. Thus in this case also 
the area of the triangle is

  1
2  base  height  1

2 ab sin u

AReA oF A TRIAngLe

The area  of a triangle with sides of lengths a and b and with included  
angle u is

  1
2 ab sin u

exAMPLe 8 ■ Finding the Area of a Triangle
Find the area of triangle ABC shown in Figure 17.

SoLuTIon  The triangle has sides of length 10 cm and 3 cm, with included angle 
120. Therefore

   1
2 ab sin u

  12 
110 2 13 2  sin 120

  15 sin 60°     Reference angle

  15 

!3

2
 13 cm2

now Try exercise 57 ■

A

C

B
120*

10 cm

3 cm

FIguRe 17

ConCePTS
 1. If the angle u is in standard position and P1x, y 2  is a point on 

the terminal side of u, and r is the distance from the origin to 
P, then 

sin u 
         

     cos u 
         

     tan u 
         

 

 2. The sign of a trigonometric function of u depends on the 

    in which the terminal side of the angle u lies. 

  In Quadrant II, sin u is   (positive / negative).

  In Quadrant III, cos u is   (positive / negative).

  In Quadrant IV, sin u is   (positive / negative).  

 3. (a)  If u is in standard position, then the reference angle u  
is the acute angle formed by the terminal side of u and 

the    . So the reference angle for u  100 is 

u     , and that for u  190 is u     .

(b) If u is any angle, the value of a trigonometric function of 
u is the same, except possibly for sign, as the value of 

the trigonometric function of u. So sin 100  sin    , 

and sin 190  sin    .

 4. The area ! of a triangle with sides of lengths a and b and with 

included angle u is given by the formula !     . So 
the area of the triangle with sides 4 and 7 and included angle 

u  30 is    .

SkILLS
5–12 ■ Reference Angle  Find the reference angle for the given 
angle.

 5. (a) 120 (b) 200 (c) 285

 6. (a) 175 (b) 310 (c) 730

 7. (a) 225 (b) 810 (c) 105

 8. (a) 99 (b) 199 (c) 359

 9. (a) 
7p

10
 (b) 

9p

8
 (c) 

10p

3

 10. (a) 
5p

6
 (b) 

10p

9
 (c) 

23p

7

11. (a) 
5p

7
 (b) 1.4p (c) 1.4

 12. (a) 2.3p (b) 2.3 (c) 10p

5.3 exeRCISeS
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SECTION 5.3 ■ Trigonometric Functions of Angles 465

13–36 ■ Values of Trigonometric Functions  Find the exact 
value of the trigonometric function.

 13. cos 150 14. sin 240 15. tan 330

 16. sin130 2  17. cot1120 2  18. csc 300

19. csc1630° 2  20. cot 210 21. cos 570

22. sec 120 23. tan 750 24. cos 660

 25. sin 
3p

2
 26. cos 

4p

3
 27. tan a 

4p

3
b

 28. cos a 

11p

6
b  29. csca 

5p

6
b  30. sec 

7p

6

31. sec 
17p

3
 32. csc 

5p

4
 33. cot a 

p

4
b

34. cos 
7p

4
 35. tan  

5p

2
 36. sin 

11p

6

37–40 ■ Quadrant in which an Angle Lies  Find the quadrant in 
which u lies from the information given.

37. sin u  0  and  cos u  0

38. tan u  0  and  sin u  0

39. sec u  0  and  tan u  0

40. csc u  0  and  cos u  0

41–46 ■ expressing one Trigonometric Function in Terms of 
Another  Write the first trigonometric function in terms of the 
second for u in the given quadrant.

41. tan u, cos u; u in Quadrant III

42. cot u, sin u; u in Quadrant II

43. cos u, sin u; u in Quadrant IV

44. sec u, sin u; u in Quadrant I

45. sec u, tan u; u in Quadrant II

46. csc u, cot u; u in Quadrant III

47–54 ■ Values of Trigonometric Functions  Find the values 
of the trigonometric functions of u from the information  
given.

47. sin u   
4
5 , u in Quadrant IV

48. tan u  4
3, u in Quadrant III

49. cos u  7
12, sin u  0

50. cot u   
8
9 , cos u  0

51. csc u  2,  u in Quadrant I

52. cot u  1
4 ,  sin u  0

53. cos u   
2
7 ,  tan u  0

54. tan u  4,  sin u  0

55–56 ■ Values of an expression  If u  p/3, find the value of 
each expression.

55. sin 2u, 2 sin u 56. sin2
 u, sin1u2 2

57–60 ■ Area of a Triangle  Find the area of the triangle with 
the given description.

57. A triangle with sides of length 7 and 9 and included angle 72

58. A triangle with sides of length 10 and 22 and included angle 10

59. An equilateral triangle with side of length 10

60. An equilateral triangle with side of length 13

61. Finding an Angle of a Triangle  A triangle has an area of 
16 in2, and two of the sides have lengths 5 in. and 7 in. Find 
the sine of the angle included by these two sides.

62. Finding a Side of a Triangle  An isosceles triangle has an area 
of 24 cm2, and the angle between the two equal sides is 
5p/6. Find the length of the two equal sides.

SkILLS Plus
63–64 ■ Area of a Region  Find the area of the shaded region in 
the figure.

63. 

120*

2

 64. 

12

π
3

APPLICATIonS
65. height of a Rocket  A rocket fired straight up is tracked by 

an observer on the ground 1 mi away.

(a) Show that when the angle of elevation is u, the height of 
the rocket (in ft) is h  5280 tan u.

(b) Complete the table to find the height of the rocket at the 
given angles of elevation.

u 20 60 80 85

h

1 mi

h

¨

66. Rain gutter  A rain gutter is to be constructed from a metal 
sheet of width 30 cm by bending up one-third of the sheet on 
each side through an angle u. (See the figure on the next page.)

(a) Show that the cross-sectional area of the gutter is  
modeled by the function

A1u 2  100 sin u  100 sin u cos u

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



466 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

(b) Graph the function A for 0  u  p/2.

(c) For what angle u is the largest cross-sectional area 
achieved?

¨

10 cm

¨

10 cm

10 cm

67. wooden beam  A rectangular beam is to be cut from a 
cylindrical log of diameter 20 cm. The figures show different 
ways this can be done.

(a) Express the cross-sectional area of the beam as a  
function of the angle u in the figures.

(b) Graph the function you found in part (a).

(c) Find the dimensions of the beam with largest cross- 
sectional area.

20 cm

¨

20 cm

¨

width

depth

68. Strength of a beam  The strength of a beam is proportional 
to the width and the square of the depth. A beam is cut from 
a log as in Exercise 67. Express the strength of the beam as a 
function of the angle u in the figures.

69. Throwing a Shot Put  The range R and height H of a shot put 
thrown with an initial velocity of √0 ft/s at an angle u are 
given by

 R 
√2

0 sin12u 2
g

 H 
√2

0 sin2
 u

2g

  On the earth g  32 ft /s2, and on the moon g  5.2 ft /s2. 
Find the range and height of a shot put thrown under the 
given conditions.

(a) On the earth with √0  12 ft /s and u  p/6
(b) On the moon with √0  12 ft /s and u  p/6

R

H

70. Sledding  The time in seconds that it takes for a sled to slide 
down a hillside inclined at an angle u is

t  Å
d

16 sin u

  where d is the length of the slope in feet. Find the time it 
takes to slide down a 2000-ft slope inclined at 30.

d

¨

71. beehives  In a beehive each cell is a regular hexagonal 
prism, as shown in the figure. The amount of wax W in the 
cell depends on the apex angle u and is given by

W  3.02  0.38 cot u  0.65 csc u

  Bees instinctively choose u so as to use the least amount of 
wax possible.

(a) Use a graphing device to graph W as a function of u for  
0  u  p.

(b) For what value of u does W have its minimum value? 
[Note: Biologists have discovered that bees rarely deviate 
from this value by more than a degree or two.]

¨

72. Turning a Corner  A steel pipe is being carried down a hall-
way that is 9 ft wide. At the end of the hall there is a right- 
angled turn into a narrower hallway 6 ft wide.

(a) Show that the length of the pipe in the figure is modeled 
by the function

L1u 2  9 csc u  6 sec u

(b) Graph the function L for 0  u  p/2.

(c) Find the minimum value of the function L.

(d) Explain why the value of L you found in part (c) is the 
length of the longest pipe that can be carried around the 
corner.

6 ft

9 ft

¨

5.4 InVeRSe TRIgonoMeTRIC FunCTIonS And RIghT TRIAngLeS
■ The Inverse Sine, Inverse Cosine, and Inverse Tangent Functions ■ Solving for Angles  
in Right Triangles ■ evaluating expressions Involving Inverse Trigonometric Functions

Recall that for a function to have an inverse, it must be one-to-one. Since the trigono-
metric functions are not one-to-one, they do not have inverses. So we restrict the do-
main of each of the trigonometric functions to intervals on which they attain all their 
values and on which they are one-to-one. The resulting functions have the same range 
as the original functions but are one-to-one. 

■ The Inverse Sine, Inverse Cosine, and Inverse  
Tangent Functions

Let’s first consider the sine function. We restrict the domain of the sine function  
to angles u with p/2  u  p/2. From Figure 1 we see that on this domain the 
sine function attains each of the values in the interval 31, 1 4  exactly once and so 

The graphs of the inverse trigonometric 
functions are studied in Section 6.5.
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73. Rainbows  Rainbows are created when sunlight of different 
wavelengths (colors) is refracted and reflected in raindrops. 
The angle of elevation u of a rainbow is always the same. It 
can be shown that u  4b  2a, where

sin a  k sin b

  and a  59.4 and k  1.33 is the index of refraction of 
 water. Use the given information to find the angle of ele-
vation u of a rainbow. [Hint: Find sin b, then use the  
SIN1  key on your calculator to find b.] (For a mathemati-

cal explanation of rainbows see Calculus Early Transcenden-
tals, 7th Edition, by James Stewart, page 282.)

¨

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
74. dISCuSS: using a Calculator  To solve a certain problem, 

you need to find the sine of 4 rad. Your study partner uses his 
calcu lator and tells you that 

sin 4  0.0697564737

  On your calculator you get 

sin 4  0.7568024953

  What is wrong? What mistake did your partner make?

75. dISCuSS ■ dISCoVeR: Viète’s Trigonometric diagram  In 
the 16th century the French mathematician François Viète 
(see page 119) published the following remarkable diagram. 
Each of the six trigonometric functions of u is equal to the 
length of a line segment in the figure. For instance, 
sin u  0  PR 0 , since from nOPR we see that

sin u 
opp

hyp
 
0  PR 0
0  OR 0 

0  PR 0
1

  0  PR 0

  For each of the five other trigonometric functions, find a line 
segment in the figure whose length equals the value of the 
function at u. [Note: The radius of the circle is 1, the center 
is O, segment QS is tangent to the circle at R, and SOQ is a 
right angle.]

¨
O P Q

R

S

1

76. PRoVe: Pythagorean Identities  To prove the following 
Pythagorean identities, start with the first Pythagorean iden-
tity, sin2

 u  cos2
 u  1, which was proved in the text, and 

then divide both sides by an appropriate trigonometric func-
tion of u.

(a) tan2
 u  1  sec2

 u (b) 1  cot2
 u  csc2

 u

77. dISCuSS ■ dISCoVeR: degrees and Radians  What is the 
smallest positive real number x with the property that the sine 
of x degrees is equal to the sine of x radians?

5.4 InVeRSe TRIgonoMeTRIC FunCTIonS And RIghT TRIAngLeS
■ The Inverse Sine, Inverse Cosine, and Inverse Tangent Functions ■ Solving for Angles  
in Right Triangles ■ evaluating expressions Involving Inverse Trigonometric Functions

Recall that for a function to have an inverse, it must be one-to-one. Since the trigono-
metric functions are not one-to-one, they do not have inverses. So we restrict the do-
main of each of the trigonometric functions to intervals on which they attain all their 
values and on which they are one-to-one. The resulting functions have the same range 
as the original functions but are one-to-one. 

■ The Inverse Sine, Inverse Cosine, and Inverse  
Tangent Functions

Let’s first consider the sine function. We restrict the domain of the sine function  
to angles u with p/2  u  p/2. From Figure 1 we see that on this domain the 
sine function attains each of the values in the interval 31, 1 4  exactly once and so 

The graphs of the inverse trigonometric 
functions are studied in Section 6.5.
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468 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

is one-to-one. Similarly, we restrict the domains of cosine and tangent as shown in 
Figure 1. 

x

r y y y
¨

x

r
¨

x

r
¨

sin ¨= 

� �¨ 0 � ¨ � ππ
2� π

2

y
r cos ¨= xr tan ¨= 

< <¨π
2� π

2

y
xFIguRe 1 Restricted domains of the 

sine, cosine, and tangent functions

On these restricted domains we can define an inverse for each of these functions. By the 
definition of inverse function we have 

 sin1
 x  y 3  sin y  x

 cos1
 x  y 3  cos y  x

 tan1
 x  y 3  tan y  x

We summarize the domains and ranges of the inverse trigonometric functions in the 
following box.

The InVeRSe SIne, InVeRSe CoSIne, And InVeRSe TAngenT 
FunCTIonS

The sine, cosine, and tangent functions on the restricted domains 3p/2, p/2 4 , 
30, p 4 , and 1p/2, p/2 2 , respectively, are one-to one and so have inverses. 
The inverse functions have domain and range as follows. 

function Domain range 

sin1 31, 1 4 3p/2, p/2 4
cos1 31, 1 4 30, p 4
tan1 R 1p/2, p/2 2

The functions sin1, cos1, and tan1 are sometimes called arcsine, arccosine, 
and arctangent, respectively.

Since these are inverse functions, they reverse the rule of the original function. For 
example, since sin p/6  1

2, it follows that sin1
  
1
2  p/6. The following example gives 

further illustrations.

exAMPLe 1 ■ evaluating Inverse Trigonometric Functions 
Find the exact value. 

(a) sin1
  

!3

2
      (b) cos1A 

1
2B       (c) tan1 1

SoLuTIon

(a)  The angle in the interval 3p/2, p/2 4  whose sine is !3/2 is p/3. Thus 
sin11!3/2 2  p/3.
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SECTION 5.4 ■ Inverse Trigonometric Functions and Right Triangles 469

(b)  The angle in the interval 30, p 4  whose cosine is  
1
2 is 2p/3. Thus 

cos1A 
1
2B  2p/3.

(c)  The angle in the interval 1p/2, p/2 2  whose tangent is 1 is p/4. Thus 
tan1

 1  p/4.

now Try exercise 5 ■

exAMPLe 2 ■ evaluating Inverse Trigonometric Functions 
Find approximate values for the given expression. 

(a) sin110.71 2       (b) tan1 2      (c) cos1 2

SoLuTIon  We use a calculator to approximate these values. 

(a)  Using the INV  SIN  , or SIN1  , or ARC  SIN  key(s) on the calculator (with the 
calculator in radian mode), we get

sin110.71 2  0.78950

(b)  Using the INV  TAN  , or TAN1  , or ARC  TAN  key(s) on the calculator (with the 
calculator in radian mode), we get 

tan1
 2  1.10715

(c)  Since 2  1, it is not in the domain of cos1, so cos1
 2 is not defined.

now Try exercises 9, 13, and 15 ■

■ Solving for Angles in Right Triangles
In Section 5.2 we solved triangles by using the trigonometric functions to find the un-
known sides. We now use the inverse trigonometric functions to solve for angles in a right 
triangle.

exAMPLe 3 ■ Finding an Angle in a Right Triangle 
Find the angle u in the triangle shown in Figure 2.

SoLuTIon  Since u is the angle opposite the side of length 10 and the hypotenuse has 
length 50, we have

sin u 
10

50


1

5
    sin u 

opp

hyp

Now we can use sin1 to find u.

 u  sin1 15    Definition of sin1

 u  11.5°     Calculator (in degree mode)

now Try exercise 17 ■

exAMPLe 4 ■ Solving for an Angle in a Right Triangle 
A 40-ft ladder leans against a building. If the base of the ladder is 6 ft from the base 
of the building, what is the angle formed by the ladder and the building?

SoLuTIon  First we sketch a diagram as in Figure 3. If u is the angle between the 
ladder and the building, then 

sin u 
6

40
 0.15    sin u 

opp

hyp

10
50

¨

FIguRe 2

¨
40 ft

6 ft

FIguRe 3
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470 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

Now we use sin1 to find u.

 u  sin110.15 2     Definition of sin1

 u  8.6°     Calculator (in degree mode)

now Try exercise 39 ■

exAMPLe 5 ■ The Angle of a beam of Light
A lighthouse is located on an island that is 2 mi off a straight shoreline (see Figure 4). 
Express the angle formed by the beam of light and the shoreline in terms of the dis-
tance d in the figure.

SoLuTIon  From the figure we see that 

 tan u 
2

d     tan u 
opp

adj

Taking the inverse tangent of both sides, we get

 tan11 tan u 2  tan1 a 2

d
b     Take tan1 of both sides

 u  tan1 a 2

d
b     Property of inverse functions: tan11 tan u 2  u

now Try exercise 41 ■

In Sections 5.5 and 5.6 we will learn how to solve any triangle (not necessarily a 
right triangle). The angles in a triangle are always in the interval 10, p 2  (or between 0° 
and 180°). We’ll see that to solve such triangles, we need to find all angles in the inter-
val 10, p 2  that have a specified sine or cosine. We do this in the next example.

exAMPLe 6 ■  Solving a basic Trigonometric equation on an Interval
Find all angles u between 0° and 180° satisfying the given equation.

(a) sin u  0.4      (b) cos u  0.4

SoLuTIon

(a) We use sin1 to find one solution in the interval 3p/2, p/2 4 . 
 sin u  0.4     Equation

 u  sin110.4 2     Take sin1 of each side

 u  23.6°     Calculator (in degree mode)

   Another solution with u between 0° and 180° is obtained by taking the supple-
ment of the angle: 180°  23.6°  156.4° (see Figure 5). So the solutions of the 
equation with u between 0° and 180° are 

u  23.6°    and    u  156.4°

(b)  The cosine function is one-to-one on the interval 30, p 4 , so there is only one 
solution of the equation with u between 0° and 180°. We find that solution by 
taking cos1 of each side.

 cos u  0.4     

 u  cos110.4 2     Take cos1 of each side

 u  66.4°     Calculator (in degree mode)

  The solution is u  66.4°

now Try exercises 25 and 27 ■

shoreline

¨

lighthouse

d

2 mi

FIguRe 4

y

x0
23.6*

156.4*

FIguRe 5
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SECTION 5.4 ■ Inverse Trigonometric Functions and Right Triangles 471

■  evaluating expressions Involving Inverse  
Trigonometric Functions

Expressions like cos1sin1 x 2  arise in calculus. We find exact values of such expressions 
using trigonometric identities or right triangles.

exAMPLe 7 ■  Composing Trigonometric Functions  
and Their Inverses

Find cosAsin1 35B .
SoLuTIon 1  Let u  sin1 35. Then u is the number in the interval 3p/2, p/2 4  
whose sine is 3

5. Let’s interpret u as an angle and draw a right triangle with u as one 
of its acute angles, with opposite side 3 and hypotenuse 5 (see Figure 6). The remain-
ing leg of the triangle is found by the Pythagorean Theorem to be 4. From the figure 
we get

 cos1sin1 35 2  cos u    u  sin1 35

 
4

5
    cos u 

adj

hyp

So cosAsin1 35B  4
5.

SoLuTIon 2  It’s easy to find sinAsin1 35B . In fact, by the cancellation properties of 

inverse functions, this value is exactly 3
5. To find cos Asin1 35B , we first write the cosine 

function in terms of the sine function. Let u  sin1 35. Since p/2  u  p/2, 
cos u is positive, and we can write the following:

 cos u  "1  sin2 u     cos2
 u  sin2

 u  1

  #1  sin2Asin1 35B     u  sin1 35

  #1  A35B2     Property of inverse functions: sinAsin1 35 B  3
5

  #1  9
25  #16

25  4
5    Calculate

So cosAsin1 35B  4
5.

now Try exercise 29 ■

exAMPLe 8 ■  Composing Trigonometric Functions  
and Their Inverses

Write sin1cos1
 x 2  and tan1cos1

 x 2  as algebraic expressions in x for 1  x  1.

SoLuTIon 1  Let u  cos1
 x; then cos u  x. In Figure 7 we sketch a right triangle 

with an acute angle u, adjacent side x, and hypotenuse 1. By the Pythagorean Theorem 

the remaining leg is "1  x2. From the figure we have

sin1cos1
 x 2  sin u  "1  x2    and    tan1cos1

 x 2  tan u 
"1  x2

x

SoLuTIon 2  Let u  cos1
 x. We need to find sin u and tan u in terms of x. As in 

Example 7 the idea here is to write sine and tangent in terms of cosine. Note that 
0  u  p because u  cos1

 x. We have

sin u  6"1  cos2
 u    and    tan u 

sin u
cos u


6"1  cos2

 u
cos u

¨

5
3

4

FIguRe 6  

cos u 
4

5

¨

1

x

œ∑∑∑∑∑1-≈

FIguRe 7  

cos u 
x

1
 x
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472 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

To choose the proper signs, note that u lies in the interval 30, p 4  because u  cos1
 x. 

Since sin u is positive on this interval, the  sign is the correct choice. Substituting 
u  cos1

 x in the displayed equations and using the cancellation property 
cos1cos1

 x 2  x, we get 

sin1cos1
 x 2  "1  x2    and    tan1cos1

 x 2 
"1  x2

x

now Try exercises 35 and 37 ■

Note: In Solution 1 of Example 8 it might seem that because we are sketching a 
triangle, the angle u  cos1

 x must be acute. But it turns out that the triangle method 
works for any x. The domains and ranges of all six inverse trigonometric functions have 
been chosen in such a way that we can always use a triangle to find S1T 11x 22 , where 
S and T are any trigonometric functions.

ConCePTS
 1. For a function to have an inverse, it must be 

   . To define the inverse sine function, we 

restrict the   of the sine function to the 

interval    .

 2. The inverse sine, inverse cosine, and inverse tangent func-
tions have the following domains and ranges.

(a)  The function sin1 has domain   and range 

    .

(b)  The function cos1 has domain   and range 

    .

(c)  The function tan1 has domain   and range 

    .

 3. In the triangle shown we can find the angle u as follows.

(a)  u  sin1 
    
     

(b)  u  cos1 
    
     

(c)  u  tan1 
    
     

 4. To find sinAcos1
  

5
13 B , we let u  cos1A 5

13 B  and complete the 

right triangle at the top of the next column. We find that 

sinAcos1
  

5
13 B      .

8

¨

10

6

¨

SkILLS
5–8 ■ evaluating Inverse Trigonometric Functions  Find the 
exact value of each expression, if it is defined. Express your 
answer in radians.

 5. (a) sin1
 1 (b) cos1

 0 (c) tan1
  !3

 6. (a) sin1
 0 (b) cos111 2  (c) tan1

 0

 7. (a) sin1 a 

!2

2
b  (b) cos1 a 

!2

2
b  (c) tan111 2

 8. (a) sin1 a 

!3

2
b  (b) cos1A 

1
2 B  (c) tan1A!3 B

9–16 ■ evaluating Inverse Trigonometric Functions  Use a cal-
culator to find an approximate value (in radians) of each expres-
sion rounded to five decimal places, if it is defined.

 9. sin110.30 2  10. cos110.2 2
11. cos1

  
1
3  12. sin1

  
5
6

13. tan1
 3 14. tan114 2  

15. cos1
 3 16. sin112 2  

5.4 exeRCISeS
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SECTION 5.4 ■ Inverse Trigonometric Functions and Right Triangles 473

17–22 ■ Finding Angles in Right Triangles  Find the angle u in 
degrees, rounded to one decimal place.

17.   18. 

10

¨

6

 

7

¨

18

19.   20. 

13

¨ 9

 

70

¨

30

21.   22. 

7

¨

4

 

9

¨
8

23–28 ■ basic Trigonometric equations  Find all angles u 
between 0° and 180° satisfying the given equation. Round your 
answer to one decimal place.

23. sin u  2
3  24. cos u  3

4

25. cos u   
2
5  26. tan u  20

27. tan u  5 28. sin u  4
5

29–34 ■ Value of an expression  Find the exact value of the 
expression.

29. cosAsin1
  
4
5 B  30. cosAtan1

  
4
3 B  31. secAsin1

  
12
13 B

32. cscAcos1
  

7
25 B  33. tanAsin1

  
12
13 B  34. cotAsin1

  
2
3 B

35–38 ■ Algebraic expressions  Rewrite the expression as an 
algebraic expression in x.

35. cos1sin1
 x 2  36. sin1 tan1

 x 2
37. tan1sin1

 x 2  38. cos1 tan1
 x 2

APPLICATIonS
39. Leaning Ladder  A 20-ft ladder is leaning against a building. 

If the base of the ladder is 6 ft from the base of the building, 
what is the angle of elevation of the ladder? How high does 
the ladder reach on the building?

40. Angle of the Sun  A 96-ft tree casts a shadow that is  
120 ft long. What is the angle of elevation of the sun?

41. height of the Space Shuttle  An observer views the space 
shuttle from a distance of 2 mi from the launch pad.

(a)  Express the height of the space shuttle as a function of 
the angle of elevation u.

(b)  Express the angle of elevation u as a function of the 
height h of the space shuttle.

2 mi

h

¨

42. height of a Pole  A 50-ft pole casts a shadow as shown in 
the figure.

(a) Express the angle of elevation u of the sun as a function 
of the length s of the shadow.

(b) Find the angle u of elevation of the sun when the shadow 
is 20 ft long.

s

50 ft

¨

43. height of a balloon  A 680-ft rope anchors a hot-air balloon 
as shown in the figure.

(a) Express the angle u as a function of the height h of the 
balloon.

(b) Find the angle u if the balloon is 500 ft high.

¨

h
680 ft

44. View from a Satellite  The figures on the next page indicate 
that the higher the orbit of a satellite, the more of the earth 
the satellite can “see.” Let u, s, and h be as in the figure, and 
assume that the earth is a sphere of radius 3960 mi.

(a) Express the angle u as a function of h.

(b) Express the distance s as a function of u.

(c) Express the distance s as a function of h.  [Hint: Find 
the composition of the functions in parts (a) and (b).]
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474 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

(d) If the satellite is 100 mi above the earth, what is the dis-
tance s that it can see?

(e) How high does the satellite have to be to see both Los 
Angeles and New York, 2450 mi apart?

¨

s
h

45. Surfing the Perfect wave  For a wave to be surfable, it can’t 
break all at once. Robert Guza and Tony Bowen have shown 
that a wave has a surfable shoulder if it hits the shoreline at 
an angle u given by

u  sin1 a 1

12n  1 2 tan b
b

  where b is the angle at which the beach slopes down and 
where n  0, 1, 2, c.

(a) For b  10°, find u when n  3.

(b) For b  15°, find u when n  2, 3, and 4. Explain why 
the formula does not give a value for u when n  0 or 1.

∫ ¨

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
46. PRoVe: Inverse Trigonometric Functions on a Calculator   

Most calculators do not have keys for sec1, csc1, or cot1. 
Prove the following identities, and then use these identities 
and a calculator to find sec1

 2, csc1
 3, and cot1

 4.

 sec1
 x  cos1 a 1

x
b     x $ 1

 csc1
 x  sin1 a 1

x
b     x $ 1

 cot1
 x  tan1 a 1

x
b     x  0

5.5 The LAw oF SIneS
■ The Law of Sines ■ The Ambiguous Case

In Section 5.2 we used the trigonometric ratios to solve right triangles. The trigonomet-
ric functions can also be used to solve oblique triangles, that is, triangles with no right 
angles. To do this, we first study the Law of Sines here and then the Law of Cosines in 
the next section.

In general, to solve a triangle, we need to know certain information about its sides 
and angles. To decide whether we have enough information, it’s often helpful to make 
a sketch. For instance, if we are given two angles and the included side, then it’s clear 
that one and only one triangle can be formed (see Figure 1(a)). Similarly, if two sides 
and the included angle are known, then a unique triangle is determined (Figure 1(c)). 
But if we know all three angles and no sides, we cannot uniquely determine the triangle 
because many triangles can have the same three angles. (All these triangles would be 
similar, of course.) So we won’t consider this last case.

(a)  ASA or SAA (c)(b) SSA (d)SAS SSS

FIguRe 1
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SECTION 5.5 ■ The Law of Sines 475

In general, a triangle is determined by three of its six parts (angles and sides) as long 
as at least one of these three parts is a side. So the possibilities, illustrated in Figure 1, 
are as follows.

Case 1  One side and two angles (ASA or SAA)

Case 2  Two sides and the angle opposite one of those sides (SSA)

Case 3  Two sides and the included angle (SAS)

Case 4  Three sides (SSS)

Cases 1 and 2 are solved by using the Law of Sines; Cases 3 and 4 require the Law of 
Cosines.

■ The Law of Sines
The Law of Sines says that in any triangle the lengths of the sides are proportional to 
the sines of the corresponding opposite angles. To state this law (or formula) more eas-
ily, we follow the convention of labeling the angles of a triangle as A, B, and C and the 
lengths of the corresponding opposite sides as a, b, and c, as in Figure 2.

The LAw oF SIneS

In triangle ABC we have

sin  A
a


sin B

b


sin C
c

Proof  To see why the Law of Sines is true, refer to Figure 3. By the formula in  
Section 5.3 the area of triangle ABC is 1

2  ab sin C. By the same formula the area of 
this triangle is also 1

2  ac sin B and 1
2  bc sin A. Thus

1
2  bc sin A  1

2  ac sin B  1
2  ab sin C

Multiplying by 2/ 1abc 2  gives the Law of Sines. ■

exAMPLe 1 ■ Tracking a Satellite (ASA)
A satellite orbiting the earth passes directly overhead at observation stations in 
Phoenix and Los Angeles, 340 mi apart. At an instant when the satellite is between 
these two stations, its angle of elevation is simultaneously observed to be 60 at 
Phoenix and 75 at Los Angeles. How far is the satellite from Los Angeles? 

SoLuTIon  We need to find the distance b in Figure 4. Since the sum of the angles in 
any triangle is 180°, we see that C  180°  175°  60° 2  45° (see Figure 4), so 
we have

 
sin B

b


sin C
c

  Law of Sines

 
sin 60°

b


sin 45°

340
  Substitute

 b 
340 sin 60°

sin 45°
 416  Solve for b

The distance of the satellite from Los Angeles is approximately 416 mi.

now Try exercises 5 and 31 ■

A

C

B
c

ab

FIguRe 2

B

A

C
a

b

h=b ß C

c

FIguRe 3

75º

Los Angeles Phoenixc = 340 mi

C

ab

60ºA B

FIguRe 4
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476 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

exAMPLe 2 ■ Solving a Triangle (SAA)
Solve the triangle in Figure 5.

SoLuTIon  First, B  180°  120°  25° 2  135°. Since side c is known, to find 
side a, we use the relation

 
sin A

a


sin C
c

    Law of Sines

 a 
c sin A

sin C


80.4 sin 20°

sin 25°
 65.1    Solve for a

Similarly, to find b, we use

 
sin B

b


sin C
c

    Law of Sines

 b 
c sin B

sin C


80.4 sin 135°

sin 25°
 134.5    Solve for b

now Try exercise 13 ■

■ The Ambiguous Case
In Examples 1 and 2 a unique triangle was determined by the information given. This is 
always true of Case 1 (ASA or SAA). But in Case 2 (SSA) there may be two triangles, 
one triangle, or no triangle with the given properties. For this reason, Case 2 is some-
times called the ambiguous case. To see why this is so, we show in Figure 6 the possi-
bilities when angle A and sides a and b are given. In part (a) no solution is possible, since 
side a is too short to complete the triangle. In part (b) the solution is a right triangle. In 
part (c) two solutions are possible, and in part (d) there is a unique triangle with the given 
properties. We illustrate the possibilities of Case 2 in the following examples.

(a) (b) (c) (d)

A

C

a
b

BA

C

a
b

BB

a

A

C

a
b

BA

C

a
b

FIguRe 6 The ambiguous case

exAMPLe 3 ■ SSA, the one-Solution Case
Solve triangle ABC, where A  45, a  7!2, and b  7.

SoLuTIon  We first sketch the triangle with the information we have (see Figure 7). 
Our sketch is necessarily tentative, since we don’t yet know the other angles. Never-
theless, we can now see the possibilities.

We first find B.

 
sin A

a


sin B

b
    Law of Sines

 sin B 
b sin A

a


7

7!2
  sin 45°  a 1

!2
b a !2

2
b 

1

2
    Solve for sin B

Which angles B have sin B  1
2? From the preceding section we know that there are  

two such angles smaller than 180 (they are 30 and 150). Which of these angles is 
compatible with what we know about triangle ABC? Since A  45, we cannot  

We consider only angles smaller than 
180, since no triangle can contain  
an angle of 180 or larger.

A

B

C

c=80.4 b

a
25*

20*

FIguRe 5

A B

C

7 7 œ∑2

45*

FIguRe 7
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SECTION 5.5 ■ The Law of Sines 477

have B  150, because 45  150  180. So B  30, and the remaining angle 
is C  180°  130°  45° 2  105°.

Now we can find side c.

 
sin B

b


sin C
c

    Law of Sines

 c 
b sin C

sin B


7 sin 105°

sin 30°


7 sin 105°
1
2

 13.5    Solve for c

now Try exercise 19 ■

In Example 3 there were two possibilities for angle B, and one of these was not 
compatible with the rest of the information.  In general, if sin A  1, we must check the 
angle and its supplement as possibilities, because any angle smaller than 180 can be in 
the triangle. To decide whether either possibility works, we check to see whether the 
resulting sum of the angles exceeds 180. It can happen, as in Figure 6(c), that both 
possibilities are compatible with the given information. In that case, two different tri-
angles are solutions to the problem.

exAMPLe 4 ■ SSA, the Two-Solution Case
Solve triangle ABC if A  43.1, a  186.2, and b  248.6.

SoLuTIon  From the given information we sketch the triangle shown in Figure 8. 
Note that side a may be drawn in two possible positions to complete the triangle. 
From the Law of Sines

sin B 
b sin A

a


248.6 sin 43.1°

186.2
 0.91225

A B⁄

a=186.2

a=186.2

C

B¤

b=248.6

43.1*

FIguRe 8

There are two possible angles B between 0 and 180 such that sin B  0.91225. 
Using a calculator, we find that one of the angles is

sin110.91225 2  65.8°

The other angle is approximately 180  65.8  114.2. We denote these two  
angles by B1 and B2 so that

B1  65.8°  and  B2  114.2°

Thus two triangles satisfy the given conditions: triangle A1B1C1 and triangle A2B2C2.

Solve triangle A1B1C1:

C1  180°  143.1°  65.8° 2  71.1°    Find C1

Thus c1 
a1 sin C1

sin A1


186.2 sin 71.1°

sin 43.1°
 257.8    Law of Sines

The supplement of an angle u (where  
0  u  180) is the angle 180  u.
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478 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

Solve triangle A2B2C2:

C2  180°  143.1°  114.2° 2  22.7°    Find C2

Thus c2 
a2 sin C2

sin A2


186.2 sin 22.7°

sin 43.1°
 105.2    Law of Sines

Triangles A1B1C1 and A2B2C2 are shown in Figure 9.

FIguRe 9

A⁄ B⁄

a=186.2

C⁄

b=248.6

43.1*

71.1*

65.8*

c⁄Å257.8
A¤

a=186.2

C¤

B¤

b=248.6

43.1* 114.2*

22.7*

c¤Å105.2

now Try exercise 23 ■

The next example presents a situation for which no triangle is compatible with the 
given data.

exAMPLe 5 ■ SSA, the no-Solution Case
Solve triangle ABC, where A  42, a  70, and b  122.

SoLuTIon  To organize the given information, we sketch the diagram in Figure 10.
Let’s try to find B. We have

sin  A
a


sin B

b
    Law of Sines

sin B 
b sin A

a


122 sin 42°

70
 1.17    Solve for sin B

A B

C

42*

70
122

FIguRe 10

Since the sine of an angle is never greater than 1, we conclude that no triangle 
satisfies the conditions given in this problem.

now Try exercise 21 ■

surveying is a method of land measure-
ment used for mapmaking. Surveyors use 
a process called triangulation in which a 
network of thousands of interlocking tri-
angles is created on the area to be 
mapped. The process is started by measur-
ing the length of a baseline between two 
surveying stations. Then, with the use of  
an instrument called a theodolite, the 
angles between these two stations and a 
third station are measured. The Law of 
Sines is then used to calculate the two 
other sides of the triangle formed by the 
three stations. The calculated sides are 
used as baselines, and the process is 
repeated over and over to create a net-
work of triangles. In this method the only 
distance measured is the initial baseline; 
all other distances are calculated from the 
Law of Sines. This method is practical 
because it is much easier to measure 
angles than distances.

Check base

Baseline

One of the most ambitious mapmaking 
efforts of all time was the Great Trigono-
metric Survey of India (see Problem 8, 
page 502) which required several expedi-
tions and took over a century to complete. 
The famous expedition of 1823, led by sir 
George everest, lasted 20 years. Ranging 
over treacherous terrain and encounter-
ing the dreaded malaria-carrying mosqui-
toes, this expedition reached the foothills 
of the Himalayas. A later expedition, using 
triangulation, calculated the height of the 
highest peak of the Himalayas to be 
29,002 ft. The peak was named in honor 
of Sir George Everest.

Today, with the use of satellites, the 
height of Mt. Everest is estimated to be 
29,028 ft. The very close agreement of 
these two estimates shows the great 
accuracy of the trigonometric method.

AL
AN

 O
DD

IE
/P

ho
to

 E
di

t
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SECTION 5.5 ■ The Law of Sines 479

exAMPLe 6 ■ Calculating a distance
A bird is perched on top of a pole on a steep hill, and an observer is located at point A 
on the side of the hill, 110 m downhill from the base of the pole, as shown in the fig-
ure. The angle of inclination of the hill is 50°, and the angle a in the figure is 9°. 
Find the distance from the observer to the bird.

SoLuTIon  We first sketch a diagram as shown in Figure 11. We want to find the dis-
tance b in the figure. Triangle ADB is a right triangle, so DBA  90°  50°  40°. 
It follows that ABC  180°  40°  140°.

Now in triangle ABC we have A  9° and B  140°, so 
C  180°  149°  31°. By the Law of Sines we have 

sin B

b


sin C
c

  Law of Sines

Substituting B  140, C  31, and c  110, we get

 
sin 140

b


sin 31

110

 b 
110 sin 140

sin 31
  Solve for b

  137.3   Calculator

So the distance from the observer to the bird is about 137 m. 

now Try exercise 37 ■

50*
A

å
110

 m

C

B

40*

50* DA

a

c

b

å

FIguRe 11

ConCePTS
 1. In triangle ABC with sides a, b, and c the Law of Sines states  

that 
      
     

      
     

      
      

 2. The four cases in which we can solve a triangle are 

ASA SSA  SAS SSS

(a) In which of these cases can we use the Law of Sines to 
solve the triangle?

(b) Which of the cases listed can lead to more than one solu-
tion (the ambiguous case)?

SkILLS
3–8 ■ Finding an Angle or Side  Use the Law of Sines to find 
the indicated side x or angle u.

 3. 

98.4*

376C

B

A
x
24.6*

 4. 

17

28.1*

37.5*
C

B

A

x

 5. 

26.7
52* 70*

C

BA

x

 6. 

56.3
67*

80.2

C

B

A

¨

 7. 

45

36

120*

C

B
A

¨

 8. 

185
102*

C

B
A

28*

x

9–12 ■ Solving a Triangle  Solve the triangle using the Law of 
Sines.

 9. 

65

46*

C

BA 20*

 10. 

2

30*

C

B

A

100*

5.5 exeRCISeS
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480 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

 11. 

A

C

B

68*
12

12

 12. 

A

C

B
80*

6.53.4

13–18 ■ Solving a Triangle  Sketch each triangle, and then solve 
the triangle using the Law of Sines.

13. A  50,  B  68,  c  230

14. A  23,  B  110,  c  50

15. A  30,  C  65,  b  10

16. A  22,  B  95,  a  420

17. B  29,  C  51,  b  44

18. B  10,  C  100,  c  115

19–28 ■ Solving a Triangle  Use the Law of Sines to solve for 
all possible triangles that satisfy the given conditions.

19. a  28,  b  15,  A  110

20. a  30,  c  40,  A  37

21. a  20,  c  45,  A  125

22. b  45,  c  42,  C  38

23. b  25,  c  30,  B  25

24. a  75,  b  100,  A  30

25. a  50,  b  100,  A  50

26. a  100,  b  80,  A  135

27. a  26,  c  15,  C  29

28. b  73,  c  82,  B  58

SkILLS Plus
29. Finding Angles  For the triangle shown, find (a) BCD and 

(b) DCA.

B A

C

20

30*

20
28

D

30. Finding a Side  For the triangle shown, find the length AD.

AD

C

B
25*

25*
12

12

APPLICATIonS
31. Tracking a Satellite  The path of a satellite orbiting the earth 

causes the satellite to pass directly over two tracking stations 
A and B, which are 50 mi apart. When the satellite is on one 
side of the two stations, the angles of elevation at A and B are 
measured to be 87.0 and 84.2, respectively.

(a) How far is the satellite from station A?

(b) How high is the satellite above the ground?

84.2º87.0º

A B

32. Flight of a Plane  A pilot is flying over a straight  
highway. He determines the angles of depression to  
two mileposts, 5 mi apart, to be 32 and 48, as shown  
in the figure.

(a) Find the distance of the plane from point A.

(b) Find the elevation of the plane.

32º
48º

5 miA B

33. distance Across a River  To find the distance across a river, a 
surveyor chooses points A and B, which are 200 ft apart on 
one side of the river (see the figure). She then chooses a ref-
erence point C on the opposite side of the river and finds that 
BAC  82 and ABC  52. Approximate the distance 
from A to C.

A B

C

200 ft

82* 52*

34. distance Across a Lake  Points A and B are separated  
by a lake. To find the distance between them, a surveyor  
locates a point C on land such that CAB  48.6. He also 
measures CA as 312 ft and CB as 527 ft. Find the distance 
between A and B.
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SECTION 5.5 ■ The Law of Sines 481

35. The Leaning Tower of Pisa  The bell tower of the cathedral in 
Pisa, Italy, leans 5.6 from the vertical. A tourist stands 105 m 
from its base, with the tower leaning directly toward her. She 
measures the angle of elevation to the top of the tower to be 
29.2. Find the length of the tower to the nearest meter.

36. Radio Antenna  A short-wave radio antenna is supported by 
two guy wires, 165 ft and 180 ft long. Each wire is attached 
to the top of the antenna and anchored to the ground at two 
anchor points on opposite sides of the antenna. The shorter 
wire makes an angle of 67 with the ground. How far apart 
are the anchor points?

37. height of a Tree  A tree on a hillside casts a shadow 215 ft 
down the hill. If the angle of inclination of the hillside is 22 
to the horizontal and the angle of elevation of the sun is 52, 
find the height of the tree.

215 ft

52º 22º

38. Length of a guy wire  A communica-
tions tower is located at the top of a 
steep hill, as shown. The angle of 
inclination of the hill is 58. A guy 
wire is to be attached to the top of the 
tower and to the ground, 100 m down-
hill from the base of the tower. The 
angle a in the figure is determined to 
be 12. Find the length of cable 
required for the guy wire.

39. Calculating a distance  Observers at P and Q are located on the 
side of a hill that is inclined 32 to the horizontal, as shown. The 
observer at P determines the angle of elevation to a hot-air bal-
loon to be 62. At the same instant the observer at Q measures 
the angle of elevation to the balloon to be 71. If P is 60 m 
down the hill from Q, find the distance from Q to the balloon.

P

Q

32*
60 m 

40. Calculating an Angle  A water tower 30 m tall is located at 
the top of a hill. From a distance of 120 m down the hill it is 

observed that the angle formed between the top and base of 
the tower is 8. Find the angle of inclination of the hill.

30 m

12
0 m

8º

41. distances to Venus  The elongation a of a planet is the angle 
formed by the planet, earth, and sun (see the figure). It is 
known that the distance from the sun to Venus is 0.723 AU 
(see Exercise 71 in Section 5.2). At a certain time the elonga-
tion of Venus is found to be 39.4. Find the possible distances 
from the earth to Venus at that time in astronomical units (AU).

Venus

Venus

å

earth

1 AU

sun

42. Soap bubbles  When two bubbles cling together in midair, their 
common surface is part of a sphere whose center D lies on the 
line passing through the centers of the bubbles (see the figure). 
Also, ACB and ACD each have measure 60.

(a) Show that the radius r of the common face is given by

r 
ab

a  b

 [Hint: Use the Law of Sines together with the fact that an 
angle u and its supplement 180  u have the same sine.]

(b) Find the radius of the common face if the radii of the 
bubbles are 4 cm and 3 cm.

(c) What shape does the common face take if the two  
bubbles have equal radii?

D
AB

C

a b r

58*

å
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482 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
43. PRoVe: Area of a Triangle  Show that, given the three angles 

A, B, and C of a triangle and one side, say, a, the area of the 
triangle is 

area 
a2 sin B sin C

2 sin A 

44. PRoVe: Areas and the Ambiguous Case  Suppose we solve a 
triangle in the ambiguous case. We are given A and sides a 
and b, and we find the two solutions ^  ABC and ^  A rB rC r . 
Prove that 

area of ^  ABC

area of ^  A rB rC r 


sin C

sin C r

45. dISCoVeR: number of Solutions in the Ambiguous Case   
We have seen that when the Law of Sines is used to solve a 

triangle in the SSA case, there may be two, one, or no 
solution(s). Sketch triangles like those in Figure 6 to verify 
the criteria in the table for the number of solutions if you are 
given A and sides a and b.

Criterion Number of solutions

a  b 1
b  a  b sin A 2

a  b sin A 1
a  b sin A 0

   If A  30 and b  100, use these criteria to find the 
range of values of a for which the triangle ABC has two  
solutions, one solution, or no solution.

5.6 The LAw oF CoSIneS
■ The Law of Cosines ■ navigation: heading and bearing ■ The Area of a Triangle

■ The Law of Cosines
The Law of Sines cannot be used directly to solve triangles if we know two sides and 
the angle between them or if we know all three sides (these are Cases 3 and 4 of the 
preceding section). In these two cases the Law of Cosines applies.

The LAw oF CoSIneS

In any triangle ABC (see Figure 1) we have

 a2  b2  c2  2bc cos A

 b2  a2  c2  2ac cos B

 c2  a2  b2  2ab cos C

Proof  To prove the Law of Cosines, place triangle ABC so that A is at the origin, as 
shown in Figure 2. The coordinates of vertices B and C are 1c, 0 2  and 1b cos A, b sin A 2 , 
respectively. (You should check that the coordinates of these points will be the same if 
we draw angle A as an acute angle.) Using the Distance Formula, we get

 a2  1b cos A  c 2 2  1b sin A  0 2 2
  b2 cos2

 A  2bc cos A  c2  b2 sin2
 A

  b21cos2
 A  sin2

 A 2  2bc cos A  c2

  b2  c2  2bc cos A Because sin2A  cos2A  1

This proves the first formula. The other two formulas are obtained in the same way by 
placing each of the other vertices of the triangle at the origin and repeating the pre-
ceding argument. ■

A

C

B
c

ab

FIguRe 1

y

xA(0, 0) B(c, 0)

C (b ç A, b ß A)

b
a

c

FIguRe 2
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SECTION 5.6 ■ The Law of Cosines 483

In words, the Law of Cosines says that the square of any side of a triangle is equal 
to the sum of the squares of the other two sides minus twice the product of those two 
sides times the cosine of the included angle.

If one of the angles of a triangle, say, C, is a right angle, then cos C  0, and the 
Law of Cosines reduces to the Pythagorean Theorem, c2  a2  b2. Thus the Pythago-
rean Theorem is a special case of the Law of Cosines.

exAMPLe 1 ■ Length of a Tunnel
A tunnel is to be built through a mountain. To estimate the length of the tunnel, a sur-
veyor makes the measurements shown in Figure 3. Use the surveyor’s data to approxi-
mate the length of the tunnel.

SoLuTIon  To approximate the length c of the tunnel, we use the Law of Cosines.

 c2  a2  b2  2ab cos C     Law of Cosines

  2122  3882  21212 2 1388 2  cos 82.4    Substitute

  173730.2367     Use a calculator

 c  !173730.2367  416.8     Take square roots

Thus the tunnel will be approximately 417 ft long.

now Try exercises 3 and 39 ■

exAMPLe 2 ■ SSS, the Law of Cosines
The sides of a triangle are a  5, b  8, and c  12 (see Figure 4). Find the angles of 
the triangle.

A
c=12

B

C
a=5b=8

FIguRe 4

SoLuTIon  We first find A. From the Law of Cosines, a2  b2  c2  2bc cos A.  
Solving for cos A, we get

cos A 
b2  c2  a2

2bc


82  122  52

218 2 112 2 
183

192
 0.953125

Using a calculator, we find that A  cos1(0.953125)  18. In the same way we get

 cos B 
a2  c2  b2

2ac


52  122  82

215 2 112 2  0.875

 cos C 
a2  b2  c2

2ab


52  82  122

215 2 18 2  0.6875

Using a calculator, we find that 

B  cos1(0.875)  29    and    C  cos1(0.6875)  133

Of course, once two angles have been calculated, the third can more easily be found 
from the fact that the sum of the angles of a triangle is 180. However, it’s a good 
idea to calculate all three angles using the Law of Cosines and add the three angles as 
a check on your computations.

now Try exercise 7 ■

82.4º
388 ft 212 ft

A
B

C

FIguRe 3

CoS1

or

INV  CoS
or

ARC  CoS
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484 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

exAMPLe 3 ■ SAS, the Law of Cosines
Solve triangle ABC, where A  46.5, b  10.5, and c  18.0.

SoLuTIon  We can find a using the Law of Cosines.

 a2  b2  c2  2bc cos A

  110.5 2 2  118.0 2 2  2110.5 2 118.0 2 1cos 46.5° 2  174.05

Thus a  !174.05  13.2. We also use the Law of Cosines to find B and C, as 
in Example 2.

 cos B 
a2  c2  b2

2ac


13.22  18.02  10.52

2113.2 2 118.0 2  0.816477

 cos C 
a2  b2  c2

2ab


13.22  10.52  18.02

2113.2 2 110.5 2  0.142532

Using a calculator, we find that 

B  cos1(0.816477)  35.3    and    C  cos1(0.142532)  98.2

To summarize: B  35.3, C  98.2, and a  13.2. (See Figure 5.)

now Try exercise 13 ■

We could have used the Law of Sines to find B and C in Example 3, since we 
knew all three sides and an angle in the triangle. But knowing the sine of an angle does 
not uniquely specify the angle, since an angle u and its supplement 180  u both have 
the same sine. Thus we would need to decide which of the two angles is the correct 
choice. This ambiguity does not arise when we use the Law of Cosines, because every 
angle between 0 and 180 has a unique cosine. So using only the Law of Cosines is 
preferable in problems like Example 3.

■ navigation: heading and bearing
In navigation a direction is often given as a bearing, that is, as an acute angle measured 
from due north or due south. The bearing N 30 E, for example, indicates a direction 
that points 30 to the east of due north (see Figure 6).

S

N 60° W

N

60°

S

S 70° W

N

70°

S

W E W E W E W E

N 30° E

N

30°

S

S 50° E

N

50°

FIguRe 6

exAMPLe 4 ■ navigation
A pilot sets out from an airport and heads in the direction N 20 E, flying at 200 mi/h. 
After 1 h, he makes a course correction and heads in the direction N 40 E. Half an 
hour after that, engine trouble forces him to make an emergency landing.

(a) Find the distance between the airport and his final landing point.

(b) Find the bearing from the airport to his final landing point.

SoLuTIon

(a)  In 1 h the plane travels 200 mi, and in half an hour it travels 100 mi, so  
we can plot the pilot’s course as in Figure 7. When he makes his course  

A B

C

b=10.5 aÅ13.2

c=18.0

98.2*

46.5* 35.3*

FIguRe 5
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SECTION 5.6 ■ The Law of Cosines 485

correction, he turns 20 to the right, so the angle between the two legs of his trip 
is 180  20  160. So by the Law of Cosines we have

 b2  2002  1002  2 # 200 # 100 cos 160°

  87,587.70

  Thus b  295.95. The pilot lands about 296 mi from his starting point.

(b) We first use the Law of Sines to find A.

 
sin A

100


sin 160°

295.95

 sin A  100 # sin 160°

295.95

  0.11557

   Using the SIN1  key on a calculator, we find that A  6.636. From Figure 7  
we see that the line from the airport to the final landing site points in the direction  
20  6.636  26.636 east of due north. Thus the bearing is about N 26.6 E.

now Try exercise 45 ■

■ The Area of a Triangle
An interesting application of the Law of Cosines involves a formula for finding the area 
of a triangle from the lengths of its three sides (see Figure 8).

heRon’S FoRMuLA

The area ! of triangle ABC is given by

  !s1s  a 2 1s  b 2 1s  c 2
where s  1

2 1a  b  c 2  is the semiperimeter of the triangle; that is, s is half 
the perimeter.

Proof  We start with the formula !  1
2 ab sin C from Section 5.3. Thus

 2  1
4 a2b2 sin2

 C

  14 a2b211  cos2
 C 2     Pythagorean identity

  14 a2b211  cos C 2 11  cos C 2     Factor

Next, we write the expressions 1  cos C and 1  cos C in terms of a, b, and c. By 
the Law of Cosines we have

 cos C 
a2  b2  c2

2ab
    Law of Cosines

 1  cos C  1 
a2  b2  c2

2ab
    Add 1

  
2ab  a2  b2  c2

2ab
    Common denominator

  
1a  b 2 2  c2

2ab
    Factor

  
1a  b  c 2 1a  b  c 2

2ab
    Difference of squares

Another angle with sine 0.11557 is 
180  6.636  173.364. But this is 
clearly too large to be A in ABC.

A

B

C

200 mi

40*

20*

100 mi

FIguRe 7

A C

B

b

c a


FIguRe 8
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486 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

Similarly,

1  cos C 
1c  a  b 2 1c  a  b 2

2ab

Substituting these expressions in the formula we obtained for !2 gives

 2  1
4 a2b2 

 

1a  b  c 2 1a  b  c 2
2ab

  
1c  a  b 2 1c  a  b 2

2ab

  
1a  b  c 2

2
  
1a  b  c 2

2
  
1c  a  b 2

2
  
1c  a  b 2

2

  s1s  c 2 1s  b 2 1s  a 2

Heron’s Formula now follows from taking the square root of each side. ■

exAMPLe 5 ■ Area of a Lot
A businessman wishes to buy a triangular lot in a busy downtown location (see  
Figure 9). The lot frontages on the three adjacent streets are 125, 280, and 315 ft. 
Find the area of the lot.

SoLuTIon  The semiperimeter of the lot is

s 
125  280  315

2
 360

By Heron’s Formula the area is

   !3601360  125 2 1360  280 2 1360  315 2  17,451.6

Thus the area is approximately 17,452 ft2.

now Try exercises 29 and 53 ■

To see that the factors in the last two 
products are equal, note for example 
that

 
a  b  c

2


a  b  c

2
 c

  s  c

31
5 

ft

125 ft

28
0 

ft

FIguRe 9

ConCePTS
 1. For triangle ABC with sides a, b, and c the Law of Cosines 

states 

  c2   

 2. In which of the following cases must the Law of Cosines be 
used to solve a triangle?

ASA  SSS  SAS  SSA

SkILLS
3–10 ■ Finding an Angle or Side  Use the Law of Cosines to 
determine the indicated side x or angle u.

 3.    4. 

39*
42

C

BA

x21

15
108*

18

C

BA

x

 5.    6. 

8
88*

2

x

A

C

B

 7.

42.15

68.01

C

B

A

¨

37.83

  8.

 9.  

30

24
30*

C B

A

x

 10. 

20

10
C

B

A

12

¨

5.6 exeRCISeS

140*
25

x

25

A

C

B

¨ 122.560.1

154.6

C

BA
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SECTION 5.6 ■ The Law of Cosines 487

11–20 ■ Solving a Triangle  Solve triangle ABC.

 11.   12. 

40

C

B

A
12

44

13. a  3.0,  b  4.0,  C  53

14. b  60,  c  30,  A  70

15. a  20,  b  25,  c  22

16. a  10,  b  12,  c  16

17. b  125,  c  162,  B  40

18. a  65,  c  50,  C  52

19. a  50,  b  65,  A  55

20. a  73.5,  B  61,  C  83

21–28 ■ Law of Sines or Law of Cosines?  Find the indicated 
side x or angle u. (Use either the Law of Sines or the Law of 
Cosines, as appropriate.)

21. 

35*

C

BA

x3
85*

 22. 

40*

C

BA

x10

18

23. 

30*

C

BA

x50

100*

 24. C

BA

4

11

10

¨

25. 

38*

C

B

A

138

110
¨

 26. 

40*

C

B

A

8

10
¨

27. 

30*

C

B

A

38

48x

 28. 

98*

C

BA x

1000

25*

29–32 ■ heron’s Formula  Find the area of the triangle whose 
sides have the given lengths.

29. a  9,  b  12,  c  15

 30. a  1,  b  2,  c  2

31. a  7,  b  8,  c  9 

32. a  11,  b  100,  c  101

SkILLS Plus
33–36 ■ heron’s Formula  Find the area of the shaded figure, 
rounded to two decimals.

33. 

6
4

3

 34. 

5 5 5

2 2

35. 
5

6

7
8

100*
 36. 

44

3 3

60*

37. Area of a Region  Three circles of radii 4, 5, and 6 cm are 
mutually tangent. Find the shaded area enclosed between the 
circles.

38. Finding a Length  In the figure, triangle ABC is a right  
triangle, CQ  6, and BQ  4. Also, AQC  30 and 
CQB  45°. Find the length of AQ.  [Hint: First use the 
Law of Cosines to find expressions for a2, b2, and c2.]

Q

C

B

A

4
c

b
6

x

30*
45*

a

18
120*

C

BA

10
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488 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

APPLICATIonS
39. Surveying  To find the distance across a small lake, a sur-

veyor has taken the measurements shown. Find the distance 
across the lake using this information.

C

B

A

2.82 mi

3.56 mi

40.3*

40. geometry  A parallelogram has sides of lengths 3 and 5, and 
one angle is 50. Find the lengths of the diagonals.

41. Calculating distance  Two straight roads diverge at an angle 
of 65. Two cars leave the intersection at 2:00 p.m., one trav-
eling at 50 mi/h and the other at 30 mi/h. How far apart are 
the cars at 2:30 p.m.?

42. Calculating distance  A car travels along a straight road, 
heading east for 1 h, then traveling for 30 min on another road 
that leads northeast. If the car has maintained a constant 
speed of 40 mi/h, how far is it from its starting position?

43. dead Reckoning  A pilot flies in a straight path for  
1 h 30 min. She then makes a course correction, heading  
10 to the right of her original course, and flies 2 h in the  
new direction. If she maintains a constant speed of 625 mi/h, 
how far is she from her starting position?

44. navigation  Two boats leave the same port at the same time. 
One travels at a speed of 30 mi/h in the direction N 50 E, 
and the other travels at a speed of 26 mi/h in a direction  
S 70 E (see the figure). How far apart are the two boats  
after 1 h?

N

S

EW

50˚

70˚

N 50˚ E

S 70˚ E

45. navigation  A fisherman leaves his home port and heads in 
the direction N 70 W. He travels 30 mi and reaches Egg  
Island. The next day he sails N 10 E for 50 mi, reaching  
Forrest Island.

(a) Find the distance between the fisherman’s home port and 
Forrest Island.

(b) Find the bearing from Forrest Island back to his  
home port.

10º

70º30 mi

50 mi

Egg
Island home port

Forrest
Island

46. navigation  Airport B is 300 mi from airport A at a bearing 
N 50 E (see the figure). A pilot wishing to fly from A to B 
mistakenly flies due east at 200 mi/h for 30 min, when he 
notices his error.

(a) How far is the pilot from his destination at the time he 
notices the error?

(b) What bearing should he head his plane to arrive at  
airport B?

50˚

300 mi

Airport B

Airport A

47. Triangular Field  A triangular field has sides of lengths 22, 
36, and 44 yd. Find the largest angle.

48. Towing a barge  Two tugboats that are 120 ft apart pull a 
barge, as shown. If the length of one cable is 212 ft and the 
length of the other is 230 ft, find the angle formed by the two 
cables.

212 ft

230 ft

120 ft

49. Flying kites  A boy is flying two kites at the same time. He 
has 380 ft of line out to one kite and 420 ft to the other. He 
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SECTION 5.6 ■ The Law of Cosines 489

estimates the angle between the two lines to be 30.  
Approximate the distance between the kites.

30º

380 ft

420 ft

50. Securing a Tower  A 125-ft tower is located on the side of a 
mountain that is inclined 32 to the horizontal. A guy wire is 
to be attached to the top of the tower and anchored at a point 
55 ft downhill from the base of the tower. Find the shortest 
length of wire needed.

32º

125 ft

55 ft

51. Cable Car  A steep mountain is inclined 74 to the horizontal 
and rises 3400 ft above the surrounding plain. A cable car is 
to be installed from a point 800 ft from the base to the top of 
the mountain, as shown. Find the shortest length of cable 
needed.

800 ft

74* 3400 ft

52. Cn Tower  The CN Tower in Toronto, Canada, is the  
tallest free-standing structure in North America. A woman 
on the observation deck, 1150 ft above the ground, wants 
to determine the distance between two landmarks on the 
ground below. She observes that the angle formed by the 
lines of sight to these two landmarks is 43. She also 
observes that the angle between the vertical and the line of 
sight to one of the landmarks is 62 and that to the other 
landmark is 54. Find the distance between the two 
landmarks.

43*
54*

62*

53. Land Value  Land in downtown Columbia is valued at $20 a 
square foot. What is the value of a triangular lot with sides of 
lengths 112, 148, and 190 ft?

dISCuSS ■ dISCoVeR ■ PRoVe ■ wRITe
54. dISCuSS: Solving for the Angles in a Triangle  The para-

graph that follows the solution of Example 3 on page 484 
explains an alternative method for finding B and C, using 
the Law of Sines. Use this method to solve the triangle in the 
example, finding B first and then C. Explain how you 
chose the appropriate value for the measure of B. Which 
method do you prefer for solving an SAS triangle problem: 
the one explained in Example 3 or the one you used in this 
exercise?

55. PRoVe: Projection Laws  Prove that in triangle ABC

 a  b cos C  c cos B

 b  c cos A  a cos C

 c  a cos B  b cos A

  These are called the Projection Laws.  [Hint: To get the first 
equation, add the second and third equations in the Law of 
Cosines and solve for a.]
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490 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

Angles (p. 438)
An angle consists of two rays with a common vertex. One of the 
rays is the initial side, and the other the terminal side. An angle 
can be viewed as a rotation of the initial side onto the terminal 
side. If the rotation is counterclockwise, the angle is positive; if 
the rotation is clockwise, the angle is negative.

¨

terminal
side

initial side

A

B

O

Notation: The angle in the figure can be referred to as angle 
AOB, or simply as angle O, or as angle u.

Angle Measure (p. 438)
The radian measure of an angle (abbreviated rad) is the length 
of the arc that the angle subtends in a circle of radius 1, as shown 
in the figure.

¨
Radian
measure
of ¨

1

The degree measure of an angle is the number of degrees in the 
angle, where a degree is 1

360 of a complete circle.

To convert degrees to radians, multiply by p/180.

To convert radians to degrees, multiply by 180/p.

Angles in Standard Position (pp. 439, 460)
An angle is in standard position if it is drawn in the xy-plane 
with its vertex at the origin and its initial side on the positive 
x-axis. 

¨
¨

y

x0

y

x0

Two angles in standard position are coterminal if their sides 
coincide. 

The reference angle u associated with an angle u is the acute 
angle formed by the terminal side of u and the x-axis.

Length of an Arc; Area of a Sector (pp. 441–442)
Consider a circle of radius r. 

¨
r

A
s

The length s of an arc that subtends a central angle of u radi-
ans is s  r u.

The area A of a sector with central angle of u radians is 
A  1

2 r2u.

Circular Motion (pp. 442–443)
Suppose a point moves along a circle of radius r and the ray from 
the center of the circle to the point traverses u radians in time t. 
Let s  r u be the distance the point travels in time t. 

The angular speed of the point is v  u/t.

The linear speed of the point is √  s/t. 

Linear speed √ and angular speed v are related by the formula 
√  rv.

Trigonometric Ratios (p. 448)
For a right triangle with an acute angle u the trigonometric ratios 
are defined as follows.

adjacent

opposite
hypotenuse

¨

sin u 
opp

hyp
  cos u 

adj

hyp
  tan u 

opp

adj

csc u 
hyp

opp
  sec u 

hyp

adj
  cot u 

adj

opp

Special Trigonometric Ratios (p. 449)
The trigonometric functions have the following values at the spe-
cial values of u.

u u sin u cos u tan u csc u sec u cot u

30 p
6

1
2

!3
2

!3
3 2 2!3

3 !3

45 p
4

!2
2

!2
2 1 !2 !2 1

60 p
3

!3
2

1
2 !3 2!3

3 2 !3
3

■ PRoPeRTIeS And FoRMuLAS

ChAPTeR 5 ■ ReVIew
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CHAPTER 5 ■ Review 491

Trigonometric Functions of Angles (p. 457)
Let u be an angle in standard position, and let P1x, y 2  be a point 
on the terminal side. Let r  "x2  y2 be the distance from the 
origin to the point P1x, y 2 . 

P(x, y)

y

x0

¨

P(x, y)y

x0
¨

For nonzero values of the denominator the trigonometric func-
tions are defined as follows.

sin t 
y

r
  cos t 

x

r
  tan t 

y

x

csc t 
r

y
  sec t 

r

x
  cot t 

x

y

basic Trigonometric Identities (p. 462)
An identity is an equation that is true for all values of the vari-
able. The basic trigonometric identities are as follows.

Reciprocal Identities:

csc u 
1

sin u
  sec u 

1

cos u
  cot u 

1

tan u

Pythagorean Identities:

 sin2
 u  cos2

 u  1

 tan2
 u  1  sec2

 u

 1  cot2
 u  csc2

 u

Area of a Triangle (p. 464)
The area ! of a triangle with sides of lengths a and b and with 
included angle u is

! 
1

2
 ab sin u

Inverse Trigonometric Functions (p. 468)
Inverse functions of the trigonometric functions are defined by 
restricting the domains as follows.

Function Domain Range

sin1 31, 1 4 C 
p
2 , p2 D

cos1 31, 1 4 30, p 4
tan1 1`, ` 2 A 

p
2 , p2 B

The inverse trigonometric functions are defined as follows.

 sin1 x  y 3 sin y  x

 cos1 x  y 3 cos y  x

 tan1 x  y 3 tan y  x

The Law of Sines and the Law of Cosines (pp. 475, 482)
We follow the convention of labeling the angles of a triangle as  
A, B, C and the lengths of the corresponding opposite sides as  
a, b, c, as in the figure. 

A

C

B
c

ab

For a triangle ABC we have the following laws.

The Law of Sines states that

sin A
a


sin B

b


sin C
c

The Law of Cosines states that

 a2  b2  c2  2bc cos A

 b2  a2  c2  2ac cos B

 c2  a2  b2  2ab cos C

heron’s Formula (p. 485)
Let ABC be a triangle with sides a, b, and c. 

A C

B

b

c a
�

Heron’s Formula states that the area ! of triangle ABC is

!  !s1s  a 2 1s  b 2 1s  c 2
where s  1

2 
1a  b  c 2  is the semiperimeter of the triangle.
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492 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

 1. (a) How is the degree measure of an angle defined?

(b) How is the radian measure of an angle defined?

(c) How do you convert from degrees to radians? Convert 
45 to radians.

(d) How do you convert from radians to degrees? Convert  
2 rad to degrees.

 2. (a)  When is an angle in standard position? Illustrate with a 
graph.

(b) When are two angles in standard position coterminal?  
Illustrate with a graph.

(c) Are the angles 25 and 745 coterminal? 

(d) How is the reference angle for an angle u defined?

(e) Find the reference angle for 150. 

 3. (a)  In a circle of radius r, what is the length s of an arc that 
subtends a central angle of u radians?

(b) In a circle of radius r, what is the area A of a sector with 
central angle u radians?

 4. (a)  Let u be an acute angle in a right triangle. Identify the 
opposite side, the adjacent side, and the hypotenuse in 
the figure.

¨

(b) Define the six trigonometric ratios in terms of the  
adjacent and opposite sides and the hypotenuse.

(c) Find the six trigonometric ratios for the angle u  
shown in the figure. 

¨

4
5

3

(d) List the special values of sine, cosine, and  
tangent.

 5. (a) What does it mean to solve a triangle? 

(b) Solve the triangle shown.

10
A

B

C

35*

 6. (a)  Let u be an angle in standard position, let P1x, y 2  be a 
point on the terminal side, and let r be the distance from 
the origin to P, as shown in the figure. Write expressions 
for the six trigonometric functions of u.

P(x, y)

y

x0

¨

(b) Find the sine, cosine, and tangent for the angle u shown 
in the figure. 

P(_3, 4)
y

x0

¨
r

 7. In each of the four quadrants, identify the trigonometric func-
tions that are positive.

 8. (a)  Describe the steps we use to find the value of a trigono-
metric function of an angle u. 

(b) Find sin 5p/6.

 9. (a) State the reciprocal identities.

(b) State the Pythagorean identities.

 10. (a)  What is the area of a triangle with sides of length a and b 
and with included angle u?

(b) What is the area of a triangle with sides of length a, b, and c?

 11. (a)  Define the inverse sine function, the inverse cosine func-
tion, and the inverse tangent function. 

(b) Find sin1
  
1
2 , cos11!2/2 2 , and tan1

 1.

(c) For what values of x is the equation sin1sin1
 x 2  x 

true? For what values of x is the equation 
sin11sin x 2  x true?

■ ConCePT CheCk
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 12. (a) State the Law of Sines.

(b) Find side a in the figure. 

A B

a
b

C

85* 40*
100

(c) Explain the ambiguous case in the Law of Sines.

 13. (a) State the Law of Cosines.

(b) Find side a in the figure. 

A B

a30

C

40*
50

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ exeRCISeS

1–2 ■ From degrees to Radians  Find the radian measure that 
corresponds to the given degree measure.

 1. (a) 30 (b) 150 (c) 20 (d) 225

 2. (a) 105 (b) 72 (c) 405 (d) 315

3–4 ■ From Radians to degrees  Find the degree measure that 
corresponds to the given radian measure.

 3. (a) 
5p

6
 (b)  

p

9
 (c)  

4p

3
 (d) 4

 4. (a)  

5p

3
 (b) 

10p

9
 (c) 5 (d) 

11p

3

5–10 ■ Length of a Circular Arc  These exercises involve the for-
mula for the length of a circular arc.

 5. Find the length of an arc of a circle of radius 10 m if the arc 
subtends a central angle of 2p/5 rad.

 6. A central angle u in a circle of radius 2.5 cm is subtended by 
an arc of length 7 cm. Find the measure of u in degrees and 
radians.

 7. A circular arc of length 25 ft subtends a central angle of 50. 
Find the radius of the circle.

 8. A circular arc of length 13p m subtends a central angle of 
130. Find the radius of the circle.

 9. How many revolutions will a car wheel of diameter 28 in. make 
over a period of half an hour if the car is traveling at 60 mi/h?

10. New York and Los Angeles are 2450 mi apart. Find the angle 
that the arc between these two cities subtends at the center of 
the earth. (The radius of the earth is 3960 mi.)

11–14 ■ Area of a Circular Sector  These exercises involve the 
formula for the area of a circular sector.

11. Find the area of a sector with central angle 2 rad in a circle 
of radius 5 m.

12. Find the area of a sector with central angle 52 in a circle of 
radius 200 ft.

13. A sector in a circle of radius 25 ft has an area of 125 ft2. Find 
the central angle of the sector.

14. The area of a sector of a circle with a central angle of 11p/6 
radians is 50 m2. Find the radius of the circle.

15. Angular Speed and Linear Speed  A potter’s wheel with 
radius 8 in. spins at 150 rpm. Find the angular and linear 
speeds of a point on the rim of the wheel.

8 in.

16. Angular Speed and Linear Speed  In an automobile transmis-
sion a gear ratio g is the ratio

g 
angular speed of engine

angular speed of wheels

  The angular speed of the engine is shown on the tachometer 
(in rpm).

    A certain sports car has wheels with radius 11 in. Its gear 
ratios are shown in the following table. Suppose the car is in 
fourth gear and the tachometer 
reads 3500 rpm.

(a) Find the angular speed of the 
engine.

(b) Find the angular speed of the 
wheels.

(c) How fast (in mi/h) is the car 
traveling?

Gear Ratio

1st 4.1
2nd 3.0
3rd 1.6
4th 0.9
5th 0.7
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494 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

17–18 ■ Trigonometric Ratios  Find the values of the six trigo-
nometric ratios of u.

17. 

¨
7

5

 18. 

3

10
¨

19–22 ■ Finding Sides in Right Triangles  Find the sides labeled 
x and y, rounded to two decimal places.

 19. 

40*

x

5 y

 20. 

35*

x

2

y

21. 

20*
x

1

y20*

 22. 

23–26 ■ Solving a Triangle  Solve the triangle.

23. 

20*3

A

B

C  24. 

60*

20A B

C

25.   26. 

27. Trigonometric 
Ratios  Express the 
lengths a and b in 
the figure in terms of 
the trigonometric 
ratios of u.

x
y

30*
4

25
7

A B

C

12

5

A B

C

28. Cn Tower  The highest free-standing tower in North America 
is the CN Tower in Toronto, Canada. From a distance of  
1 km from its base, the angle of elevation to the top of the 
tower is 28.81. Find the height of the tower.

29. Perimeter of a Regular hexagon  Find the perimeter of a 
regular hexagon that is inscribed in a circle of radius 8 m.

30. Pistons of an engine  The pistons in a car engine move up 
and down repeatedly to turn the crankshaft, as shown. Find 
the height of the point P above the center O of the crankshaft 
in terms of the angle u.

y

O
¨

2

P

x

8 in.

Q

31. Radius of the Moon  As viewed from the earth, the angle 
subtended by the full moon is 0.518. Use this information 
and the fact that the distance AB from the earth to the moon 
is 236,900 mi to find the radius of the moon.

B

0.518˚

A

32. distance between Two Ships  A pilot measures the angles of 
depression to two ships to be 40 and 52 (see the figure). If 
the pilot is flying at an elevation of 35,000 ft, find the dis-
tance between the two ships.

52º

40º

0 1
¨

a

b

y

x
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33–44 ■ Values of Trigonometric Functions  Find the exact 
value.

33. sin 315 34. csc 
9p

4
 35. tan1135° 2

 36. cos 
5p

6
 37. cot a 

22p

3
b  38. sin 405

39. cos 585 40. sec 
22p

3
 41. csc 

8p

3

 42. sec 
13p

6
 43. cot1 390° 2  44. tan 

23p

4

45. Values of Trigonometric Functions  Find the values of the six 
trigonometric ratios of the angle u in standard position if the 
point 15,  12 2  is on the terminal side of u.

46. Values of Trigonometric Functions  Find sin u if u is in stan-
dard position and its terminal side intersects the circle of 
radius 1 centered at the origin at the point 1!3/2,  

1
2 2 .

47. Angle Formed by a Line  Find the acute angle that is formed 
by the line y  !3x  1  0 and the x-axis.

48. Values of Trigonometric Functions  Find the six trigonometric 
ratios of the angle u in standard position if its terminal side is 
in Quadrant III and is parallel to the line 4y  2x  1  0.

49–52 ■ expressing one Trigonometric Function in Terms of 
Another  Write the first expression in terms of the second, for u 
in the given quadrant.

49. tan u,  cos u;  u in Quadrant II

50. sec u,  sin u;  u in Quadrant III

51. tan2u,  sin u;  u in any quadrant

52. csc2u cos2u,  sin u;  u in any quadrant

53–56 ■ Values of Trigonometric Functions  Find the values 
of the six trigonometric functions of u from the information 
given.

53. tan u  !7/3,  sec u  4
3

 54. sec u  41
40 ,  csc u   

41
9

55. sin u  3
5 ,  cos u  0

 56. sec u   
13
5 ,  tan u  0

57–60 ■ Value of an expression  Find the value of the given 
trigonometric expression.

57. If tan u   
1
2  for u in Quadrant II, find sin u  cos u.

58. If sin u  1
2  for u in Quadrant I, find tan u  sec u.

59. If tan u  1, find sin2u  cos2u.

60. If cos u  !3/2 and p/2  u  p, find sin 2u.

61–64 ■ Values of Inverse Trigonometric Functions  Find the 
exact value of the expression.

61. sin11!3/2 2  62. tan11!3/3 2
63. tanAsin1

  
2
5 B  64. sinAcos1

  
3
8 B

65–66 ■ Inverse Trigonometric Functions  Rewrite the expres-
sion as an algebraic expression in x.

65. sin1 tan1 x 2  66. sec1sin1
 x 2

67–68 ■ Finding an unknown Side  Express u in terms of x.

67. 

x
3

¨

 68. 

x

2

¨

69–78 ■ Law of Sines and Law of Cosines  Find the side labeled 
x or the angle labeled u.

69. 

A B

C

10

30*
80* x

 70. 

71.   72. 

73. A

B

C

8

120*x
2

 74. 

A

B

6110*

x

4

C

75. 

A

C

B

12
23

¨
25*

 76. 

A C

B

5 4

¨ 80*

77. A

B

C

100
85

120

¨

 78. 

45* 105*A

B

C

2

x

A

B

C
100

40* x

210

A

B

C

7060*

x

20

B

C

A

3

5

¨

10*
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496 CHAPTER 5 ■ Trigonometric Functions: Right Triangle Approach

ChAPTeR 5
79. distance between Two Ships  Two ships leave a port at the 

same time. One travels at 20 mi/h in a direction N 32 E, and 
the other travels at 28 mi/h in a direction S 42 E (see the 
figure). How far apart are the two ships after 2 h?

N

E

32*

S

W

42*

S 42˚ E

N 32˚ E

80. height of a building  From a point A on the ground, the 
angle of elevation to the top of a tall building is 24.1. From 
a point B, which is 600 ft closer to the building, the angle of 
elevation is measured to be 30.2. Find the height of the 
building.

24.1* 30.2*

600 ft BA

81. distance between Two Points  Find the distance between 
points A and B on opposite sides of a lake from the informa-
tion shown.

C B

A

3.2 mi

5.6 mi

42*

82. distance between a boat and the Shore  A boat is cruising 
the ocean off a straight shoreline. Points A and B are 120 mi 
apart on the shore, as shown. It is found that A  42.3 and 
B  68.9. Find the shortest distance from the boat to the 
shore.

120 mi

A

B

shoreline

68.9*

42.3*

C

83. Area of a Triangle  Find the area of a triangle with sides of 
length 8 and 14 and included angle 35.

84. heron’s Formula  Find the area of a triangle with sides of 
length 5, 6, and 8.
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 1. Find the radian measures that correspond to the degree measures 330 and 135.

 2. Find the degree measures that correspond to the radian measures 4p/3 and 1.3.

 3. The rotor blades of a helicopter are 16 ft long and are rotating at 120 rpm.

(a) Find the angular speed of the rotor.

(b) Find the linear speed of a point on the tip of a blade.

 4. Find the exact value of each of the following.

(a) sin 405      (b) tan1150° 2      (c) sec 
5p

3
      (d) csc 

5p

2

 5. Find tan u  sin u for the angle u shown.

¨
3

2

 6. Express the lengths a and b shown in the figure in terms of u.

¨
b

a
24

 7. If cos u   
1
3  and u is in Quadrant III, find tan u cot u  csc u.

 8. If sin u  5
13  and tan u   

5
12 , find sec u.

 9. Express tan u in terms of sec u for u in Quadrant II.

10. The base of the ladder in the figure is 6 ft from the building, and the angle formed by the 
ladder and the ground is 73. How high up the building does the ladder touch?

6 ft

73*

 11. Express u in each figure in terms of x.

(a) 

4

x

¨

 (b) 

¨
3

x

12. Find the exact value of cosAtan1
  

9
40 B .

ChAPTeR 5 TeST
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FoCuS on ModeLIng
13–18 ■ Find the side labeled x or the angle labeled u.

13. 

12

10 x

48˚

 14. 

230

52˚ 69˚

x

15. 

50

x

28˚20˚

 16. 

108˚

28

x
15

17. 

9

8

6
¨

 18. 

75*
7

5

¨

19. Refer to the figure below.

(a) Find the area of the shaded region.

(b) Find the perimeter of the shaded region.

72˚

10 m

20. Refer to the figure below.

(a) Find the angle opposite the longest side.

(b) Find the area of the triangle.

20

139

21. Two wires tether a balloon to the ground, as shown. How high is the balloon above the 
ground?

75* 85*

100 ft

h
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How can we measure the height of a mountain or the distance across a lake? Obviously, 
it may be difficult, inconvenient, or impossible to measure these distances directly (that 
is, by using a tape measure or a yardstick). On the other hand, it is easy to measure 
angles involving distant objects. That’s where trigonometry comes in: The trigonomet-
ric ratios relate angles to distances, so they can be used to calculate distances from the 
measured angles. In this Focus we examine how trigonometry is used to map a town. 
Modern mapmaking methods use satellites and the Global Positioning System, but 
mathematics remains at the core of the process.

■ Mapping a Town
A student wants to draw a map of his hometown. To construct an accurate map (or scale 
model), he needs to find distances between various landmarks in the town. The student 
makes the measurements shown in Figure 1. Note that only one distance is measured: 
that between City Hall and the first bridge. All other measurements are angles.

FIguRe 1

The distances between other landmarks can now be found by using the Law of  
Sines. For example, the distance x from the bank to the first bridge is calculated by  
applying the Law of Sines to the triangle with vertices at City Hall, the bank, and the 
first bridge.

 
x

sin 50°


0.86

sin 30°
  Law of Sines

 x 
0.86 sin 50°

sin 30°
  Solve for x

  1.32 mi   Calculator

So the distance between the bank and the first bridge is 1.32 mi.

Surveying FoCuS on ModeLIng
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500 Focus on Modeling

The distance we just found can now be used to find other distances. For instance, we 
find the distance y between the bank and the cliff as follows:

 
y

sin 64°


1.32

sin 50°
  Law of Sines

 y 
1.32 sin 64°

sin 50°
  Solve for y

  1.55 mi   Calculator

Continuing in this fashion, we can calculate all the distances between the landmarks 
shown in the rough sketch in Figure 1. We can use this information to draw the map 
shown in Figure 2.

N

City Hall

Church

Fire Hall

School

Bank

0 1/4 1/2 3/4 1 mile
FIguRe 2

To make a topographic map, we need to measure elevation. This concept is explored 
in Problems 4–6.

PRobLeMS
 1. Completing the Map  Find the distance between the church and City Hall.

 2. Completing the Map  Find the distance between the fire hall and the school.  
[Hint: You will need to find other distances first.]

 3. determining a distance  A surveyor on one side of a river wishes to find the distance 
between points A and B on the opposite side of the river. On her side she chooses points C 
and D, which are 20 m apart, and measures the angles shown in the figure below. Find the 
distance between A and B.

A
B

C
20 m

50*

D
45*40*

20*
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  Surveying 501

 4. height of a Cliff  To measure the height of an inaccessible cliff on the opposite side of a 
river, a surveyor makes the measurements shown in the figure at the left. Find the height of 
the cliff.

200 m

33.1*

51.6*

69.4*

 5. height of a Mountain  To calculate the height h of a mountain, angles a and b and  
distance d are measured, as shown in the figure below.

(a) Show that

h 
d

cot a  cot b
(b) Show that

h  d  

sin a sin b

sin1b  a 2
(c)  Use the formulas from parts (a) and (b) to find the height of a mountain if a  25,  

b  29, and d  800 ft. Do you get the same answer from each formula?

å ∫

d

h

BA

C

 6. determining a distance  A surveyor has determined that a mountain is 2430 ft high. 
From the top of the mountain he measures the angles of depression to two landmarks at the 
base of the mountain and finds them to be 42 and 39. (Observe that these are the same as 
the angles of elevation from the landmarks as shown in the figure at the left.) The angle be-
tween the lines of sight to the landmarks is 68. Calculate the distance between the two  
landmarks.

 7. Surveying building Lots  A surveyor surveys two adjacent lots and makes the follow-
ing rough sketch showing his measurements. Calculate all the distances shown in the 
figure, and use your result to draw an accurate map of the two lots.

42º
39º

68º

2430 ft
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502 Focus on Modeling

 8. great Survey of India  The Great Trigonometric Survey of India was one of the most 
massive mapping projects ever undertaken (see the margin note on page 478). Do some  
research at your library or on the Internet to learn more about the Survey, and write a  
report on your findings.
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In this chapter  we introduce two different but equivalent ways of viewing 
the trigonometric functions. One way is to view them as functions of 
angles (Chapter 5); the other is to view them as functions of real numbers 
(Chapter 6). The two approaches to trigonometry are independent of  
each other, so either Chapter 5 or Chapter 6 may be studied first. The 
applications of trigonometry are numerous, including signal processing, 
digital coding of music and videos, finding distances to stars, producing 
CAT scans for medical imaging, and many others. These applications are 
very diverse, and we need to study both approaches to trigonometry 
because the different approaches are required for different applications.

One of the main applications of trigonometry that we study in this 
chapter is periodic motion. If you’ve ever taken a Ferris wheel ride, then 
you know about periodic motion—that is, motion that repeats over and 
over. Periodic motion occurs often in nature, as in the daily rising and 
setting of the sun, the daily variation in tide levels, the vibrations of a leaf 
in the wind, and many more. We will see in this chapter how the 
trigonometric functions are used to model periodic motion. 

503

Trigonometric Functions:  
Unit Circle Approach 6

6.1 The Unit Circle
6.2  Trigonometric Functions  

of Real Numbers
6.3 Trigonometric Graphs
6.4 More Trigonometric Graphs
6.5  Inverse Trigonometric 

Functions and Their Graphs
6.6 Modeling Harmonic Motion

FoCUs oN ModelING
  Fitting sinusoidal Curves  

to data

Doug Steakley/Lonely Planet Images/Getty Images
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504 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

6.1 THe UNIT CIRCle
■ The Unit Circle ■ Terminal Points on the Unit Circle ■ The Reference Number

In this section we explore some properties of the circle of radius 1 centered at the origin. 
These properties are used in the next section to define the trigonometric functions.

■ The Unit Circle
The set of points at a distance 1 from the origin is a circle of radius 1 (see Figure 1). In 
Section 1.2 we learned that the equation of this circle is x2  y2  1.

THe UNIT CIRCle

The unit circle is the circle of radius 1 centered at the origin in the xy-plane. Its 
equation is

x2  y2  1

exaMPle 1 ■ a Point on the Unit Circle

Show that the point Pa !3

3
,  

!6

3
b  is on the unit circle.

solUTIoN  We need to show that this point satisfies the equation of the unit circle, 
that is, x2  y2  1. Since

a !3

3
b

2

 a !6

3
b

2


3

9


6

9
 1

P is on the unit circle.

Now Try exercise 3 ■

exaMPle 2 ■ locating a Point on the Unit Circle
The point PA!3/2, yB  is on the unit circle in Quadrant IV. Find its y-coordinate.

solUTIoN  Since the point is on the unit circle, we have

 a !3

2
b

2

 y2  1

 y2  1 
3

4


1

4

 y   

1

2

Since the point is in Quadrant IV, its y-coordinate must be negative, so y   
1
2.

Now Try exercise 9 ■

■ Terminal Points on the Unit Circle
Suppose t is a real number. If t  0, let’s mark off a distance t along the unit circle, 
starting at the point 11,  0 2  and moving in a counterclockwise direction. If t  0, we 
mark off a distance 0  t 0  in a clockwise direction (Figure 2). In this way we arrive at a 

Circles are studied in Section 1.2,  
page 97.

y

x0 1

≈+¥=1

FIGURe 1 The unit circle
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SECTION 6.1 ■ The Unit Circle 505

point P1x, y 2  on the unit circle. The point P1x, y 2  obtained in this way is called the 
terminal point determined by the real number t.

y

x0 1
t<0

P(x, y)

y

x0 1

t>0P(x, y)

(a)  Terminal point P 1x, y 2  determined 
by t  0

(b)  Terminal point P 1x, y 2  determined 
by t  0FIGURe 2

The circumference of the unit circle is C  2p11 2  2p. So if a point starts at 
11, 0 2  and moves counterclockwise all the way around the unit circle and returns to 
11, 0 2 , it travels a distance of 2p. To move halfway around the circle, it travels a dis-
tance of  1

2 12p 2  p. To move a quarter of the distance around the circle, it travels a 
distance of  1

4 12p 2  p/2. Where does the point end up when it travels these distances 
along the circle? From Figure 3 we see, for example, that when it travels a distance of 
p starting at 11, 0 2 , its terminal point is 11, 0 2 .

exaMPle 3 ■ Finding Terminal Points
Find the terminal point on the unit circle determined by each real number t.

(a) t  3p      (b) t  p      (c) t   

p

2

solUTIoN  From Figure 4 we get the following:

(a) The terminal point determined by 3p is 11, 0 2 .
(b) The terminal point determined by p is 11, 0 2 .
(c) The terminal point determined by p/2 is 10, 1 2 .

y

x0 1P(_1, 0)

t=3π

y

x0 1

P(_1, 0)

t=_π

y

x0 1

P(0, _1)
t=_ π

2

FIGURe 4

Notice that different values of t can determine the same terminal point.

Now Try exercise 23 ■

y

x0 1

P(1, 0)

t=2π

y

x0 1

P(0, _1)

t=3π
2

y

x0 1

P(_1, 0)

t=π
P(0, 1)

y

x0 1

t=π
2

FIGURe 3 Terminal  
points determined by 
t  p

2 , p, 3p
2 , and 2p
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506 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

The terminal point P1x, y 2  determined by t  p/4 is the same distance from 11, 0 2  
as from 10, 1 2  along the unit circle (see Figure 5).

x0 1

t=π
4

P !     ,      @œ∑2
2

œ∑2
2

y=x
y

FIGURe 5

Since the unit circle is symmetric with respect to the line y  x, it follows that P 
lies on the line y  x. So P is the point of intersection (in the Quadrant I) of the 
circle x2  y2  1 and the line y  x. Substituting x for y in the equation of the 
circle, we get

 x2  x2  1

 2x2  1     Combine like terms

 x2 
1

2
    Divide by 2

 x   

1

!2
    Take square roots

Since P is in the Quadrant I, x  1/!2 and since y  x, we have y  1/!2 also. Thus 
the terminal point determined by p/4 is

Pa 1

!2
,  

1

!2
b  Pa !2

2
,  

!2

2
b

Similar methods can be used to find the terminal points determined by t  p/6 and  
t  p/3 (see Exercises 61 and 62). Table 1 and Figure 6 give the terminal points for 
some special values of t.

œ∑2
2

y

x0 0; (1, 0)

π
6 ; !     ,    @œ∑3

2
1
2

; !     ,      @œ∑2
2

; !   ,      @œ∑3
2

1
2

π
4

π
3

; (0, 1)π
2

FIGURe 6

Table 1

t
Terminal point 
determined by t

0 11, 0 2
p
6 A!3

2 , 12 B
p
4 A!2

2 , !2
2 B

p
3 A12, !3

2 B
p
2 10, 1 2

exaMPle 4 ■ Finding Terminal Points
Find the terminal point determined by each given real number t.

(a) t   

p

4
      (b) t 

3p

4
      (c) t   

5p

6
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SECTION 6.1 ■ The Unit Circle 507

solUTIoN

(a)  Let P be the terminal point determined by p/4, and let Q be the terminal point 
determined by p/4. From Figure 7(a) we see that the point P has the same coordi-
nates as Q except for sign. Since P is in Quadrant IV, its x-coordinate is positive 
and its y-coordinate is negative. Thus, the terminal point is PA!2/2, !2/2B .

FIGURe 7

y

x0 1

Q!     ,    @œ∑3
2

1
2

(c)

P

t=_ 5π
6

π
6

y

x0 1

π
4

Q!     ,      @œ∑2
2

œ∑2
2

t=3π
4

(b)

P

y

x0 1

π
4

Q!     ,      @œ∑2
2

œ∑2
2

t=_ π
4

(a)

P

(b)  Let P be the terminal point determined by 3p/4, and let Q be the terminal point  
determined by p/4. From Figure 7(b) we see that the point P has the same coor-
dinates as Q except for sign. Since P is in Quadrant II, its x-coordinate is negative  
and its y-coordinate is positive. Thus the terminal point is PA!2/2, !2/2B .

(c)  Let P be the terminal point determined by 5p/6, and let Q be the terminal point 
determined by p/6. From Figure 7(c) we see that the point P has the same coor-
dinates as Q except for sign. Since P is in Quadrant III, its coordinates are both 
negative. Thus the terminal point is PA!3/2,  

1
2B .

Now Try exercise 27 ■

■ The Reference Number
From Examples 3 and 4 we see that to find a terminal point in any quadrant we need 
only know the “corresponding” terminal point in the first quadrant. We use the idea of 
the reference number to help us find terminal points.

ReFeReNCe NUMbeR

Let t be a real number. The reference number t associated with t is the  
shortest distance along the unit circle between the terminal point determined by 
t and the x-axis.

Figure 8 shows that to find the reference number t, it’s helpful to know the quadrant 
in which the terminal point determined by t lies. If the terminal point lies in Quadrant 
I or IV, where x is positive, we find t by moving along the circle to the positive x-axis. 
If it lies in Quadrant II or III, where x is negative, we find t by moving along the circle 
to the negative x-axis.

FIGURe 8 The reference number t for t

y

x0 1

t

t

y

x0 1

t

t

y

x0 1

t

t

y

x0 1

t=t
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508 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

exaMPle 5 ■ Finding Reference Numbers
Find the reference number for each value of t.

(a) t 
5p

6
      (b) t 

7p

4
      (c) t   

2p

3
      (d) t  5.80

solUTIoN  From Figure 9 we find the reference numbers as follows.

(a) t  p 
5p

6


p

6
 (b) t  2p 

7p

4


p

4

(c) t  p 
2p

3


p

3
 (d) t  2p  5.80 < 0.48

Now Try exercise 37 ■

UsING ReFeReNCe NUMbeRs To FINd TeRMINal PoINTs

To find the terminal point P determined by any value of t, we use the following 
steps:

1. Find the reference number t.

2. Find the terminal point Q1a, b 2  determined by t.

3. The terminal point determined by t is P1a, b 2 , where the signs are cho-
sen according to the quadrant in which this terminal point lies.

exaMPle 6 ■  Using Reference Numbers to Find Terminal Points
Find the terminal point determined by each given real number t.

(a) t 
5p

6
      (b) t 

7p

4
      (c) t   

2p

3

solUTIoN  The reference numbers associated with these values of t were found in 
Example 5.

(a)  The reference number is t  p/6, which determines the terminal point A!3/2, 12B  
from Table 1. Since the terminal point determined by t is in Quadrant II, its  
x-coordinate is negative and its y-coordinate is positive. Thus the desired terminal 
point is

a 

!3

2
,  

1

2
b

(b)  The reference number is t  p/4, which determines the terminal point 
A!2/2, !2/2B  from Table 1. Since the terminal point is in Quadrant IV, its 
x-coordinate is positive and its y-coordinate is negative. Thus the desired terminal 
point is

a !2

2
,  

!2

2
b

0 1

t=π
3 t=_ 2π

3

y

x
0 1

t=5.80

tÅ0.480 1
t=π

4

t=7π
4

0 1

t=π
6

t=5π
6

(a) (b) (c) (d)

y

x

y

x

y

x

FIGURe 9
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SECTION 6.1 ■ The Unit Circle 509

(c)  The reference number is t  p/3, which determines the terminal point A12, !3/2B  
from Table 1. Since the terminal point determined by t is in Quadrant III, its coor-
dinates are both negative. Thus the desired terminal point is

a 

1

2
,  

!3

2
b

Now Try exercise 41 ■

Since the circumference of the unit circle is 2p, the terminal point determined by t 
is the same as that determined by t  2p or t  2p. In general, we can add or subtract 
2p any number of times without changing the terminal point determined by t. We use 
this observation in the next example to find terminal points for large t.

exaMPle 7 ■ Finding the Terminal Point for large t

Find the terminal point determined by t 
29p

6
.

solUTIoN  Since

t 
29p

6
 4p 

5p

6

we see that the terminal point of t is the same as that of 5p/6 (that is, we subtract 
4p). So by Example 6(a) the terminal point is A!3/2,  

1
2B . (See Figure 10.)

Now Try exercise 47 ■

CoNCePTs
 1. (a)  The unit circle is the circle centered at   with 

   radius    .

(b) The equation of the unit circle is    .

(c)  Suppose the point P 1x, y 2  is on the unit circle. Find the 
missing coordinate:

 (i) P 11, 2  (ii) P 1 , 1 2     

 (iii) P 11, 2  (iv) P 1 , 1 2
 2. (a)   If we mark off a distance t along the unit circle, starting 

at 11, 0 2  and moving in a counterclockwise direction, we 

 arrive at the   point determined by t.

(b)  The terminal points determined by p/2, p, p/2, 2p  

are    ,    ,    , and    ,  
respectively.

skIlls
3–8 ■ Points on the Unit Circle  Show that the point is on the 
unit circle.

 3. a 3

5
,  

4

5
b   4. a 

24

25
,  

7

25
b

 5. a 3

4
,  

!7

4
b   6. a 

5

7
,  

2 !6

7
b

 7. a 

!5

3
,  

2

3
b   8. a !11

6
,   

5

6
b

9–14 ■ Points on the Unit Circle  Find the missing coordinate of 
P, using the fact that P lies on the unit circle in the given quadrant.

Coordinates Quadrant

 9. PA 
3
5,          B  III

 10. PA         ,  
7

 25 
B  IV

 11. PA         , 13 B  II

Coordinates Quadrant

12. PA25,          B  I

13. PA        ,  
2
7 B  IV

14. PA 
2
3,          B  II

15–20 ■ Points on the Unit Circle  The point P is on the unit  
circle. Find P1x, y 2  from the given information.

 15. The x-coordinate of P is 5
13 , and the y-coordinate is negative.

 16. The y-coordinate of P is  
3
5 , and the x-coordinate is positive.

6.1 exeRCIses

0 1

_!  ,  @œ∑3
2

1
2

y

x

FIGURe 10
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510 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

17. The y-coordinate of P is 2
3 , and the x-coordinate is negative.

18. The x-coordinate of P is positive, and the y-coordinate of  
P is !5/5.

19. The x-coordinate of P is !2/3, and P lies below the x-axis.

20. The x-coordinate of P is  
2
5 , and P lies above the x-axis.

21–22 ■ Terminal Points  Find t and the terminal point deter-
mined by t for each point in the figure. In Exercise 21, t increases in 
increments of p/4; in Exercise 22, t increases in increments of p/6.

21.   22.

x

y

1_1

1

_1

π
4t=   ;

!    ,     @œ∑2
2

œ∑2
2

 

y

x1_1

1

_1

t=   ;π
6

!    ,    @œ∑3
2

1
2

23–36 ■ Terminal Points  Find the terminal point P1x, y 2  on the 
unit circle determined by the given value of t.

23. t  4p 24. t  3p

 25. t 
3p

2
 26. t 

5p

2

 27. t   

p

6
 28. t 

7p

6

 29. t 
5p

4
 30. t 

4p

3

 31. t   

7p

6
 32. t 

5p

3

 33. t   

7p

4
 34. t   

4p

3

35. t   

3p

4
 36. t 

11p

6

37–40 ■ Reference Numbers  Find the reference number for 
each value of t.

37. (a) t 
4p

3
 (b) t 

5p

3

  (c) t   

7p

6
 (d) t  3.5

38. (a) t  9p (b) t   

5p

4

  (c) t 
25p

6
 (d) t  4

39. (a) t 
5p

7
 (b) t   

7p

9

  (c) t  3 (d) t  5

40. (a) t 
11p

5
 (b) t   

9p

7

  (c) t  6 (d) t  7

41–54 ■ Terminal Points and Reference Numbers  Find (a) the 
reference number for each value of t and (b) the terminal point 
determined by t.

41. t 
11p

6
 42. t 

2p

3

 43. t   

4p

3
 44. t 

5p

3

45. t   

2p

3
 46. t   

7p

6

47. t 
13p

4
 48. t 

13p

6

49. t 
41p

6
 50. t 

17p

4

51. t   

11p

3
 52. t 

31p

6

53. t 
16p

3
 54. t   

41p

4

55–58 ■ Terminal Points  The unit circle is graphed in the fig-
ure below. Use the figure to find the terminal point determined by 
the real number t, with coordinates rounded to one decimal place.

55. t  1

56. t  2.5

57. t  1.1

58. t  4.2

skIlls Plus
59. Terminal Points  Suppose that the terminal point determined 

by t is the point A35, 45 B  on the unit circle. Find the terminal 
point determined by each of the following.

(a) p  t (b) t    

(c) p  t (d) 2p  t

60. Terminal Points  Suppose that the terminal point determined 
by t is the point A34, !7/4B  on the unit circle. Find the termi-
nal point determined by each of the following.

(a) t (b) 4p  t

(c) p  t (d) t  p

dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
61. dIsCoVeR ■ PRoVe: Finding the Terminal Point for p/6   

Suppose the terminal point determined by t  p/6 is P1x, y 2  
and the points Q and R are as shown in the figure. Why are 

y

x0 0.5

0.5

12

3

4

5

6

6.2 TRIGoNoMeTRIC FUNCTIoNs oF Real NUMbeRs
■ The Trigonometric Functions ■ Values of the Trigonometric Functions  
■ Fundamental Identities

A function is a rule that assigns to each real number another real number. In this section 
we use properties of the unit circle from the preceding section to define the trigonomet-
ric functions.

■ The Trigonometric Functions
Recall that to find the terminal point P1x, y 2  for a given real number t, we move a  
distance 0  t 0  along the unit circle, starting at the point 11, 0 2 . We move in a counter-
clockwise direction if t is positive and in a clockwise direction if t is negative (see 
Figure 1). We now use the x- and y-coordinates of the point P1x, y 2  to define several 
functions. For instance, we define the function called sine by assigning to each real 
number t the y-coordinate of the terminal point P1x, y 2  determined by t. The functions 
cosine, tangent, cosecant, secant, and cotangent are also defined by using the coordi-
nates of P1x, y 2 .

deFINITIoN oF THe TRIGoNoMeTRIC FUNCTIoNs

Let t be any real number and let P1x, y 2  be the terminal point on the unit circle 
determined by t. We define

 sin t  y cos t  x tan t 
y

x
 1x ? 0 2

csc t 
1
y
 1 y ? 0 2   sec t 

1
x
 1x ? 0 2   cot t 

x
y
 1 y ? 0 2

Because the trigonometric functions can be defined in terms of the unit circle, they 
are sometimes called the circular functions.
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SECTION 6.2 ■ Trigonometric Functions of Real Numbers 511

the distances PQ and PR the same? Use this fact, together 
with the Distance Formula, to show that the coordinates of P 
satisfy the equation 2y  "x2  1 y  1 2 2. Simplify this 
equation using the fact that x2  y2  1. Solve the simplified 
equation to find P1x, y 2 .

0 1

t=π
6

Q(x, _y)

P(x, y)

R(0, 1)
y

x

62. dIsCoVeR ■ PRoVe: Finding the Terminal Point for p/3   
Now that you know the terminal point determined by  
t  p/6, use symmetry to find the terminal point determined 
by t  p/3 (see the figure). Explain your reasoning.

0 1

1

π
6

Q
P

y=x

t=π
3

π
6

y

x

6.2 TRIGoNoMeTRIC FUNCTIoNs oF Real NUMbeRs
■ The Trigonometric Functions ■ Values of the Trigonometric Functions  
■ Fundamental Identities

A function is a rule that assigns to each real number another real number. In this section 
we use properties of the unit circle from the preceding section to define the trigonomet-
ric functions.

■ The Trigonometric Functions
Recall that to find the terminal point P1x, y 2  for a given real number t, we move a  
distance 0  t 0  along the unit circle, starting at the point 11, 0 2 . We move in a counter-
clockwise direction if t is positive and in a clockwise direction if t is negative (see 
Figure 1). We now use the x- and y-coordinates of the point P1x, y 2  to define several 
functions. For instance, we define the function called sine by assigning to each real 
number t the y-coordinate of the terminal point P1x, y 2  determined by t. The functions 
cosine, tangent, cosecant, secant, and cotangent are also defined by using the coordi-
nates of P1x, y 2 .

deFINITIoN oF THe TRIGoNoMeTRIC FUNCTIoNs

Let t be any real number and let P1x, y 2  be the terminal point on the unit circle 
determined by t. We define

 sin t  y cos t  x tan t 
y

x
 1x ? 0 2

csc t 
1
y
 1 y ? 0 2   sec t 

1
x
 1x ? 0 2   cot t 

x
y
 1 y ? 0 2

Because the trigonometric functions can be defined in terms of the unit circle, they 
are sometimes called the circular functions.

0 1

tP (x, y)

y

x

FIGURe 1
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512 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

exaMPle 1 ■ evaluating Trigonometric Functions
Find the six trigonometric functions of each given real number t.

(a) t 
p

3       
(b) t 

p

2

solUTIoN

(a)  From Table 1 on page 506, we see that the terminal point determined by t  p/3  
is PA12, !3/2B . (See Figure 2.) Since the coordinates are x  1

2 and y  !3/2, 
we have

sin  

p

3


!3

2
   cos  

p

3


1

2
   tan  

p

3


!3/2

1/2
 !3

csc  

p

3


2!3

3
   sec  

p

3
 2    cot  

p

3


1/2

!3/2


!3

3

(b) The terminal point determined by p/2 is P10, 1 2 . (See Figure 3.) So

sin  

p

2
 1   cos  

p

2
 0   csc  

p

2


1

1
 1   cot  

p

2


0

1
 0

   But tan p/2 and sec p/2 are undefined because x  0 appears in the denominator 
in each of their definitions.

Now Try exercise 3 ■

Some special values of the trigonometric functions are listed in the table below. This 
table is easily obtained from Table 1 of Section 6.1, together with the definitions of the 
trigonometric functions.

sPeCIal ValUes oF THe TRIGoNoMeTRIC FUNCTIoNs

The following values of the trigonometric functions are obtained from the  
special terminal points. 

Table 1

t sin t cos t tan t csc t sec t cot t

0 0 1 0 — 1 —
p
6

1
2

!3
2

!3
3 2 2!3

3 !3
p
4

!2
2

!2
2 1 !2 !2 1

p
3

!3
2

1
2 !3 2!3

3 2 !3
3

p
2 1 0 — 1 — 0

œ∑2
2

y

x0 0; (1, 0)

π
6 ; !     ,    @œ∑3

2
1
2

; !     ,      @œ∑2
2

; !   ,      @œ∑3
2

1
2

π
4

π
3

; (0, 1)π
2

Example 1 shows that some of the trigonometric functions fail to be defined  
for certain real numbers. So we need to determine their domains. The functions sine and 
cosine are defined for all values of t. Since the functions cotangent and cosecant have y 
in the denominator of their definitions, they are not defined whenever the y-coordinate 
of the terminal point P1x, y 2  determined by t is 0. This happens when t  np for any 
integer n, so their domains do not include these points. The functions tangent and secant 
have x in the denominator in their definitions, so they are not defined whenever x  0. 
This happens when t  1p/2 2  np for any integer n.

0 1

P

y

x

t=π
3

!  ,     @1
2

œ∑3
2

FIGURe 2

We can easily remember the sines 
and cosines of the basic angles by 
writing them in the form ! /2:

t sin t cos t

0 !0/2 !4/2
p/6 !1/2 !3/2
p/4 !2/2 !2/2
p/3 !3/2 !1/2
p/2 !4/2 !0/2

FIGURe 3

0 1

P(0, 1)
y

x

t=π
2

(text continues on page 514)
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SECTION 6.2 ■ Trigonometric Functions of Real Numbers 513

If you have studied the trigonometry of right trian-
gles in Chapter 5, you are probably wondering how 
the sine and cosine of an angle relate to those of this 
section. To see how, let’s start with a right triangle, 
OPQ.

Right triangle OPQ

¨

O

P

Q

opp

adj

hyp

Place the triangle in the coordinate plane as 
shown, with angle u in standard position.

P'(x, y) is the terminal
point determined by t.

y

xO 1

P'(x, y)

Q

P

¨
Q'

t

The point P(x, y) in the figure is the terminal 
point determined by t. Note that triangle OPQ is 
similar to the small triangle OP Q whose legs have 
lengths x and y.

Now, by the definition of the trigonometric func-
tions of the angle u we have

 sin u 
opp
hyp


PQ
OP


P rQ r
OP r

  
y
1

 y

 cos u 
adj
hyp


OQ
OP


OQ r
OP r

  
x
1

 x

By the definition of the trigonometric functions of 
the real number t, we have

sin t  y  cos t  x

Now, if u is measured in radians, then u  t  
(see the figure). So the trigonometric functions of 
the angle with radian measure u are exactly the 
same as the trigonometric functions defined in 
terms of the terminal point determined by the real 
number t.

The radian measure
of angle ¨ is t.

y

xO 1

P'(x, y)

t¨

Why then study trigonometry in two different 
ways? Because different applications require that we 
view the trigonometric functions differently. (Com-
pare Section 6.6 with Sections 5.2, 5.5, and 5.6.)

Relationship to the Trigonometric  
Functions of angles
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514 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

doMaINs oF THe TRIGoNoMeTRIC FUNCTIoNs

Function Domain

sin, cos All real numbers

tan, sec All real numbers other than 
p

2
 np for any integer n

cot, csc All real numbers other than np for any integer, n

■ Values of the Trigonometric Functions
To compute values of the trigonometric functions for any real number t, we first deter-
mine their signs. The signs of the trigonometric functions depend on the quadrant in 
which the terminal point of t lies. For example, if the terminal point P1x, y 2  determined 
by t lies in Quadrant III, then its coordinates are both negative. So sin t, cos t, csc t, and 
sec t are all negative, whereas tan t and cot t are positive. You can check the other entries 
in the following box.

sIGNs oF THe TRIGoNoMeTRIC FUNCTIoNs

Quadrant Positive Functions Negative Functions

 I all none

 II sin, csc cos, sec, tan, cot

 III tan, cot sin, csc, cos, sec

 IV cos, sec sin, csc, tan, cot

For example cos12p/3 2  0 because the terminal point of t  2p/3 is in Quadrant II, 
whereas tan 4  0 because the terminal point of t  4 is in Quadrant III.

In Section 6.1 we used the reference number to find the terminal point determined 
by a real number t. Since the trigonometric functions are defined in terms of the 
coordinates of terminal points, we can use the reference number to find values of  
the trigonometric functions. Suppose that t  is the reference number for t. Then  
the terminal point of t  has the same coordinates, except possibly for sign, as the 
terminal point of t. So the value of each trigonometric function at t is the same,  
except possibly for sign, as its value at t . We illustrate this procedure in the next 
example.

eValUaTING TRIGoNoMeTRIC FUNCTIoNs FoR aNy Real NUMbeR

To find the values of the trigonometric functions for any real number t, we carry 
out the following steps.

1. Find the reference number. Find the reference number t associated with t.

2.  Find the sign. Determine the sign of the trigonometric function of t by noting 
the quadrant in which the terminal point lies.

3.  Find the value. The value of the trigonometric function of t is the same, 
except possibly for sign, as the value of the trigonometric function of t.

y

x

AllSine

CosineTangent

The following mnemonic device will 
help you remember which trigonometric 
functions are positive in each quadrant: 
All of them, Sine, Tangent, or Cosine.

You can remember this as “All  
Students Take Calculus.”
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exaMPle 2 ■ evaluating Trigonometric Functions
Find each value.

(a) cos 
2p

3
      (b) tan a 

p

3
b       (c) sin 

19p

4

solUTIoN

(a)  The reference number for 2p/3 is p/3 (see Figure 4(a)). Since the terminal point 
of 2p/3 is in Quadrant II, cos12p/3 2  is negative. Thus

cos 
2p

3
 cos 

p

3
  

1

2

(a)

t=2π
3π

3t=

0

t=19π
4π

4t=

(c)

0

(b)

π
3t=

π
3t=_

0

y

x

y

x

y

x

FIGURe 4

(b)  The reference number for p/3 is p/3 (see Figure 4(b)). Since the terminal point 
of p/3 is in Quadrant IV, tan1p/3 2  is negative. Thus

tan a 

p

3
b  tan 

p

3
 !3

(c)  Since 119p/4 2  4p  3p/4, the terminal points determined by 19p/4 and 
3p/4 are the same. The reference number for 3p/4 is p/4 (see Figure 4(c)). Since 
the terminal point of 3p/4 is in Quadrant II, sin13p/4 2  is positive. Thus

sin 
19p

4
 sin 

3p

4
 sin 

p

4


!2

2

Now Try exercise 5 ■

So far, we have been able to compute the values of the trigonometric functions only 
for certain values of t. In fact, we can compute the values of the trigonometric func-
tions whenever t is a multiple of p/6, p/4, p/3, and p/2. How can we compute the 
trigonometric functions for other values of t? For example, how can we find sin1.5? 
One way is to carefully sketch a diagram and read the value (see Exercises 37–44); 
however, this method is not very accurate. Fortunately, programmed directly into 
scientific calculators are mathematical procedures (see the margin note on page 535) 
that find the values of sine, cosine, and tangent correct to the number of digits in the 

Sign Reference 
number

From Table 1  
(page 512)

Sign Reference 
number

From Table 1  
(page 512)

Sign Reference 
number

From Table 1  
(page 512)

Subtract 4p

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



516 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

display. The calculator must be put in radian mode to evaluate these functions. To find 
values of cosecant, secant, and cotangent using a calculator, we need to use the follow-
ing reciprocal relations:

csc t 
1

sin t
  sec t 

1

cos t
  cot t 

1

tan t

These identities follow from the definitions of the trigonometric functions. For in-
stance, since sin t  y and csc t  1/y, we have csc t  1/y  1/ 1sin t 2 . The others 
follow similarly.

exaMPle 3 ■  Using a Calculator to evaluate Trigonometric Functions
Using a calculator, find the following.

(a) sin 2.2   (b) cos 1.1   (c) cot 28   (d) csc 0.98

solUTIoN  Making sure our calculator is set to radian mode and rounding the results 
to six decimal places, we get

(a) sin 2.2 ^ 0.808496 (b) cos 1.1 ^ 0.453596

(c) cot 28 
1

tan 28
< 3.553286

 
(d) csc 0.98 

1

sin 0.98
< 1.204098

Now Try exercises 39 and 41 ■

Let’s consider the relationship between the trigonometric functions of t and those of 
t. From Figure 5 we see that

 sin1t 2  y  sin t

 cos1t 2  x  cos t

 tan1t 2 
y

x
  

y

x
 tan t

These equations show that sine and tangent are odd functions, whereas cosine is an even 
function. It’s easy to see that the reciprocal of an even function is even and the recipro-
cal of an odd function is odd. This fact, together with the reciprocal relations, completes 
our knowledge of the even-odd properties for all the trigonometric functions.

eVeN-odd PRoPeRTIes

Sine, cosecant, tangent, and cotangent are odd functions; cosine and secant are 
even functions.

 sin1t 2  sin t    cos1t 2  cos t    tan1t 2  tan t

 csc1t 2  csc t    sec1t 2  sec t    cot1t 2  cot t

Even and odd functions are defined in 
Section 2.6.

exaMPle 4 ■ even and odd Trigonometric Functions
Use the even-odd properties of the trigonometric functions to determine each value.

(a) sin a 

p

6
b       (b) cos a 

p

4
b

0 1

(x, y)

_t

t
y

_y (x, _y)

x

y

x

FIGURe 5
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solUTIoN  By the even-odd properties and Table 1 on page 512, we have

(a) sin a 

p

6
b  sin 

p

6
  

1

2
 Sine is odd

(b) cos a 

p

4
b  cos 

p

4


!2

2
 Cosine is even

Now Try exercise 13 ■

■ Fundamental Identities
The trigonometric functions are related to each other through equations called trigono-
metric identities. We give the most important ones in the following box.*

FUNdaMeNTal IdeNTITIes

Reciprocal Identities

csc t 
1

sin t
   sec t 

1

cos t
   cot t 

1

tan t   
tan t 

sin t

cos t
   cot t 

cos t

sin t

Pythagorean Identities

sin2
 t  cos2

 t  1   tan2
 t  1  sec2

 t   1  cot2
 t  csc2

 t

Proof  The reciprocal identities follow immediately from the definitions on page 511. 
We now prove the Pythagorean identities. By definition cos t  x and sin t  y, where 
x and y are the coordinates of a point P1x, y 2  on the unit circle. Since P1x, y 2  is on 
the unit circle, we have x2  y2  1. Thus

sin2
 t  cos2

 t  1

Dividing both sides by cos2
 t (provided that cos t 2 0), we get

 
sin2

 t

cos2
 t


cos2

 t

cos2
 t


1

cos2
 t

 a sin t

cos t
b

2

 1  a 1

cos t
b

2

 tan2
 t  1  sec2

 t

We have used the reciprocal identities sin t/cos t  tan t and 1/cos t  sec t. Simi-
larly, dividing both sides of the first Pythagorean identity by sin2

 t (provided that 
sin t 2 0) gives us 1  cot2

 t  csc2
 t. ■

As their name indicates, the fundamental identities play a central role in trigonom-
etry because we can use them to relate any trigonometric function to any other. So if we 
know the value of any one of the trigonometric functions at t, then we can find the 
values of all the others at t.

exaMPle 5 ■ Finding all Trigonometric Functions from the Value of one
If cos t  3

5 and t is in Quadrant IV, find the values of all the trigonometric functions at t.

*We follow the usual convention of writing sin2
 t  for 1sin t 2 2. In general, we write sinn

 t  for 1sin t 2 n for all 
integers n except n  1. The superscript n  1 will be assigned another meaning in Section 6.5. Of 
course, the same convention applies to the other five trigonometric functions.
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518 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

solUTIoN  From the Pythagorean identities we have

 sin2
 t  cos2

 t  1

 sin2
 t  A35B2  1   Substitute cos t  3

5

 sin2
 t  1  9

25  16
25  Solve for sin2

 t

 sin t   
4
5   Take square roots

Since this point is in Quadrant IV, sin t is negative, so sin t   
4
5. Now that we know 

both sin t and cos t, we can find the values of the other trigonometric functions using 
the reciprocal identities.

 sin t   

4

5
    cos t 

3

5
    tan t 

sin t

cos t


 
4
5

3
5

  

4

3

 csc t 
1

sin t
  

5

4
    sec t 

1

cos t


5

3
    cot t 

1

tan t
  

3

4

Now Try exercise 63 ■

exaMPle 6 ■  Writing one Trigonometric Function  
in Terms of another

Write tan t in terms of cos t, where t is in Quadrant III.

solUTIoN  Since tan t  sin t/cos t, we need to write sin t in terms of cos t. By the 
Pythagorean identities we have

 sin2
 t  cos2

 t  1

 sin2
 t  1  cos2

 t   Solve for sin2
 t

 sin t  "1  cos2
 t  Take square roots

Since sin t is negative in Quadrant III, the negative sign applies here. Thus

tan t 
sin t

cos t


"1  cos2
 t

cos t

Now Try exercise 53 ■

The Value of p
The number p is the ratio of the circum-
ference of a circle to its diameter. It has 
been known since ancient times that this 
ratio is the same for all circles. The first  
systematic effort to find a numerical 
approximation for p was made by  
Archimedes (ca. 240 b.c.), who proved  
that 22

7  p  223
71  by finding the perime-

ters of regular polygons inscribed in and 
cir cumscribed about a circle.

In about a.d. 480, the Chinese physicist 
Tsu Ch’ung-chih gave the approximation

p <
355
113  3.141592 . . .

which is correct to six decimals. This 
remained the most accurate estimation  
of p until the Dutch mathematician 
Adrianus Romanus (1593) used polygons 
with more than a billion sides to compute 
p correct to 15 decimals. In the 17th cen-
tury, mathematicians began to use infinite 
series and trigonometric identities in the 
quest for p. The Englishman William 
Shanks spent 15 years (1858–1873) using 
these methods to compute p to 707 deci-
mals, but in 1946 it was found that his 
figures were wrong beginning with the 
528th decimal. Today, with the aid of com-
puters, mathematicians routinely deter-
mine p correct to millions of decimals. In 
fact, mathematicians have recently devel-
oped new algorithms that can be pro-
grammed into computers to calculate p 
to many trillions of decimal places.

CoNCePTs
 1. Let P1x, y 2  be the terminal point on the unit circle deter-

mined by t. Then sin t     , cos t     ,  

and tan t     .

 2. If P1x, y 2  is on the unit circle, then x2  y2     .  

So for all t we have sin2
 t  cos2

 t     .

skIlls
3–4 ■ evaluating Trigonometric Functions  Find sin t and cos t 
for the values of t whose terminal points are shown on the unit 

circle in the figure. In Exercise 3, t increases in increments of 
p/4; in Exercise 4, t increases in increments of p/6. (See Exer-
cises 21 and 22 in Section 6.1.)

 3.   4.y

x1_1

1

_1

π
4t=

 y

x1_1

1

_1

π
6t=

6.2 exeRCIses
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SECTION 6.2 ■ Trigonometric Functions of Real Numbers 519

5–22 ■ evaluating Trigonometric Functions  Find the  
exact value of the trigonometric function at the given real 
number.

 5. (a) sin 
7p

6
 (b) cos 

17p

6
 (c) tan 

7p

6

 6. (a) sin 
5p

3
 (b) cos 

11p

3
 (c) tan 

5p

3

 7. (a) sin 
11p

4
 (b) sin a 

p

4
b  (c) sin 

5p

4

 8. (a) cos 
19p

6
 (b) cos a 

7p

6
b  (c) cos a 

p

6
b

 9. (a) cos 
3p

4
 (b) cos 

5p

4
 (c) cos 

7p

4

 10. (a) sin 
3p

4
 (b) sin 

5p

4
 (c) sin 

7p

4

 11. (a) sin 
7p

3
 (b) csc 

7p

3
 (c) cot 

7p

3

12. (a) csc 
5p

4
 (b) sec 

5p

4
 (c) tan 

5p

4

13. (a) cos a 

p

3
b  (b) seca 

p

3
b  (c) sin a 

p

3
b

14. (a) tana 

p

4
b  (b) csca 

p

4
b  (c) cot a 

p

4
b

15. (a) cos a 

p

6
b  (b) csca 

p

3
b  (c) tana 

p

6
b

16. (a) sin a 

p

4
b  (b) seca 

p

4
b  (c) cot a 

p

6
b

17. (a) csc 
7p

6
 (b) seca 

p

6
b  (c) cot a 

5p

6
b

18. (a) sec 
3p

4
 (b) cos a 

2p

3
b  (c) tan a 

7p

6
b

19. (a) sin 
4p

3
 (b) sec 

11p

6
 (c) cot a 

p

3
b

20. (a) csc 
2p

3
 (b) seca 

5p

3
b  (c) cos a 10p

3
b

21. (a) sin 13p (b) cos 14p (c) tan 15p

22. (a) sin 
25p

2
 (b) cos 

25p

2
 (c) cot 

25p

2

23–26 ■ evaluating Trigonometric Functions  Find the  
value of each of the six trigonometric functions (if it is defined)  
at the given real number t. Use your answers to complete the 
table.

23. t  0 24. t 
p

2

 25. t  p 26. t 
3p

2

t sin t cos t tan t csc t sec t cot t

0 0 1 undefined
p
2

p 0 undefined
3p
2

27–36 ■ evaluating Trigonometric Functions  The terminal 
point P1x, y 2  determined by a real number t is given. Find sin t, 
cos t, and tan t.

27. a 

3

5
,  

4

5
b  28. a 

1

2
, 
!3

2
b

29. a 

1

3
, 

2!2

3
b  30. a 1

5
,  

2!6

5
b

31. a 

6

7
,  

!13

7
b  32. a 40

41
,  

9

41
b

33. a 

5

13
,  

12

13
b  34. a !5

5
,  

2 !5

5
b

35. a 

20

29
,  

21

29
b  36. a 24

25
,  

7

25
b

37–44 ■ Values of Trigonometric Functions  Find an approxi-
mate value of the given trigonometric function by using (a) the 
figure and (b) a calculator. Compare the two values.

37. sin 1

38. cos 0.8

39. sin 1.2

 40. cos 5

41. tan 0.8

42. tan(1.3)

43. cos 4.1

44. sin(5.2)

y

x0

12

3

4

5

6
0.5

0.5

45–48 ■ sign of a Trigonometric expression  Find the sign of 
the expression if the terminal point determined by t is in the given 
quadrant.

45. sin t cos t,  Quadrant II 46. tan t sec t,  Quadrant IV

47. 
tan t  sin t

cot t
,  Quadrant III 48. cos t sec t,  any quadrant

49–52 ■ Quadrant of a Terminal Point  From the information 
given, find the quadrant in which the terminal point determined 
by t lies.

49. sin t  0 and cos t  0

 50. tan t  0 and sin t  0

51. csc t  0 and sec t  0

 52. cos t  0 and cot t  0
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520 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

53–62 ■ Writing one Trigonometric expression in Terms of 
another  Write the first expression in terms of the second if the 
terminal point determined by t is in the given quadrant.

53. sin t, cos t ;  Quadrant II 54. cos t, sin t ;  Quadrant IV

55. tan t, sin t ;  Quadrant IV 56. tan t, cos t ;  Quadrant III

57. sec t, tan t ;  Quadrant II 58. csc t, cot t ;  Quadrant III

59. tan t, sec t ;  Quadrant III 60. sin t, sec t ;  Quadrant IV

61. tan2 t, sin t ;  any quadrant

62. sec2 t sin2 t, cos t ;  any quadrant

63–70 ■ Using the Pythagorean Identities  Find the values of 
the trigonometric functions of t from the given information.

63. sin t   
4
5 , terminal point of t is in Quadrant IV

 64. cos t   
7

25 , terminal point of t is in Quadrant III

65. sec t  3,  terminal point of t is in Quadrant IV

66. tan t  1
4,  terminal point of t is in Quadrant III

67. tan t   
12
5 , sin t  0

 68. csc t  5, cos t  0

69. sin t   
1
4 ,  sec t  0 

70. tan t  4,  csc t  0

skIlls Plus
71–78 ■ even and odd Functions  Determine whether the func-
tion is even, odd, or neither. (See page 240 for the definitions of 
even and odd functions.)

71. f 1x 2  x2
 
 sin x 72. f 1x 2  x2 cos 2x

73. f 1x 2  sin x cos x 74. f 1x 2  sin x  cos x

75. f 1x 2  0  x 0  cos x 76. f 1x 2  x sin3
 x

77. f 1x 2  x3  cos x 78. f 1x 2  cos1sin x 2

aPPlICaTIoNs
79. Harmonic Motion  The displacement from equilibrium  

of an oscillating mass attached to a spring is given by 
y1 t 2  4 cos 3pt where y is measured in inches and t in  
seconds. Find the displacement at the times indicated in  
the table.

t yx tc

0
0.25
0.50
0.75
1.00
1.25

y>0

y<0

Equilibrium, y=0

80. Circadian Rhythms  Everybody’s blood pressure  
varies over the course of the day. In a certain individual  
the resting diastolic blood pressure at time t is given by 

B1 t 2  80  7 sin1pt/12 2 , where t is measured in hours 
since midnight and B1 t 2  in mmHg (millimeters of mercury). 
Find this person’s resting diastolic blood pressure at

(a) 6:00 a.m.  (b) 10:30 a.m.  (c) Noon  (d) 8:00 p.m.

81. electric Circuit  After the switch is closed in the circuit 
shown, the current t seconds later is I1 t 2  0.8e3t sin 10t. 
Find the current at the times (a) t  0.1 s and (b) t  0.5 s.

L  103 h
R  6 3 103  
C  9.17 mF
E  4.8 3 103 VR

S
E

C

L

82. bungee Jumping  A bungee jumper plummets from  
a high bridge to the river below and then bounces back  
over and over again. At time t seconds after her jump,  
her height H (in meters) above the river is given by 
H1 t 2  100  75et/20 cosAp4  tB . Find her height at the times  
indicated in the table.

H

t Hx tc

 0
 1
 2
 4
 6
 8
12

dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
83. dIsCoVeR ■ PRoVe: Reduction Formulas  A reduction for-

mula is one that can be used to “reduce” the number of terms 
in the input for a trigonometric function. Explain how the 
figure shows that the following reduction formulas are valid:

sin1 t  p 2  sin t  cos1 t  p 2  cos t

tan1 t  p 2  tan t

1
t

(_x, _y)

(x, y)

t+π

0

y

x

6.3 TRIGoNoMeTRIC GRaPHs
■ Graphs of sine and Cosine ■ Graphs of Transformations of sine and Cosine  
■ Using Graphing devices to Graph Trigonometric Functions

The graph of a function gives us a better idea of its behavior. So in this section we graph 
the sine and cosine functions and certain transformations of these functions. The other 
trigonometric functions are graphed in the next section.

■ Graphs of sine and Cosine
To help us graph the sine and cosine functions, we first observe that these functions 
repeat their values in a regular fashion. To see exactly how this happens, recall that  
the circumference of the unit circle is 2p. It follows that the terminal point P1x, y 2  
determined by the real number t is the same as that determined by t  2p. Since  
the sine and cosine functions are defined in terms of the coordinates of P1x, y 2 , it fol-
lows that their values are unchanged by the addition of any integer multiple of 2p. In 
other words,

 sin1 t  2np 2  sin t    for any integer n

 cos1 t  2np 2  cos t    for any integer n

Thus the sine and cosine functions are periodic according to the following definition: 
A function f is periodic if there is a positive number p such that f 1 t  p 2  f 1 t 2   
for every t. The least such positive number (if it exists) is the period of f. If f has 
period p, then the graph of f on any interval of length p is called one complete  
period of f.

PeRIodIC PRoPeRTIes oF sINe aNd CosINe

The functions sine and cosine have period 2p:

sin1 t  2p 2  sin t       cos1 t  2p 2  cos t
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SECTION 6.3 ■ Trigonometric Graphs 521

84. dIsCoVeR ■ PRoVe: More Reduction Formulas  By the 
Angle-Side-Angle Theorem from elementary geometry,  
triangles CDO and AOB in the figure to the right are con-
gruent. Explain how this proves that if B has coordinates 
1x, y 2 , then D has coordinates 1y, x 2 . Then explain how 
the figure shows that the following reduction formulas are 
valid:

 sin a t 
p

2
b  cos t   cos a t 

p

2
b  sin t

 tan a t 
p

2
b  cot t

1

t

B(x, y)D(_y, x)

AOC

t+π
2

y

x

6.3 TRIGoNoMeTRIC GRaPHs
■ Graphs of sine and Cosine ■ Graphs of Transformations of sine and Cosine  
■ Using Graphing devices to Graph Trigonometric Functions

The graph of a function gives us a better idea of its behavior. So in this section we graph 
the sine and cosine functions and certain transformations of these functions. The other 
trigonometric functions are graphed in the next section.

■ Graphs of sine and Cosine
To help us graph the sine and cosine functions, we first observe that these functions 
repeat their values in a regular fashion. To see exactly how this happens, recall that  
the circumference of the unit circle is 2p. It follows that the terminal point P1x, y 2  
determined by the real number t is the same as that determined by t  2p. Since  
the sine and cosine functions are defined in terms of the coordinates of P1x, y 2 , it fol-
lows that their values are unchanged by the addition of any integer multiple of 2p. In 
other words,

 sin1 t  2np 2  sin t    for any integer n

 cos1 t  2np 2  cos t    for any integer n

Thus the sine and cosine functions are periodic according to the following definition: 
A function f is periodic if there is a positive number p such that f 1 t  p 2  f 1 t 2   
for every t. The least such positive number (if it exists) is the period of f. If f has 
period p, then the graph of f on any interval of length p is called one complete  
period of f.

PeRIodIC PRoPeRTIes oF sINe aNd CosINe

The functions sine and cosine have period 2p:

sin1 t  2p 2  sin t       cos1 t  2p 2  cos t
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522 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

So the sine and cosine functions repeat their values in any interval of length 2p. To 
sketch their graphs, we first graph one period. To sketch the graphs on the interval 
0  t  2p, we could try to make a table of values and use those points to draw the 
graph. Since no such table can be complete, let’s look more closely at the definitions of 
these functions.

Recall that sin  t is the y-coordinate of the terminal point P1x, y 2  on the unit circle 
determined by the real number t. How does the y-coordinate of this point vary as t in-
creases? It’s easy to see that the y-coordinate of P1x, y 2  increases to 1, then decreases 
to 1 repeatedly as the point P1x, y 2  travels around the unit circle. (See Figure 1.) In 
fact, as t increases from 0 to p/2, y  sin t increases from 0 to 1. As t increases from 
p/2 to p, the value of y  sin t decreases from 1 to 0. Table 1 shows the variation of 
the sine and cosine functions for t between 0 and 2p.

y

x0 1

t‚

(ç t‚, ß t‚)

y

t0 t‚

2π

y=ß t

FIGURe 1

To draw the graphs more accurately, we find a few other values of sin t and cos t in 
Table 2. We could find still other values with the aid of a calculator.

Table 2

t 0
p

6

p

3

p

2

2p

3

5p

6
p

7p

6

4p

3

3p

2

5p

3

11p

6
2p

sin t 0
1

2

!3

2
1

!3

2

1

2
 0  

1

2
 

!3

2
1  

!3

2
 

1

2
0

cos t 1
!3

2

1

2
0  

1

2
 

!3

2
1  

!3

2
 

1

2
 0

1

2

!3

2
1

Now we use this information to graph the functions sin t and cos t for t between  
0 and 2p in Figures 2 and 3. These are the graphs of one period. Using the fact that these 
functions are periodic with period 2p, we get their complete graphs by continuing the 
same pattern to the left and to the right in every successive interval of length 2p.

The graph of the sine function is symmetric with respect to the origin. This is as 
expected, since sine is an odd function. Since the cosine function is an even function, 
its graph is symmetric with respect to the y-axis.

7π
6

y

t0

One period of y=ß t
0≤t≤2π

1

_1
π
6

π
3

π
2

2π
3

5π
6

π

11π
6

2π

4π
3

3π
2

5π
3

y

t0

1

_1
π 2π 4π3π_π

Period 2π

y=ß t

Graph of ß tFIGURe 2

Table 1

t sin t cos t

0 S
p

2
0 S 1 1 S 0

p

2
S p 1 S 0 0 S 1

p S
3p

2
0 S 1 1 S 0

3p

2
S 2p 1 S 0 0 S 1
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7π
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y

t0

One period of y=ç t
0≤t≤2π
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_1
π
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π
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π
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2π
3

5π
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π
11π

6

2π

4π
3

3π
2

5π
3

y

t0

1

_1
π 2π 4π3π_π

Period 2π

y=ç t

FIGURe 3 Graph of cos t

■ Graphs of Transformations of sine and Cosine
We now consider graphs of functions that are transformations of the sine and cosine 
functions. Thus, the graphing techniques of Section 2.6 are very useful here. The graphs 
we obtain are important for understanding applications to physical situations such as 
harmonic motion (see Section 6.6), but some of them are beautiful graphs that are in-
teresting in their own right.

It’s traditional to use the letter x to denote the variable in the domain of a function. 
So from here on we use the letter x and write y  sin x, y  cos x, y  tan x, and so on 
to denote these functions.

exaMPle 1 ■ Cosine Curves
Sketch the graph of each function.

(a) f 1x 2  2  cos x      (b) g1x 2  cos x

solUTIoN

(a)  The graph of y  2  cos x is the same as the graph of y  cos x, but shifted up 
2 units (see Figure 4(a)).

(b)  The graph of y  cos x in Figure 4(b) is the reflection of the graph of y  cos x 
in the x-axis.

y=ç x

˝

x0

1

_1
π 2π

˝=_ç x

y=ç x

Ï

x0

1

_1
π 2π

Ï=2+ç x

(a) (b)

FIGURe 4

Now Try exercises 5 and 7 ■

Let’s graph y  2 sin x. We start with the graph of y  sin x and multiply the  
y-coordinate of each point by 2. This has the effect of stretching the graph vertically by 
a factor of 2. To graph y  1

2  sin x, we start with the graph of y  sin x and multiply 
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524 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

the y-coordinate of each point by 1
2. This has the effect of shrinking the graph vertically 

by a factor of 1
2 (see Figure 5).

y=   ß x1
2

y

x0

1

π 2π

y=2 ß x

_π

y=ß x
_2

2
3

FIGURe 5

In general, for the functions

y  a sin x  and  y  a cos x

the number 0  a 0  is called the amplitude and is the largest value these functions attain. 
Graphs of y  a sin x for several values of a are shown in Figure 6.

y

xπ 2π

y=3 ß x

_π

y=ß x

2

3

_3
y=_2 ß x

y=   ß x1
2

FIGURe 6

exaMPle 2 ■ stretching a Cosine Curve
Find the amplitude of y  3 cos x, and sketch its graph.

solUTIoN  The amplitude is 0  3 0  3, so the largest value the graph attains is  
3 and the smallest value is 3. To sketch the graph, we begin with the graph of 
y  cos x, stretch the graph vertically by a factor of 3, and reflect in the x-axis,  
arriving at the graph in Figure 7.

y

x0
π

2π

y=_3 ç x

_π
y=ç x

2
3

_3

1

FIGURe 7

Now Try exercise 11 ■

Since the sine and cosine functions have period 2p, the functions

y  a sin kx  and  y  a cos kx  1k  0 2

Vertical stretching and shrinking of 
graphs is discussed in Section 2.6.
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SECTION 6.3 ■ Trigonometric Graphs 525

complete one period as kx varies from 0 to 2p, that is, for 0  kx  2p or for  
0  x  2p/k. So these functions complete one period as x varies between 0 and 2p/k 
and thus have period 2p/k. The graphs of these functions are called sine curves and 
cosine curves, respectively. (Collectively, sine and cosine curves are often referred to 
as sinusoidal curves.)

sINe aNd CosINe CURVes

The sine and cosine curves

y  a sin kx  and  y  a cos kx  1k  0 2
have amplitude 0  a 0  and period 2p/k.

An appropriate interval on which to graph one complete period is 30, 2p/k4.

To see how the value of k affects the graph of y  sin kx, let’s graph the sine curve  
y  sin 2x. Since the period is 2p/2  p, the graph completes one period in the  
interval 0  x  p (see Figure 8(a)). For the sine curve y  sin 12 x the period is 
2p 4 1

2  4p, so the graph completes one period in the interval 0  x  4p (see Fig-
ure 8(b)). We see that the effect is to shrink the graph horizontally if k  1 or to stretch 
the graph horizontally if k  1.

(a) (b)

y

xπ 2π

_π

_1
3π 4π_2π

1
y=ß    x1

2

y

xπ 2π

_π

y=ß 2x
1

π
2

FIGURe 8

For comparison, in Figure 9 we show the graphs of one period of the sine curve  
y  a sin kx for several values of k.

FIGURe 9

y=a ß 2x y=a ß    x1
2 y=a ß    x1

3

0

y

xπ 2π

_a

a
y=a ß x

4π 6π3π 5π

exaMPle 3 ■ amplitude and Period
Find the amplitude and period of each function, and sketch its graph.

(a) y  4 cos 3x      (b) y  2 sin  
1
2 x

solUTIoN

(a) We get the amplitude and period from the form of the function as follows.

y  4 cos 3x

  The amplitude is 4, and the period is 2p/3. The graph is shown in Figure 10.

Horizontal stretching and shrinking of 
graphs is discussed in Section 2.6.

amplitude  0  a 0  4

period 
2p

k


2p

3

π

y

x0

y=4 ç 3x

π
6

π
2

2π
3

_4

4

_ π
3_ π

2
π
3

7π
6

FIGURe 10
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(b) For y  2 sin  
1
2 x,

amplitude  0  a 0  0  2 0  2

period 
2p

1
2

 4p

  The graph is shown in Figure 11.

Now Try exercises 23 and 25 ■

The graphs of functions of the form y  a sin k1x  b 2  and y  a cos k1x  b 2  are 
simply sine and cosine curves shifted horizontally by an amount 0  b 0 . They are shifted 
to the right if b  0 or to the left if b  0. We summarize the properties of these func-
tions in the following box.

sHIFTed sINe aNd CosINe CURVes

The sine and cosine curves

y  a sin k1x  b 2  and  y  a cos k1x  b 2  1k  0 2
have amplitude 0  a 0 , period 2p/k, and horizontal shift b.

An appropriate interval on which to graph one complete period is 
3b, b  12p/k 2 4 .

The phase shift of a sine curve is dis-
cussed in Section 6.6.

The graphs of y  sin a x 
p

3
b  and y  sin a x 

p

6
b  are shown in Figure 12.

y=ß!x+   @π
6

11π
6

5π
6_ π

6
y=ß x

y

x

π
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1

0

y

xπ

2π
1

y=ß!x-   @π
3

π
3

4π
3

7π
3

0

y=ß xFIGURe 12 Horizontal shifts of a sine 
curve

exaMPle 4 ■ a Horizontally shifted sine Curve

Find the amplitude, period, and horizontal shift of y  3 sin 2 a x 
p

4
b , and graph 

one complete period.

solUTIoN  We get the amplitude, period, and horizontal shift from the form of the 
function as follows:

y  3 sin 2 a x 
p

4
b

Since the horizontal shift is p/4 and the period is p, one complete period occurs 
on the interval

cp
4

,  

p

4
 p d  cp

4
,  

5p

4
d

amplitude  0  a 0  3 period 
2p

k


2p

2
 p

horizontal shift 
p

4
 1 to the right 2

y

xπ 2π

_2

3π 4π

2
y=_2 ß   x1

2

0

FIGURe 11
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As an aid in sketching the graph, we divide this interval into four equal parts, then 
graph a sine curve with amplitude 3 as in Figure 13.

y

x

_3

π

3

π
4

π
2

3π
4

5π
4

y=3 ß 2!x-   @π
4

Period π

Horizontal
shift

π
4

Amplitude 3

0

FIGURe 13

Now Try exercise 35 ■

exaMPle 5 ■ a Horizontally shifted Cosine Curve

Find the amplitude, period, and horizontal shift of y 
3

4
 cos a 2x 

2p

3
b , and graph 

one complete period.

solUTIoN  We first write this function in the form y  a cos k1x  b 2 . To do this, 

we factor 2 from the expression 2x 
2p

3
 to get

y 
3

4
 cos 2 c x  a 

p

3
bd

Thus we have

amplitude  0  a 0  3

4

period 
2p

k


2p

2
 p

horizontal shift  b   

p

3
    Shift 

p

3
 to the left

From this information it follows that one period of this cosine curve begins at  
p/3 and ends at 1p/3 2  p  2p/3. To sketch the graph over the interval 
3p/3, 2p/3 4 , we divide this interval into four equal parts and graph a cosine curve 
with amplitude 3

4 as shown in Figure 14.

5π
12

π
12_

y

x

π
3_

π
3_ π

3

Period π

3
4

_ 3
4

Horizontal
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3
4y=    ç!2x+     @2π

3

0 2π
3

π
6

π
2

π
6_

3
4Amplitude

FIGURe 14

Now Try exercise 37 ■

Here is another way to find an appro-
priate interval on which to graph one 
complete period. Since the period  
of y  sin x is 2p, the function 
y  3 sin 2Ax  p

4 B  will go through one 
complete period as 2Ax  p

4 B  varies 
from 0 to 2p.

Start of period: End of period:

 2Ax  p
4 B  0  2Ax  p

4 B  2p

 x  p
4  0  x  p

4  p

 x  p
4   x  5p

4

So we graph one period on the interval 
Cp4 , 5p

4 D .

We can also find one complete period 
as follows:

Start of period: End of period:

 2x  2p
3  0  2x  2p

3  2p

 2x   
2p
3   2x  4p

3

 x   
p
3   x  2p

3

So we graph one period on the interval 
C   

p
3 , 2p

3 D .
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528 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

■ Using Graphing devices to Graph  
Trigonometric Functions

When using a graphing calculator or a computer to graph a function, it is important to 
choose the viewing rectangle carefully in order to produce a reasonable graph of the 
function. This is especially true for trigonometric functions; the next example shows 
that, if care is not taken, it’s easy to produce a very misleading graph of a trigonometric 
function.

exaMPle 6 ■ Choosing the Viewing Rectangle
Graph the function f 1x 2  sin 50x in an appropriate viewing rectangle.

solUTIoN  Figure 15(a) shows the graph of f produced by a graphing calculator 
using the viewing rectangle 312, 124 by 31.5, 1.54. At first glance the graph 
appears to be reasonable. But if we change the viewing rectangle to the ones 
shown in Figure 15, the graphs look very different. Something strange is 
happening.

1.5

_1.5

_12 12

(a)

1.5

_1.5

_10 10

(b)

1.5

_1.5

_9 9

(c)

1.5

_1.5

_6 6

(d)

FIGURe 15 Graphs of f 1x 2  sin 50x in different viewing rectangles

To explain the big differences in appearance of these graphs and to find an appro-
priate viewing rectangle, we need to find the period of the function y  sin 50x.

period 
2p

50


p

25
< 0.126

This suggests that we should deal only with small values of x in order to show just a 
few oscillations of the graph. If we choose the viewing rectangle 30.25, 0.254 by 
31.5, 1.54, we get the graph shown in Figure 16.

Now we see what went wrong in Figure 15. The oscillations of y  sin 50x are 
so rapid that when the calculator plots points and joins them, it misses most of the 
maximum and minimum points and therefore gives a very misleading impression of 
the graph.

Now Try exercise 55 ■

See Appendix C, Graphing with  
a Graphing Calculator, for  
guidelines on choosing an  
appropriate viewing  rectangle. 

The appearance of the graphs in  
Figure 15 depends on the machine 
used. The graphs you get with your 
own graphing device might not look 
like these figures, but they will also be 
quite inaccurate.

FIGURe 16 f 1x 2  sin 50x

1.5

_1.5

_0.25 0.25
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SECTION 6.3 ■ Trigonometric Graphs 529

exaMPle 7 ■ a sum of sine and Cosine Curves
Graph f 1x 2  2 cos x, g1x 2  sin 2x, and h1x 2  2 cos x  sin 2x on a common 
screen to illustrate the method of graphical addition.

solUTIoN  Notice that h  f  g, so its graph is obtained by adding the cor-
responding y-coordinates of the graphs of f and g. The graphs of f, g, and h are 
shown in Figure 17.

3

_3

_ π
2

7π
2

y=2 ç x+ß 2x
y=ß 2x
y=2 ç x

FIGURe 17

Now Try exercise 63 ■

exaMPle 8 ■ a Cosine Curve with Variable amplitude
Graph the functions y  x2, y  x2, and y  x2 cos 6px on a common screen. 
Comment on and explain the relationship among the graphs.

solUTIoN  Figure 18 shows all three graphs in the viewing rectangle 31.5, 1.54  
by 32, 24. It appears that the graph of y  x2 cos 6px lies between the graphs of the 
functions y  x2 and y  x2.

To understand this, recall that the values of cos 6px lie between 1 and 1, that is,

1  cos 6px  1

for all values of x. Multiplying the inequalities by x2 and noting that x2  0, we get

x2  x2 cos 6px  x2

This explains why the functions y  x2 and y  x2 form a boundary for the graph 
of y  x2 cos 6px. (Note that the graphs touch when cos 6px  1.)

Now Try exercise 69 ■

Example 8 shows that the function y  x2 controls the amplitude of the graph of  
y  x2 cos 6px. In general, if f 1x 2  a1x 2  sin kx or f 1x 2  a1x 2  cos kx, the function 
a determines how the amplitude of f varies, and the graph of f lies between the graphs 
of y  a1x 2  and y  a1x 2 . Here is another example.

The function h in Example 7 is periodic 
with period 2p. In general, functions that 
are sums of functions from the following 
list are periodic:

1, cos kx, cos 2kx, cos 3kx, . . .

sin kx, sin 2kx, sin 3kx, . . .

Although these functions appear to be 
special, they are actually fundamental to 
describing all periodic functions that 
arise in practice. The French mathemati-
cian J. B. J. Fourier (see page 582) discov-
ered that nearly every periodic function 
can be written as a sum (usually an 
infinite sum) of these functions. This is 
remarkable because it means that any 
situation in which periodic variation 
occurs can be described mathematically 
using the functions sine and cosine. A 
modern application of Fourier’s discovery 
is the digital encoding of sound on com-
pact discs.

2

_2

_1.5 1.5

FIGURe 18 y  x2 cos 6px

dIsCoVeRy PRoJeCT

Predator/Prey Models

Many animal populations fluctuate regularly in size and so can be modeled by 
trigonometric functions  Predicting population changes allows scientists to detect 
anomalies and take steps to protect a species. In this project we study the popula-
tion of a predator species and the population of its prey. If the prey is abundant, 
the predator population grows, but too many predators tend to deplete the prey. 
This results in a decrease in the predator population, then the prey population 
increases, and so on. You can find the project at www.stewartmath.com.
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530 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

exaMPle 9 ■ a Cosine Curve with Variable amplitude
Graph the function f 1x 2  cos 2px cos 16px.

solUTIoN  The graph is shown in Figure 19. Although it was drawn by a computer, 
we could have drawn it by hand, by first sketching the boundary curves y  cos 2px 
and y  cos 2px. The graph of f is a cosine curve that lies between the graphs of 
these two functions.

y

x0 1

1

_1 y=_ç 2πx

y=ç 2πx

FIGURe 19 f 1x 2  cos 2px  cos 16px

Now Try exercise 71 ■

exaMPle 10 ■ a sine Curve with decaying amplitude

The function f 1x 2 
sin x

x
 is important in calculus. Graph this function, and comment 

on its behavior when x is close to 0.

solUTIoN  The viewing rectangle 315, 154 by 30.5, 1.54 shown in Figure 20(a) 
gives a good global view of the graph of f. The viewing rectangle 31, 14 by  
30.5, 1.54 in Figure 20(b) focuses on the behavior of f when x ^ 0. Notice that 
although f 1x 2  is not defined when x  0 (in other words, 0 is not in the domain of f ), 
the values of f seem to approach 1 when x gets close to 0. This fact is crucial in 
calculus.

(a)

1.5

_0.5

_15 15

(b)

1.5

_0.5

_1 1

FIGURe 20 f 1x 2 
sin x

x

Now Try exercise 81 ■

The function in Example 10 can be written as

f 1x 2 
1
x

   sin x

and may thus be viewed as a sine function whose amplitude is controlled by the func-
tion a1x 2  1/x.

aM and FM Radio
Radio transmissions consist of sound 
waves superimposed on a harmonic elec-
tromagnetic wave form called the carrier 
signal.

Sound wave

Carrier signal

There are two types of radio transmis-
sion, called amplitude modulation 
(AM) and frequency modulation (FM). 
In AM broadcasting, the sound wave 
changes, or modulates, the amplitude of 
the carrier, but the frequency remains 
unchanged.

AM signal

In FM broadcasting, the sound wave 
modulates the frequency, but the ampli-
tude remains the same.

FM signal
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SECTION 6.3 ■ Trigonometric Graphs 531

CoNCePTs
 1. If a function f is periodic with period p, then f 1 t  p 2 

  for every t. The trigonometric functions y  sin x 

and y  cos x are periodic, with period   and  

amplitude    . Sketch a graph of each function on  
the interval 30, 2p 4 . 

0

1

2π 0

1

2π

 2. To obtain the graph of y  5  sin x, we start with the  

graph of y  sin x, then shift it 5 units   (upward/
downward). To obtain the graph of y  cos x, we start with 

the  graph of y  cos x, then reflect it in the  -axis.

 3. The sine and cosine curves y  a sin kx and y  a cos kx, 

k  0, have amplitude   and period    . The 

sine curve y  3 sin 2x has amplitude   and period 

   .

 4. The sine curve y  a sin k1x  b 2  has amplitude    , 

period    , and horizontal shift    . The sine 

curve y  4 sin 3Ax  p
6 B  has amplitude    , period 

   , and horizontal shift    .

skIlls
5–18 ■ Graphing sine and Cosine Functions  Graph the 
function.

 5. f 1x 2  2  sin x  6. f 1x 2  2  cos x

 7. f 1x 2  sin x  8. f 1x 2  2  cos x

 9. f 1x 2  2  sin x 10. f 1x 2  1  cos x

 11. g1x 2  3 cos x 12. g1x 2  2 sin x

 13. g1x 2   
1
2 sin x 14. g1x 2   

2
3 cos x

15. g1x 2  3  3 cos x 16. g1x 2  4  2 sin x

17. h1x 2  0  cos x 0  18. h1x 2  0  sin x 0

19–32 ■ amplitude and Period  Find the amplitude and period 
of the function, and sketch its graph.

19. y  cos 2x 20. y  sin 2x

21. y  sin 3x 22. y  cos 4px

 23. y  2 cos 3px 24. y  3 sin 6x

25. y  10 sin 12 x 26. y  5 cos 14 x

27. y   
1
3 cos 13 x 28. y  4 sin12x 2

29. y  2 sin 2px 30. y  3 sin px

31. y  1  1
2 cos px 32. y  2  cos 4px

33–46 ■ Horizontal shifts  Find the amplitude, period, and hori-
zontal shift of the function, and graph one complete period.

33. y  cos a x 
p

2
b  34. y  2 sin a x 

p

3
b

35. y  2 sina x 
p

6
b  36. y  3 cos a x 

p

4
b

37. y  4 sin 2a x 
p

2
b  38. y  sin 

1

2
 a x 

p

4
b

39. y  5 cos a3x 
p

4
b  40. y  2 sina 2

3
 x 

p

6
b

41. y 
1

2


1

2
  cos a2x 

p

3
b  42. y  1  cos a3x 

p

2
b

43. y  3 cos pAx  1
2 B  44. y  3  2 sin 31x  1 2

45. y  sin1p  3x 2  46. y  cos ap

2
 xb

47–54 ■ equations from a Graph  The graph of one complete 
period of a sine or cosine curve is given.
(a) Find the amplitude, period, and horizontal shift.
(b) Write an equation that represents the curve in the form

y  a sin k1x  b 2  or  y  a cos k1x  b 2
47.   48.

  

y

xπ 2π

_4

4

0

  

_2

2

π
4 4

3π0

y

x

49.   50.

  

0

_ 3
2

3
2

π
6

π
2

y

x

  

y

_3

3

2π 4π0 x

51.   52.

  

y

x

_ 1
2

1
2

2π
3_ π

3
0

  

0

_
_

1
10

1
10

π
4

π
4

y

x

6.3 exeRCIses
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53.   54.
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5

_5
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55–62 ■ Graphing Trigonometric Functions  Determine an 
appropriate viewing rectangle for each function, and use it to 
draw the graph.

55. f 1x 2  cos 100x 56. f 1x 2  3 sin 120x

57. f 1x 2  sin1x/40 2  58. f 1x 2  cos1x/80 2
59. y  tan 25x 60. y  csc 40x

61. y  sin2 20x 62. y  !tan 10px

63–66 ■ Graphical addition  Graph f, g, and f  g on a com-
mon screen to illustrate graphical addition.

63. f 1x 2  x,  g1x 2  sin x

64. f 1x 2  sin x,  g1x 2  sin 2x

 65. f 1x 2  sin 3x,  g1x 2  cos 12 
x  

 66. f 1x 2  0.5 sin 5x,  g1x 2  cos 2x

67–72 ■ sine and Cosine Curves with Variable amplitude   
Graph the three functions on a common screen. How are the 
graphs related?

67. y  x2,  y  x2,  y  x2 sin x

68. y  x,  y  x,  y  x cos x

69. y  !x,  y  !x,  y  !x sin 5px

70. y 
1

1  x2 ,  y   

1

1  x2 ,  y 
cos 2px

1  x2

71. y  cos 3px,  y  cos 3px,  y  cos 3px cos 21px

72. y  sin 2px,  y  sin 2px,  y  sin 2px sin 10px

skIlls Plus
73–76 ■ Maxima and Minima  Find the maximum and mini-
mum values of the function.

 73. y  sin x  sin 2x

 74. y  x  2 sin x, 0  x  2p

 75. y  2 sin x  sin2x 

 76. y 
cos x

2  sin x

77–80 ■ solving Trigonometric equations Graphically  Find all 
solutions of the equation that lie in the interval 30, p4. State each 
answer rounded to two decimal places.

77. cos x  0.4 78. tan x  2

79. csc x  3 80. cos x  x

81–82 ■ limiting behavior of Trigonometric Functions  A func-
tion f is given.
(a) Is f even, odd, or neither?
(b) Find the x-intercepts of the graph of f.
(c) Graph f in an appropriate viewing rectangle.
(d) Describe the behavior of the function as x S ` .
(e) Notice that f 1x 2  is not defined when x  0. What happens as 

x approaches 0?

81. f 1x 2 
1  cos x

x
 82. f 1x 2 

sin 4x

2x

aPPlICaTIoNs
83. Height of a Wave  As a wave passes by an offshore  

piling, the height of the water is modeled by the function

h1 t 2  3 cos a p

10
 t b

  where h1 t 2  is the height in feet above mean sea level at time  
t seconds.

(a) Find the period of the wave.

(b) Find the wave height, that is, the vertical distance  
between the trough and the crest of the wave.

crest

trough

84. sound Vibrations  A tuning fork is struck, producing a pure 
tone as its tines vibrate. The vibrations are modeled by the 
function

√1 t 2  0.7 sin1880pt 2
  where √1 t 2  is the displacement of the tines in millimeters at 

time t seconds.

(a) Find the period of the vibration.

(b) Find the frequency of the vibration, that is, the number 
of times the fork vibrates per second.

(c) Graph the function √.

85. blood Pressure  Each time your heart beats, your blood pres-
sure first increases and then decreases as the heart rests 
between beats. The maximum and minimum blood pressures 
are called the systolic and diastolic pressures, respectively. 
Your blood pressure reading is written as systolic/diastolic. 
A reading of 120/80 is considered normal.

   A certain person’s blood pressure is modeled by the  function

p1 t 2  115  25 sin1160pt 2
  where p1 t 2  is the pressure in mmHg (millimeters of mer-

cury), at time t measured in minutes.

(a) Find the period of p.

(b) Find the number of heartbeats per minute.

(c) Graph the function p.

(d) Find the blood pressure reading. How does this  
compare to normal blood pressure?
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86. Variable stars  Variable stars are ones whose brightness var-
ies periodically. One of the most visible is R Leonis; its 
brightness is modeled by the function

b1 t 2  7.9  2.1 cos a p

156
 t b

  where t is measured in days.

(a) Find the period of R Leonis.

(b) Find the maximum and minimum brightness.

(c) Graph the function b.

dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
87. dIsCUss: Compositions Involving Trigonometric Functions   

This exercise explores the effect of the inner function g on a 
composite function y  f 1g1x 22 .
(a) Graph the function y  sin!x using the viewing  

rectangle 30, 4004 by 31.5, 1.54. In what ways does  
this graph differ from the graph of the sine function?

(b) Graph the function y  sin1x2 2  using the viewing  
rectangle 35, 54 by 31.5, 1.54. In what ways does this 
graph differ from the graph of the sine function?

88. dIsCUss: Periodic Functions I  Recall that a function f is peri-
odic if there is a positive number p such that f 1 t  p 2  f 1 t 2  
for every t, and the least such p (if it exists) is the period of f. 
The graph of a function of period p looks the same on each 
interval of length p, so we can easily determine the period from 
the graph. Determine whether the function whose graph is 
shown is periodic; if it is periodic, find the period.

(a) y

x2 4_2_4

(b) y

x2 4 6 8 10

(c) y

x2 4_2_4

(d) y

x_4 _2 2 4 6 8

89. dIsCUss: Periodic Functions II  Use a graphing device to 
graph the following functions. From the graph, determine 
whether the function is periodic; if it is periodic, find the 
period. (See page 198 for the definition of “x‘.)

(a) y  0  sin x 0  
(b) y  sin 0  x 0
(c) y  2cos x 

(d) y  x  “x‘
(e) y  cos1sin x 2  
(f ) y  cos1x2 2

90. dIsCUss: sinusoidal Curves  The graph of y  sin x is the 
same as the graph of y  cos x shifted to the right p/2 units. 
So the sine curve y  sin x is also at the same time a cosine 
curve: y  cos1x  p

2 2 . In fact, any sine curve is also a 
cosine curve with a different horizontal shift, and any cosine 
curve is also a sine curve. Sine and cosine curves are collec-
tively referred to as sinusoidal. For the curve whose graph is 
shown, find all possible ways of expressing it as a sine curve 
y  a  sin1x  b 2  or as a cosine curve y  a  cos1x  b 2 . 
Explain why you think you have found all possible choices 
for a and b in each case.

y

x0

5

_5

π 2π

_π
5π
2

π
2

π
2__ 3π

2
3π
2
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534 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

6.4 MoRe TRIGoNoMeTRIC GRaPHs
■ Graphs of Tangent, Cotangent, secant, and Cosecant ■ Graphs of Transformations  
of Tangent and Cotangent ■ Graphs of Transformations of Cosecant and secant

In this section we graph the tangent, cotangent, secant, and cosecant functions and 
transformations of these functions.

■ Graphs of Tangent, Cotangent, secant, and Cosecant
We begin by stating the periodic properties of these functions. Recall that sine and co-
sine have period 2p. Since cosecant and secant are the reciprocals of sine and cosine, 
respectively, they also have period 2p (see Exercise 63). Tangent and cotangent, how-
ever, have period p (see Exercise 83 of Section 6.2).

PeRIodIC PRoPeRTIes

The functions tangent and cotangent have period p:

tan1x  p 2  tan x   cot1x  p 2  cot x

The functions cosecant and secant have period 2p:

csc1x  2p 2  csc x   sec1x  2p 2  sec x

We first sketch the graph of tangent. Since it has period p, we need only sketch the 
graph on any interval of length p and then repeat the pattern to the left and to the right. 
We sketch the graph on the interval 1p/2, p/2 2 . Since tan1p/22 and tan1p/2 2  aren’t 
defined, we need to be careful in sketching the graph at points near p/2 and p/2.  
As x gets near p/2 through values less than p/2, the value of tan x becomes large. To 
see this, notice that as x gets close to p/2, cos  x approaches 0 and sin  x approaches 1 
and so tan x  sin x/cos x is large. A table of values of tan x for x close to p/2 
1<1.570796 2  is shown in the margin.

So as x approaches p/2 from the left, the value of tan x increases without bound. 
We express this by writing

tan x S `  as  x S
p

2



This is read “tan x approaches infinity as x approaches p/2 from the left.”
In a similar way, as x approaches p/2 from the right, the value of tan x decreases 

without bound. We write this as

tan x S `  as  x S  

p

2



This is read “tan x approaches negative infinity as x approaches p/2 from the right.”
Thus the graph of y  tan x approaches the vertical lines x  p/2 and x  p/2. So 

these lines are vertical asymptotes. With the information we have so far, we sketch the 
graph of y  tan x for p/2  x  p/2 in Figure 1. The complete graph of tangent (see 

Arrow notation is discussed in  
Section 3.6.

Asymptotes are discussed in  
Section 3.6.

x tan x

0 0
p/6 0.58
p/4 1.00
p/3 1.73
1.4 5.80
1.5 14.10
1.55 48.08
1.57 1,255.77
1.5707 10,381.33
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Figure 5(a) on the next page) is now obtained by using the fact that tangent is periodic with 
period p.

π
3

π
2

y

x0
1

π
6

π
4

1.4

π
2_

Vertical
asymptote

Vertical
asymptote

FIGURe 1 One period of y  tan x

y

x

1

π
4

π
2

0 π
6

π
3

2π
3

3π
4

5π
6 3

0.14

π

FIGURe 2 One period of y  cot x

The function y  cot x is graphed on the interval 10, p 2  by a similar analysis (see 
Figure 2). Since cot x is undefined for x  np with n an integer, its complete graph (in 
Figure 5(b) on the next page) has vertical asymptotes at these values.

To graph the cosecant and secant functions, we use the reciprocal identities

csc x 
1

sin x
  and  sec x 

1
cos x

So to graph y  csc x, we take the reciprocals of the y-coordinates of the points of the 
graph of y  sin x. (See Figure 3.) Similarly, to graph y  sec x, we take the reciprocals 
of the y-coordinates of the points of the graph of y  cos x. (See Figure 4.)

y

x

1

π
2

0

3π
2

2ππ

y=ß x

FIGURe 3 One period of y  csc x

y

x

1

π
2

0 3π
2

2ππ

y=ç x

FIGURe 4 One period of y  sec x

Let’s consider more closely the graph of the function y  csc x on the interval  
0  x  p. We need to examine the values of the function near 0 and p, since at these 
values sin x  0, and csc x is thus undefined. We see that

csc x S `   as  x S 0

csc x S `   as  x S p

Thus the lines x  0 and x  p are vertical asymptotes. In the interval p  x  2p the 
graph is sketched in the same way. The values of csc x in that interval are the same as 
those in the interval 0  x  p except for sign (see Figure 3). The complete graph in 
Figure 5(c) is now obtained from the fact that the function cosecant is periodic with 

evaluating Functions  
on a Calculator
How does your calculator evaluate sin t, 
cos t, et, ln t, !t , and other such func-
tions? One method is to approximate 
these functions by polynomials because 
polynomials are easy to evaluate. For 
example,

 sin t  t 
t 

3

3!


t 
5

5!


t 
7

7!
 . . .

 cos t  1 
t 

2

2!


t 
4

4!


t 
6

6!
 . . .

where n!  1 # 2 # 3 # . . . # n. These 
remarkable formulas were found by the 
British mathematician Brook Taylor  
(1685–1731). For instance, if we use the 
first three terms of Taylor’s series to find 
cos(0.4), we get

 cos 0.4 < 1 
10.4 22

2!

10.4 24

4!

 <  0.92106667

(Compare this with the value you get 
from your calculator.) The graph shows 
that the more terms of the series we use, 
the more closely the polynomials approx-
imate the function cos t.

y

t0 5_5

2

_1

y = 1 – t2

2!

y = 1 – +t2

2!
t4

4!

y = cos t

Mathematics in the Modern World
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period 2p. Note that the graph has vertical asymptotes at the points where sin x  0, 
that is, at x  np, for n an integer.

y

xπ
2

0 3π
2

ππ
2__π3π

2_

(a) y=† x

1

y

x

1

π
2

0

3π
2

π

π
2_

_π3π
2_

(c) y= x

y

x
_1

π
2

0 3π
2

ππ
2__π3π

2_

(d) y=˚ x

y

xπ
2

3π
2

π
2_3π

2_

(b) y=ˇ x

1

0 π_π

FIGURe 5

The graph of y  sec x is sketched in a similar manner. Observe that the domain of 
sec x is the set of all real numbers other than x  1p/2 2  np, for n an integer, so the 
graph has vertical asymptotes at those points. The complete graph is shown in Figure 5(d).

It is apparent that the graphs of y  tan x, y  cot x, and y  csc x are symmetric 
about the origin, whereas that of y  sec x is symmetric about the y-axis. This is be-
cause tangent, cotangent, and cosecant are odd functions, whereas secant is an even 
function.

■ Graphs of Transformations of Tangent and Cotangent 
We now consider graphs of transformations of the tangent and cotangent func tions.

exaMPle 1 ■ Graphing Tangent Curves
Graph each function.

(a) y  2 tan x      (b) y  tan x

solUTIoN  We first graph y  tan x and then transform it as required.

(a)  To graph y  2 tan x, we multiply the y-coordinate of each point on the graph  
of y  tan x by 2. The resulting graph is shown in Figure 6(a).

(b)  The graph of y  tan x in Figure 6(b) is obtained from that of y  tan x by 
reflecting in the x-axis.

Now Try exercises 9 and 11 ■
FIGURe 6

0 π
_π

_2

(a) y=2 † x

2

y=† x

0 π_π

(b) y=_† x

1

y=† x

y
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x

π
2

3π
2

π
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π
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SECTION 6.4 ■ More Trigonometric Graphs 537

Since the tangent and cotangent functions have period p, the functions

y  a tan kx  and  y  a cot kx        1k  0 2
complete one period as kx varies from 0 to p, that is, for 0  kx  p. Solving this in-
equality, we get 0  x  p/k. So they each have period p/k.

TaNGeNT aNd CoTaNGeNT CURVes

The functions

y  a tan kx  and  y  a cot kx  1k  0 2
have period p/k.

Thus one complete period of the graphs of these functions occurs on any interval of 
length p/k. To sketch a complete period of these graphs, it’s convenient to select an 
interval between vertical asymptotes:

To graph one period of y  a tan kx, an appropriate interval is a 

p

2k
,  

p

2k
b .

To graph one period of y  a cot kx, an appropriate interval is a 0,  

p

k
b .

exaMPle 2 ■ Graphing Tangent Curves
Graph each function.

(a) y  tan 2x      (b) y  tan 2 a x 
p

4
b

solUTIoN

(a)  The period is p/2 and an appropriate interval is 1p/4,  p/4 2 . The endpoints  
x  p/4 and x  p/4 are vertical asymptotes. Thus we graph one complete  
period of the function on 1p/4,  p/4 2 . The graph has the same shape as that of 

   the tangent function but is shrunk horizontally by a factor of 1
2. We then repeat 

that portion of the graph to the left and to the right. See Figure 7(a).

(b)  The graph is the same as that in part (a), but it is shifted to the right p/4, as 
shown in Figure 7(b).
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xπ
4

3π
4

π
4_3π
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(a) y=† 2x

1

π
8

π
2

π
2_

y

xπ
4

0 3π
4

π
4_ 1

π
2

π
2_

(b) y=† 2!x-   @π
4

π

FIGURe 7

Now Try exercises 19, 35, and 43 ■

Since y  tan x completes one period 
between x   

p
2  and x  p

2 , the func-
tion y  tan 21x  p

4 2  completes one 
period as 21x  p

4 2  varies from  
p
2   

to p
2 .

Start of period: End of period:

 21x  p
4 2   

p
2   21x  p

4 2  p
2

 x  p
4   

p
4   x  p

4  p
4

 x  0   x  p
2

So we graph one period on the  
interval 10, p2 2 .
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exaMPle 3 ■ a Horizontally shifted Cotangent Curve

Graph the function y  2 cota 3x 
p

4
b .

solUTIoN  We first put the equation in the form y  a cot k1x  b 2  by factoring 3 

from the expression 3x 
p

4
:

y  2 cota 3x 
p

4
b  2 cot 3 a x 

p

12
b

Thus the graph is the same as that of y  2 cot 3x but is shifted to the right p/12. 
The period of y  2 cot 3x is p/3, and an appropriate interval for graphing one 
period is 10, p/3 2 . To get the corresponding interval for the desired graph, we shift 
this interval to the right p/12. So we have

a 0 
p

12
, 

p

3


p

12
b  a p

12
, 

5p

12
b

Finally, we graph one period in the shape of cotangent on the interval 1p/12, 5p/12 2  
and repeat that portion of the graph to the left and to the right. (See Figure 8.) 

3π
4

7π
12

5π
12

y

xπ
4

π
4

π
12_ π

12_

2

FIGURe 8 

y  2 cot a3x 
p

4
b

Now Try exercises 37 and 47 ■

■ Graphs of Transformations of Cosecant and secant
We have already observed that the cosecant and secant functions are the reciprocals of 
the sine and cosine functions. Thus the following result is the counterpart of the result 
for sine and cosine curves in Section 6.3.

CoseCaNT aNd seCaNT CURVes

The functions

y  a csc kx  and  y  a sec kx  1k  0 2
have period 2p/k.

An appropriate interval on which to graph one complete period is 1 0, 2p/k 2 .

exaMPle 4 ■ Graphing Cosecant Curves
Graph each function.

(a) y 
1

2
  csc 2x      (b) y 

1

2
  csc a 2x 

p

2
b

Since y  cot x completes one period 
between x  0 and x  p, the function 
y  2 cot A3x  p

4 B  completes one 
period as 3x  p

4  varies from 0 to p.

Start of period: End of period:

 3x  p
4  0  3x  p

4  p

 3x  p
4   3x  5p

4

 x  p
12  x  5p

12
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solUTIoN

(a)  The period is 2p/2  p. An appropriate interval is 30, p4, and the asymptotes 
occur in this interval whenever sin 2x  0. So the asymptotes in this interval are 
x  0, x  p/2, and x  p. With this information we sketch on the interval 30, p4 
a graph with the same general shape as that of one period of the cosecant func-
tion. The complete graph in Figure 9(a) is obtained by repeating this portion of 
the graph to the left and to the right.

(b) We first write

y 
1

2
  csc a 2x 

p

2
b 

1

2
  csc 2 a x 

p

4
b

   From this we see that the graph is the same as that in part (a) but shifted to the 
left p/4. The graph is shown in Figure 9(b).

1
2(b) y=    !2x+   @2
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4
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4

1
2(a) y=     2x

y

xπ
2

π
2_

1
2

1
2π_π 2π3π

2
_

FIGURe 9

Now Try exercises 29 and 49 ■

exaMPle 5 ■ Graphing a secant Curve
Graph y  3 sec  

1
2 x.

solUTIoN  The period is 2p 4 1
2  4p. An appropriate interval is 30, 4p4, and the 

asymptotes occur in this interval wherever cos  
1
2 x  0. Thus the asymptotes in this 

interval are x  p, x  3p. With this information we sketch on the interval 30, 4p4 
a graph with the same general shape as that of one period of the secant function. 
The complete graph in Figure 10 is obtained by repeating this portion of the graph 
to the left and to the right.

y

π_2π

3

2π 4π0 x

FIGURe 10 
y  3 sec  

1
2 x

Now Try exercises 31 and 51 ■

Since y  csc x completes one period 
between x  0 and x  2p, the func-
tion y  1

2 cscA2x  p
2 B  completes one 

period as 2x  p
2  varies from 0 to 2p.

Start of period: End of period:

 2x  p
2  0   2x  p

2  2p

 2x   
p
2   2x  3p

2

 x   
p
4   x  3p

4

So we graph one period on the  
interval C 

p
4 , 3p

4 D .
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CoNCePTs
 1. The trigonometric function y  tan x has period   

  and asymptotes x     . Sketch a graph of this func-
tion on the interval 1p/2, p/2 2 . 

 2. The trigonometric function y  csc x has period   

  and asymptotes x     . Sketch a graph of this func-
tion on the interval 1p, p 2 . 

skIlls
3–8 ■ Graphs of Trigonometric Functions  Match the trigono-
metric function with one of the graphs I–VI.

 3. f 1x 2  tan a x 
p

4
b   4. f 1x 2  sec 2x

 5. f 1x 2  cot 4x  6. f 1x 2  tan x

 7. f 1x 2  2 sec x  8. f 1x 2  1  csc x

I

0

1 1

x

y

π

II

x5π
4

3π
4_ _π

2
π
4

π
4

III

0

2
1

1

_2
x

y IV

0 x3π
2

3π
4_ _π

4
π
2

π
4

π
2

V

0

2

x

y

π

π

VI

0 x3π
2_ _π

2
π
2

π
4

π
4

9–18 ■ Graphs of Trigonometric Functions  Find the period, and 
graph the function.

 9. y  3 tan x 10. y  3 tan x

 11. y  3
2 tan x 12. y  3

4 tan x

13. y  cot x 14. y  2 cot x

15. y  2 csc x 16. y  1
2 csc x

17. y  3 sec x 18. y  3 sec x

19–34 ■ Graphs of Trigonometric Functions with different  
Periods  Find the period, and graph the function.

 19. y  tan 3x 20. y  tan 4x

 21. y  5 tan px 22. y  3 tan 4px

 23. y  2 cot 3px 24. y  3 cot 2px

25. y  tan 
p

4
 x 26. y  cot 

p

2
 x

27. y  2 tan 3px 28. y  2 tan 
p

2
 x

29. y  csc 4x 30. y  5 csc 3x

31. y  sec 2x 32. y  1
2 sec14px 2

33. y  5 csc 
3p

2
 x 34. y  5 sec 2px

35–60 ■ Graphs of Trigonometric Functions with Horizontal 
shifts  Find the period, and graph the function.

35. y  tana x 
p

4
b  36. y  tan a x 

p

4
b

37. y  cot a x 
p

4
b  38. y  2 cot a x 

p

3
b

39. y  csca x 
p

4
b  40. y  seca x 

p

4
b

41. y 
1

2
  seca x 

p

6
b  42. y  3 csca x 

p

2
b

43. y  tan 2a x 
p

3
b  44. y  cot a2x 

p

4
b

45. y  5 cot a3x 
p

2
b  46. y  4 tan14x  2p 2

47. y  cot a2x 
p

2
b  48. y  1

2  tan1px  p 2

49. y  2 cscapx 
p

3
b  50. y  3 seca 1

4
 x 

p

6
b

51. y  sec 2a x 
p

4
b  52. y  csc 2a x 

p

2
b

53. y  5 seca3x 
p

2
b  54. y  1

2  sec12px  p 2

55. y  tana 2

3
 x 

p

6
b  56. y  tan 

1

2
a x 

p

4
b

6.4 exeRCIses

6.5 INVeRse TRIGoNoMeTRIC FUNCTIoNs aNd THeIR GRaPHs
■ The Inverse sine Function ■ The Inverse Cosine Function ■ The Inverse Tangent 
Function ■ The Inverse secant, Cosecant, and Cotangent Functions

Recall from Section 2.8 that the inverse of a function f is a function f 
1 that reverses 

the rule of f. For a function to have an inverse, it must be one-to-one. Since the trigo-
nometric functions are not one-to-one, they do not have inverses. It is possible, how-
ever, to restrict the domains of the trigonometric functions in such a way that the result-
ing functions are one-to-one.

■ The Inverse sine Function
Let’s first consider the sine function. There are many ways to restrict the domain of sine 
so that the new function is one-to-one. A natural way to do this is to restrict the domain 
to the interval 3p/2, p/2 4 . The reason for this choice is that sine is one-to-one on this 

We study applications of inverse trigo-
nometric functions to triangles  
in Sections 5.4–5.6.
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57. y  3 sec pAx  1
2 B  58. y  seca3x 

p

2
b

59. y  2 tana2x 
p

3
b  60. y  2 cot 13px  3p 2

aPPlICaTIoNs
61. lighthouse  The beam from a lighthouse completes one 

rotation every 2 min. At time t, the distance d shown in the 
figure below is

d1 t 2  3 tan pt

  where t is measured in minutes and d in miles.

(a) Find d10.15 2 , d10.25 2 , and d10.45 2 .
(b) Sketch a graph of the function d for 0  t  1

2.

(c) What happens to the distance d as t approaches 1
2?

3 mi

d

62. length of a shadow  On a day when the sun passes  
directly overhead at noon, a 6-ft-tall man casts a shadow of 
length

S1 t 2  6 `  cot 
p

12
  t `

  where S is measured in feet and t is the number of hours 
since 6 a.m.

(a) Find the length of the shadow at 8:00 a.m., noon,  
2:00 p.m., and 5:45 p.m.

(b) Sketch a graph of the function S for 0  t  12.

(c) From the graph, determine the values of t at which the 
length of the shadow equals the man’s height. To what 
time of day does each of these values correspond?

(d) Explain what happens to the shadow as the time  
approaches 6 p.m. (that is, as t S 12).

 S

 6 ft

dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
63. PRoVe: Periodic Functions  (a) Prove that if f is periodic 

with period p, then 1/f is also periodic with period p.

(b) Prove that cosecant and secant both have period 2p.

64. PRoVe: Periodic Functions  Prove that if f and g are peri-
odic with period p, then f/g is also periodic but its period 
could be smaller than p.

65. PRoVe: Reduction Formulas  Use the graphs in Figure 5 to 
explain why the following formulas are true.

tan a x 
p

2
b  cot x  seca x 

p

2
b  csc x

6.5 INVeRse TRIGoNoMeTRIC FUNCTIoNs aNd THeIR GRaPHs
■ The Inverse sine Function ■ The Inverse Cosine Function ■ The Inverse Tangent 
Function ■ The Inverse secant, Cosecant, and Cotangent Functions

Recall from Section 2.8 that the inverse of a function f is a function f 
1 that reverses 

the rule of f. For a function to have an inverse, it must be one-to-one. Since the trigo-
nometric functions are not one-to-one, they do not have inverses. It is possible, how-
ever, to restrict the domains of the trigonometric functions in such a way that the result-
ing functions are one-to-one.

■ The Inverse sine Function
Let’s first consider the sine function. There are many ways to restrict the domain of sine 
so that the new function is one-to-one. A natural way to do this is to restrict the domain 
to the interval 3p/2, p/2 4 . The reason for this choice is that sine is one-to-one on this 

We study applications of inverse trigo-
nometric functions to triangles  
in Sections 5.4–5.6.
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542 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

interval and moreover attains each of the values in its range on this interval. From Fig-
ure 1 we see that sine is one-to-one on this restricted domain (by the Horizontal Line 
Test) and so has an inverse.

y

x0

1

y=sin x, ≤x≤

π
2

π
2_

π
2

π
2_

y

xπ0
_1

2π

1

_π

y=ß x

_2π

FIGURe 1 Graphs of the sine function and the restricted sine function

We can now define an inverse sine function on this restricted domain. The graph of 
y  sin1 x is shown in Figure 2; it is obtained by reflecting the graph of y  sin x, 
p/2  x  p/2, in the line y  x.

deFINITIoN oF THe INVeRse sINe FUNCTIoN

The inverse sine function is the function sin1 with domain 31, 1 4  and range 
3p/2, p/2 4  defined by

sin1 x  y 3 sin y  x

The inverse sine function is also called arcsine, denoted by arcsin.

Thus y  sin1 x is the number in the interval 3p/2, p/2 4  whose sine is x. In other 
words, sin1sin1 x 2  x. In fact, from the general properties of inverse functions stud-
ied in Section 2.8, we have the following cancellation properties. 

sin1sin1 x 2  x   for  1  x  1

sin11sin x 2  x  for   

p

2
 x 

p

2

exaMPle 1 ■ evaluating the Inverse sine Function
Find each value.

(a) sin1 
1

2
      (b) sin1 a 

1

2
b       (c) sin1 

3

2

solUTIoN 

(a)  The number in the interval 3p/2, p/2 4  whose sine is 1
2 is p/6. Thus 

sin1 

 
1
2  p/6.

(b)  The number in the interval 3p/2, p/2 4  whose sine is  
1
2 is p/6.  

Thus sin1A 
1
2B  p/6.

(c)  Since 3
2  1, it is not in the domain of sin1 x, so sin1 32 is not  

defined.

Now Try exercise 3 ■

y

x0 1

y=sin–¡xπ
2

π
2_

_1

FIGURe 2 Graph of y  sin1 x
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exaMPle 2 ■ Using a Calculator to evaluate Inverse sine
Find approximate values for (a) sin110.82 2  and (b) sin1

 
1
3.

solUTIoN 

We use a calculator to approximate these values. Using the SIN1 , or INV  SIN , or
ARC  SIN  key(s) on the calculator (with the calculator in radian mode), we get

(a) sin110.82 2 < 0.96141      (b) sin1
 
1
3 < 0.33984

Now Try exercises 11 and 21 ■

When evaluating expressions involving sin1, we need to remember that the range 
of sin1 is the interval 3p/2, p/2 4 .

exaMPle 3 ■ evaluating expressions with Inverse sine
Find each value.

(a) sin1 a sin 
p

3
b       (b) sin1 a sin 

2p

3
b

solUTIoN 

(a)  Since p/3 is in the interval 3p/2, p/2 4 , we can use the cancellation properties 
of inverse functions (page 542):

sin1 a sin 
p

3
b 

p

3
    Cancellation property:  

p

2


p

3


p

2

(b) We first evaluate the expression in the parentheses:

 sin1 a sin 
2p

3
b  sin1 a"3

2
b     Evaluate

 
p

3
    Because sin  

p

3


"3

2

Now Try exercises 31 and 33 ■

■ The Inverse Cosine Function
If the domain of the cosine function is restricted to the interval 30, p 4 , the resulting 
function is one-to-one and so has an inverse. We choose this interval because on it, 
cosine attains each of its values exactly once (see Figure 3).

y

x0

1

y=ç x,  0≤x≤π

π
_1

y

xπ0
_1

2π

1

_π

y=ç x

_2π

FIGURe 3 Graphs of the cosine func-
tion and the restricted cosine function

deFINITIoN oF THe INVeRse CosINe FUNCTIoN

The inverse cosine function is the function cos1 with domain 31, 1 4  and 
range 30, p 4  defined by

cos1 x  y 3 cos y  x

The inverse cosine function is also called arccosine, denoted by arccos.

 Note: sin11sin x 2  x only  
if  

p
2  x  p

2 .
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Thus y  cos1 x is the number in the interval 30, p 4  whose cosine is x. The follow-
ing cancellation properties follow from the inverse function properties. 

cos1cos1 x 2  x   for  1  x  1

cos11cos x 2  x  for  0  x  p

The graph of y  cos1 x is shown in Figure 4; it is obtained by reflecting the graph of 
y  cos x, 0  x  p, in the line y  x.

exaMPle 4 ■ evaluating the Inverse Cosine Function
Find each value.

(a) cos1 
!3

2
      (b) cos1 0      (c) cos1 a 

1

2
b

solUTIoN 

(a)  The number in the interval 30, p 4  whose cosine is !3/2 is p/6. Thus 
cos11!3/2 2  p/6.

(b)  The number in the interval 30, p 4  whose cosine is 0 is p/2. Thus cos1 0  p/2.

(c)  The number in the interval 30, p 4  whose cosine is  
1
2 is 2p/3. Thus 

cos1A 
1
2B  2p/3. (The graph in Figure 4 shows that if 1  x  0, then 

cos1 x  p/2.)

Now Try exercises 5 and 13 ■

exaMPle 5 ■ evaluating expressions with Inverse Cosine
Find each value.

(a) cos1 a cos 
2p

3
b       (b) cos1 a cos 

5p

3
b

solUTIoN 

(a) Since 2p/3 is in the interval 30, p 4  we can use the above cancellation properties:

cos1 a cos 
2p

3
b 

2p

3
    Cancellation property: 0 

2p

3
 p

(b) We first evaluate the expression in the parentheses:

 cos1 a cos 
5p

3
b  cos1 a 1

2
b     Evaluate

 
p

3
    Because cos  

p

3


1

2

Now Try exercises 35 and 37 ■

■ The Inverse Tangent Function
We restrict the domain of the tangent function to the interval 1p/2, p/2 2  to obtain a 
one-to-one function.

 Note: cos11cos x 2  x only  
if 0  x  p.

FIGURe 4 Graph of y  cos1 x

y

x0 1

y=cos–¡x

π

_1

π
2
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deFINITIoN oF THe INVeRse TaNGeNT FUNCTIoN

The inverse tangent function is the function tan1 with domain R and range 
1p/2, p/2 2  defined by

tan1 x  y 3 tan y  x

The inverse tangent function is also called arctangent, denoted by arctan.

Thus y  tan1 x is the number in the interval 1p/2, p/2 2  whose tangent is x. The 
following cancellation properties follow from the inverse function properties. 

tan1 tan1 x 2  x  for  x [ R

tan11 tan x 2  x  for   

p

2
 x 

p

2

Figure 5 shows the graph of y  tan x on the interval 1p/2, p/2 2  and the graph of 
its inverse function, y  tan1 x.

FIGURe 5 Graphs of the restricted tan-
gent function and the inverse tangent 
function

y=† x,  _   <x<π
2

π
2

y

xπ
2

0 3π
2

ππ
2_

_π
3π
2_

1

y=†–¡x

y

x

π
2

0
π
2_

1

_1

exaMPle 6 ■ evaluating the Inverse Tangent Function
Find each value.

(a) tan1 1      (b) tan1
 !3      (c) tan1120 2

solUTIoN 

(a)  The number in the interval 1p/2, p/2 2  with tangent 1 is p/4. Thus 
tan1 1  p/4.

(b)  The number in the interval 1p/2, p/2 2  with tangent !3 is p/3. Thus 
tan1

 !3  p/3.

(c)  We use a calculator (in radian mode) to find that tan1120 2 < 1.52084.

Now Try exercises 7 and 17 ■

■ The Inverse secant, Cosecant, and Cotangent Functions
To define the inverse functions of the secant, cosecant, and cotangent functions, we 
restrict the domain of each function to a set on which it is one-to-one and on which it 
attains all its values. Although any interval satisfying these criteria is appropriate, we 
choose to restrict the domains in a way that simplifies the choice of sign in computa-
tions involving inverse trigonometric functions. The choices we make are also appropri-
ate for calculus. This explains the seemingly strange restriction for the domains of the 
secant and cosecant functions. We end this section by displaying the graphs of the  

See Exercise 46 in Section 5.4  
(page 474) for a way of finding the  
values of these inverse trigonometric 
functions on a calculator.
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secant, cosecant, and cotangent functions with their restricted domains and the graphs 
of their inverse functions (Figures 6–8).

FIGURe 6 The inverse secant  
function

y

x_1 0

π

y=˚–¡x

1

3π
2

π
2

y

x
_1

0 π 2π

y=˚ x,  0≤x<   , π≤x<3π
2

π
2

y

x_1 0

π

y=–¡x

1

3π
2

π
2

y= x,  0<x≤   , π<x≤3π
2

π
2

y

1

0 xπ 2π_π

FIGURe 7 The inverse cosecant  
function

FIGURe 8 The inverse cotangent  
function y=ˇ x,  0<x<π y=ˇ–¡x

y

x

π
2

0 1_1

π

y

x0 π_π

1

2π

CoNCePTs
 1. (a)  To define the inverse sine function, we restrict the domain 

of sine to the interval    . On this interval the 
sine function is one-to-one, and its inverse function sin1 

is defined by sin1 x  y 3  sin       . For 

example, sin1 12    because sin       .

(b)  To define the inverse cosine function, we restrict the 

domain of cosine to the interval    . On  
this interval the cosine function is one-to-one and its 
inverse function cos1 is defined by cos1 x  y 3  

cos       . For example, cos1 12    

because cos       .

 2. The cancellation property sin11sin x 2  x is valid for x in the

  interval    . Which of the following is not true?

 (i) sin1 a sin 
p

3
b 

p

3
 (ii) sin1 a sin 

10p

3
b 

10p

3

(iii) sin1 a sin a 

p

4
bb   

p

4

skIlls
3–10 ■ evaluating Inverse Trigonometric Functions  Find the 
exact value of each expression, if it is defined.

 3. (a) sin1 1 (b) sin1 
!3

2
 (c) sin1 2

6.5 exeRCIses
6.6 ModelING HaRMoNIC MoTIoN

■ simple Harmonic Motion ■ damped Harmonic Motion ■ Phase and Phase difference

Periodic behavior—behavior that repeats over and over again—is common in nature. 
Perhaps the most familiar example is the daily rising and setting of the sun, which re-
sults in the repetitive pattern of day, night, day, night, . . . . Another example is the daily 
variation of tide levels at the beach, which results in the repetitive pattern of high tide, 
low tide, high tide, low tide, . . . . Certain animal populations increase and decrease in 
a predictable periodic pattern: A large population exhausts the food supply, which 
causes the population to dwindle; this in turn results in a more plentiful food supply, 
which makes it possible for the population to increase; and the pattern then repeats over 
and over (see Discovery Project: Predator/Prey Models referenced on page 529).

Other common examples of periodic behavior involve motion that is caused by vi-
bration or oscillation. A mass suspended from a spring that has been compressed and 
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 4. (a) sin111 2  (b) sin1 
!2

2
 (c) sin112 2

 5. (a) cos111 2  (b) cos1 12  (c) cos1 a 

!3

2
b

 6. (a) cos1
 

!2

2
 (b) cos1 1 (c) cos1 a 

!2

2
b

 7. (a) tan111 2  (b) tan1!3 (c) tan1  

!3

3

 8. (a) tan1 0 (b) tan11!3 2  (c) tan1 a 

!3

3
b

 9. (a) cos1A 
1
2 B  (b) sin1 a 

!2

2
b  (c) tan1 1

10. (a) cos1 0 (b) sin1 0 (c) sin1A 
1
2 B

11–22 ■ Inverse Trigonometric Functions with a Calculator  Use 
a calculator to find an approximate value of each expression cor-
rect to five decimal places, if it is defined.

11. sin1 23  12. sin1A 
8
9 B

13. cos1A 
3
7 B  14. cos1A49 B

15. cos110.92761 2  16. sin110.13844 2  
17. tan1 10 18. tan1126 2
19. tan111.23456 2  20. cos111.23456 2  
21. sin110.25713 2  22. tan110.25713 2

23–48 ■ simplifying expressions Involving Trigonometric  
Functions  Find the exact value of the expression, if it is defined.

23. sinAsin1 14 B  24. cosAcos1 23 B
25. tan1 tan1 5 2  26. sin1sin1 5 2
27. sinAsin1 32 B  28. tanAtan1 32 B

29. cos a cos1 a 

1

5
bb  30. sin a sin1 a 

3

4
bb

 31. sin1 a sin ap

4
bb  32. cos1 a cos ap

4
bb

 33. sin1 a sin a 3p

4
bb  34. cos1 a cos a 3p

4
bb

 35. cos1 a cos a 5p

6
bb  36. sin1 a sin a 5p

6
bb

 37. cos1 a cos a 7p

6
bb  38. sin1 a sin a 7p

6
bb

 39. tan1 a tan ap

4
bb  40. tan1 a tan a 

p

3
bb

41. tan1 a tan a 2p

3
bb  42. sin1 a sin a 11p

4
bb  

43. tanAsin1 12 B  44. cos1sin1 0 2

45. cos a sin1 
!3

2
b  46. tan a sin1 

!2

2
b

47. sin1 tan111 22  48. sin1 tan1A!3 BB

dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
49–50 ■ PRoVe: Identities Involving Inverse Trigonometric 
Functions  (a) Graph the function and make a conjecture, and 
(b) prove that your conjecture is true.

49. y  sin1 x  cos1 x 50. y  tan1 x  tan1 
1
x

51. dIsCUss: Two different Compositions  Let f and g be the 
functions 

f 1x 2  sin1sin1 x 2
  and g 1x 2  sin11sin x 2
  By the cancellation properties, f 1x 2  x and g1x 2  x  

for suitable values of x. But these functions are not the 
same for all x. Graph both f and g to show how the func-
tions differ.  (Think carefully about the domain and range 
of sin1).

6.6 ModelING HaRMoNIC MoTIoN
■ simple Harmonic Motion ■ damped Harmonic Motion ■ Phase and Phase difference

Periodic behavior—behavior that repeats over and over again—is common in nature. 
Perhaps the most familiar example is the daily rising and setting of the sun, which re-
sults in the repetitive pattern of day, night, day, night, . . . . Another example is the daily 
variation of tide levels at the beach, which results in the repetitive pattern of high tide, 
low tide, high tide, low tide, . . . . Certain animal populations increase and decrease in 
a predictable periodic pattern: A large population exhausts the food supply, which 
causes the population to dwindle; this in turn results in a more plentiful food supply, 
which makes it possible for the population to increase; and the pattern then repeats over 
and over (see Discovery Project: Predator/Prey Models referenced on page 529).

Other common examples of periodic behavior involve motion that is caused by vi-
bration or oscillation. A mass suspended from a spring that has been compressed and 
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then allowed to vibrate vertically is a simple example. This back-and-forth motion also 
occurs in such diverse phenomena as sound waves, light waves, alternating electrical 
current, and pulsating stars, to name a few. In this section we consider the problem of 
modeling periodic behavior.

■ simple Harmonic Motion
The trigonometric functions are ideally suited for modeling periodic behavior. A glance 
at the graphs of the sine and cosine functions, for instance, tells us that these functions 
themselves exhibit periodic behavior. Figure 1 shows the graph of y  sin t. If we think 
of t as time, we see that as time goes on, y  sin t increases and decreases over and over 
again. Figure 2 shows that the motion of a vibrating mass on a spring is modeled very 
accurately by y  sin t.

y

t0

1 y=ß t

_1
t

(time)PO

FIGURe 1 y  sin t FIGURe 2 Motion of a vibrating spring is  
modeled by y  sin t.

Notice that the mass returns to its original position over and over again. A cycle is 
one complete vibration of an object, so the mass in Figure 2 completes one cycle of its 
motion between O and P. Our observations about how the sine and cosine functions 
model periodic behavior are summarized in the following box.

sIMPle HaRMoNIC MoTIoN

If the equation describing the displacement y of an object at time t is

y  a sin vt  or  y  a cos vt

then the object is in simple harmonic motion. In this case,

amplitude  0  a 0   Maximum displacement of the object

period 
2p

v
  Time required to complete one cycle

frequency 
v

2p
  Number of cycles per unit of time

Notice that the functions

y  a sin 2pnt  and  y  a cos 2pnt

have frequency n, because 2pn/ 12p 2  n. Since we can immediately read the fre-
quency from these equations, we often write equations of simple harmonic motion in 
this form.

The main difference between the two 
equations describing simple harmonic 
motion is the starting point. At t  0 
we get

y  a sin v # 0  0

y  a cos v # 0  a

In the first case the motion “starts”  
with zero displacement, whereas in the 
second case the motion “starts” with 
the displacement at maximum (at the 
amplitude a).

The symbol v is the lowercase Greek 
letter “omega,” and n is the letter “nu.”
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SECTION 6.6 ■ Modeling Harmonic Motion 549

exaMPle 1 ■ a Vibrating spring
The displacement of a mass suspended by a spring is modeled by the function

y  10 sin 4pt

where y is measured in inches and t in seconds (see Figure 3).

(a) Find the amplitude, period, and frequency of the motion of the mass.

(b) Sketch a graph of the displacement of the mass.

solUTIoN

(a) From the formulas for amplitude, period, and frequency we get

amplitude  0  a 0  10 in.

period 
2p

v


2p

4p


1

2
  s

frequency 
v

2p


4p

2p
 2 cycles per second 1Hz 2

(b) The graph of the displacement of the mass at time t is shown in Figure 4.

Now Try exercise 5 ■

An important situation in which simple harmonic motion occurs is in the production 
of sound. Sound is produced by a regular variation in air pressure from the normal pres-
sure. If the pressure varies in simple harmonic motion, then a pure sound is produced. The 
tone of the sound depends on the frequency, and the loudness depends on the amplitude.

exaMPle 2 ■ Vibrations of a Musical Note
A sousaphone player plays the note E and sustains the sound for some time. For a 
pure E the variation in pressure from normal air pressure is given by

V1 t 2  0.2 sin 80pt

where V is measured in pounds per square inch and t is measured in seconds.

(a) Find the amplitude, period, and frequency of V.

(b) Sketch a graph of V.

(c)  If the player increases the loudness of the note, how does the equation for V 
change?

(d)  If the player is playing the note incorrectly and it is a little flat, how does the 
equation for V change?

solUTIoN

(a) From the formulas for amplitude, period, and frequency we get

amplitude  0  0.2 0  0.2

period 
2p

80p


1

40

frequency 
80p

2p
 40

(b) The graph of V is shown in Figure 5.

(c)  If the player increases the loudness the amplitude increases. So the number 0.2 is 
replaced by a larger number.

(d)  If the note is flat, then the frequency is decreased. Thus the coefficient of t is less 
than 80p.

Now Try exercise 41 ■

Rest
position

y<0

y>0

FIGURe 3

y

t0

10
y=10 ß 4πt

_10

11
2

23
2

FIGURe 4

y

t
(s)

0

0.2
y=0.2 ß 80πt

_0.2

1
2

FIGURe 5
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550 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

exaMPle 3 ■ Modeling a Vibrating spring
A mass is suspended from a spring. The spring is compressed a distance of 4 cm 
and then released. It is observed that the mass returns to the compressed position 
after 1

3  s.

(a) Find a function that models the displacement of the mass.

(b) Sketch the graph of the displacement of the mass.

solUTIoN

(a)  The motion of the mass is given by one of the equations for simple harmonic 
motion. The amplitude of the motion is 4 cm. Since this amplitude is reached 
at time t  0, an appropriate function that models the displacement is of the 
form

y  a cos vt

  Since the period is p  1
3, we can find v from the following equation:

 period 
2p

v

 
1

3


2p

v
  Period  1

3

 v  6p   Solve for v

  So the motion of the mass is modeled by the function

y  4 cos 6pt

  where y is the displacement from the rest position at time t. Notice that when  
t  0, the displacement is y  4, as we expect.

(b) The graph of the displacement of the mass at time t is shown in Figure 6.

Now Try exercises 17 and 47 ■

In general, the sine or cosine functions representing harmonic motion may be shifted 
horizontally or vertically. In this case the equations take the form

y  a sin1v1 t  c 22  b  or  y  a cos1v1 t  c 22  b

The vertical shift b indicates that the variation occurs around an average value b. The 
horizontal shift c indicates the position of the object at t  0. (See Figure 7.)

FIGURe 7 (a) (b)

y

t0

b-a

c 2π
Òc+

b

b+a
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Òc+

b

b+a
y=a çÓÒ(t-c)Ô+b
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y
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4
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FIGURe 6
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SECTION 6.6 ■ Modeling Harmonic Motion 551

exaMPle 4 ■ Modeling the brightness of a Variable star
A variable star is one whose brightness alternately increases and decreases. For the variable 
star Delta Cephei the time between periods of maximum brightness is 5.4 days. The average 
brightness (or magnitude) of the star is 4.0, and its brightness varies by 0.35 magnitude.

(a)  Find a function that models the brightness of Delta Cephei as a function of time.

(b) Sketch a graph of the brightness of Delta Cephei as a function of time.

solUTIoN

(a) Let’s find a function in the form

y  a cos1v1 t  c 22  b

  The amplitude is the maximum variation from average brightness, so the ampli-
tude is a  0.35 magnitude. We are given that the period is 5.4 days, so

v 
2p

5.4
< 1.16

  Since the brightness varies from an average value of 4.0 magnitudes, the graph is 
shifted upward by b  4.0. If we take t  0 to be a time when the star is at maxi-
mum brightness, there is no horizontal shift, so c  0 (because a cosine curve 
achieves its maximum at t  0). Thus the function we want is

y  0.35 cos11.16t 2  4.0

  where t is the number of days from a time when the star is at maximum brightness.

(b) The graph is sketched in Figure 8.

Now Try exercise 51 ■

The number of hours of daylight varies throughout the course of a year. In the North-
ern Hemisphere the longest day is June 21, and the shortest is December 21. The aver-
age length of daylight is 12 h, and the variation from this average depends on the lati-
tude. (For example, Fairbanks, Alaska, experiences more than 20 h of daylight on the 
longest day and less than 4 h on the shortest day!) The graph in Figure 9 shows the 
number of hours of daylight at different times of the year for various latitudes. It’s ap-
parent from the graph that the variation in hours of daylight is simple harmonic.
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 Source: Lucia C. Harrison, Daylight, Twilight, Darkness and Time 

(New York: Silver, Burdett, 1935), page 40

FIGURe 9 Graph of the length of day-
light from March 21 through  
December 21 at various latitudes
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552 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

exaMPle 5 ■ Modeling the Number of Hours of daylight
In Philadelphia (40 N latitude) the longest day of the year has 14 h 50 min of day-
light, and the shortest day has 9 h 10 min of daylight.

(a)  Find a function L that models the length of daylight as a function of t, the number 
of days from January 1.

(b)  An astronomer needs at least 11 hours of darkness for a long exposure astronomi-
cal photograph. On what days of the year are such long exposures possible?

solUTIoN

(a) We need to find a function in the form

y  a sin1v1 t  c 22  b

  whose graph is the 40 N latitude curve in Figure 9. From the information given, 
we see that the amplitude is

a  1
2 A14 

5
6  9 

1
6B < 2.83 h

  Since there are 365 days in a year, the period is 365, so

v 
2p

365
< 0.0172

   Since the average length of daylight is 12 h, the graph is shifted upward by 12, so  
b  12. Since the curve attains the average value (12) on March 21, the 80th day 
of the year, the curve is shifted 80 units to the right. Thus c  80. So a function 
that models the number of hours of daylight is

y  2.83 sin10.01721 t  80 22  12

  where t is the number of days from January 1.

(b)  A day has 24 h, so 11 h of night correspond to 13 h of daylight. So we need  
to solve the inequality y  13. To solve this inequality graphically, we graph 
y  2.83 sin 0.01721 t  80 2  12 and y  13 on the same graph. From the  
graph in Figure 10 we see that there are fewer than 13 h of daylight between  
day 1 (January 1) and day 101 (April 11) and between day 241 (August 29) and 
day 365 (December 31).

Now Try exercise 53 ■

Another situation in which simple harmonic motion occurs is in alternating current 
(AC) generators. Alternating current is produced when an armature rotates about its 
axis in a magnetic field.

Figure 11 represents a simple version of such a generator. As the wire passes through 
the magnetic field, a voltage E is generated in the wire. It can be shown that the voltage 
generated is given by

E1 t 2  E0 cos vt

where E0 is the maximum voltage produced (which depends on the strength of the 
magnetic field) and v/ 12p 2  is the number of revolutions per second of the armature 
(the frequency).

N 
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Magnet s 

S 

FIGURe 11
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0 365
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SECTION 6.6 ■ Modeling Harmonic Motion 553

exaMPle 6 ■ Modeling alternating Current
Ordinary 110-V household alternating current varies from 155 V to 155 V with a 
frequency of 60 Hz (cycles per second). Find an equation that describes this variation 
in voltage.

solUTIoN  The variation in voltage is simple harmonic. Since the frequency is  
60 cycles per second, we have

v

2p
 60  or  v  120p

Let’s take t  0 to be a time when the voltage is 155 V. Then

E1 t 2  a cos vt  155 cos 120pt

Now Try exercise 55 ■

■ damped Harmonic Motion
The spring in Figure 2 on page 548 is assumed to oscillate in a frictionless environment. 
In this hypothetical case the amplitude of the oscillation will not change. In the pres-
ence of friction, however, the motion of the spring eventually “dies down”; that is, the 
amplitude of the motion decreases with time. Motion of this type is called damped 
harmonic motion.

daMPed HaRMoNIC MoTIoN

If the equation describing the displacement y of an object at time t is

y  kect sin vt  or  y  kect cos vt  1c  0 2
then the object is in damped harmonic motion. The constant c is the damping 
constant, k is the initial amplitude, and 2p/v is the period.*

Damped harmonic motion is simply harmonic motion for which the amplitude is 
governed by the function a1 t 2  kect. Figure 12 shows the difference between har-
monic motion and damped harmonic motion.

exaMPle 7 ■ Modeling damped Harmonic Motion
Two mass-spring systems are experiencing damped harmonic motion, both at  
0.5 cycles per second and both with an initial maximum displacement of 10 cm. The 
first has a damping constant of 0.5, and the second has a damping constant of 0.1.

(a) Find functions of the form g1 t 2  kect
 cos vt to model the motion in each case.

(b) Graph the two functions you found in part (a). How do they differ?

solUTIoN

(a)  At time t  0 the displacement is 10 cm. Thus g10 2  kec 
#

 0
  cos1v # 0 2  k, so  

k  10. Also, the frequency is f  0.5 Hz, and since v  2pf (see page 548), we 
get v  2p10.5 2  p. Using the given damping constants, we find that the 
motions of the two springs are given by the functions

g11 t 2  10e0.5t cos pt  and  g21 t 2  10e0.1t cos pt

Hz is the abbreviation for hertz. One 
hertz is one cycle per second.

Why do we say that household current is 
110 V when the maximum voltage pro-
duced is 155 V? From the symmetry of 
the cosine function we see that the aver-
age voltage produced is zero. This aver-
age value would be the same for all AC 
generators and so gives no information 
about the voltage generated. To obtain a 
more informative measure of voltage, 
engineers use the root-mean-square 
(RMS) method. It can be shown that the 
RMS voltage is 1/!2 times the maxi-
mum voltage. So for household current 
the RMS voltage is

155 3
1
!2

< 110 V

*In the case of damped harmonic motion the term quasi-period is often used instead of period because the 
motion is not actually periodic—it diminishes with time. However, we will continue to use the term period 
to avoid confusion.

(b) Damped harmonic motion:
y=e–t ß 8πt

Harmonic motion: y=ß 8πt(a)

y

t0

1

21

y

t0

1

21

_a(t)=_e–t

a(t)=e–t

FIGURe 12
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554 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

(b)  The functions g1 and g2 are graphed in Figure 13. From the graphs we see that in 
the first case (where the damping constant is larger) the motion dies down 
quickly, whereas in the second case, perceptible motion continues much longer.

12

_12

15

 g⁄(t)=10 e–0.5t ç πt

_1

12

_12

15

g¤(t)=10 e–0.1t  ç πt

_1

FIGURe 13

Now Try exercise 21 ■

As Example 7 indicates, the larger the damping constant c, the quicker the oscillation 
dies down. When a guitar string is plucked and then allowed to vibrate freely, a point on 
that string undergoes damped harmonic motion. We hear the damping of the motion as 
the sound produced by the vibration of the string fades. How fast the damping of the 
string occurs (as measured by the size of the constant c) is a property of the size of the 
string and the material it is made of. Another example of damped harmonic motion is  
the motion that a shock absorber on a car undergoes when the car hits a bump in the road. 
In this case the shock absorber is engineered to damp the motion as quickly as possible 
(large c) and to have the frequency as small as possible (small v). On the other hand, the 
sound produced by a tuba player playing a note is undamped as long as the player can 
maintain the loudness of the note. The electromagnetic waves that produce light move 
in simple harmonic motion that is not damped.

exaMPle 8 ■ a Vibrating Violin string
The G-string on a violin is pulled a distance of 0.5 cm above its rest position, then 
released and allowed to vibrate. The damping constant c for this string is determined 
to be 1.4. Suppose that the note produced is a pure G (frequency  200 Hz). Find an 
equation that describes the motion of the point at which the string was plucked.

solUTIoN  Let P be the point at which the string was plucked. We will find a function 
f 1 t 2  that gives the distance at time t of the point P from its original rest position. 
Since the maximum displacement occurs at t  0, we find an equation in the form

y  kect cos vt

From this equation we see that f 10 2  k. But we know that the original displacement 
of the string is 0.5 cm. Thus k  0.5. Since the frequency of the vibration is 200, we 
have v  2pf  2p1200 2  400p. Finally, since we know that the damping con-
stant is 1.4, we get

 f 1 t 2  0.5e1.4t cos 400pt

Now Try exercise 57 ■

exaMPle 9 ■ Ripples on a Pond
A stone is dropped in a calm lake, causing waves to form. The up-and-down motion 
of a point on the surface of the water is modeled by damped harmonic motion. At 
some time the amplitude of the wave is measured, and 20 s later it is found that the 
amplitude has dropped to 1

10 of this value. Find the damping constant c.
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SECTION 6.6 ■ Modeling Harmonic Motion 555

solUTIoN  The amplitude is governed by the coefficient kect in the equations for 
damped harmonic motion. Thus the amplitude at time t is kect, and 20 s later, it is 
kec1t202. So because the later value is 1

10 the earlier value, we have

kec1t202  1
10 kect

We now solve this equation for c. Canceling k and using the Laws of Exponents, we get

 ect # e20c  1
10 ect

 e20c  1
10     Cancel ect

 e20c  10     Take reciprocals

Taking the natural logarithm of each side gives

 20c  ln110 2
 c  1

20 ln110 2 <
1

20 12.30 2 < 0.12

Thus the damping constant is c ^ 0.12.

Now Try exercise 59 ■

■ Phase and Phase difference
When two objects are moving in simple harmonic motion with the same frequency, it 
is often important to determine whether the objects are “moving together” or by how 
much their motions differ. Let’s consider a specific example.

Suppose that an object is rotating along the unit circle and the height y of the object 
at time t is given by y  sin1kt  b 2 . When t  0, the height is y  sin1b 2 . This 
means that the motion “starts” at an angle b as shown in Figure 14. 

y

x0

P

b +

Q

y

x0 b
k

b
k

b
k

2π
k

1

(a) Phase angle b (b) Horizontal shift

FIGURe 14 Graph of y  sin1kt  b 2

We can view the starting point in two ways: as the angle between P and Q on the 
unit circle or as the time required for P to “catch up” to Q. The angle b is called the 
phase (or phase angle). To find the time required, we factor out k:

y  sin1kt  b 2  sin k a t 
b

k
b

We see that P “catches up” to Q (that is, y  0) when t  b/k. This last equation also 
shows that the graph in Figure 14(b) is shifted horizontally b/k (to the right) on the 
t-axis. The time b/k is called the lag time if b  0 (because P is behind, or lags, Q by 
b/k time units) and is called the lead time if b  0.

The phase angle b depends only on the 
starting position of the object and not 
on the frequency. The lag time does 
depend on the frequency.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



556 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

PHase 

Any sine curve can be expressed in the following equivalent forms: 

y  A sin1kt  b 2     The phase is b. 

y  A sin ka t 
b

k
b     The horizontal shift is 

b

k
. 

It is often important to know whether two waves with the same period (modeled by 
sine curves) are in phase or out of phase. For the curves 

y1  A sin1kt  b 2   and  y2  A sin1kt  c 2
the phase difference between y1 and y2 is b  c. If the phase difference is a multiple 
of 2p, the waves are in phase; otherwise, the waves are out of phase. If two sine curves 
are in phase, then their graphs coincide.

exaMPle 10 ■ Finding Phase and Phase difference
Objects are in harmonic motion modeled by the following curves:

y1  10 sin a 3t 
p

6
b   y2  10 sin a 3t 

p

2
b   y3  10 sin a 3t 

23p

6
b

(a) Find the amplitude, period, phase, and horizontal shift of the curve y1. 

(b)  Find the phase difference between the curves y1 and y2. Are the two curves in 
phase? 

(c)  Find the phase difference between the curves y1 and y3. Are the two curves in 
phase?

(d) Sketch all three curves on the same axes.

solUTIoN  

(a)  The amplitude is 10, the period is 2p/3, and the phase is p/6. To find the hori-
zontal shift, we factor: 

y1  10 sin a 3t 
p

6
b  10 sin 3 a t 

p

18
b

  So the horizontal shift is p/18.

(b) The phase of y2 is p/2. So the phase difference is 

p

2


p

6


p

3

   The phase difference is not a multiple of 2p, so the two curves are out of phase. 

(c) The phase of y3 is 23p/6. So the phase difference is 

p

6
 a 

23p

6
b  4p  212p 2

  The phase difference is a multiple of 2p, so the two curves are in phase.

(d)  The graphs are shown in Figure 15. Notice that the curves y1 and y3 have the 
same graph because they are in phase.

Now Try exercises 29 and 35 ■

Note that the phase difference depends 
on the order in which the functions are 
given.
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exaMPle 11 ■ Using Phase
Ali, Brandon, and Carmen are sitting in a stopped Ferris wheel as shown in the figure 
in the margin. At time t  0 the Ferris wheel starts turning counterclockwise at the 
rate of 2 revolutions per minute. 

(a)  Find sine curves that model the height of each rider above the center line of the 
Ferris wheel at any time t  0. 

(b)  Find the phase difference between Brandon and Ali, between Ali and Carmen, 
and between Brandon and Carmen.

(c)  Find the horizontal shift of Ali’s equation. What is Ali’s lead or lag time (relative 
to the red seat in the figure)?

solUTIoN

(a)  The motion of each rider is modeled by a function of the form  
y  A sin1kt  b 2 . From the figure we see that the amplitude is A  5 m.  
Since the Ferris wheel makes two revolutions per minute, the period is  
1
2 min. So 

period 
2p

k


1

2
 min

   It follows that k  4p. From the figure we see that each rider starts at a different 
phase. Let’s consider Ali and Brandon to be ahead of the red seat, and let’s con-
sider Carmen to be behind the red seat. So their phases are p/2, 3p/4, and 
p/4, respectively. The equations are as follows.

Ali Brandon Carmen

yA  5 sin a4pt 
p

2
b yB  5 sin a4pt 

3p

4
b yC  5 sin a4pt 

p

4
b

(b) The phase differences are as follows.

Ali and Brandon Ali and Carmen Brandon and Carmen

3p

4


p

2


p

4

p

2
 a 

p

4
b 

3p

4

3p

4
 a 

p

4
b  p

(c)  The equation that models Ali’s position above the center line of the Ferris  
wheel was found in part (b). To find the horizontal shift, we factor Ali’s  
equation. 

 yA  5 sin a 4pt 
p

2
b     Ali’s equation

 yA  5 sin 4p a t 
1

8
b     Factor 4p

  We see that the horizontal shift is 1
8 to the left. This means that Ali’s lead  

time is 1
8 of a minute (so she is 1

8 of a minute ahead of the red seat).

Now Try exercise 61 ■

Brandon
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Carmen

5 m π
4
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CoNCePTs
 1. For an object in simple harmonic motion with amplitude a 

and period 2p/v, find an equation that models the displace-
ment y at time t if 

(a) y  0 at time t  0: y     .

(b) y  a at time t  0: y     .

 2. For an object in damped harmonic motion with initial ampli-
tude a, period 2p/v, and damping constant c, find an equa-
tion that models the displacement y at time t if 

(a) y  0 at time t  0: y     .

  (b) y  a at time t  0: y     .

 3. (a)  For an object in harmonic motion modeled by 

y  A sin1kt  b 2  the amplitude is    ,  

the period is    , and the phase is 

   . To find the horizontal shift, we factor out k 

to get y     . From this form of the equa-

tion we see that the horizontal shift is    .

(b) For an object in harmonic motion modeled by 

y  5 sin14t  p 2  the amplitude is    , the 

period is    , the phase is    , 

and the horizontal shift is    .

 4. Objects A and B are in harmonic motion modeled by 

  y  3 sin12t  p 2  and y  3 sin a2t 
p

2
b . The phase of 

  A is    , and the phase of B is    . 

The phase difference is    , so the objects are 

moving   (in phase/out of phase).

skIlls
5–12 ■ simple Harmonic Motion  The given function models 
the displacement of an object moving in simple harmonic 
motion.
(a) Find the amplitude, period, and frequency of the motion.
(b) Sketch a graph of the displacement of the object over one 

complete period.

 5. y  2 sin 3t  6. y  3 cos 12 t

 7. y  cos 0.3t  8. y  2.4 sin 3.6t

 9. y  0.25 cos a1.5t 
p

3
b  10. y   

3
2 sin10.2t  1.4 2

 11. y  5 cosA23 t  3
4 B  12. y  1.6 sin1 t  1.8 2

13–16 ■ simple Harmonic Motion  Find a function that models 
the simple harmonic motion having the given properties. Assume 
that the displacement is zero at time t  0.

 13. amplitude 10 cm,  period 3 s

14. amplitude 24 ft,  period 2 min

15. amplitude 6 in.,  frequency 5/p Hz

16. amplitude 1.2 m,  frequency 0.5 Hz

17–20 ■ simple Harmonic Motion  Find a function that models 
the simple harmonic motion having the given properties. Assume 
that the displacement is at its maximum at time t  0.

17. amplitude 60 ft,  period 0.5 min

18. amplitude 35 cm,  period 8 s

19. amplitude 2.4 m,  frequency 750 Hz

20. amplitude 6.25 in.,  frequency 60 Hz

21–28 ■ damped Harmonic Motion  An initial amplitude k, 
damping constant c, and frequency f or period p are given. (Recall 
that frequency and period are related by the equation f  1/p.)
(a)  Find a function that models the damped harmonic  

motion. Use a function of the form y  kect cos vt in 
Exercises 21–24 and of the form y  kect sin vt in  
Exercises 25–28.

(b) Graph the function.

21. k  2,  c  1.5,  f  3

22. k  15,  c  0.25,  f  0.6

23. k  100,  c  0.05,  p  4

24. k  0.75,  c  3,  p  3p

25. k  7,  c  10,  p  p/6

26. k  1,  c  1,  p  1

27. k  0.3,  c  0.2,  f  20

28. k  12,  c  0.01,  f  8

29–34 ■ amplitude, Period, Phase, and Horizontal shift  For 
each sine curve find the amplitude, period, phase, and horizontal 
shift. 

 29. y  5 sina2t 
p

2
b  30. y  10 sina t 

p

3
b

 31. y  100 sin15t  p 2  32. y  50 sina 1

2
 t 

p

5
b

 33. y  20 sin 2a t 
p

4
b  34. y  8 sin 4a t 

p

12
b

35–38 ■ Phase and Phase difference  A pair of sine curves  
with the same period is given. (a) Find the phase of each curve. 
(b) Find the phase difference between the curves. (c) Determine 
whether the curves are in phase or out of phase. (d) Sketch both 
curves on the same axes.

 35. y1  10 sin a3t 
p

2
b ;  y2  10 sin a3t 

5p

2
b

 36. y1  15 sin a2t 
p

3
b ;  y2  15 sin a2t 

p

6
b

6.6 exeRCIses
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 37. y1  80 sin 5a t 
p

10
b ;  y2  80 sin a5t 

p

3
b

 38. y1  20 sin 2a t 
p

2
b ;  y2  20 sin 2a t 

3p

2
b

aPPlICaTIoNs
39. a bobbing Cork  A cork floating in a lake is bobbing in sim-

ple harmonic motion. Its displacement above the bottom of 
the lake is modeled by

y  0.2 cos 20pt  8

  where y is measured in meters and t is measured in minutes.

(a) Find the frequency of the motion of the cork.

(b) Sketch a graph of y.

(c) Find the maximum displacement of the cork above the 
lake bottom.

40. FM Radio signals  The carrier wave for an FM radio signal is 
modeled by the function

y  a sin12p19.15 3 107 2 t 2
  where t is measured in seconds. Find the period and fre-

quency of the carrier wave.

41. blood Pressure  Each time your heart beats, your blood pres-
sure increases, then decreases as the heart rests between beats. 
A certain person’s blood pressure is modeled by the function

p1 t 2  115  25 sin1160pt 2
  where p1 t 2  is the pressure (in mmHg) at time t, measured in 

minutes.

(a) Find the amplitude, period, and frequency of p.

(b) Sketch a graph of p.

(c) If a person is exercising, his or her heart beats faster. 
How does this affect the period and frequency of p?

42. Predator Population Model  In a predator/prey model, the 
predator population is modeled by the function

y  900 cos 2t  8000

  where t is measured in years.

(a) What is the maximum population?

(b) Find the length of time between successive periods of 
maximum population.

43. Mass-spring system  A mass attached to a spring is moving 
up and down in simple harmonic motion. The graph gives its 
displacement d1 t 2  from equilibrium at time t. Express the 
function d in the form d1 t 2  a sin vt.

d(t)

t0

_5

5

1
5

2
5

3
5

4
5

44. Tides  The graph shows the variation of the water level rela-
tive to mean sea level in Commencement Bay at Tacoma, 
Washington, for a particular 24-h period. Assuming that this 
variation is modeled by simple harmonic motion, find an 
equation of the form y  a sin vt that describes the variation 
in water level as a function of the number of hours after 
midnight.

y
(feet)

t
(time)

MIDNIGHT

0

_6

6

6

12 6 123 9

MIDNIGHT A.M. P.M.

3 9

MIDNIGHT

Mean
sea level

45. Tides  The Bay of Fundy in Nova Scotia has the highest 
tides in the world. In one 12-h period the water starts at  
mean sea level, rises to 21 ft above, drops to 21 ft below, 
then returns to mean sea level. Assuming that the motion of 
the tides is simple harmonic, find an equation that describes 
the height of the tide in the Bay of Fundy above mean sea 
level. Sketch a graph that shows the level of the tides over a 
12-h period.

46. Mass-spring system  A mass suspended from a spring is 
pulled down a distance of 2 ft from its rest position, as shown 
in the figure. The mass is released at time t  0 and allowed 
to oscillate. If the mass returns to this position after 1 s, find 
an equation that describes its motion.

Rest
position

2 ft

47. Mass-spring system  A mass is suspended on a spring. 
The spring is compressed so that the mass is located  
5 cm above its rest position. The mass is released at  
time t  0 and allowed to oscillate. It is observed that  
the mass reaches its lowest point 1

2  s after it is released. 
Find an equation that describes the motion of the  
mass.
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48. Mass-spring system  The frequency of oscillation of an 
object suspended on a spring depends on the stiffness k of the 
spring (called the spring constant) and the mass m of the 
object. If the spring is compressed a distance a and then 
allowed to oscillate, its displacement is given by

f 1 t 2  a cos "k/m t

(a) A 10-g mass is suspended from a spring with stiffness  
k  3. If the spring is compressed a distance 5 cm and 
then released, find the equation that describes the  
oscillation of the spring.

(b) Find a general formula for the frequency (in terms of  
k and m).

(c) How is the frequency affected if the mass is increased? Is 
the oscillation faster or slower?

(d) How is the frequency affected if a stiffer spring is used 
(larger k)? Is the oscillation faster or slower?

49. Ferris Wheel  A Ferris wheel has a radius of 10 m, and the 
bottom of the wheel passes 1 m above the ground. If the  
Ferris wheel makes one complete revolution every 20 s, find 
an equation that gives the height above the ground of a per-
son on the Ferris wheel as a function of time.

10 m

1 m

50. Clock Pendulum  The pendulum in a grandfather clock makes 
one complete swing every 2 s. The maximum angle that the pen-
dulum makes with respect to its rest position is 10. We know 
from physical principles that the angle u between the pendulum 
and its rest position changes in simple harmonic fashion. Find an 
equation that describes the size of the angle u as a function of 
time. (Take t  0 to be a time when the pendulum is vertical.)

¨

51. Variable stars  The variable star Zeta Gemini has a period of 
10 days. The average brightness of the star is 3.8 magnitudes, 
and the maximum variation from the average is 0.2 magni-
tude. Assuming that the variation in brightness is simple 

harmonic, find an equation that gives the brightness of the 
star as a function of time.

52. Variable stars  Astronomers believe that the radius of a variable 
star increases and decreases with the brightness of the star. The 
variable star Delta Cephei (Example 4) has an average radius of 
20 million miles and changes by a maximum of 1.5 million 
miles from this average during a single pulsation. Find an equa-
tion that describes the radius of this star as a function of time.

53. biological Clocks  Circadian rhythms are biological processes 
that oscillate with a period of approximately 24 h. That is, a 
circadian rhythm is an internal daily biological clock. Blood 
pressure appears to follow such a rhythm. For a certain indi-
vidual the average resting blood pressure varies from a maxi-
mum of 100 mmHg at 2:00 p.m. to a minimum of 80 mmHg at 
2:00 a.m. Find a sine function of the form

f 1 t 2  a sin1v1 t  c 22  b

  that models the blood pressure at time t, measured in hours 
from midnight.

12 A.M. 6 A.M. 12 P.M. 6 P.M. 12 A.M. 6 A.M.

110

100

90

80

70

B
lo

od
 p

re
ss

ur
e 

(m
m

H
g)

54. electric Generator  The armature in an electric generator is 
rotating at the rate of 100 revolutions per second (rps). If the 
maximum voltage produced is 310 V, find an equation that 
describes this variation in voltage. What is the RMS voltage? 
(See Example 6 and the margin note adjacent to it.)

55. electric Generator  The graph shows an oscilloscope reading 
of the variation in voltage of an AC current produced by a 
simple generator.

(a) Find the maximum voltage produced.

(b) Find the frequency (cycles per second) of the generator.

(c) How many revolutions per second does the armature in 
the generator make?

(d) Find a formula that describes the variation in voltage as a 
function of time.

(v
ol

ts
)

_50

50

0.1 t)
(s)
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56. doppler effect  When a car with its horn blowing drives  
by an observer, the pitch of the horn seems higher as it 
approaches and lower as it recedes (see the figure below). 
This phenomenon is called the Doppler effect. If the sound 
source is moving at speed √ relative to the observer and if the 
speed of sound is √0, then the perceived frequency f is related 
to the actual frequency f0 as follows.

f  f0 a
√0

√0  √
b

  We choose the minus sign if the source is moving toward the 
observer and the plus sign if it is moving away.

    Suppose that a car drives at 110 ft/s past a woman standing 
on the shoulder of a highway, blowing its horn, which has a 
frequency of 500 Hz. Assume that the speed of sound is  
1130 ft/s. (This is the speed in dry air at 70  F.)

(a) What are the frequencies of the sounds that the woman 
hears as the car approaches her and as it moves away 
from her?

(b) Let A be the amplitude of the sound. Find functions of 
the form

y  A sin vt

    that model the perceived sound as the car approaches the 
woman and as it recedes.

57. Motion of a building  A strong gust of wind strikes a tall 
building, causing it to sway back and forth in damped har-
monic motion. The frequency of the oscillation is 0.5 cycle 
per second, and the damping constant is c  0.9. Find an 
equation that describes the motion of the building. (Assume 
that k  1, and take t  0 to be the instant when the gust of 
wind strikes the building.)

58. shock absorber  When a car hits a certain bump on the road, a 
shock absorber on the car is compressed a distance of 6 in., then 
released (see the figure). The shock absorber vibrates in damped 
harmonic motion with a frequency of 2 cycles per second. The 
damping constant for this particular shock absorber is 2.8.

(a) Find an equation that describes the displacement of the 
shock absorber from its rest position as a function of 
time. Take t  0 to be the instant that the shock absorber 
is released.

(b) How long does it take for the amplitude of the vibration 
to decrease to 0.5 in.?

59. Tuning Fork  A tuning fork is struck and oscillates in 
damped harmonic motion. The amplitude of the motion is 
measured, and 3 s later it is found that the amplitude has 
dropped to 1

4 of this value. Find the damping constant c for 
this tuning fork.

60. Guitar string  A guitar string is pulled at point P a distance 
of 3 cm above its rest position. It is then released and 
vibrates in damped harmonic motion with a frequency of  
165 cycles per second. After 2 s, it is observed that the ampli-
tude of the vibration at point P is 0.6 cm.

(a) Find the damping constant c.

(b) Find an equation that describes the position of point P 
above its rest position as a function of time. Take t  0 
to be the instant that the string is released.

 61. Two Fans  Electric fans A and B have radius 1 ft and, when 
switched on, rotate counterclockwise at the rate of 100 revo-
lutions per minute. Starting with the position shown in the 
figure, the fans are simultaneously switched on. 

(a) For each fan, find an equation that gives the height of the 
red dot (above the horizontal line shown) t minutes after 
the fans are switched on. 

(b) Are the fans rotating in phase? Through what angle 
should fan A be rotated counterclockwise in order that 
the two fans rotate in phase?

A B

62. alternating Current  Alternating current is produced when 
an armature rotates about its axis in a magnetic field, as 
shown in the figure. Generators A and B rotate counterclock-
wise at 60 Hz (cycles per second) and each generator pro-
duces a maximum of 50 V. The voltage for each generator is  
modeled by 

EA  50 sin1120pt 2   EB  50 sin a120pt 
5p

4
b

(a) Find the voltage phase for each generator, and find the 
phase difference.

(b) Are the generators producing voltage in phase? Through 
what angle should the armature in the second generator 
be rotated counterclockwise in order that the two genera-
tors produce voltage in phase?

N

Wire

Magnets

S
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dIsCUss ■ dIsCoVeR ■ PRoVe ■ WRITe
63. dIsCUss: Phases of sine  The phase of a sine curve

y  sin1kt  b 2 represents a particular location on the graph 
of the sine function y  sin t. Specifically, when t  0, we 
have y  sin b, and this corresponds to the point 1b, sin b 2  
on the graph of y  sin t. Observe that each point on the 
graph of y  sin t has different characteristics. For example, 
for t  p/6, we have sin t  1

2 and the values of sine are 
increasing, whereas at t  5p/6, we also have sin t  1

2 but 
the values of sine are decreasing. So each point on the graph 
of sine corresponds to a different “phase” of a sine curve. 
Complete the descriptions for each label on the graph below. 

y

x0

y

t01
(11π/6, __)
________

(__, __)
________

(0, 0)
increasing

(__, __)
________

(7π/6, __)
________

(5π/6, __)
________(π/6, __)

________
(__, __)

________

64. dIsCUss: Phases of the Moon  During the course of a lunar 
cycle (about 1 month) the moon undergoes the familiar lunar 
phases. The phases of the moon are completely analogous to 
the phases of the sine function described in Exercise 63. The 
figure below shows some phases of the lunar cycle starting 
with a “new moon,” “waxing crescent moon,” “first quarter 
moon,” and so on. The next to last phase shown is a “waning 
crescent moon.” Give similar descriptions for the other 
phases of the moon shown in the figure. What are some 
events on the earth that follow a monthly cycle and are in 
phase with the lunar cycle? What are some events that are out 
of phase with the lunar cycle? 

The Unit Circle (p. 504)
The unit circle is the circle of radius 1 centered at (0, 0). The 
equation of the unit circle is x2  y2  1.

Terminal Points on the Unit Circle (pp. 504–506)
The terminal point P1x, y 2  
determined by the real num-
ber t is the point obtained by 
traveling counterclockwise a 
distance t along the unit  
circle, starting at 11, 0 2 .
Special terminal points are 
listed in Table 1 on page 506.

The Reference Number (pp. 507–508)
The reference number associated with the real number t is the 
shortest distance along the unit circle between the terminal point 
determined by t and the x-axis.

The Trigonometric Functions (p. 511)
Let P1x, y 2  be the terminal point on the unit circle determined by 
the real number t. Then for nonzero values of the denominator the 
trigonometric functions are defined as follows.

 sin t  y    cos t  x    tan t 
y

x

 csc t 
1
y

   sec t 
1
x

  cot t 
x

y

special Values of the Trigonometric Functions (p. 512)
The trigonometric functions have the following values at the spe-
cial values of t.

t sin t cos t tan t csc t sec t cot t

0 0 1 0 — 1 —
p
6

1
2

!3
2

!3
3 2 2!3

3 !3
p
4

!2
2

!2
2 1 !2 !2 1

p
3

!3
2

1
2 !3 2!3

3 2 !3
3

p
2 1 0 — 1 — 0

■ PRoPeRTIes aNd FoRMUlas

CHaPTeR 6 ■ ReVIeW

y

x0 1

tP(x, y)
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basic Trigonometric Identities (pp. 516–517)
An identity is an equation that is true for all values of the vari-
able. The basic trigonometric identities are as follows.

Reciprocal Identities:

csc t 
1

sin t
  sec t 

1

cos t
  cot t 

1

tan t

Pythagorean Identities:

 sin2 t  cos2 t  1   

 tan2 t  1  sec2 t

 1  cot2 t  csc2 t

Even-Odd Properties:

 sin1t 2  sin t    cos1t 2  cos t   tan1t 2  tan t

 csc1t 2  csc t   sec1t 2  sec t   cot1t 2  cot t

Periodic Properties (p. 521)
A function f is periodic if there is a positive number p such that 
f 1x  p 2  f 1x 2  for every x. The least such p is called the 
period of f. The sine and cosine functions have period 2p, and 
the tangent function has period p. 

 sin1 t  2p 2  sin t

 cos1 t  2p 2  cos t

 tan1 t  p 2  tan t

Graphs of the sine and Cosine Functions (p. 522)
The graphs of sine and cosine have amplitude 1 and period 2p.

y

x0

y=ß x
1

_1
π 2π

Period 2π

y

x0

y=ç x
1

_1
π 2π

Period 2π

Amplitude 1, Period 2π

Graphs of Transformations of sine and Cosine (p. 526)

y

x0

a>0
a

_a
b

One period

Amplitude a, Period , Horizontal shift b

2π
kb+

y

x0

a>0
a

_a
b

One period

2π
kb+

2π
k

y=a ß k(x-b)   (k>0) y=a ç k(x-b)   (k>0)

An appropriate interval on which to graph one complete period is 
3b, b  12p/k 2 4.

Graphs of the Tangent and Cotangent Functions (pp. 536–537)
These functions have period p.

y=† x y=ˇ x
y

xπ
2

0 ππ
2__π

1

y

xπ
2

3π
2

π
2_

1

0 π

To graph one period of y  a tan kx, an appropriate interval is 
1p/2k, p/2k 2 .
To graph one period of y  a cot kx, an appropriate interval is 
10, p/k 2 .

Graphs of the Cosecant and secant Functions (pp. 538–539)
These functions have period 2p.

y

x0

y= x

1

_1
π 2π

y=˚ x
y

x0

1

_1
π 2π

To graph one period of y  a csc kx, an appropriate interval is 
10, 2p/k 2 .
To graph one period of y  a sec kx, an appropriate interval is 
10, 2p/k 2 .

Inverse Trigonometric Functions (pp. 542–545)
Inverse functions of the trigonometric functions are defined by 
restricting the domains as follows.

Function Domain Range

sin1 31, 1 4 C 
p
2 , p2 D

cos1 31, 1 4 30, p 4
tan1 1`, ` 2 A 

p
2 , p2 B

The inverse trigonometric functions are defined as follows.

 sin1 x  y 3 sin y  x

 cos1 x  y 3 cos y  x

 tan1 x  y 3 tan y  x
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Graphs of these inverse functions are shown below.

y

x0 1_1
π
2

π
2

_

y

x0
π
2

π
2

_

y

x0 1_1

π
2

π

y=ß–¡ x y=†–¡ xy=ç–¡ x

Harmonic Motion (p. 548)
An object is in simple harmonic motion if its displacement y at 
time t is modeled by y  a sin vt or y  a cos vt. In this case the 
amplitude is 0  a 0 , the period is 2p/v, and the frequency is v/2p.

damped Harmonic Motion (p. 553)
An object is in damped harmonic motion if its displacement y 
at time t is modeled by y  kect sin vt or y  kect cos vt, 

c  0. In this case c is the damping constant, k is the initial 
amplitude, and 2p/v is the period.

Phase (pp. 555–556)
Any sine curve can be expressed in the following equivalent 
forms:

y  A sin1kt  b 2 , the phase is b

y  A sin ka t 
b

k
b , the horizontal shift is 

b

k

The phase (or phase angle) b is the initial angular position of the 
motion. The number b/k is also called the lag time (b  0) or 
lead time (b  0).

Suppose that two objects are in harmonic motion with the same 
period modeled by 

y1  A sin1kt  b 2   and  y2  A sin1kt  c 2
The phase difference between y1 and y2 is b  c. The motions 
are “in phase” if the phase difference is a multiple of 2p; other-
wise, the motions are “out of phase.”

 1. (a)  What is the unit circle, and what is the equation of the 
unit circle?

(b) Use a diagram to explain what is meant by the terminal 
point P1x, y 2  determined by t.

(c) Find the terminal point for t 
p

2
.

(d) What is the reference number associated with t?

(e) Find the reference number and terminal point for 

 t 
7p

4
.

 2. Let t be a real number, and let P1x, y 2  be the terminal point 
determined by t.

(a) Write equations that define sin t, cos t, tan t, csc t, sec t, 
and cot t.

(b) In each of the four quadrants, identify the trigonometric 
functions that are positive.

(c) List the special values of sine, cosine, and tangent.

 3. (a)  Describe the steps we use to find the value of a trigono-
metric function at a real number t. 

(b) Find sin 
5p

6
.

 4. (a) What is a periodic function? 

(b) What are the periods of the six trigonometric functions?

(c) Find sin 
19p

4
.

 5. (a) What is an even function, and what is an odd function?

(b) Which trigonometric functions are even? Which are odd?

(c) If sin t  0.4, find sin1t 2 .
(d) If cos s  0.7, find cos1s 2 .

 6. (a) State the reciprocal identities.

(b) State the Pythagorean identities.

 7. (a) Graph the sine and cosine functions.

(b) What are the amplitude, period, and horizontal shift for 
the sine curve y  a sin k1x  b 2  and for the cosine 
curve y  a cos k1x  b 2 ?

(c) Find the amplitude, period, and horizontal shift of 

 y  3 sina2x 
p

6
b .

 8. (a) Graph the tangent and cotangent functions.

(b) For the curves y  a tan kx and y  a cot kx, state appro-
priate intervals to graph one complete period of each curve.

(c) Find an appropriate interval to graph one complete 
period of y  5 tan 3x.

 9. (a) Graph the cosecant and secant functions.

(b) For the curves y  a csc kx and y  a sec kx, state 
appropriate intervals to graph one complete period of 
each curve.

(c) Find an appropriate interval to graph one period of 
y  3 csc 6x.

 10. (a)  Define the inverse sine function, the inverse cosine func-
tion, and the inverse tangent function. 

(b) Find sin1 
1

2
, cos1 

!2

2
, and tan11.

(c) For what values of x is the equation sin1sin1
 x 2  x 

true? For what values of x is the equation 
sin11sin x 2  x true?

 11. (a) What is simple harmonic motion?

(b) What is damped harmonic motion?

(c) Give real-world examples of harmonic motion.

■ CoNCePT CHeCk
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CHAPTER 6 ■ Review 565

 12. Suppose that an object is in simple harmonic motion given by 

  y  5 sina2t 
p

3
b .

(a) Find the amplitude, period, and frequency. 

(b) Find the phase and the horizontal shift.

 13. Consider the following models of harmonic motion.

y1  5 sin12t  1 2   y2  5 sin12t  3 2
  Do both motions have the same frequency? What is the phase 

for each equation? What is the phase difference? Are the 
objects moving in phase or out of phase?

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ exeRCIses

1–2 ■ Terminal Points  A point P1x, y 2  is given. (a) Show that 
P is on the unit circle. (b) Suppose that P is the terminal point 
determined by t. Find sin t, cos t, and tan t.

 1. P a 

!3

2
,  

1

2
b   2. P a 3

5
,  

4

5
b

3–6 ■ Reference Number and Terminal Point  A real number t is 
given. (a) Find the reference number for t. (b) Find the terminal 
point P1x, y 2  on the unit circle determined by t. (c) Find the six 
trigonometric functions of t.

 3. t 
2p

3
  4. t 

5p

3

 5. t   

11p

4
  6. t   

7p

6

7–16 ■ Values of Trigonometric Functions  Find the value of the 
trigonometric function. If possible, give the exact value; other-
wise, use a calculator to find an approximate value rounded to 
five decimal places.

 7. (a) sin 
3p

4
 (b) cos 

3p

4

 8. (a) tan 
p

3
 (b) tan a 

p

3
b

 9. (a) sin 1.1 (b) cos 1.1

10. (a) cos 
p

5
 (b) cos a 

p

5
b

11. (a) cos 
9p

2
 (b) sec 

9p

2

12. (a) sin 
p

7
 (b) csc 

p

7

13. (a) tan 
5p

2
 (b) cot 

5p

2

14. (a) sin 2p (b) csc 2p

15. (a) tan 
5p

6
 (b) cot 

5p

6

16. (a) cos 
p

3
 (b) sin 

p

6

17–20 ■ Fundamental Identities  Use the fundamental identities 
to write the first expression in terms of the second.

17. 
tan t

cos t
,  sin t 

18. tan2 t sec t,  cos t

19. tan t,  sin t ;  t in Quadrant IV

20. sec t,  sin t ;  t in Quadrant II

21–24 ■ Values of Trigonometric Functions  Find the values  
of the remaining trigonometric functions at t from the given 
information.

21. sin t  5
13,  cos t   

12
13

22. sin t   
1
2 ,  cos t  0

23. cot t   
1
2 ,  csc t  !5/2

24. cos t   
3
5 ,  tan t  0

25–28 ■ Values of Trigonometric Functions  Find the values of 
the trigonometric function of t from the given information. 

 25. sec t  cot t; tan t  1
4, terminal point for t in  

Quadrant III

 26. csc t  sec t; sin t   
8

17 , terminal point for t in  
Quadrant IV

 27. tan t  sec t; cos t  3
5, terminal point for t in  

Quadrant I

 28. sin2 t  cos2 t; sec t  5, terminal point for t in  
Quadrant II

29–36 ■ Horizontal shifts  A trigonometric function is given. 
(a) Find the amplitude, period, and horizontal shift of the func-
tion. (b) Sketch the graph.

29. y  10 cos 12 x 30. y  4 sin 2px

31. y  sin 12 x 32. y  2 sin a x 
p

4
b

33. y  3 sin(2x  2) 34. y  cos 2a x 
p

2
b

35. y  cos ap

2
 x 

p

6
b  36. y  10 sina2x 

p

2
b

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



566 CHAPTER 6 ■ Trigonometric Functions: Unit Circle Approach  

CHaPTeR 6
37–40 ■ Functions from a Graph  The graph of one period of a 
function of the form y  a sin k1x  b 2  or y  a cos k1x  b 2  is 
shown. Determine the function.

37. y

x0

_5

5

π
4

π
2

 38. y

x0

(1, 2)

39.

x

y

01
3 1

3
2
3

1
2

1
2

 40. y

0 x

!_     , _4@2π
3

41–48 ■ Graphing Trigonometric Functions  Find the period, 
and sketch the graph.

41. y  3 tan x 42. y  tan px

43. y  2 cot a x 
p

2
b  44. y  seca 1

2
 x 

p

2
b

45. y  4 csc12x  p 2  46. y  tan a x 
p

6
b

47. y  tana 1

2
 x 

p

8
b  48. y  4 sec 4px

49–52 ■ evaluating expressions Involving Inverse Trigonometric 
Functions  Find the exact value of each expression, if it is defined.

49. sin1 1 50. cos1A 
1
2 B

 51. sin1 a sin 
13p

6
b  52. tan a cos1 a 1

2
bb

53–54 ■ amplitude, Period, Phase, and Horizontal shift  For each 
sine curve find the amplitude, period, phase, and horizontal shift. 

 53. y  100 sin 8a t 
p

16
b  54. y  80 sin 3a t 

p

2
b

55–56 ■ Phase and Phase difference  A pair of sine curves  
with the same period is given. (a) Find the phase of each curve. 
(b) Find the phase difference between the curves. (c) Determine 
whether the curves are in phase or out of phase. (d) Sketch both 
curves on the same axes.

 55. y1  25 sin 3a t 
p

2
b ; y2  10 sin a3t 

5p

2
b

 56. y1  50 sin a10t 
p

2
b ; y2  50 sin 10a t 

p

20
b

57–62 ■ even and odd Functions  A function is given. (a) Use 
a graphing device to graph the function. (b) Determine from the 
graph whether the function is periodic and, if so, determine the 
period. (c) Determine from the graph whether the function is odd, 
even, or neither.

57. y  0  cos x 0  58. y  sin1cos x 2
59. y  cos120.1x 2  60. y  1  2cosx

61. y  0  x 0  cos 3x 62. y  !x sin 3x, x  0

63–66 ■ sine and Cosine Curves with Variable amplitude   
Graph the three functions on a common screen. How are the 
graphs related?

63. y  x,  y  x,  y  x sin x

64. y  2x,  y  2x,  y  2x cos 4px

65. y  x,  y  sin 4x,  y  x  sin 4x

66. y  sin2 x,  y  cos2 x,  y  sin2 x  cos2 x

67–68 ■ Maxima and Minima  Find the maximum and mini-
mum values of the function.

67. y  cos x  sin 2x 68. y  cos x  sin2 x

69-70 ■ solving Trigonometric equations Graphically  Find all 
solutions of the equation that lie in the given interval. State each 
answer rounded to two decimal places.

 69. sin x  0.3; 30, 2p 4  70. cos 3x  x; 30, p 4
71. discover the Period of a Trigonometric Function  Let 

y1  cos1sin x 2  and y2  sin1cos x 2 .
(a) Graph y1 and y2 in the same viewing rectangle.

(b) Determine the period of each of these functions from its 
graph.

(c) Find an inequality between sin1cos x 2  and cos1sin x 2  
that is valid for all x.

72. simple Harmonic Motion  A point P moving in simple har-
monic motion completes 8 cycles every second. If the ampli-
tude of the motion is 50 cm, find an equation that describes 
the motion of P as a function of time. Assume that the point 
P is at its maximum displacement when t  0.

73. simple Harmonic Motion  A mass suspended from a spring 
oscillates in simple harmonic motion at a frequency of  
4 cycles per second. The distance from the highest to the 
lowest point of the oscillation is 100 cm. Find an equation 
that describes the distance of the mass from its rest position 
as a function of time. Assume that the mass is at its lowest 
point when t  0.

74. damped Harmonic Motion  The top floor of a building 
undergoes damped harmonic motion after a sudden brief 
earthquake. At time t  0 the displacement is at a maximum, 
16 cm from the normal position. The damping constant is  
c  0.72, and the building vibrates at 1.4 cycles per second.

(a) Find a function of the form y  kect cos vt to model the 
motion.

(b) Graph the function you found in part (a).

(c) What is the displacement at time t  10 s?
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 1. The point P1x, y 2  is on the unit circle in Quadrant IV. If x  !11/6, find y.

 2. The point P in the figure at the left has y-coordinate 4
5. Find:

(a) sin t (b) cos t

(c) tan t (d) sec t

 3. Find the exact value.

(a) sin 
7p

6
 (b) cos 

13p

4

(c) tan a 

5p

3
b  (d) csc 

3p

2

 4. Express tan t in terms of sin t, if the terminal point determined by t is in Quadrant II.

 5. If cos t   
8

17  and if the terminal point determined by t is in Quadrant III, find  
tan t  cot t  csc t.

6–7 ■ A trigonometric function is given.

(a) Find the amplitude, period, phase, and horizontal shift of the function.

(b) Sketch the graph of one complete period.

 6. y  5 cos 4x 7. y  2 sin a 1

2
 x 

p

6
b

8–9 ■ Find the period, and graph the function.

 8. y  csc 2x 9. y  tana2x 
p

2
b

10. Find the exact value of each expression, if it is defined.

(a) tan1 1 (b) cos1 a 

!3

2
b

(c) tan11 tan 3p 2  (d) cos1 tan11!3 22
11. The graph shown at left is one period of a function of the form y  a sin k1x  b 2 .  

Determine the function.

 12. The sine curves y1  30 sin a6t 
p

2
b  and y2  30 sin a6t 

p

3
b  have the same period.

(a) Find the phase of each curve. 

(b) Find the phase difference between y1 and y2. 

(c) Determine whether the curves are in phase or out of phase. 

(d) Sketch both curves on the same axes.

13. Let f 1x 2 
cos x

1  x2 .

(a) Use a graphing device to graph f in an appropriate viewing rectangle.

(b) Determine from the graph if f is even, odd, or neither.

(c) Find the minimum and maximum values of f.

14. A mass suspended from a spring oscillates in simple harmonic motion. The mass com-
pletes 2 cycles every second, and the distance between the highest point and the lowest 
point of the oscillation is 10 cm. Find an equation of the form y  a sin vt that gives the 
distance of the mass from its rest position as a function of time.

15. An object is moving up and down in damped harmonic motion. Its displacement at time  
t  0 is 16 in.; this is its maximum displacement. The damping constant is c  0.1, and the 
frequency is 12 Hz.

(a) Find a function that models this motion.

(b) Graph the function.

y

x0

2

_2

2π
3

π
3_

CHaPTeR 6 TesT

0 1

tP

y

x
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568

Fitting sinusoidal Curves to dataFoCUs oN ModelING

In previous Focus on Modeling sections, we learned how to fit linear, polynomial, ex-
ponential, and power models to data. Figure 1 shows some scatter plots of data. The 
scatter plots can help guide us in choosing an appropriate model. (Try to determine 
what type of function would best model the data in each graph.) If the scatter plot indi-
cates simple harmonic motion, then we might try to model the data with a sine or cosine 
function. The next example illustrates this process.

FIGURe 1

exaMPle 1 ■ Modeling the Height of a Tide
The water depth in a narrow channel varies with the tides. Table 1 shows the water 
depth over a 12-h period. A scatter plot of the data is shown in Figure 2.

(a)  Find a function that models the water depth with respect to time.

(b)  If a boat needs at least 11 ft of water to cross the channel, during which times can 
it safely do so?

Table 1

Time Depth (ft)

12:00 a.m.  9.8
 1:00 a.m. 11.4
 2:00 a.m. 11.6
 3:00 a.m. 11.2
 4:00 a.m.  9.6
 5:00 a.m.  8.5
 6:00 a.m.  6.5
 7:00 a.m.  5.7
 8:00 a.m.  5.4
 9:00 a.m.  6.0
10:00 a.m.  7.0
11:00 a.m.  8.6
12:00 p.m. 10.0

FIGURe 2

12
y

9

6

3

2 4 6 8 10 120 t
(h)

(ft)

solUTIoN

(a)  The data appear to lie on a cosine (or sine) curve. But if we graph y  cos t  
on the same graph as the scatter plot, the result in Figure 3 is not even close to  
the data. To fit the data, we need to adjust the vertical shift, amplitude, period, 
and phase shift of the cosine curve. In other words, we need to find a function of 
the form

y  a cos1v1 t  c 22  b

 We use the following steps, which are illustrated by the graphs in the margin on 
the next page.

12
y

9

6

3

2

4

6 8

10
0 t

(h)
12

(ft)

y=cos t

FIGURe 3
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  Fitting Sinusoidal Curves to Data 569

■  adjust the Vertical shift The vertical shift b is the average of the maximum 
and minimum values:

 b  vertical shift

 
1

2
 # 1maximum value  minimum value 2

 
1

2
 111.6  5.4 2  8.5

■  adjust the amplitude The amplitude a is half of the difference between the 
maximum and minimum values:

 a  amplitude

 
1

2
 # 1maximum value  minimum value 2

 
1

2
 111.6  5.4 2  3.1

■  adjust the Period The time between consecutive maximum and minimum 
values is half of one period. Thus

 
2p

v
 period

  2 # 1 time of maximum value  time of minimum value 2
  218  2 2  12

 Thus v  2p/12  0.52.

■  adjust the Horizontal shift Since the maximum value of the data occurs at 
approximately t  2.0, it represents a cosine curve shifted 2 h to the right. So

 c  phase shift

  time of maximum value

  2.0

■  The Model We have shown that a function that models the tides over the 
given time period is given by

y  3.1 cos10.521 t  2.0 22  8.5

 A graph of the function and the scatter plot are shown in Figure 4. It appears that 
the model we found is a good approximation to the data.

12
y

9

6

3

2 4 6 8 100 t
(h)

12

(ft)

y=3.1 cosÓ0.52(t-2.0)Ô+8.5

FIGURe 4

12
y

9

6

3

2 4 6 8 100 t
(h)

12

(ft)
y= cos t+8.5

12
y

9

6

3

2 4 6 8 100 t
(h)

12

(ft)

y=3.1 cos t+8.5

12
y

9

6

3

2 4 6 8 100 t
(h)

12

(ft)

y=3.1 cos(0.52 t)+8.5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



570 Focus on Modeling

(b)  We need to solve the inequality y  11. We solve this inequality graphically  
by graphing y  3.1 cos 0.521 t  2.0 2  8.5 and y  11 on the same graph. 
From the graph in Figure 5 we see the water depth is higher than 11 ft between  
t ^ 0.8 and t ^ 3.2. This corresponds to the times 12:48 a.m. to 3:12 a.m.

13

0 12

t ~ 3.2t ~ 0.8 ~~

FIGURe 5  ■

In Example 1 we used the scatter plot to guide us in finding a cosine curve that gives 
an approximate model of the data. Some graphing calculators are capable of finding a 
sine or cosine curve that best fits a given set of data points. The method these calculators 
use is similar to the method of finding a line of best fit, as explained on page 174.

exaMPle 2 ■ Fitting a sine Curve to data
(a)  Use a graphing device to find the sine curve that best fits the depth of water data 

in Table 1 on page 568.

(b) Compare your result to the model found in Example 1.

solUTIoN

(a)  Using the data in Table 1 and the SinReg command on the TI-83 calculator, we 
get a function of the form

y  a sin1bt  c 2  d

 where

a  3.1     b  0.53

c  0.55   d  8.42

 So the sine function that best fits the data is

y  3.1 sin10.53t  0.55 2  8.42

(b)  To compare this with the function in Example 1, we change the sine function to a 
cosine function by using the reduction formula sin u  cos1u  p/2 2 .

 y  3.1 sin10.53t  0.55 2  8.42

  3.1 cos a 0.53t  0.55 
p

2
b  8.42    Reduction formula

  3.1 cos10.53t  1.02 2  8.42

  3.1 cos10.531 t  1.92 22  8.42     Factor 0.53

Comparing this with the function we obtained in Example 1, we see that there are 
small differences in the coefficients. In Figure 6 we graph a scatter plot of the  
data together with the sine function of best fit. ■

In Example 1 we estimated the values of the amplitude, period, and shifts from the 
data. In Example 2 the calculator computed the sine curve that best fits the data (that is, 
the curve that deviates least from the data as explained on page 174). The different ways 
of obtaining the model account for the differences in the functions.

For the TI-83 and TI-84 the command 
SinReg (for sine regression) finds the 
sine curve that best fits the given data.

SinReg
y=a*sin(bx+c)+d
a=3.097877596
b=.5268322697
c=.5493035195
d=8.424021899

Output of the SinReg function  
on the TI-83.

12
y

9

6

3

2 4 6 8 100 t
(h)

12

(ft)

FIGURe 6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



  Fitting Sinusoidal Curves to Data 571

PRobleMs
1–4 ■ Modeling Periodic data  A set of data is given.
(a) Make a scatter plot of the data.

(b)  Find a cosine function of the form y  a cos1v1 t  c 22  b that models the data,  
as in Example 1.

(c)  Graph the function you found in part (b) together with the scatter plot. How well does the 
curve fit the data?

(d)  Use a graphing calculator to find the sine function that best fits the data, as in  
Example 2.

(e)  Compare the functions you found in parts (b) and (d). [Use the reduction formula 
sin u  cos1u  p/2 2 .]

1. 
t y

 0 2.1
 2 1.1
 4 0.8
 6 2.1
 8 1.3
10 0.6
12 1.9
14 1.5

  2. 
t y

  0 190
 25 175
 50 155
 75 125
100 110
125  95
150 105
175 120
200 140
225 165
250 185
275 200
300 195
325 185
350 165

  3. 
t y

0.1 21.1
0.2 23.6
0.3 24.5
0.4 21.7
0.5 17.5
0.6 12.0
0.7 5.6
0.8 2.2
0.9 1.0
1.0 3.5
1.1 7.6
1.2 13.2
1.3 18.4
1.4 23.0
1.5 25.1

  4. 
t y

0.0 0.56
0.5 0.45
1.0 0.29
1.5 0.13
2.0 0.05
2.5 0.10
3.0 0.02
3.5 0.12
4.0 0.26
4.5 0.43
5.0 0.54
5.5 0.63
6.0 0.59

 5. Circadian Rhythms  Circadian rhythm (from the Latin circa—about, and diem—day) is 
the daily biological pattern by which body temperature, blood pressure, and other physio-
logical variables change. The data in the table below show typical changes in human body 
temperature over a 24-h period (t  0 corresponds to midnight).

(a) Make a scatter plot of the data.

(b) Find a cosine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in  
Example 2).

Time
Body  

temperature (°C) Time
Body  

temperature (°C)

 0 36.8 14 37.3
 2 36.7 16 37.4
 4 36.6 18 37.3
 6 36.7 20 37.2
 8 36.8 22 37.0
10 37.0 24 36.8
12 37.2
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572 Focus on Modeling

 6. Predator Population  When two species interact in a predator/prey relationship, the 
populations of both species tend to vary in a sinusoidal fashion. (See Discovery Project: 
Predator/Prey Models referenced on page 529). In a certain midwestern county, the main 
food source for barn owls consists of field mice and other small mammals. The table gives 
the population of barn owls in this county every July 1 over a 12-year period.

(a) Make a scatter plot of the data.

(b) Find a sine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in  
Example 2). Compare to your answer from part (b).

 7. salmon survival  For reasons that are not yet fully understood, the number of fingerling 
salmon that survive the trip from their riverbed spawning grounds to the open ocean varies 
approximately sinusoidally from year to year. The table shows the number of salmon that 
hatch in a certain British Columbia creek and then make their way to the Strait of Georgia. 
The data are given in thousands of fingerlings, over a period of 16 years.

(a) Make a scatter plot of the data.

(b) Find a sine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in  
Example 2). Compare to your answer from part (b).

Year Salmon (3 1000) Year Salmon (3 1000)

1985 43 1993 56
1986 36 1994 63
1987 27 1995 57
1988 23 1996 50
1989 26 1997 44
1990 33 1998 38
1991 43 1999 30
1992 50 2000 22

 8. sunspot activity  Sunspots are relatively “cool” regions on the sun that appear as dark 
spots when observed through special solar filters. The number of sunspots varies in an  
11-year cycle. The table gives the average daily sunspot count for the years 1968–2012.

(a) Make a scatter plot of the data.

(b) Find a cosine curve that models the data (as in Example 1).

(c) Graph the function you found in part (b) together with the scatter plot.

(d) Use a graphing calculator to find the sine curve that best fits the data (as in Exam-
ple 2). Compare to your answer in part (b).

Year Sunspots Year Sunspots Year Sunspots Year Sunspots

1968 106 1980 154 1991 145 2002 104
1969 105 1981 140 1992  94 2003  63
1970 104 1982 115 1993  54 2004  40
1971  67 1983  66 1994  29 2005  30
1972  69 1984  45 1995  17 2006  15
1973  38 1985  17 1996   8 2007   7
1974  34 1986  13 1997  21 2008   3
1975  15 1987  29 1998  64 2009   3
1976  12 1988 100 1999  93 2010  16
1977  27 1989 157 2000 119 2011  56
1978  92 1990 142 2001 111 2012  58
1979 155

Source: Solar Influence Data Analysis Center, Belgium

Year Owl population

 0 50
 1 62
 2 73
 3 80
 4 71
 5 60
 6 51
 7 43
 8 29
 9 20
10 28
11 41
12 49

Sc
ie

nc
e 

So
ur

ce
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In Chapters 5 and 6  we studied graphical and geometric properties of the 
trigonometric functions. In this chapter we study algebraic properties of 
these functions, that is, simplifying and factoring expressions and solving 
equations that involve trigonometric functions. 

We have used the trigonometric functions to model different real-world  
phenomena, including periodic motion (such as the sound waves produced 
by a band). To obtain information from a model, we often need to solve 
equations. If the model involves trigonometric functions, we need to solve 
trigonometric equations. Solving trigonometric equations often involves 
using trigonometric identities. We’ve already encountered some basic 
trigonometric identities in the preceding chapters. We begin this chapter by 
finding many new identities.

573

Analytic Trigonometry7
7.1 Trigonometric Identities
7.2 Addition and Subtraction 

Formulas
7.3 Double-Angle, Half-Angle, 

and Product-Sum Formulas
7.4 Basic Trigonometric 

Equations
7.5 More Trigonometric 
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574 CHAPTER 7 ■ Analytic Trigonometry

7.1 TrIgonoMETrIc IDEnTITIES
■ Simplifying Trigonometric Expressions ■ Proving Trigonometric Identities

Recall that an equation is a statement that two mathematical expressions are equal. For 
example, the following are equations:

x  2  5

1x  1 2 2  x2  2x  1

sin2
 t  cos2

 t  1

An identity is an equation that is true for all values of the variable(s). The last two 
equations above are identities, but the first one is not, since it is not true for values of x 
other than 3.

A trigonometric identity is an identity involving trigonometric functions. We 
begin by listing some of the basic trigonometric identities. We studied most of  
these in Chapters 5 and 6; you are asked to prove the cofunction identities in Exer-
cise 118.

FunDAMEnTAl TrIgonoMETrIc IDEnTITIES

Reciprocal Identities

csc x 
1

sin x
  sec x 

1
cos x

  cot x 
1

tan x

tan x 
sin x
cos x

  cot x 
cos x

sin x

Pythagorean Identities

sin2
 x  cos2 x  1  tan2 x  1  sec2

 x  1  cot2
 x  csc2

 x

Even-Odd Identities

sin1x 2  sin x  cos1x 2  cos x  tan1x 2  tan x

Cofunction Identities

 sin ap

2
 xb  cos x   tan ap

2
 xb  cot x   secap

2
 x b  csc x

 cos ap

2
 x b  sin x    cot ap

2
 xb  tan x   cscap

2
 x b  sec x

■ Simplifying Trigonometric Expressions
Identities enable us to write the same expression in different ways. It is often possible 
to rewrite a complicated-looking expression as a much simpler one. To simplify alge-
braic expressions, we used factoring, common denominators, and the Special Product 
Formulas. To simplify trigonometric expressions, we use these same techniques to-
gether with the fundamental trigonometric identities.
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SECTION 7.1 ■ Trigonometric Identities 575

ExAMPlE 1 ■ Simplifying a Trigonometric Expression
Simplify the expression cos t  tan t sin t.

SoluTIon  We start by rewriting the expression in terms of sine and cosine.

 cos t  tan t sin t  cos t  a sin t

cos t
b  sin t  Reciprocal identity

  
cos2

 t  sin2
 t

cos t
  Common denominator

  
1

cos t
  Pythagorean identity

  sec t   Reciprocal identity

now Try Exercise 3 ■

ExAMPlE 2 ■ Simplifying by combining Fractions

Simplify the expression 
sin u

cos u


cos u

1  sin u
.

SoluTIon  We combine the fractions by using a common denominator.

 
sin u

cos u


cos u

1  sin u


sin u 11  sin u 2  cos2 u

cos u 11  sin u 2   Common denominator

  
sin u  sin2 u  cos2 u

cos u 11  sin u 2   Distribute sin u

  
sin u  1

cos u 11  sin u 2   Pythagorean identity

  
1

cos u
 sec u   

Cancel, and use reciprocal 
identity

now Try Exercise 23 ■

■ Proving Trigonometric Identities
Many identities follow from the fundamental identities. In the examples that follow, we 
learn how to prove that a given trigonometric equation is an identity, and in the process 
we will see how to discover new identities.

First, it’s easy to decide when a given equation is not an identity. All we need to do 
is show that the equation does not hold for some value of the variable (or variables). 
Thus the equation

sin x  cos x  1

is not an identity, because when x  p/4, we have

sin 
p

4
 cos 

p

4


!2

2


!2

2
 !2 ? 1

To verify that a trigonometric equation is an identity, we transform one side of the 
equation into the other side by a series of steps, each of which is itself an identity.
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576 CHAPTER 7 ■ Analytic Trigonometry

guIDElInES For ProvIng TrIgonoMETrIc IDEnTITIES

1. Start with one side.  Pick one side of the equation, and write it down. Your 
goal is to transform it into the other side. It’s usually easier to start with the 
more complicated side.

2. use known identities.  Use algebra and the identities you know to change 
the side you started with. Bring fractional expressions to a common denom-
inator, factor, and use the fundamental identities to simplify expressions.

3. convert to sines and cosines.  If you are stuck, you may find it helpful to 
rewrite all functions in terms of sines and cosines.

Warning: To prove an identity, we do not just perform the same operations on both 
sides of the equation. For example, if we start with an equation that is not an identity, 
such as

 sin x  sin x

and square both sides, we get the equation

 sin2
 x  sin2

 x

which is clearly an identity. Does this mean that the original equation is an identity? Of 
course not. The problem here is that the operation of squaring is not reversible in the 
sense that we cannot arrive back at the original equation by taking square roots (reversing 
the procedure). Only operations that are reversible will necessarily transform an identity 
into an identity.

ExAMPlE 3 ■  Proving an Identity by rewriting in Terms  
of Sine and cosine

Consider the equation cos u 1sec u  cos u 2  sin2 u.

(a) Verify algebraically that the equation is an identity.

(b) Confirm graphically that the equation is an identity.

SoluTIon  

(a)  The left-hand side looks more complicated, so we start with it and try to trans-
form it into the right-hand side.

 LHS  cos u 1sec u  cos u 2

  cos u a 1

cos u
 cos u b     Reciprocal identity

  1  cos2
 u     Expand

  sin2
 u  RHS     Pythagorean identity

(b)  We graph each side of the equation to see whether the graphs coincide. From Fig-
ure 1 we see that the graphs of y  cos u 1sec u  cos u 2  and y  sin2 u are 
identical. This confirms that the equation is an identity.

now Try Exercise 29 ■

In Example 3 it isn’t easy to see how to change the right-hand side into the left-hand 
side, but it’s definitely possible. Simply notice that each step is reversible. In other 
words, if we start with the last expression in the proof and work backward through the 
steps, the right-hand side is transformed into the left-hand side. You will probably 
agree, however, that it’s more difficult to prove the identity this way. That’s why it’s 
often better to change the more complicated side of the identity into the simpler side.

1

0
6.5_3.5

FIgurE 1
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SECTION 7.1 ■ Trigonometric Identities 577

ExAMPlE 4 ■ Proving an Identity by combining Fractions
Verify the identity

2 tan x sec x 
1

1  sin x


1

1  sin x

SoluTIon  Finding a common denominator and combining the fractions on the right-
hand side of this equation, we get

 RHS 
1

1  sin x


1

1  sin x

  
11  sin x 2  11  sin x 2
11  sin x 2 11  sin x 2     Common denominator

  
2 sin x

1  sin2
 x

    Simplify

  
2 sin x

cos2 x
    Pythagorean identity

  2 
sin x
cos x

 a 1
cos x

b     Factor

  2 tan x sec x  LHS     Reciprocal identities

now Try Exercise 65 ■

In Example 5 we introduce “something extra” to the problem by multiplying the 
numerator and the denominator by a trigonometric expression, chosen so that we can 
simplify the result.

ExAMPlE 5 ■  Proving an Identity by Introducing Something Extra

Verify the identity 
cos u

1  sin u
 sec u  tan u.

SoluTIon  We start with the left-hand side and multiply the numerator and denomi-
nator by 1  sin u.

 LHS 
cos u

1  sin u

  
cos u

1  sin u
 #  

1  sin u

1  sin u
  

Multiply numerator and 
denominator by 1  sin u

  
cos u 11  sin u 2

1  sin2 u
  Expand denominator

  
cos u 11  sin u 2

cos2 u
  Pythagorean identity

  
1  sin u

cos u
  Cancel common factor

  
1

cos u


sin u
cos u

  Separate into two fractions

  sec u  tan u   Reciprocal identities

now Try Exercise 77 ■

See the Prologue: Principles of Prob-
lem Solving, page P2.

We multiply by 1  sin u because we 
know by the difference of squares  
formula that

11  sin u 2 11  sin u 2  1  sin2
 u

and this is just cos2u, a simpler  
expression.
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578 CHAPTER 7 ■ Analytic Trigonometry

Here is another method for proving that an equation is an identity. If we can trans-
form each side of the equation separately, by way of identities, to arrive at the same 
result, then the equation is an identity. Example 6 illustrates this procedure.

ExAMPlE 6 ■  Proving an Identity by Working  
with Both Sides Separately

Verify the identity 
1  cos u

cos u


tan2
 u

sec u  1
.

SoluTIon  We prove the identity by changing each side separately into the same 
expression. (You should supply the reasons for each step.)

LHS 
1  cos u

cos u


1

cos u


cos u

cos u
 sec u  1

RHS 
tan2

 u

sec u  1


sec2
 u  1

sec u  1

1sec u  1 2 1sec u  1 2

sec u  1
 sec u  1

It follows that LHS  RHS, so the equation is an identity.

now Try Exercise 83 ■

We conclude this section by describing the technique of trigonometric sub stitution, 
which we use to convert algebraic expressions to trigonometric ones. This is often use-
ful in calculus, for instance, in finding the area of a circle or an ellipse.

ExAMPlE 7 ■ Trigonometric Substitution

Substitute sin u for x in the expression "1  x 
2, and simplify. Assume that  

0  u  p/2.

SoluTIon  Setting x  sin u, we have

 "1  x 
2  "1  sin2

 u  Substitute x  sin u

  "cos2
 u   Pythagorean identity

  cos u   Take square root

The last equality is true because cos u  0 for the values of u in question.

now Try Exercise 89 ■

concEPTS

 1. An equation is called an identity if it is valid for   
values of the variable. The equation 2x  x  x is an alge-

  braic identity, and the equation sin2  x  cos2  x    is 
a trigonometric identity.

 2. For any x it is true that cos1x 2  has the same value as cos x. 

  We express this fact as the identity    .

SkIllS
3–12 ■ Simplifying Trigonometric Expressions  Write the trigono-
metric expression in terms of sine and cosine, and then simplify.

 3. cos t tan t  4. cos t csc t

 5. sin u sec u  6. tan u csc u

 7. tan2x  sec2x  8. 
sec x

csc x

7.1 ExErcISES
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SECTION 7.1 ■ Trigonometric Identities 579

 9. sin u  cot u cos u 10. cos2
 u 11  tan2

 u 2

 11. 
sec u  cos u

sin u
 12. 

cot u

csc u  sin u

13–28 ■ Simplifying Trigonometric Expressions  Simplify the 
trigonometric expression.

13. 
sin x sec x

tan x
 14. 

cos x sec x

cot x

15. 
sin t  tan t

tan t
 16. 

1  cot A

csc A

17. cos3x  sin2x cos x 18. sin4
 a  cos4

 a  cos2
 a

19. 
sec2

 x  1

sec2
 x

 20. 
sec x  cos x

tan x

21. 
1  cos y

1  sec y
 22. 

1  sin y

1  csc y

23. 
1  sin u

cos u


cos u

1  sin u
 24. 

sin t

1  cos t
 csc t

25. 
cos x

sec x  tan x
 26. 

cot A  1

1  tan1A 2

27. 
1

1  sin a


1

1  sin a
 28. 

2  tan2
 x

sec2
 x

 1

29–30 ■ Proving an Identity Algebraically and graphically  Con-
sider the given equation. (a) Verify algebraically that the equation is 
an identity. (b) Confirm graphically that the equation is an identity.

29. 
cos x

sec x sin x
 csc x  sin x 30. 

tan y

csc y
 sec y  cos y

31–88 ■ Proving Identities  Verify the identity.

31. 
sin u

tan u
 cos u 32. 

tan x

sec x
 sin x

33. 
cos u sec u

tan u
 cot u 34. 

cot x sec x

csc x
 1

35. 
tan y

csc y


1

cos y


1

sec y
 36. 

cos2
 √

sin √
 csc √  sin √

37. cos1x 2  sin1x 2  cos x  sin x

38. cot1a 2  cos1a 2  sin1a 2  csc a

39. tan u  cot u  sec u csc u

40. 1sin x  cos x 2 2  1  2 sin x cos x

41. 11  cos b 2 11  cos b 2 
1

csc2
 b

42. 
cos x

sec x


sin x

csc x
 1

43. 
1

1  sin2
 y

 1  tan2
 y 44. csc x  sin x  cos x cot x

45. 1 tan x  cot x 2 2  sec2
 x  csc2

 x

46. tan2
 x  cot2

 x  sec2
 x  csc2

 x

47. 11  sin2
 t  cos2

 t 2 2  4 sin2
 t cos2

 t  4 cos2
 t

48. 
2 sin x cos x

1sin x  cos x 2 2  1
 1

49. csc x cos2
 x  sin x  csc x

50. cot2
 t  cos2

 t  cot2
 t cos2

 t

51. 
1sin x  cos x 2 2
sin2

 x  cos2
 x


sin2

 x  cos2
 x

1sin x  cos x 2 2
52. 1sin x  cos x 2 4  11  2  sin x cos x 2 2

53. 
sec t  cos t

sec t
 sin2

 t

54. 1cot x  csc x 2 1cos x  1 2  sin x

55. cos2
 x  sin2

 x  2 cos2
 x  1

56. 2 cos2
 x  1  1  2 sin2

 x

57. sin4 u  cos4
 u  sin2

 u  cos2
 u

58. 11  cos2
 x 2 11  cot2

 x 2  1

59. 
1sin t  cos t 2 2

sin t cos t
 2  sec t csc t

60. sec t csc t 1 tan t  cot t 2  sec2 t  csc2 t

61. 
1  tan2

 u

1  tan2
 u


1

cos2
 u  sin2

 u

62. 
1  sec2

 x

1  tan2
 x

 1  cos2
 x

63. 
sec x  csc x

tan x  cot x
 sin x  cos x

64. 
sin x  cos x

sec x  csc x
 sin x cos x

65. 
1  cos x

sin x


sin x

1  cos x
 2 csc x

66. 
csc x  cot x

sec x  1
 cot x

67. tan2
 u  sin2

 u  tan2
 u sin2

 u

68. sec4
 x  tan4

 x  sec2
 x  tan2

 x

69. 
1  tan x

1  tan x


cos x  sin x

cos x  sin x
 

70. 
cos u

1  sin u


sin u  csc u

cos u  cot u

71. 
1

sec x  tan x


1

sec x  tan x
 2 sec x

72. 
cos2

 t  tan2
 t  1

sin2
 t

 tan2
 t

 73. 
1  sin x

1  sin x


1  sin x

1  sin x
 4 tan x sec x

 74. 
tan x  tan y

cot x  cot y
 tan x tan y
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580 CHAPTER 7 ■ Analytic Trigonometry

 75. 
sin3

 x  cos3
 x

sin x  cos x
 1  sin x cos x

 76. 
tan √  cot √
tan2

 √  cot2
 √

 sin √ cos √

77. 
1  cos a

sin a


sin a

1  cos a

78. 
sin x  1

sin x  1


cos2
 x

1sin x  1 2 2  

79. 
sin „

sin „  cos „


tan „
1  tan „

80. 
sin A

1  cos A
 cot A  csc A

81. 
sec x

sec x  tan x
 sec x 1sec x  tan x 2

82. sec √  tan √ 
1

sec √  tan √

83. 
cos u

1  sin u
 sec u  tan u 

84. 
tan √ sin √

tan √  sin √


tan √  sin √
tan √ sin √

85. 
1  sin x

1  sin x
 1sec x  tan x 2 2

 86. 
1  sin x

1  sin x
 1 tan x  sec x 2 2

 87. csc x  cot x 
1

csc x  cot x

88. 
sec u  1

sec u  1


tan u  sin u

tan u  sin u

89–94 ■ Trigonometric Substitution  Make the indicated  
trigonometric substitution in the given algebraic expression and 
simplify (see Example 7). Assume that 0 , u , p/2.

 89. 
x

"1  x 
2
, x  sin u 90. "1  x 

2, x  tan u

 91. "x 
2  1, x  sec u 92. 

1

x 
2"4  x 

2
, x  2 tan u

 93. "9  x 
2, x  3 sin u 94. 

"x 
2  25
x

, x  5 sec u

95–98 ■ Determining Identities graphically  Graph f  
and g in the same viewing rectangle. Do the graphs suggest  
that the equation f 1x 2  g1x 2  is an identity? Prove your  
answer.

 95. f 1x 2  cos2
 x  sin2

 x, g1x 2  1  2 sin2
 x

 96. f 1x 2  tan x 11  sin x 2 , g1x 2 
sin x cos x

1  sin x

 97. f 1x 2  1sin x  cos x 2 2, g1x 2  1

 98. f 1x 2  cos4
 x  sin4

 x, g1x 2  2 cos2
 x  1

SkIllS Plus
99–104 ■ Proving More Identities  Verify the identity.

 99. 1sin x sin y  cos x cos y 2 1sin x sin y  cos x cos y 2
 sin2

 y  cos2
 x

 100. 
1  cos x  sin x

1  cos x  sin x


1  sin x

cos x

101. 1 tan x  cot x 2 4  sec4
 x csc4

 x

102. 1sin a  tan a 2 1cos a  cot a 2  1cos a  1 2 1sin a  1 2

103. 
sin3

 y  csc3
 y

sin y  csc y
 sin2

 y  csc2
 y  1

104. sin6
 b  cos6

 b  1  3 sin2
 b cos2

 b

105–108 ■ Proving Identities Involving other Functions  These 
identities involve trigonometric functions as well as other func-
tions that we have studied.

105. ln 0  tan x sin x 0  2 ln 0  sin x 0  ln 0  sec x 0
106. ln 0  tan x 0  ln 0  cot x 0  0

107. esin2
 xetan2

 x  esec2
 xecos2

 x 108. ex2 ln 0  sin x 0  ex
 sin2

 x

109–112 ■ Is the Equation an Identity?  Determine whether the 
given equation is an identity. If the equation is not an identity, 
find all its solutions. 

109. esin2
 xecos2

 x  e 110. 
x

x  1
 1  x

111. "sin2 x  1  "sin2 x  1

112. xeln x2

 x3

113. An Identity Involving Three variables  Suppose 
x  R cos u sin f, y  R sin u sin f, and z  R cos f.  
Verify the identity x2  y2  z2  R2.

DIScuSS ■ DIScovEr ■ ProvE ■ WrITE
 114. DIScuSS: Equations That Are Identities  You have encoun-

tered many identities in this course. Which of the following 
equations do you recognize as identities? For those that you 
think are identities, test several values of the variables to 
confirm that the equation is true for those variables.

(a) 1x  y 2 2  x2  2xy  y2 (b) x2  y2  1

(c) x1y  z 2  xy  xz
(d) t2  cos2

 t  1 t  cos t 2 1 t  cos t 2
(e) sin t  cos t  1 (f) x2  tan2

 x  0

 115. DIScuSS: Equations That Are not Identities  How can you 
tell if an equation is not an identity? Show that the follow-
ing equations are not identities.

(a) sin 2x  2 sin x 

(b) sin1x  y 2  sin x  sin y

(c) sec2
 x  csc2

 x  1

(d) 
1

sin x  cos x
 csc x  sec x

116.  DIScuSS: graphs and Identities  Suppose you graph two 
functions, f and g, on a graphing device and their graphs  

7.2 ADDITIon AnD SuBTrAcTIon ForMulAS
■ Addition and Subtraction Formulas ■ Evaluating Expressions Involving Inverse 
Trigonometric Functions ■ Expressions of the form A sin x  B cos x

■ Addition and Subtraction Formulas
We now derive identities for trigonometric functions of sums and differences.

ADDITIon AnD SuBTrAcTIon ForMulAS

Formulas for sine:  sin1s  t 2  sin s cos t  cos s sin t

  sin1s  t 2  sin s cos t  cos s sin t

Formulas for cosine:  cos1s  t 2  cos s cos t  sin s sin t

  cos1s  t 2  cos s cos t  sin s sin t

Formulas for tangent:  tan1s  t 2 
tan s  tan t

1  tan s tan t

 
 tan1s  t 2 

tan s  tan t

1  tan s tan t

Proof of Addition Formula for cosine  To prove the formula 

cos1s  t 2  cos s cos t  sin s sin t

we use Figure 1. In the figure, the distances t, s  t, and s have been marked on the 
unit circle, starting at P011, 0 2  and terminating at Q1, P1, and Q0, respectively. The 
coordinates of these points are as follows:

 P011, 0 2    Q01cos1s 2 , sin1s 22
 P11cos1s  t 2 , sin1s  t 22    Q11cos t, sin t 2

Since cos1s 2  cos s and sin1s 2  sin s, it follows that the point Q0 has the 
coordinates Q01cos s, sin s 2 . Notice that the distances between P0 and P1 and 
between Q0 and Q1 measured along the arc of the circle are equal. Since equal arcs 
are subtended by equal chords, it follows that d1P0, P1 2  d1Q0, Q1 2 . Using the Dis-
tance Formula, we get

" 3cos1s  t 2  1 4 2  3sin1s  t 2  0 4 2  "1cos t  cos s 2 2  1sin t  sin s 2 2
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SECTION 7.2 ■ Addition and Subtraction Formulas 581

appear identical in the viewing rectangle. Does this prove 
that the equation f 1x 2  g1x 2  is an identity? Explain.

117.  DIScovEr: Making up Your own Identity  If you start with 
a trigonometric expression and rewrite it or simplify it, then 
setting the original expression equal to the rewritten expres-
sion yields a trigonometric identity. For instance, from 
Example 1 we get the identity

cos t  tan t sin t  sec t

     Use this technique to make up your own identity, then give 
it to a classmate to verify.

118.  DIScuSS: cofunction Identities  In the right triangle 
shown, explain why √  1p/2 2  u. Explain how you can 

obtain all six cofunction identities from this triangle for  
0 , u , p/2.

u

√

   Note that u and √ are complementary angles. So the 
cofunction identities state that “a trigonometric function of 
an angle u is equal to the corresponding cofunction of the 
complementary angle √.”

7.2 ADDITIon AnD SuBTrAcTIon ForMulAS
■ Addition and Subtraction Formulas ■ Evaluating Expressions Involving Inverse 
Trigonometric Functions ■ Expressions of the form A sin x  B cos x

■ Addition and Subtraction Formulas
We now derive identities for trigonometric functions of sums and differences.

ADDITIon AnD SuBTrAcTIon ForMulAS

Formulas for sine:  sin1s  t 2  sin s cos t  cos s sin t

  sin1s  t 2  sin s cos t  cos s sin t

Formulas for cosine:  cos1s  t 2  cos s cos t  sin s sin t

  cos1s  t 2  cos s cos t  sin s sin t

Formulas for tangent:  tan1s  t 2 
tan s  tan t

1  tan s tan t

 
 tan1s  t 2 

tan s  tan t

1  tan s tan t

Proof of Addition Formula for cosine  To prove the formula 

cos1s  t 2  cos s cos t  sin s sin t

we use Figure 1. In the figure, the distances t, s  t, and s have been marked on the 
unit circle, starting at P011, 0 2  and terminating at Q1, P1, and Q0, respectively. The 
coordinates of these points are as follows:

 P011, 0 2    Q01cos1s 2 , sin1s 22
 P11cos1s  t 2 , sin1s  t 22    Q11cos t, sin t 2

Since cos1s 2  cos s and sin1s 2  sin s, it follows that the point Q0 has the 
coordinates Q01cos s, sin s 2 . Notice that the distances between P0 and P1 and 
between Q0 and Q1 measured along the arc of the circle are equal. Since equal arcs 
are subtended by equal chords, it follows that d1P0, P1 2  d1Q0, Q1 2 . Using the Dis-
tance Formula, we get

" 3cos1s  t 2  1 4 2  3sin1s  t 2  0 4 2  "1cos t  cos s 2 2  1sin t  sin s 2 2

y

xO

Q⁄

Q‚

P⁄

P‚

s
s+t

t

_s

FIgurE 1
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582 CHAPTER 7 ■ Analytic Trigonometry

Squaring both sides and expanding, we have

  ___________These add to 1___________
 ↓ ↓

 cos21s  t 2  2 cos1s  t 2  1  sin21s  t 2
  cos2

 t  2 cos s cos t  cos2
 s  sin2

 t  2 sin s sin t  sin2
 s

 ↑ ___________These add to 1____________↑

 __________These add to 1__________

Using the Pythagorean identity sin2u  cos2u  1 three times gives

2  2 cos1s  t 2  2  2 cos s cos t  2 sin s sin t

Finally, subtracting 2 from each side and dividing both sides by 2, we get

cos1s  t 2  cos s cos t  sin s sin t

which proves the Addition Formula for Cosine. ■

Proof of Subtraction Formula for cosine  Replacing t with t in the Addition  
Formula for Cosine, we get

 cos1s  t 2  cos1s  1t 22
  cos s cos1t 2  sin s sin1t 2     Addition Formula for Cosine

  cos s cos t  sin s sin t     Even-odd identities

This proves the Subtraction Formula for Cosine. ■

See Exercises 77 and 78 for proofs of the other Addition Formulas.

ExAMPlE 1 ■ using the Addition and Subtraction Formulas
Find the exact value of each expression.

(a) cos 75      (b) cos  

p

12

SoluTIon

(a)  Notice that 75  45  30. Since we know the exact values of sine and cosine 
at 45 and 30, we use the Addition Formula for Cosine to get

 cos 75  cos145  30 2
  cos 45 cos 30  sin 45 sin 30

  
!2

2
 
!3

2


!2

2
 
1

2


!2!3  !2

4


!6  !2

4

(b) Since 
p

12


p

4


p

6
, the Subtraction Formula for Cosine gives

 cos  

p

12
 cos ap

4


p

6
b

  cos  

p

4
 cos  

p

6
 sin  

p

4
 sin  

p

6

  
!2

2
 
!3

2


!2

2
 
1

2


!6  !2

4

now Try Exercises 3 and 9 ■
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St
oc

k 
M

on
ta

ge
/A

rc
hi

ve
 P

ho
to

s/
Ge

tty
 Im

ag
es

Jean Baptiste Joseph Fourier 
(1768–1830) is responsible for the most 
powerful application of the trigonometric 
functions (see the margin note on  
page 529). He used sums of these func-
tions to describe such physical phenom-
ena as the transmission of sound and the 
flow of heat.

Orphaned as a young boy, Fourier was 
educated in a military school, where he 
became a mathematics teacher at the age 
of 20. He was later appointed professor at 
the École Polytechnique but resigned this 
position to accompany Napoleon on his 
expedition to Egypt, where Fourier served 
as governor. After returning to France, he 
began conducting experiments on heat. 
The French Academy refused to publish his 
early papers on this subject because of his 
lack of rigor. Fourier eventually became 
Secretary of the Academy and in this 
capacity had his papers published in their 
original form. Probably because of his 
study of heat and his years in the deserts 
of Egypt, Fourier became obsessed with 
keeping himself warm—he wore several 
layers of clothes, even in the summer, and 
kept his rooms at unbearably high temper-
atures. Evidently, these habits overbur-
dened his heart and contributed to his 
death at the age of 62.
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SECTION 7.2 ■ Addition and Subtraction Formulas 583

ExAMPlE 2 ■ using the Addition Formula for Sine
Find the exact value of the expression sin 20 cos 40  cos 20 sin 40.

SoluTIon  We recognize the expression as the right-hand side of the Addition  
Formula for Sine with s  20 and t  40. So we have

sin 20 cos 40  cos 20 sin 40  sin120  40 2  sin 60 
!3

2

now Try Exercise 15 ■

ExAMPlE 3 ■ Proving a cofunction Identity

Prove the cofunction identity cos ap

2
 u b  sin u.

SoluTIon  By the Subtraction Formula for Cosine we have

 cos ap

2
 u b  cos 

p

2
  cos u  sin 

p

2
  sin u

  0 # cos u  1 # sin u  sin u

now Try Exercises 21 and 25 ■

For acute angles, the cofunction identity in Example 3, as well as the other cofunc-
tion identities, can also be derived from the figure in the margin.

ExAMPlE 4 ■ Proving an Identity

Verify the identity 
1  tan x

1  tan x
 tan ap

4
 x b .

SoluTIon  Starting with the right-hand side and using the Addition Formula for  
Tangent, we get

 RHS  tan ap

4
 x b 

tan 
p

4
 tan x

1  tan 
p

4
  tan x

  
1  tan x

1  tan x
 LHS

now Try Exercise 33 ■

The next example is a typical use of the Addition and Subtraction Formulas in 
calculus.

ExAMPlE 5 ■ An Identity from calculus
If f 1x 2  sin x, show that

f 1x  h 2  f 1x 2
h

 sin x a cos h  1

h
b  cos x a sin h

h
b

ç !   -u@=   =ß u

u

br

a

π
2

b
r

�uπ
2
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584 CHAPTER 7 ■ Analytic Trigonometry

SoluTIon

 
f 1x  h 2  f 1x 2

h


sin1x  h 2  sin x

h
 Definition of f

  
sin x cos h  cos x sin h  sin x

h
 Addition Formula for Sine

  
sin x 1cos h  1 2  cos x sin h

h
 Factor

  sin x a cos h  1

h
b  cos x a sin h

h
b  Separate the fraction

now Try Exercise 65 ■

■ Evaluating Expressions Involving Inverse 
Trigonometric Functions

Expressions involving trigonometric functions and their inverses arise in calculus. In 
the next examples we illustrate how to evaluate such expressions.

ExAMPlE 6 ■  Simplifying an Expression Involving Inverse 
Trigonometric Functions 

Write sin1cos1
 x  tan1 y 2  as an algebraic expression in x and y, where 

1  x  1 and y is any real number.

SoluTIon  Let u  cos1
 x and f  tan1

 y. Using the methods of Section 5.4,  
we sketch triangles with angles u and f such that cos u  x and tan f  y (see  
Figure 2). From the triangles we have 

sin u  "1  x2    cos f 
1

"1  y2
    sin f 

y

"1  y2

From the Addition Formula for Sine we have

 sin1cos1 x  tan1 y 2  sin1u  f 2
  sin u cos f  cos u sin f   

Addition Formula 
for Sine

  "1  x2 
1

"1  y2
 x 

y

"1  y2
  From triangles

 
1

"1  y2
 1"1  x2  xy 2   Factor 

1

"1  y2

now Try Exercises 47 and 51 ■

ExAMPlE 7 ■  Evaluating an Expression Involving  
Trigonometric Functions 

Evaluate sin1u  f 2 , where sin u  12
13 with u in Quadrant II and tan f  3

4 with f in 
Quadrant III.

SoluTIon  We first sketch the angles u and f in standard position with terminal sides 
in the appropriate quadrants as in Figure 3. Since sin u  y/r  12

13, we can label a side 

y

¨

1

x

œ∑∑∑∑∑1-≈

œ∑∑∑∑∑1+¥

ƒ

tan ƒ=y

cos ¨=x

1

FIgurE 2
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SECTION 7.2 ■ Addition and Subtraction Formulas 585

and the hypotenuse in the triangle in Figure 3(a). To find the remaining side, we use the 
Pythagorean Theorem.

 x2  y2  r2     Pythagorean Theorem

 x2  122  132    y  12,  r  13

 x2  25     Solve for x2

 x  5    Because x , 0

Similarly, since tan f  y/x  3
4, we can label two sides of the triangle in Figure 3(b) 

and then use the Pythagorean Theorem to find the hypotenuse. 

y

5

13
12

_3
_5

_4
ƒ¨

y

x x

P (x, y)

P (x, y)

(b)(a)FIgurE 3

Now, to find sin1u  f 2 , we use the Addition Formula for Sine and the triangles in  
Figure 3.

 sin1u  f 2  sin u cos f  cos u sin f    Addition Formula

  A12
13B A 

4
5B  A 

5
13B A 

3
5B     From triangles

  33
65     Calculate

now Try Exercise 55 ■

■ Expressions of the Form A sin x  B cos x
We can write expressions of the form A sin x  B cos x in terms of a single trigonomet-
ric function using the Addition Formula for Sine. For example, consider the expression

1

2
 sin x 

!3

2
  cos x

If we set f  p/3, then cos f  1
2 and sin f  !3/2, and we can write

 
1

2
  sin x 

!3

2
 cos x  cos f sin x  sin  f cos x

  sin1x  f 2  sin a x 
p

3
b

We are able to do this because the coefficients 1
2 and !3/2 are precisely the cosine and 

sine of a particular number, in this case, p/3. We can use this same idea in general to 
write A sin x  B cos x in the form k sin1x  f2. We start by multiplying the numerator 
and denominator by "A2  B2 to get

A sin x  B cos x  "A2  B2 a A

"A2  B2
  sin x 

B

"A2  B2
  cos xb
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586 CHAPTER 7 ■ Analytic Trigonometry

We need a number f with the property that

cos f 
A

"A2  B2
  and  sin f 

B

"A2  B2

Figure 4 shows that the point 1A, B 2  in the plane determines a number f with precisely 
this property. With this f we have

 A sin x  B cos x  "A2  B2
 1cos f sin x  sin f cos x 2

  "A2  B2
  sin1x  f 2

We have proved the following theorem.

SuMS oF SInES AnD coSInES

If A and B are real numbers, then

A sin x  B cos x  k sin1x  f 2
where k  "A2  B2 and f satisfies

cos f 
A

"A2  B2
  and  sin f 

B

"A2  B2

ExAMPlE 8 ■ A Sum of Sine and cosine Terms
Express 3 sin x  4 cos x in the form k sin1x  f 2 .
SoluTIon  By the preceding theorem, k  "A2  B2  "32  42  5. The angle f 
has the property that sin f  B/k  4

5 and cos f  A/k  3
5, and f in Quadrant I 

(because sin f and cos f are both positive), so f  sin1 45. Using a calculator, we 
get f < 53.1. Thus

3 sin x  4 cos x < 5 sin1x  53.1 2
now Try Exercise 59 ■

ExAMPlE 9 ■ graphing a Trigonometric Function
Write the function f 1x 2  sin 2x  !3 cos 2x in the form k sin12x  f 2 , and use 
the new form to graph the function.

SoluTIon  Since A  1 and B  !3, we have k  "A2  B2  !1  3  2. 
The angle f satisfies cos f  1

2 and sin f  !3/2. From the signs of these quanti-
ties we conclude that f is in Quadrant II. Thus f  2p/3. By the preceding theorem 
we can write

f 1x 2  sin 2x  !3 cos 2x  2 sin a 2x 
2p

3
b

Using the form

f 1x 2  2 sin 2 a x 
p

3
b

we see that the graph is a sine curve with amplitude 2, period 2p/2  p, and phase 
shift p/3. The graph is shown in Figure 5.

now Try Exercise 63 ■

y

x0

B

A

(A, B)

œ∑∑∑∑∑∑

A™+
B™

ƒ

FIgurE 4

π_π

_2

2

π
2_ π

2

π
3_

y=2 ß 2 ! x+   @π
3

y

x0

FIgurE 5
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concEPTS
 1. If we know the values of the sine and cosine of x  

and y, we can find the value of sin1x  y 2  by using  

the   Formula for Sine. State the formula: 

sin1x  y 2      .

 2. If we know the values of the sine and cosine of x  
and y, we can find the value of cos1x  y 2  by using  

the   Formula for Cosine. State the formula: 

cos1x  y 2     .

SkIllS
3–14 ■ values of Trigonometric Functions  Use an Addition or 
Subtraction Formula to find the exact value of the expression, as 
demonstrated in Example 1.

 3. sin 75  4. sin 15

 5. cos 105  6. cos 195

 7. tan 15  8. tan 165

 9. sin  
19p

12
 10. cos  

17p

12

 11. tan a 

p

12
b  12. sin a 

5p

12
b

13. cos  

11p

12
 14. tan  

7p

12

15–20 ■ values of Trigonometric Functions  Use an Addition or 
Subtraction Formula to write the expression as a trigonometric 
function of one number, and then find its exact value.

15. sin 18 cos 27  cos 18 sin 27

16. cos 10 cos 80  sin 10 sin 80

17. cos  

3p

7
  cos  

2p

21
  sin   

3p

7
  sin  

2p

21

18. 
tan  

p

18
  tan  

p

9

1  tan  

p

18
  tan  

p

9

 

19. 
tan 73  tan 13

1  tan 73 tan 13

20. cos 
13p

15
  cos a 

p

5
b  sin 

13p

15
  sin a 

p

5
b

21–24 ■ cofunction Identities  Prove the cofunction identity 
using the Addition and Subtraction Formulas.

21. tan ap

2
 u b  cot u 22. cot ap

2
 u b  tan u

23. secap

2
 u b  csc u 24. cscap

2
 u b  sec u

25–46 ■ Proving Identities  Prove the identity.

25. sin a x 
p

2
b  cos x

26. cos a x 
p

2
b  sin x

27. sin1x  p 2  sin x

 28. cos1x  p 2  cos x

29. tan1x  p 2  tan x

 30. tan a x 
p

2
b  cot x

31. sin ap

2
 xb  sin ap

2
 xb

32. cos a x 
p

3
b  sin a x 

p

6
b  0

33. tan a x 
p

3
b 

!3  tan x

1  !3 tan x

34. tan a x 
p

4
b   

tan x  1

tan x  1

35. sin1x  y 2  sin1x  y 2  2 cos x sin y

36. cos1x  y 2  cos1x  y 2  2 cos x cos y

37. cot1x  y 2   

cot x cot y  1

cot y  cot x

38. cot1x  y 2   

cot x cot y  1

cot x  cot y

39. tan x  tan y   

sin1x  y 2
cos x cos y

40. 1  tan x tan y   

cos1x  y 2
cos x cos y

41. 
tan x  tan y

1  tan x tan y


sin1x  y 2
cos1x  y 2

42. 
sin1x  y 2  sin1x  y 2
cos1x  y 2  cos1x  y 2   tan y

43. cos1x  y 2  cos1x  y 2  cos2
 x  sin2

 y

44. cos1x  y 2  cos y  sin1x  y 2  sin y  cos x

45.  sin1x  y  z 2  sin x cos y cos z  cos x sin y cos z  
    cos x cos y sin z  sin x sin y sin z

46. tan1x  y 2  tan1  y  z 2  tan1z  x 2  
 tan1x  y 2  tan1  y  z 2  tan1z  x 2  

47–50 ■ Expressions Involving Inverse Trigonometric  
Functions  Write the given expression in terms of x and  
y only.

47. cos1sin1
 x  tan1

 y 2  48. tan1sin1
 x  cos1

 y 2
49. sin1 tan1

 x  tan1
 y 2  50. sin1sin1

 x  cos1
 y 2

7.2 ExErcISES
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588 CHAPTER 7 ■ Analytic Trigonometry

51–54 ■ Expressions Involving Inverse Trigonometric Func-
tions  Find the exact value of the expression.

51. sinAcos1 12  tan1 1B  52. cosAsin1 !3
2  cot1 !3 B

53. tanAsin1 34  cos1 13 B  54. sinAcos1 23  tan1 12 B
55–58 ■ Evaluating Expressions Involving Trigonometric  
Functions  Evaluate each expression under the given conditions.

55. cos1u  f 2 ; cos u  3
5, u in Quadrant IV, 

tan f  !3, f in Quadrant II.

56. sin1u  f 2 ; tan u  4
3, u in Quadrant III, 

sin f  !10/10, f in Quadrant IV

57. sin1u  f 2 ; sin u  5
13, u in Quadrant I, 

cos f  2!5/5, f in Quadrant II

58. tan1u  f 2 ; cos u  1
3, u in Quadrant III, sin f  1

4, 
f in Quadrant II

59–62 ■ Expressions in Terms of Sine  Write the expression in 
terms of sine only.

59. !3 sin x  cos x 60. sin x  cos x

61. 51sin 2x  cos 2x 2  62. 3 sin px  3!3 cos px

63–64 ■ graphing a Trigonometric Function  (a) Express the 
function in terms of sine only. (b) Graph the function.

63. g1x 2  cos 2x  !3 sin 2x 64. f 1x 2  sin x  cos x

SkIllS Plus
65–66 ■ Difference Quotient  Let f 1x 2  cos x and g1x 2  sin x. 
Use Addition or Subtraction Formulas to show the following.

65. 
f 1x  h 2  f 1x 2

h
 cos x a 1  cos h

h
b  sin x a sin h

h
b

66. 
g1x  h 2  g1x 2

h
 a sin h

h
b  cos x  sin x a 1  cos h

h
b

67–68 ■ Discovering an Identity graphically  In these exercises 
we discover an identity graphically and then prove the identity. 
(a) Graph the function and make a conjecture, then (b) prove that 
your conjecture is true.

67. y  sin2 a x 
p

4
b  sin2 a x 

p

4
b

68. y   
1
2 3cos1x  p 2  cos1x  p 2 4

69. Difference of Two Angles  Show that if b  a  p/2, then

sin1x  a 2  cos1x  b 2  0

70. Sum of Two Angles  Refer to the figure. Show that  
a  b  g, and find tan g.

©

46
å ∫

43

71–72 ■ Identities Involving Inverse Trigonometric Functions   
Prove the identity.

71. tan1 a x  y

1  xy
b  tan1

 x  tan1
 y  

[Hint: Let u  tan1
 x and √  tan1

 y, so that  
x  tan u and y  tan √. Use an Addition Formula to  
find tan1u  √ 2 .]

72. tan1
 x  tan1 a 1

x
b 

p

2
, x  0 [Hint: Let u  tan1

 x 

and √  tan1 a 1
x
b , so that x  tan u and 

1
x

 tan √. Use an 

Addition Formula to find cot1u  √ 2 .]
73. Angle Between Two lines  In this exercise we find a  

formula for the angle formed by two lines in a coordinate 
plane. 

(a)  If L is a line in the plane and u is the angle formed by the 
line and the x-axis as shown in the figure, show that the 
slope m of the line is given by

m  tan u

y

x0

L

¨

(b) Let L1 and L2 be two nonparallel lines in the plane with 
slopes m1 and m2, respectively. Let c be the acute angle 
formed by the two lines (see the following figure). Show 
that

tan c 
m2  m1

1  m1m2

y

x0

L⁄
L¤

¨¤¨⁄

=¨¤-¨⁄

(c) Find the acute angle formed by the two lines

y  1
3 x  1  and  y  1

2 x  3

(d) Show that if two lines are perpendicular, then the slope 
of one is the negative reciprocal of the slope of the other.  
[Hint: First find an expression for cot c.]

7.3 DouBlE-AnglE, HAlF-AnglE, AnD ProDucT-SuM ForMulAS
■ Double-Angle Formulas ■ Half-Angle Formulas ■ Evaluating Expressions Involving 
Inverse Trigonometric Functions ■ Product-Sum Formulas

The identities we consider in this section are consequences of the addition formulas. 
The Double-Angle Formulas allow us to find the values of the trigonometric functions 
at 2x from their values at x. The Half-Angle Formulas relate the values of the trigono-
metric functions at 1

2 x to their values at x. The Product-Sum Formulas relate products 
of sines and cosines to sums of sines and cosines.

■ Double-Angle Formulas
The formulas in the box on the next page are immediate consequences of the addition 
formulas, which we proved in Section 7.2.
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74. Find A  B  C in the figure.  [Hint: First use an 
Addition Formula to find tan1A  B 2 .]

1

111
A B C

APPlIcATIonS
75. Adding an Echo  A digital delay device echoes an input sig-

nal by repeating it a fixed length of time after it is received. If 
such a device receives the pure note f11 t 2  5 sin t and 
echoes the pure note f21 t 2  5 cos t, then the combined 
sound is f 1 t 2  f11 t 2  f21 t 2 .
(a) Graph y  f 1 t 2 , and observe that the graph has the form 

of a sine curve y  k sin1 t  f 2 .
(b) Find k and f.

76. Interference  Two identical tuning forks are struck, one a 
fraction of a second after the other. The sounds produced are 
modeled by f11 t 2  C  sin vt and f21 t 2  C sin1vt  a 2 . 
The two sound waves interfere to produce a single sound 
modeled by the sum of these functions

f 1 t 2  C sin vt  C sin1vt  a 2
(a) Use the Addition Formula for Sine to show that f can be 

written in the form f 1 t 2  A sin vt  B cos vt, where A 
and B are constants that depend on a.

(b) Suppose that C  10 and a  p/3. Find constants k and 
f so that f 1 t 2  k sin1vt  f 2 .

DIScuSS ■ DIScovEr ■ ProvE ■ WrITE
77. ProvE: Addition Formula for Sine  In the text we proved 

only the Addition and Subtraction Formulas for Cosine. Use 
these formulas and the cofunction identities

 sin x  cos ap

2
 xb

 cos x  sin ap

2
 xb

  to prove the Addition Formula for Sine.  [Hint: To get 
started, use the first cofunction identity to write

 sin1s  t 2  cos ap

2
 1s  t 2b

  cos aap

2
 s b  t b

  and use the Subtraction Formula for Cosine.]

78. ProvE: Addition Formula for Tangent  Use the Addition 
Formulas for Cosine and Sine to prove the Addition Formula 
for Tangent.  [Hint: Use

tan1s  t 2 
sin1s  t 2
cos1s  t 2

  and divide the numerator and denominator by cos s cos t.]

7.3 DouBlE-AnglE, HAlF-AnglE, AnD ProDucT-SuM ForMulAS
■ Double-Angle Formulas ■ Half-Angle Formulas ■ Evaluating Expressions Involving 
Inverse Trigonometric Functions ■ Product-Sum Formulas

The identities we consider in this section are consequences of the addition formulas. 
The Double-Angle Formulas allow us to find the values of the trigonometric functions 
at 2x from their values at x. The Half-Angle Formulas relate the values of the trigono-
metric functions at 1

2 x to their values at x. The Product-Sum Formulas relate products 
of sines and cosines to sums of sines and cosines.

■ Double-Angle Formulas
The formulas in the box on the next page are immediate consequences of the addition 
formulas, which we proved in Section 7.2.
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DouBlE-AnglE ForMulAS

Formula for sine: sin 2x  2 sin x cos x

Formulas for cosine: cos 2x  cos2 x  sin2
 x

   1  2 sin2
 x

   2 cos2
 x  1

Formula for tangent: tan 2x 
2 tan x

1  tan2 x

The proofs for the formulas for cosine are given here. You are asked to prove the 
remaining formulas in Exercises 35 and 36.

Proof of Double-Angle Formulas for cosine

 cos 2x  cos1x  x 2
  cos x cos x  sin x sin x

  cos2
 x  sin2

 x

The second and third formulas for cos 2x are obtained from the formula we just 
proved and the Pythagorean identity. Substituting cos2x  1  sin2x gives

 cos 2x  cos2
 x  sin2

 x

  11  sin2
 x 2  sin2

 x

  1  2 sin2
 x

The third formula is obtained in the same way, by substituting sin2x  1  cos2x. ■

ExAMPlE 1 ■ using the Double-Angle Formulas
If cos x   

2
3 and x is in Quadrant II, find cos 2x and sin 2x.

SoluTIon  Using one of the Double-Angle Formulas for Cosine, we get

 cos 2x  2 cos2
 x  1

  2 a 

2

3
b

2

 1 
8

9
 1   

1

9

To use the formula sin 2x  2 sin x cos x, we need to find sin x first. We have

sin x  "1  cos2
 x  #1  A 

2
3B2 

!5

3

where we have used the positive square root because sin x is positive in Quadrant II. 
Thus

 sin 2x  2 sin x cos x

  2 a !5

3
b a 

2

3
b   

4!5

9

now Try Exercise 3 ■
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ExAMPlE 2 ■ A Triple-Angle Formula
Write cos 3x in terms of cos x.

SoluTIon

 cos 3x  cos12x  x 2
  cos 2x cos x  sin 2x sin x   Addition formula

  12 cos2
 x  1 2  cos x  12 sin x cos x 2  sin x  Double-Angle Formulas

  2 cos3 x  cos x  2 sin2 x cos x   Expand

  2 cos3
 x  cos x  2 cos x 11  cos2

 x 2   Pythagorean identity

  2 cos3
 x  cos x  2 cos x  2 cos3

 x   Expand

  4 cos3
 x  3 cos x   Simplify

now Try Exercise 109 ■

Example 2 shows that cos 3x can be written as a polynomial of degree 3 in cos x. The 
identity cos 2x  2 cos2x  1 shows that cos 2x is a polynomial of degree 2 in cos x. In 
fact, for any natural number n we can write cos nx as a polynomial in cos x of degree n (see 
the note following Exercise 109). The analogous result for sin nx is not true in general.

ExAMPlE 3 ■ Proving an Identity

Prove the identity 
sin 3x

sin x cos x
 4 cos x  sec x.

SoluTIon  We start with the left-hand side.

 
sin 3x

sin x cos x


sin1x  2x 2
sin x cos x

  
sin x cos 2x  cos x sin 2x

sin x cos x
  Addition Formula

  
sin x 12 cos2 x  1 2  cos x 12 sin x cos x 2

sin x cos x
  Double-Angle Formulas

  
sin x 12 cos2 x  1 2

sin x cos x


cos x 12 sin x cos x 2
sin x cos x

  Separate fraction

  
2 cos2

 x  1
cos x

 2 cos x   Cancel

  2 cos x 
1

cos x
 2 cos x   Separate fraction

  4 cos x  sec x   Reciprocal identity

now Try Exercise 87 ■

■ Half-Angle Formulas
The following formulas allow us to write any trigonometric expression involving even pow-
ers of sine and cosine in terms of the first power of cosine only. This technique is important 
in calculus. The Half-Angle Formulas are immediate consequences of these formulas.
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ForMulAS For loWErIng PoWErS

sin2
 x 

1  cos 2x

2
   cos2

 x 
1  cos 2x

2

tan2
 x 

1  cos 2x

1  cos 2x

Proof  The first formula is obtained by solving for sin2x in the Double-Angle  
Formula cos 2x  1  2 sin2x. Similarly, the second formula is obtained by solving 
for cos2x in the Double-Angle Formula cos 2x  2 cos2x  1.

The last formula follows from the first two and the reciprocal identities:

 tan2
 x 

sin2
 x

cos2
 x



1  cos 2x

2

  

1  cos 2x

2


1  cos 2x

1  cos 2x
 

■

ExAMPlE 4 ■ lowering Powers in a Trigonometric Expression
Express sin2x cos2x in terms of the first power of cosine.

SoluTIon  We use the formulas for lowering powers repeatedly.

 sin2
 x cos2

 x  a 1  cos 2x

2
b a 1  cos 2x

2
b

  
1  cos2 2x

4


1

4


1

4
  cos2 2x

  
1

4


1

4
a 1  cos 4x

2
b 

1

4


1

8


cos 4x

8

  
1

8


1

8
  cos 4x 

1

8
 11  cos 4x 2

Another way to obtain this identity is to use the Double-Angle Formula for Sine in 
the form sin x cos x  1

2 sin 2x. Thus

 sin2
 x cos2

 x 
1

4
  sin2 2x 

1

4
a 1  cos 4x

2
b

 
1

8
 11  cos 4x 2

now Try Exercise 11 ■

HAlF-AnglE ForMulAS

sin 
u

2
 6Å

1  cos u

2
   cos 

u

2
 6Å

1  cos u

2

tan 
u

2


1  cos u

sin u


sin u

1  cos u

The choice of the  or  sign depends on the quadrant in which u/2 lies.
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Proof  We substitute x  u/2 in the formulas for lowering powers and take the square 
root of each side. This gives the first two Half-Angle Formulas. In the case of the 
Half-Angle Formula for Tangent we get

 tan  
u

2
 6Å

1  cos u

1  cos u

  6Å a
1  cos u

1  cos u
b a 1  cos u

1  cos u
b   

Multiply numerator and  
denominator by 1  cos u

  6Å
11  cos u 2 2
1  cos2  u

  Simplify

  6
0  1  cos u 0
0  sin u 0   "A2  0  A 0

and 1  cos2
 u  sin2

 u

Now, 1  cos u is nonnegative for all values of u. It is also true that sin u and 
tan1u/2 2  always have the same sign. (Verify this.) It follows that

tan 
u

2


1  cos u

sin u

The other Half-Angle Formula for Tangent is derived from this by multiplying the 
numerator and denominator by 1  cos u. ■

ExAMPlE 5 ■ using a Half-Angle Formula
Find the exact value of sin 22.5.

SoluTIon  Since 22.5 is half of 45, we use the Half-Angle Formula for Sine with  
u  45. We choose the  sign because 22.5 is in the first quadrant.

 sin  
45

2
 Å

1  cos 45

2
    Half-Angle Formula

  Å
1  !2/2

2
    cos 45  !2/2

  Å
2  !2

4
    Common denominator

  12"2  !2     Simplify

now Try Exercise 17 ■

ExAMPlE 6 ■ using a Half-Angle Formula
Find tan1u/2 2  if sin u  2

5 and u is in Quadrant II.

SoluTIon  To use the Half-Angle Formula for Tangent, we first need to find cos u. 
Since cosine is negative in Quadrant II, we have

 cos u  "1  sin2
 u

  #1  A25B2   

!21

5

Thus  tan 
u

2


1  cos u

sin u

  
1  !21/5

2
5


5  !21

2

now Try Exercise 37 ■
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■ Evaluating Expressions Involving Inverse 
Trigonometric Functions

Expressions involving trigonometric functions and their inverses arise in calculus. In 
the next examples we illustrate how to evaluate such expressions.

ExAMPlE 7 ■  Simplifying an Expression Involving an Inverse 
Trigonometric Function

Write sin12 cos1
 x 2  as an algebraic expression in x only, where 1  x  1.

SoluTIon  Let u  cos1
 x, and sketch a triangle as in Figure 1. We need to find 

sin 2u, but from the triangle we can find trigonometric functions of u only, not 2u. So 
we use the Double-Angle Formula for Sine. 

 sin12 cos1 x 2  sin 2u     cos1 x  u

  2 sin u cos u    Double-Angle Formula

  2x"1  x2     From the triangle

now Try Exercises 43 and 47 ■

ExAMPlE 8 ■  Evaluating an Expression Involving Trigonometric 
Functions 

Evaluate sin 2u, where cos u   
2
5 with u in Quadrant II.

SoluTIon  We first sketch the angle u in standard position with terminal side in Quad-
rant II as in Figure 2. Since cos u  x/r   

2
5, we can label a side and the hypotenuse 

of the triangle in Figure 2. To find the remaining side, we use the Pythagorean Theorem.

 x2  y2  r2     Pythagorean Theorem

 12 2 2  y2  52     x  2,  r  5

 y  6!21    Solve for y2

 y  !21    Because y  0

We can now use the Double-Angle Formula for Sine.

 sin 2u  2 sin u cos u     Double-Angle Formula

  2 a !21

5
b  a 

2

5
b     From the triangle

   

4!21

25
    Simplify

now Try Exercise 51 ■

DIScovErY ProjEcT

Where to Sit at the Movies

To best view a painting or a movie requires that the viewing angle be as large as 
possible. If the painting or movie screen is at a height above eye level, then being 
too far away or too close results in a small viewing angle and hence a poor view-
ing experience. So what is the best distance from which to view a movie or a 
painting? In this project we use trigonometry to find the best location from which 
to view a painting or a movie. You can find the project at www.stewartmath.com.©

 iS
to

ck
ph

ot
o.

co
m

/a
ge

nc
yb

y

¨

1

x

œ∑∑∑∑∑1-≈

FIgurE 1

5

_2

¨

P (x, y)

FIgurE 2
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■ Product-Sum Formulas
It is possible to write the product sin u cos √ as a sum of trigonometric functions. To see 
this, consider the Addition and Subtraction Formulas for Sine:

 sin1u  √ 2  sin u cos √  cos u sin √

 sin1u  √ 2  sin u cos √  cos u sin √

Adding the left- and right-hand sides of these formulas gives

sin1u  √ 2  sin1u  √ 2  2 sin u cos √

Dividing by 2 gives the formula

sin u cos √  1
2 3sin1u  √ 2  sin1u  √ 2 4

The other three Product-to-Sum Formulas follow from the Addition Formulas in a 
similar way.

ProDucT-To-SuM ForMulAS

 sin u cos √  1
2 3sin1u  √ 2  sin1u  √ 2 4

 cos u sin √  1
2 3sin1u  √ 2  sin1u  √ 2 4

 cos u cos √  1
2 3cos1u  √ 2  cos1u  √ 2 4

 sin u sin √  1
2 3cos1u  √ 2  cos1u  √ 2 4

ExAMPlE 9 ■ Expressing a Trigonometric Product as a Sum
Express sin 3x sin 5x as a sum of trigonometric functions.

SoluTIon  Using the fourth Product-to-Sum Formula with u  3x and √  5x and 
the fact that cosine is an even function, we get

 sin 3x sin 5x  1
2 3cos13x  5x 2  cos13x  5x 2 4

  12 cos12x 2  1
2 cos 8x

  12 cos 2x  1
2 cos 8x

now Try Exercise 55 ■

The Product-to-Sum Formulas can also be used as Sum-to-Product Formulas. This 
is possible because the right-hand side of each Product-to-Sum Formula is a sum and 
the left side is a product. For example, if we let

u 
x  y

2
  and  √ 

x  y

2

in the first Product-to-Sum Formula, we get

sin 
x  y

2
 cos 

x  y

2
 1

2 
 1sin x  sin y 2

so sin x  sin y  2 sin 
x  y

2
  cos 

x  y

2

The remaining three of the following Sum-to-Product Formulas are obtained in a 
similar manner.
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SuM-To-ProDucT ForMulAS

sin x  sin y  2 sin 
x  y

2
 cos 

x  y

2

sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2

cos x  cos y  2 cos 
x  y

2
 cos 

x  y

2

cos x  cos y  2 sin 
x  y

2
 sin 

x  y

2

ExAMPlE 10 ■ Expressing a Trigonometric Sum as a Product
Write sin 7x  sin 3x as a product.

SoluTIon  The first Sum-to-Product Formula gives

 sin 7x  sin 3x  2 sin 
7x  3x

2
 cos 

7x  3x

2

  2 sin 5x cos 2x

now Try Exercise 61 ■

ExAMPlE 11 ■ Proving an Identity

Verify the identity 
sin 3x  sin x

cos 3x  cos x
 tan x.

SoluTIon  We apply the second Sum-to-Product Formula to the numerator and the 
third formula to the denominator.

 LHS 
sin 3x  sin x

cos 3x  cos x


2 cos 
3x  x

2
 sin 

3x  x

2

2 cos 
3x  x

2
 cos 

3x  x

2

    Sum-to-Product Formulas

  
2 cos 2x sin x

2 cos 2x cos x
    Simplify

 
sin x
cos x

 tan x  RHS     Cancel

now Try Exercise 93 ■

concEPTS

 1. If we know the values of sin x and cos x, we can find the 

value of sin 2x by using the   Formula for Sine. 

State the formula: sin 2x     .

 2. If we know the value of cos x and the quadrant in which x/2 

lies, we can find the value of sin1x/2 2  by using the   
Formula for Sine. State the formula: 

  sin1x/2 2     .

7.3 ExErcISES
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SkIllS
3–10 ■ Double Angle Formulas  Find sin 2x, cos 2x, and tan 2x 
from the given information.

 3. sin x  5
13,  x in Quadrant I

 4. tan x   
4
3 ,  x in Quadrant II

 5. cos x  4
5,  csc x , 0  6. csc x  4,  tan x , 0

 7. sin x   
3
5 ,  x in Quadrant III

 8. sec x  2,  x in Quadrant IV

 9. tan x   
1
3 ,  cos x  0

 10. cot x  2
3,  sin x  0

11–16 ■ lowering Powers in a Trigonometric Expression  Use 
the formulas for lowering powers to rewrite the expression in 
terms of the first power of cosine, as in Example 4.

 11. sin4x 12. cos4x

13. cos2x sin4x 14. cos4x sin2x

15. cos4x sin4x 16. cos6x

17–28 ■ Half Angle Formulas  Use an appropriate Half-Angle 
Formula to find the exact value of the expression.

17. sin 15 18. tan 15

19. tan 22.5 20. sin 75

21. cos 165 22. cos 112.5

23. tan 
p

8
 24. cos 

3p

8

25. cos 
p

12
 26. tan 

5p

12

27. sin 
9p

8
 28. sin 

11p

12

29–34 ■ Double- and Half-Angle Formulas  Simplify the 
expression by using a Double-Angle Formula or a Half-Angle 
Formula.

29. (a) 2 sin 18 cos 18 (b) 2 sin 3u cos 3u

30. (a) 
2 tan 7

1  tan2 7
 (b) 

2 tan 7u

1  tan2 7u

31. (a) cos2 34  sin2 34 (b) cos2 5u  sin2 5u

32. (a) cos2 
 

u

2
 sin2 

 

u

2
 (b) 2 sin 

u

2
 cos 

u

2

33. (a) 
sin 8

1  cos 8
 (b) 

1  cos 4u

sin 4u

34. (a) Å
1  cos 30

2
 (b) Å

1  cos 8u

2

35. Proving a Double-Angle Formula  Use the Addition Formula 
for Sine to prove the Double-Angle Formula for Sine.

36. Proving a Double-Angle Formula  Use the Addition For-
mula for Tangent to prove the Double-Angle Formula for 
Tangent.

37–42 ■ using a Half-Angle Formula  Find sin 
x

2
, cos 

x

2
, and 

tan 
x

2
 from the given information.

37. sin x  3
5,  0 , x , 90

38. cos x   
4
5 ,  180 , x , 270

39. csc x  3,  90 , x , 180

40. tan x  1,  0 , x , 90

41. sec x  3
2,  270 , x , 360

42. cot x  5,  180 , x , 270

43–46 ■ Expressions Involving Inverse Trigonometric Func-
tions  Write the given expression as an algebraic expression in x.

43. sin12 tan1
 x 2  44. tan12 cos1

 x 2
45. sinA12 cos1

 xB  46. cos12 sin1
 x 2

47–50 ■ Expressions Involving Inverse Trigonometric Functions   
Find the exact value of the given expression.

47. sinA2 cos1 7
25 B  48. cosA2 tan1 12

5 B
49. secA2 sin1 14 B  50. tanA12 cos1 23 B

51–54 ■ Evaluating an Expression Involving Trigonometric  
Functions  Evaluate each expression under the given conditions.

51. cos 2u; sin u   
3
5 , u in Quadrant III

52. sin1u/2 2 ; tan u   
5

12 , u in Quadrant IV

53. sin 2u; sin u  1
7, u in Quadrant II

54. tan 2u; cos u  3
5, u in Quadrant I

55–60 ■ Product-to-Sum Formulas  Write the product as a sum.

55. sin 2x cos 3x 56. sin x sin 5x

57. cos x sin 4x 58. cos 5x cos 3x

59. 3 cos 4x cos 7x 60. 11 sin 
x

2
 cos 

x

4

61–66 ■ Sum-to-Product Formulas  Write the sum as a product.

61. sin 5x  sin 3x 62. sin x  sin 4x

63. cos 4x  cos 6x 64. cos 9x  cos 2x

65. sin 2x  sin 7x 66. sin 3x  sin 4x

67–72 ■ value of a Product or Sum  Find the value of the prod-
uct or sum.

67. 2 sin 52.5 sin 97.5 68. 3 cos 37.5 cos 7.5

69. cos 37.5 sin 7.5 70. sin 75 sin 15

71. cos 255  cos 195 72. cos 
p

12
 cos 

5p

12

73–92 ■ Proving Identities  Prove the identity.

73. cos2 5x  sin2 5x  cos 10x

74. sin 8x  2 sin 4x cos 4x

75. 1sin x  cos x 2 2  1  sin 2x
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 76. cos4x  sin4x  cos 2x

 77. 
2 tan x

1  tan2
 x

 sin 2x

 78. 
1  cos 2x

sin 2x
 tan x

 79. tan a x

2
b  cos x tana x

2
b  sin x

 80. tan a x

2
b  csc x 

2  cos x

sin x

 81. 
sin 4x

sin x
 4 cos x cos 2x

 82. 
1  sin 2x

sin 2x
 1  1

2 sec x csc x

 83. 
21 tan x  cot x 2
tan2

 x  cot2
 x

 sin 2x

 84. tan x 
sin 2x

1  cos 2x

 85. cot 2x 
1  tan2 x

2 tan x

 86. 41sin6
 x  cos6

 x 2  4  3 sin2 2x

 87. tan 3x 
3 tan x  tan3

 x

1  3 tan2
 x

 88. 
sin 3x  cos 3x

cos x  sin x
 1  4 sin x cos x

 89. 
sin x  sin 5x

cos x  cos 5x
 tan 3x

 90. 
sin 3x  sin 7x

cos 3x  cos 7x
 cot 2x

 91. 
sin 10x

sin 9x  sin x


cos 5x

cos 4x

 92. 
sin x  sin 3x  sin 5x

cos x  cos 3x  cos 5x
 tan 3x

 93. 
sin x  sin y

cos x  cos y
 tana x  y

2
b

 94. tan y 
sin1x  y 2  sin1x  y 2
cos1x  y 2  cos1x  y 2

 95. tan2 a x

2


p

4
b 

1  sin x

1  sin x

 96. 11  cos 4x 2 12  tan2
 x  cot2

 x 2  8

97–100 ■ Sum-to-Product Formulas  Use a Sum-to-Product 
Formula to show the following.

 97. sin 130  sin 110  sin 10

 98. cos 100  cos 200  sin 50

 99. sin 45  sin 15  sin 75

 100. cos 87  cos 33  sin 63

SkIllS Plus
101. Proving an Identity  Prove the identity

sin x  sin 2x  sin 3x  sin 4x  sin 5x

cos x  cos 2x  cos 3x  cos 4x  cos 5x
 tan 3x

102. Proving an Identity  Use the identity

sin 2x  2  sin x cos x

  n times to show that

sin12nx 2  2n sin x cos x  cos 2x  cos 4x . . . cos 2n1
 x

103–104 ■ Identities Involving Inverse Trigonometric Functions   
Prove the identity.

103. 2 sin1
 x  cos111  2x2 2 , 0  x  1 [Hint: Let 

u  sin1
 x, so that x  sin u. Use a Double-Angle  

Formula to show that 1  2x2  cos 2u.]

104. 2 tan1 a 1
x
b  cos1 a x2  1

x2  1
b   

[Hint: Let u  tan1 a 1
x
b , so that x 

1

tan u
 cot u.  

Use a Double-Angle Formula to show that 
x2  1

x2  1


cot2
 u  1

csc2
 u

 cos 2u.]

105–107 ■ Discovering an Identity graphically  In these  
problems we discover an identity graphically and then prove  
the identity.

 105. (a) Graph f 1x 2 
sin 3x

sin x


cos 3x

cos x
, and make a conjecture.

(b) Prove the conjecture you made in part (a).

106. (a) Graph f 1x 2  cos 2x  2 sin2
 x, and make a conjecture.

(b) Prove the conjecture you made in part (a).

107. Let f 1x 2  sin 6x  sin 7x.

(a) Graph y  f 1x 2 .
(b) Verify that f 1x 2  2 cos 12 x sin 13

2  x.

(c)  Graph y  2 cos 12 x and y  2 cos 12 x, together with 
the graph in part (a), in the same viewing rectangle. 
How are these graphs related to the graph of f?

108.  A cubic Equation  Let 3x  p/3, and let y  cos x. Use the 
result of Example 2 to show that y satisfies the equation

8y 
3  6y  1  0

   [Note: This equation has roots of a certain kind that are 
used to show that the angle p/3 cannot be trisected by using 
a ruler and compass only.]

109. Tchebycheff Polynomials 
(a)  Show that there is a polynomial P1 t 2  of degree 4 such 

that cos 4x  P1cos x 2  (see Example 2).

(b)  Show that there is a polynomial Q1 t 2  of degree 5 such 
that cos 5x  Q1cos x 2 .

   [Note: In general, there is a polynomial Pn1 t 2  of degree n 
such that cos nx  Pn1cos x 2 . These polynomials are called 
Tchebycheff polynomials, after the Russian mathematician  
P. L. Tchebycheff (1821–1894).]
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SECTION 7.3 ■ Double-Angle, Half-Angle, and Product-Sum Formulas 599

110.  length of a Bisector  In triangle ABC (see the figure) the 
line segment s bisects angle C. Show that the length of s is 
given by

s 
2ab  cos x

a  b

  [Hint: Use the Law of Sines.]

C

B A

a b
s

x x

111. Angles of a Triangle  If A, B, and C are the angles in a tri-
angle, show that

sin 2A  sin 2B  sin 2C  4 sin A sin B sin C

112.  largest Area  A rectangle is to be inscribed in a semicircle 
of radius 5 cm as shown in the following figure.

(a)  Show that the area of the rectangle is modeled by the 
function

A1u 2  25  sin 2u

(b)  Find the largest possible area for such an inscribed  
rectangle.  [Hint: Use the fact that sin u achieves its 
maximum value at u  p/2.]

(c)  Find the dimensions of the inscribed rectangle with the 
largest possible area.

¨
5 cm

APPlIcATIonS
113.  Sawing a Wooden Beam  A rectangular beam is to be cut 

from a cylindrical log of diameter 20 in.

(a)  Show that the cross-sectional area of the beam is  
modeled by the function

A1u 2  200 sin 2u

 where u is as shown in the figure.

(b)  Show that the maximum cross-sectional area of such a 
beam is 200 in2.  [Hint: Use the fact that sin u achieves 
its maximum value at u  p/2.]

20 in.

¨

20 in.
¨

114.  length of a Fold  The lower right-hand corner of a long 
piece of paper 6 in. wide is folded over to the left-hand 
edge as shown. The length L of the fold depends on the 
angle u. Show that

L 
3

sin u cos2
 u

L

¨

6 in.

115.  Sound Beats  When two pure notes that are close in fre-
quency are played together, their sounds interfere to pro-
duce beats; that is, the loudness (or amplitude) of the sound 
alternately increases and decreases. If the two notes are 
given by

f11 t 2  cos 11t  and  f21 t 2  cos 13t

  the resulting sound is f 1 t 2  f11 t 2  f21 t 2 .
(a) Graph the function y  f 1 t 2 .
(b) Verify that f 1 t 2  2 cos t cos 12t.

(c)  Graph y  2 cos t and y  2 cos t, together with the 
graph in part (a), in the same viewing rectangle. How 
do these graphs describe the variation in the loudness  
of the sound?

116.  Touch-Tone Telephones  When a key is pressed on a touch-
tone telephone, the keypad generates two pure tones, which 
combine to produce a sound that uniquely identifies the key. 
The figure shows the low frequency f1 and the high fre-
quency f2 associated with each key. Pressing a key produces 
the sound wave y  sin12pf1t 2  sin12pf2t 2 .
(a) Find the function that models the sound produced when 

the 4 key is pressed.

(b) Use a Sum-to-Product Formula to express the sound 
generated by the 4 key as a product of a sine and a 
cosine function.

(c) Graph the sound wave generated by the 4 key from  
t  0 to t  0.006 s.

Low
frequency

f1

1209
High frequency f2

1336 1477 Hz

697 Hz 1

770 Hz 4

852 Hz 7

941 Hz *

2

5

8

0

3

6

9

#
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600 CHAPTER 7 ■ Analytic Trigonometry

DIScuSS ■ DIScovEr ■ ProvE ■ WrITE
117. ProvE: geometric Proof of a Double-Angle Formula  Use 

the figure to prove that sin 2u  2 sin u cos u.

C

BA O
¨
1 1

  [Hint: Find the area of triangle ABC in two different ways. 
You will need the following facts from geometry:

    An angle inscribed in a semicircle is a right angle, so 
ACB is a right angle.

    The central angle subtended by the chord of a circle is 
twice the angle subtended by the chord on the circle, so 
BOC is 2u.]

7.4 BASIc TrIgonoMETrIc EQuATIonS
■ Basic Trigonometric Equations ■ Solving Trigonometric Equations by Factoring

An equation that contains trigonometric functions is called a trigonometric equation. 
For example, the following are trigonometric equations: 

sin2
 u  cos2

 u  1

2 sin u  1  0

tan 2u  1  0

The first equation is an identity—that is, it is true for every value of the variable u. The 
other two equations are true only for certain values of u. To solve a trigonometric equa-
tion, we find all the values of the variable that make the equation true. 

■ Basic Trigonometric Equations
Solving any trigonometric equation always reduces to solving a basic trigonometric 
equation—an equation of the form T1u 2  c, where T  is a trigonometric function and 
c is a constant. In the next three examples we solve such basic equations. 

ExAMPlE 1 ■ Solving a Basic Trigonometric Equation 

Solve the equation sin u 
1

2
.

SoluTIon Find the solutions in one period.  Because sine has period 2p, we first 
find the solutions in any interval of length 2p. To find these solutions, we look at the 
unit circle in Figure 1. We see that sin u  1

2 in Quadrants I and II, so the solutions in 
the interval 30, 2p 2  are

u 
p

6
    u 

5p

6

Find all solutions.  Because the sine function repeats its values every 2p units,  
we get all solutions of the equation by adding integer multiples of 2p to these 
solutions:

u 
p

6
 2kp    u 

5p

6
 2kp

y

x0 1_1

_1

1¨=

¨=π
6

5π
6

1
2

FIgurE 1
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SECTION 7.4 ■ Basic Trigonometric Equations 601

where k is any integer. Figure 2 gives a graphical representation of the  
solutions.

y

¨

1

_1

π

y=ß ¨

π
6

5π
6

13π
6

17π
6

25π
6

7π
6_

y=1
2

FIgurE 2

now Try Exercise 5 ■

ExAMPlE 2 ■ Solving a Basic Trigonometric Equation 

Solve the equation cos u   

!2

2
, and list eight specific solutions.

SoluTIon Find the solutions in one period.  Because cosine has period 2p, we first 
find the solutions in any interval of length 2p. From the unit circle in Figure 3 we  
see that cos u  !2/2 in Quadrants II and III, so the solutions in the interval 
30, 2p 2  are

u 
3p

4
    u 

5p

4

Find all solutions.  Because the cosine function repeats its values every 2p units, we 
get all solutions of the equation by adding integer multiples of 2p to these solutions:

u 
3p

4
 2kp    u 

5p

4
 2kp

where k is any integer. You can check that for k  1, 0, 1, 2 we get the following 
specific solutions:

u   

5p

4
,  

3p

4
, 

3p

4
, 

5p

4
, 

11p

4
, 

13p

4
, 

19p

4
, 

21p

4

 k  1 k  0 k  1 k  2

Figure 4 gives a graphical representation of the solutions.

y

¨

1

_1

π 2π

y=cos ¨

3π
4

3π
4

5π
4

11π
4

13π
4_5π

4_

y= 2
2

œ∑∑∑∑∑
_

0

FIgurE 4

now Try Exercise 17 ■

• e • •

y

x

¨=3π
4

¨=
5π
4

1_1

_1

1

2
2

œ∑∑∑∑∑
_

FIgurE 3
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602 CHAPTER 7 ■ Analytic Trigonometry

ExAMPlE 3 ■ Solving a Basic Trigonometric Equation
Solve the equation cos u  0.65.

SoluTIon Find the solutions in one period.  We first find one solution by taking 
cos1 of each side of the equation.

 cos u  0.65     Given equation

 u  cos110.65 2     Take cos1 of each side

 u < 0.86     Calculator (in radian mode)

Because cosine has period 2p, we next find the solutions in any interval of length 
2p. To find these solutions, we look at the unit circle in Figure 5. We see that 
cos u  0.86 in Quadrants I and IV, so the solutions are

u < 0.86    u < 2p  0.86 < 5.42

Find all solutions.  To get all solutions of the equation, we add integer multiples of 
2p to these solutions:

u < 0.86  2kp    u < 5.42  2kp

where k is any integer. 

now Try Exercise 21 ■

ExAMPlE 4 ■ Solving a Basic Trigonometric Equation
Solve the equation tan u  2.

SoluTIon Find the solutions in one period.  We first find one solution by taking 
tan1 of each side of the equation.

 tan u  2     Given equation

 u  tan112 2     Take tan1 of each side

 u < 1.12     Calculator (in radian mode)

By the definition of tan1 the solution that we obtained is the only solution in the 
interval 1p/2, p/2 2  (which is an interval of length p).

Find all solutions.  Since tangent has period p, we get all solutions of the equation 
by adding integer multiples of p:

u < 1.12  kp

where k is any integer. A graphical representation of the solutions is shown in Figure 6. 
You can check that the solutions shown in the graph correspond to k  1, 0, 1, 2, 3. 

y

¨4.26

1.12

7.40 10.54

y=tan ¨

y=2

π
2

π
2_

_2.02
FIgurE 6

now Try Exercise 23 ■

y

x1_1

_1

1

¨=0.86

¨=5.42
0.65

FIgurE 5
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SECTION 7.4 ■ Basic Trigonometric Equations 603

In the next example we solve trigonometric equations that are algebraically equiva-
lent to basic trigonometric equations.

ExAMPlE 5 ■ Solving Trigonometric Equations
Find all solutions of the equation.

(a) 2 sin u  1  0      (b) tan2
 u  3  0

SoluTIon 

(a) We start by isolating sin u.

 2 sin u  1  0    Given equation

 2 sin u  1    Add 1

 sin u 
1

2
    Divide by 2

  This last equation is the same as that in Example 1. The solutions are 

u 
p

6
 2kp    u 

5p

6
 2kp

  where k is any integer.

(b) We start by isolating tan u.

 tan2
 u  3  0     Given equation

 tan2
 u  3     Add 3

 tan u  6!3    Take the square root

   Because tangent has period p, we first find the solutions in any interval of length 
p. In the interval 1p/2, p/2 2  the solutions are u  p/3 and u  p/3. To get 
all solutions, we add integer multiples of p to these solutions:

u 
p

3
 kp    u   

p

3
 kp

  where k is any integer.

now Try Exercises 27 and 33 ■

■ Solving Trigonometric Equations by Factoring
Factoring is one of the most useful techniques for solving equations, including trigono-
metric equations. The idea is to move all terms to one side of the equation, factor, and 
then use the Zero-Product Property (see Section 1.4). 

ExAMPlE 6 ■ A Trigonometric Equation of Quadratic Type
Solve the equation 2 cos2

 u  7 cos u  3  0.

SoluTIon  We factor the left-hand side of the equation.

  2 cos2
 u  7 cos u  3  0 Given equation

  12 cos u  1 2 1cos u  3 2  0 Factor

  2 cos u  1  0    or     cos u  3  0 Set each factor equal to 0

  cos u 
1

2
    or     cos u  3 Solve for cos u

Zero-Product Property

If AB  0, then A  0 or B  0.

Equation of Quadratic Type

 2C 2  7C  3  0

 12C  1 2 1C  3 2  0
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604 CHAPTER 7 ■ Analytic Trigonometry

Because cosine has period 2p, we first find the solutions in the interval 30, 2p 2 . 
For the first equation the solutions are u  p/3 and u  5p/3 (see Figure 7). The 
second equation has no solution because cos u is never greater than 1. Thus the 
solutions are 

u 
p

3
 2kp    u 

5p

3
 2kp

where k is any integer.

now Try Exercise 41 ■

ExAMPlE 7 ■ Solving a Trigonometric Equation by Factoring
Solve the equation 5 sin u cos u  4 cos u  0.

SoluTIon  We factor the left-hand side of the equation.

 5 sin u cos u  2 cos u  0     Given equation

 cos u 15 sin u  2 2  0     Factor

 cos u  0  or  5 sin u  4  0     Set each factor equal to 0

 sin u  0.8    Solve for sin u

Because sine and cosine have period 2p, we first find the solutions of these equations 
in an interval of length 2p. For the first equation the solutions in the interval 30, 2p 2  
are u  p/2 and u  3p/2. To solve the second equation, we take sin1 of each side.

 sin u  0.80     Second equation

 u  sin110.80 2     Take sin1 of each side

 u < 0.93     Calculator (in radian mode)

So the solutions in an interval of length 2p are u  0.93 and u  p  0.93 < 4.07 
(see Figure 8). We get all the solutions of the equation by adding integer multiples of 
2p to these solutions.

u 
p

2
 2kp    u 

3p

2
 2kp    u < 0.93  2kp    u < 4.07  2kp

where k is any integer.

now Try Exercise 53 ■

y

x1_1

_1

1

0.5¨=5π
3

¨=π
3

FIgurE 7

y

x1_1

_1
_0.8

1
¨=_0.93

¨=π+0.93

FIgurE 8

concEPTS

 1. Because the trigonometric functions are periodic, if a basic 

  trigonometric equation has one solution, it has    
(several/infinitely many) solutions. 

 2. The basic equation sin x  2 has   (no/one/infinitely 
many) solutions, whereas the basic equation sin x  0.3 has  

    (no/one/infinitely many) solutions.

 3. We can find some of the solutions of sin x  0.3 graphically 

  by graphing y  sin x and y     . Use the graph 
below to estimate some of the solutions.

1
y

x10

7.4 ExErcISES
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SECTION 7.4 ■ Basic Trigonometric Equations 605

 4. We can find the solutions of sin x  0.3 algebraically. 

(a) First we find the solutions in the interval 30, 2p 2 . We get

 one such solution by taking sin1 to get x <    . 

 The other solution in this interval is x <    .

(b) We find all solutions by adding multiples of    
to the solutions in 30, 2p 2 . The solutions are 

 x <   and x <    .

SkIllS
5–16 ■ Solving Basic Trigonometric Equations  Solve the given 
equation.

 5. sin u 
!3

2
  6. sin u   

!2

2

 7. cos u  1  8. cos u 
!3

2

 9. cos u  1
4 10. sin u  0.3

11. sin u  0.45 12. cos u  0.32

13. tan u  !3 14. tan u  1

15. tan u  5 16. tan u   
1
3

17–24 ■ Solving Basic Trigonometric Equations  Solve the given 
equation, and list six specific solutions.

17. cos u   

!3

2
 18. cos u 

1

2

19. sin u 
!2

2
 20. sin u   

!3

2

21. cos u  0.28 22. tan u  2.5

23. tan u  10 24. sin u  0.9

25–38 ■ Solving Trigonometric Equations  Find all solutions of 
the given equation.

25. cos u  1  0 26. sin u  1  0 

27. !2 sin u  1  0 28. !2 cos u  1  0

29. 5 sin u  1  0 30. 4 cos u  1  0

31. 3 tan2
 u  1  0 32. cot u  1  0

33. 2 cos2
 u  1  0 34. 4 sin2

 u  3  0

35. tan2
 u  4  0 36. 9 sin2

 u  1  0

37. sec2
 u  2  0 38. csc2

 u  4  0

39–56 ■ Solving Trigonometric Equations by Factoring  Solve 
the given equation.

39. 1 tan2
 u  4 2 12 cos u  1 2  0 

40. 1 tan u  2 2 116 sin2
 u  1 2  0

41. 4 cos2
 u  4 cos u  1  0 

42. 2 sin2
 u  sin u  1  0

43. 3 sin2
 u  7 sin u  2  0 

44. tan4
 u  13 tan2

 u  36  0

45. 2 cos2
 u  7 cos u  3  0 

46. sin2
 u  sin u  2  0

47. cos2
 u  cos u  6  0

 48. 2 sin2
 u  5 sin u  12  0

49. sin2
 u  2 sin u  3

 50. 3 tan3
 u  tan u

51. cos u 12 sin u  1 2  0

 52. sec u 12 cos u  !2 2  0

53. cos u sin u  2 cos u  0

 54. tan u sin u  sin u  0

55. 3 tan u sin u  2 tan u  0

 56. 4 cos u sin u  3 cos u  0

APPlIcATIonS
57. refraction of light  It has been observed since ancient times 

that light refracts, or “bends,” as it travels from one medium 
to another (from air to water, for example). If √1 is the speed 
of light in one medium and √2 is its speed in another medium, 
then according to Snell’s Law,

sin u1

sin u2


√1

√2

  where u1 is the angle of incidence and u2 is the angle of 
refraction (see the figure). The number √1/√2 is called the 
index of refraction. The index of refraction for several sub-
stances is given in the table. 

    If a ray of light passes through the surface of a lake at an 
angle of incidence of 70, what is the angle of refraction?

Air

Water

¨⁄

¨¤

Substance

Refraction 
from air  

to substance

Water 1.33
Alcohol 1.36
Glass 1.52
Diamond 2.41

58. Total Internal reflection  When light passes from a more-
dense to a less-dense medium—from glass to air, for  
example—the angle of refraction predicted by Snell’s Law 
(see Exercise 57) can be 90 or larger. In this case the light 
beam is actually reflected back into the denser medium. 
This phenomenon, called total internal reflection, is the 
principle behind fiber optics. Set u2  90 in Snell’s Law, 
and solve for u1 to determine the critical angle of incidence 
at which total internal reflection begins to occur when light 
passes from glass to air. (Note that the index of refraction 
from glass to air is the reciprocal of the index from air to 
glass.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



606 CHAPTER 7 ■ Analytic Trigonometry

59. Phases of the Moon  As the moon revolves around the earth, 
the side that faces the earth is usually just partially illumi-
nated by the sun. The phases of the moon describe how much 
of the surface appears to be in sunlight. An astronomical 
measure of phase is given by the fraction F of the lunar disc 
that is lit. When the angle between the sun, earth, and moon 
is u (0  u  360), then

F 
1

2
 11  cos u 2

  Determine the angles u that correspond to the following phases:

(a) F  0  (new moon)

(b) F  0.25  (a crescent moon)

(c) F  0.5  (first or last quarter)

(d) F  1  (full moon)

DIScuSS ■ DIScovEr ■ ProvE ■ WrITE
60. DIScuSS ■ WrITE: Equations and Identities  Which of the 

following statements is true?

   A. Every identity is an equation.

   B. Every equation is an identity.

  Give examples to illustrate your answer. Write a short  
paragraph to explain the difference between an equation and 
an identity.

7.5 MorE TrIgonoMETrIc EQuATIonS
■ Solving Trigonometric Equations by using Identities ■ Equations with Trigonometric 
Functions of Multiples of Angles

In this section we solve trigonometric equations by first using identities to simplify the 
equation. We also solve trigonometric equations in which the terms contain multiples 
of angles.

■ Solving Trigonometric Equations by using Identities
In the next two examples we use trigonometric identities to express a trigonometric 
equation in a form in which it can be factored. 

ExAMPlE 1 ■ using a Trigonometric Identity 
Solve the equation 1  sin u  2 cos2

 u.

SoluTIon  We first need to rewrite this equation so that it contains only one trigono-
metric function. To do this, we use a trigonometric identity.

  1  sin u  2 cos2
 u  Given equation

  1  sin u  211  sin2
 u 2  Pythagorean identity

  2 sin2
 u  sin u  1  0  Put all terms on one side

  12 sin u  1 2 1sin u  1 2  0  Factor

 2 sin u  1  0     or     sin u  1  0  Set each factor equal to 0 

 sin u 
1

2
    or     sin u  1 Solve for sin u

 
 u 

p

6
,  

5p

6
    or     u 

3p

2
 

Solve for u in the  
interval 30, 2p 2

Because sine has period 2p, we get all the solutions of the equation by adding integer 
multiples of 2p to these solutions. Thus the solutions are

u 
p

6
 2kp    u 

5p

6
 2kp    u 

3p

2
 2kp

where k is any integer.

now Try Exercises 3 and 11 ■
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SECTION 7.5 ■ More Trigonometric Equations 607

ExAMPlE 2 ■ using a Trigonometric Identity
Solve the equation sin 2u  cos u  0.

SoluTIon  The first term is a function of 2u, and the second is a function of u, so we 
begin by using a trigonometric identity to rewrite the first term as a function of u only.

  sin 2u  cos u  0 Given equation

  2 sin u cos u  cos u  0 Double-Angle Formula

  cos u 12 sin u  1 2  0 Factor

cos u  0     or     2 sin u  1  0  Set each factor equal to 0

  sin u 
1

2
 Solve for sin u

u 
p

2
,  

3p

2
    or    u 

p

6
,  

5p

6
    Solve for u in 30, 2p 2

Both sine and cosine have period 2p, so we get all the solutions of the equation by 
adding integer multiples of 2p to these solutions. Thus the solutions are 

u 
p

2
 2kp    u 

3p

2
 2kp    u 

p

6
 2kp    u 

5p

6
 2kp

where k is any integer.

now Try Exercises 7 and 9 ■

ExAMPlE 3 ■ Squaring and using an Identity
Solve the equation cos u  1  sin u in the interval 30, 2p 2 .
SoluTIon  To get an equation that involves either sine only or cosine only, we square 
both sides and use a Pythagorean identity.

  cos u  1  sin u  Given equation

  cos2
 u  2 cos u  1  sin2

 u  Square both sides

  cos2
 u  2 cos u  1  1  cos2

 u Pythagorean identity

  2 cos2
 u  2 cos u  0  Simplify

  2 cos u 1cos u  1 2  0  Factor

 2 cos u  0     or     cos u  1  0  Set each factor equal to 0

 cos u  0     or     cos u  1 Solve for cos u

 u 
p

2
,  

3p

2
    or     u  p  Solve for u in 30, 2p 2

Because we squared both sides, we need to check for extraneous solutions. From 
Check Your Answers we see that the solutions of the given equation are p/2 and p.

cHEck Your AnSWErS

 u 
p

2
  u 

3p

2
  u  p

 cos 
p

2
 1  sin 

p

2
  cos 

3p

2
 1  sin 

3p

2
  cos p  1  sin p

 0  1  1 ✓  0  1 0 1 ✗  1  1  0 ✓

now Try Exercise 13 ■
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608 CHAPTER 7 ■ Analytic Trigonometry

ExAMPlE 4 ■ Finding Intersection Points
Find the values of x for which the graphs of f 1x 2  sin x and g 1x 2  cos x 
intersect.

SoluTIon 1: graphical
The graphs intersect where f 1x 2  g 1x 2 . In Figure 1 we graph y1  sin x and 
y2  cos x on the same screen, for x between 0 and 2p. Using TRACE or the  
intersect command on the graphing calculator, we see that the two points of inter-
section in this interval occur where x < 0.785 and x < 3.927. Since sine and cosine 
are periodic with period 2p, the intersection points occur where 

x < 0.785  2kp    and    x < 3.927  2kp   

where k is any integer.

1.5

_1.5

0

(b)

Intersection
X=3.9269908  Y= -.7071068

1.5

_1.5

0 6.28 6.28

(a)

Intersection
X=.78539816  Y=.70710678

FIgurE 1

SoluTIon 2: Algebraic 
To find the exact solution, we set f 1x 2  g 1x 2  and solve the resulting equation 
algebraically:

 sin x  cos x    Equate functions

Since the numbers x for which cos x  0 are not solutions of the equation, we can 
divide both sides by cos x:

 
sin x
cos x

 1    Divide by cos x

 tan x  1    Reciprocal identity

The only solution of this equation in the interval 1p/2, p/2 2  is x  p/4. Since  
tangent has period p, we get all solutions of the equation by adding integer multiples 
of p:

x 
p

4
 kp

where k is any integer. The graphs intersect for these values of x. You should use your 
calculator to check that, rounded to three decimals, these are the same values that we 
obtained in Solution 1. 

now Try Exercise 35 ■

■ Equations with Trigonometric Functions  
of Multiples of Angles

When solving trigonometric equations that involve functions of multiples of angles, we 
first solve for the multiple of the angle, then divide to solve for the angle. 
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SECTION 7.5 ■ More Trigonometric Equations 609

ExAMPlE 5 ■  A Trigonometric Equation Involving a Multiple of an Angle 
Consider the equation 2 sin 3u  1  0.

(a) Find all solutions of the equation.

(b) Find the solutions in the interval 30, 2p 2 .
SoluTIon 

(a)  We first isolate sin 3u and then solve for the angle 3u. 

 2 sin 3u  1  0     Given equation

 2 sin 3u  1     Add 1

 sin 3u 
1

2
    Divide by 2

 3u 
p

6
,  

5p

6
    Solve for 3u in the interval 30, 2p 2  (see Figure 2)

   To get all solutions, we add integer multiples of 2p to these solutions. So the 
solutions are of the form

3u 
p

6
 2kp      3u 

5p

6
 2kp

  To solve for u, we divide by 3 to get the solutions

u 
p

18


2kp

3
      u 

5p

18


2kp

3

  where k is any integer.

(b)  The solutions from part (a) that are in the interval 30, 2p 2  correspond to k  0, 1, 
and 2. For all other values of k the corresponding values of u lie outside this inter-
val. So the solutions in the interval 30, 2p 2  are 

u 
p

18
, 

5p

18
, 

13p

18
, 

17p

18
, 

25p

18
, 

29p

18

 k  0 k  1 k  2

y

x0 1_1

_1

1

3¨=π
6

1
2 3¨=5π

6

FIgurE 2

now Try Exercise 17 ■

ExAMPlE 6 ■  A Trigonometric Equation Involving a Half Angle 

Consider the equation !3 tan 
u

2
 1  0.

(a) Find all solutions of the equation.

(b) Find the solutions in the interval 30, 4p 2 .

e • •
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610 CHAPTER 7 ■ Analytic Trigonometry

SoluTIon 

(a) We start by isolating tan 
u

2
.

 !3 tan 
u

2
 1  0     Given equation

 !3 tan 
u

2
 1     Add 1

 tan 
u

2


1

!3
    Divide by !3

 
u

2


p

6
    Solve for 

u

2
 in the interval a 

p

2
, 

p

2
b

   Since tangent has period p, to get all solutions, we add integer multiples of p to 
this solution. So the solutions are of the form

u

2


p

6
 kp

  Multiplying by 2, we get the solutions

u 
p

3
 2kp

  where k is any integer.

(b)  The solutions from part (a) that are in the interval 30, 4p 2  correspond to k  0 
and k  1. For all other values of k the corresponding values of x lie outside this 
interval. Thus the solutions in the interval 30, 4p 2  are

x 
p

3
,  

7p

3

now Try Exercise 23 ■

concEPTS
1–2 ■ We can use identities to help us solve trigonometric  
equations. 

 1. Using a Pythagorean identity we see that the equation 
sin x  sin2

 x  cos2
 x  1 is equivalent to the basic equation

    whose solutions are x     .

 2. Using a Double-Angle Formula we see that the equation 

  sin x  sin 2x  0 is equivalent to the equation    . 
Factoring, we see that solving this equation is equivalent to 

  solving the two basic equations   and    .

SkIllS
3–16 ■ Solving Trigonometric Equations by using Identities   
Solve the given equation.

 3. 2 cos2
 u  sin u  1  4. sin2

 u  4  2 cos2
 u

 5. tan2
 u  2 sec u  2  6. csc2

 u  cot u  3

 7. 2 sin 2u  3 sin u  0  8. 3 sin 2u  2 sin u  0

 9. cos 2u  3 sin u  1 10. cos 2u  cos2
 u  1

2

11. 2 sin2
 u  cos u  1 12. tan u  3 cot u  0

13. sin u  1  cos u 14. cos u  sin u  1

15. tan u  1  sec u 16. 2 tan u  sec2
 u  4

17–30 ■ Solving Trigonometric Equations Involving a Multiple of 
an Angle  An equation is given. (a) Find all solutions of the 
equation. (b) Find the solutions in the interval 30, 2p 2 .
17. 2 cos 3u  1 18. 2 sin 2u  1

19. 2 cos 2u  1  0 20. 2 sin 3u  1  0

21. !3 tan 3u  1  0 22. sec 4u  2  0

23. cos 
u

2
 1  0 24. tan 

u

4
 !3  0

25. 2 sin 
u

3
 !3  0 26. sec 

u

2
 cos 

u

2

7.5 ExErcISES
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SECTION 7.5 ■ More Trigonometric Equations 611

27. sin 2u  3 cos 2u

 28. csc 3u  5 sin 3u

29. 1  2 sin u  cos 2u

 30. tan 3u  1  sec 3u

31–34 ■ Solving Trigonometric Equations  Solve the equations 
by factoring.

31. 3 tan3
 u  3 tan2

 u  tan u  1  0

32. 4 sin u cos u  2 sin u  2 cos u  1  0

33. 2 sin u tan u  tan u  1  2 sin u 

34. sec u tan u  cos u cot u  sin u

35–38 ■ Finding Intersection Points graphically  (a) Graph f 
and g in the given viewing rectangle and find the intersection 
points graphically, rounded to two decimal places. (b) Find  
the intersection points of f and g algebraically. Give exact 
answers.

35. f 1x 2  3 cos x  1, g1x 2  cos x  1; 
32p, 2p 4  by 32.5, 4.5 4

36. f 1x 2  sin 2x  1, g1x 2  2 sin 2x  1; 
32p, 2p 4  by 31.5, 3.5 4

37. f 1x 2  tan x, g1x 2  !3;  
3 p/2, p/2 4  by 310, 10 4

38. f 1x 2  sin x  1, g 1x 2  cos x; 
32p, 2p 4  by 32.5, 1.5 4

39–42 ■ using Addition or Subtraction Formulas  Use an Addi-
tion or Subtraction Formula to simplify the equation. Then find 
all solutions in the interval 30, 2p 2 .
39. cos u cos 3u  sin u sin 3u  0

40. cos u cos 2u  sin u sin 2u  1
2

41. sin 2u cos u  cos 2u sin u  !3/2

42. sin 3u cos u  cos 3u sin u  0

43–52 ■ using Double- or Half-Angle Formulas  Use a Double- 
or Half-Angle Formula to solve the equation in the interval 
30, 2p 2 .
43. sin 2u  cos u  0

 44. tan 
u

2
 sin u  0

45. cos 2u  cos u  2

 46. tan u  cot u  4 sin 2u

47. cos 2u  cos2
 u  0

 48. 2 sin2
 u  2  cos 2u

49. cos 2u  cos 4u  0

 50. sin 3u  sin 6u  0

51. cos u  sin u  !2 sin 
u

2

 52. sin u  cos u  1
2

53–56 ■ using Sum-to-Product Formulas  Solve the equation by 
first using a Sum-to-Product Formula. 

53. sin u  sin 3u  0

 54. cos 5u  cos 7u  0

55. cos 4u  cos 2u  cos u

 56. sin 5u  sin 3u  cos 4u

57–62 ■ Solving Trigonometric Equations graphically  Use a 
graphing device to find the solutions of the equation, rounded to 
two decimal places.

57. sin 2x  x 58. cos x 
x

3

59. 2sin x  x 60. sin x  x3

61. 
cos x

1  x2  x2 62. cos x  1
2 1ex  ex 2

SkIllS Plus
63–64 ■ Equations Involving Inverse Trigonometric Functions   
Solve the given equation for x.

 63. tan1
 x  tan1

 2x 
p

4
 [Hint: Let u  tan1

 x and 

  √  tan1
 2x. Solve the equation u  √ 

p

4
 by taking the 

  tangent of each side.]

 64. 2 sin1
 x  cos1

 x  p [Hint: Take the cosine of each 
side.]

APPlIcATIonS
65. range of a Projectile  If a projectile is fired with velocity √0 

at an angle u, then its range, the horizontal distance it travels 
(in ft), is modeled by the function

R1u 2 
√2

0 sin 2u

32

  (See page 663.) If √0  2200 ft/s, what angle (in degrees) 
should be chosen for the projectile to hit a target on the 
ground 5000 ft away? 

66. Damped vibrations  The displacement of a spring vibrating 
in damped harmonic motion is given by 

y  4e3t sin 2pt

  Find the times when the spring is at its equilibrium position 
1y  0 2 .

67. Hours of Daylight  In Philadelphia the number of hours of 
daylight on day t (where t is the number of days after  
January 1) is modeled by the function

L1 t 2  12  2.83 sina 2p

365
 1 t  80 2b

(a) Which days of the year have about 10 h of daylight?

(b) How many days of the year have more than 10 h of 
daylight?
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612 CHAPTER 7 ■ Analytic Trigonometry

68. Belts and Pulleys  A thin belt of length L surrounds two  
pulleys of radii R and r, as shown in the figure to the right.

(a) Show that the angle u (in rad) where the belt crosses 
itself satisfies the equation

u  2 cot 
u

2


L

R  r
 p

 [Hint: Express L in terms of R, r, and u by adding  
up the lengths of the curved and straight parts of the 
belt.]

(b) Suppose that R  2.42 ft, r  1.21 ft, and  
L  27.78 ft. Find u by solving the equation in  
part (a) graphically. Express your answer both in  
radians and in degrees.

¨

R

R
r

r

DIScuSS ■ DIScovEr ■ ProvE ■ WrITE
69. DIScuSS: A Special Trigonometric Equation  What makes 

the equation sin1cos x 2  0 different from all the other equa-
tions we’ve looked at in this section? Find all solutions of 
this equation.

Fundamental Trigonometric Identities (p. 574)
An identity is an equation that is true for all values of the 
variable(s). A trigonometric identity is an identity that involves 
trigonometric functions. The fundamental trigonometric identities 
are as follows.

Reciprocal Identities:

csc x 
1

sin x
  sec x 

1

cos x
  cot x 

1

tan x

tan x 
sin x

cos x
  cot x 

cos x

sin x

Pythagorean Identities:

 sin2
 x  cos2

 x  1

 tan2
 x  1  sec2

 x

 1  cot2
 x  csc2

 x

Even-Odd Identities:

 sin1x 2  sin x

 cos1x 2  cos x

 tan1x 2  tan x

Cofunction Identities:

sin ap

2
 xb  cos x  tan ap

2
 xb  cot x

secap

2
 xb  csc x

cos ap

2
 xb  sin x  cot ap

2
 xb  tan x

cscap

2
 xb  sec x

Proving Trigonometric Identities (p. 576)
To prove that a trigonometric equation is an identity, we use the 
following guidelines.

1. Start with one side. Pick one side of the equation.

2.  Use known identities. Use algebra and known identities to 
change the side you started with into the other side.

3. Convert to sines and cosines. Sometimes it is helpful to con-
vert all functions in the equation to sines and cosines.

Addition and Subtraction Formulas (p. 581)
These identities involve the trigonometric functions of a sum or a 
difference.

Formulas for Sine:

sin1s  t 2  sin s cos t  cos s sin t

sin1s  t 2  sin s cos t  cos s sin t

Formulas for Cosine:

cos1s  t 2  cos s cos t  sin s sin t

cos1s  t 2  cos s cos t  sin s sin t

Formulas for Tangent:

tan1s  t 2 
tan s  tan t

1  tan s tan t

tan1s  t 2 
tan s  tan t

1  tan s tan t

Sums of Sines and cosines (p. 586)
If A and B are real numbers, then 

A sin x  B cos x  k sin1x  f 2
where k  "A2  B2 and f satisfies 

cos f 
A

"A2  B2
  sin f 

B

"A2  B2

■ ProPErTIES AnD ForMulAS

cHAPTEr 7 ■ rEvIEW
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CHAPTER 7 ■ Review 613

Double-Angle Formulas (p. 590)
These identities involve the trigonometric functions of twice the 
variable.

Formula for Sine:

sin 2x  2 sin x cos x

Formulas for Cosine:

 cos 2x  cos2
 x  sin2

 x

  1  2 sin2
 x

  2 cos2
 x  1

Formulas for Tangent:

tan 2x 
2 tan x

1  tan2
 x

Formulas for lowering Powers (p. 592)
These formulas allow us to write a trigonometric expression 
involving even powers of sine and cosine in terms of the first 
power of cosine only.

sin2
 x 

1  cos 2x

2
  cos2

 x 
1  cos 2x

2

tan2
 x 

1  cos 2x

1  cos 2x

Half-Angle Formulas (p. 592)
These formulas involve trigonometric functions of half an angle.

sin 
u

2
 6Å

1  cos u

2
  cos 

u

2
 6Å

1  cos u

2

tan 
u

2


1  cos u

sin u


sin u

1  cos u

Product-Sum Formulas (pp. 595–596)
These formulas involve products and sums of trigonometric 
functions.

Product-to-Sum Formulas:

 sin u cos √  1
2 
3sin1u  √ 2  sin1u  √ 2 4

 cos u sin √  1
2 
3sin1u  √ 2  sin1u  √ 2 4

 cos u cos √  1
2 
3cos1u  √ 2  cos1u  √ 2 4

 sin u sin √  1
2 
3cos1u  √ 2  cos1u  √ 2 4

Sum-to-Product Formulas:

 sin x  sin y  2 sin 
x  y

2
 cos 

x  y

2

 sin x  sin y  2 cos 
x  y

2
 sin 

x  y

2

 cos x  cos y  2 cos 
x  y

2
 cos 

x  y

2

 cos x  cos y  2 sin 
x  y

2
 sin 

x  y

2

Trigonometric Equations (p. 600)
A trigonometric equation is an equation that contains trigono-
metric functions. A basic trigonometric equation is an equation of 
the form T1u 2  c, where T is a trigonometric function and c is a 
constant. For example, sin u  0.5 and tan u  2 are basic trigo-
nometric equations. Solving any trigonometric equation involves 
solving a basic trigonometric equation.

If a trigonometric equation has a solution, then it has infinitely 
many solutions. 

To find all solutions, we first find the solutions in one period 
and then add integer multiples of the period.

We can sometimes use trigonometric identities to simplify a 
trigonometric equation. 

 1. What is an identity? What is a trigonometric identity? 

 2. (a) State the Pythagorean identities.

(b) Use a Pythagorean identity to express cosine in terms of 
sine.

 3. (a)  State the reciprocal identities for cosecant, secant, and 
cotangent.

(b) State the even-odd identities for sine and cosine.

(c) State the cofunction identities for sine, tangent, and 
secant.

(d) Suppose that cos1x 2  0.4; use the identities in parts 
(a) and (b) to find sec x.

(e) Suppose that sin 10  a; use the identities in part (c) to 
find cos 80.

 4. (a) How do you prove an identity?

(b) Prove the identity sin x1csc x  sin x 2  cos2
 x

 5. (a)  State the Addition and Subtraction Formulas for Sine and 
Cosine.

(b) Use a formula from part (a) to find sin 75.

 6. (a) State the formula for A sin x  B cos x.

(b) Express 3 sin x  4 cos x as a function of sine only.

 7. (a)  State the Double-Angle Formula for Sine and the  
Double-Angle Formulas for Cosine. 

(b) Prove the identity sec x sin 2x  2 sin x.

 8. (a)  State the formulas for lowering powers of sine and cosine.

(b) Prove the identity 4 sin2
 x cos2

 x  sin2
 2x.

 9. (a) State the Half-Angle Formulas for Sine and Cosine.

(b) Find cos 15.

 10. (a)  State the Product-to-Sum Formula for the product 
sin u cos √.

(b) Express sin 5x cos 3x as a sum of trigonometric functions.

■ concEPT cHEck
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614 CHAPTER 7 ■ Analytic Trigonometry

 11. (a)  State the Sum-to-Product Formula for the sum 
sin x  sin y.

(b) Express sin 5x  sin 7x as a product of trigonometric 
functions.

 12. What is a trigonometric equation? How do we solve a trigo-
nometric equation?

(a) Solve the equation cos x  1
2.

(b) Solve the equation 2 sin x cos x  1
2.

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ ExErcISES

1–22 ■ Proving Identities  Verify the identity.

 1. sin u 1cot u  tan u 2  sec u

 2. 1sec u  1 2 1sec u  1 2  tan2
 u

 3. cos2
 x csc x  csc x  sin x

 4. 
1

1  sin2
 x

 1  tan2
 x

 5. 
cos2

 x  tan2
 x

sin2
 x

 cot2
 x  sec2

 x

 6. 
1  sec x

sec x


sin2
 x

1  cos x
 

 7. 
cos2

 x

1  sin x


cos x

sec x  tan x

 8. 11  tan x 2 11  cot x 2  2  sec x csc x

 9. sin2
 x cot2

 x  cos2
 x tan2

 x  1

10. 1 tan x  cot x 2 2  csc2
 x sec2

 x

11. 
sin 2x

1  cos 2x
 tan x

12. 
cos1x  y 2
cos x sin y

 cot y  tan x

13. csc x  tan 
x

2
 cot x 

14. 1  tan x tan 
x

2
 sec x

15. 
sin 2x

sin x


cos 2x

cos x
 sec x

16. tan a x 
p

4
b 

1  tan x

1  tan x
 

17. 
sec x  1

sin x sec x
 tan 

x

2

18. 1cos x  cos y 2 2  1sin x  sin y 2 2  2  2 cos1x  y 2

19. a cos 
x

2
 sin 

x

2
b

2

 1  sin x

20. 
cos 3x  cos 7x

sin 3x  sin 7x
 tan 2x

21. 
sin1x  y 2  sin1x  y 2
cos1x  y 2  cos1x  y 2  tan x

22. sin1x  y 2  sin1x  y 2  sin2
 x  sin2 y

23–26 ■ checking Identities graphically  (a) Graph f and g.  
(b) Do the graphs suggest that the equation f 1x 2  g1x 2  is an 
identity? Prove your answer.

23. f 1x 2  1  a cos 
x

2
 sin 

x

2
b

2

, g1x 2  sin x

24. f 1x 2  sin x  cos x, g1x 2  "sin2
 x  cos2

 x

25. f 1x 2  tan x tan 
x

2
, g1x 2 

1

cos x

26. f 1x 2  1  8 sin2
 x  8 sin4

 x, g1x 2  cos 4x

27–28 ■ Determining Identities graphically  (a) Graph the 
function(s) and make a conjecture, and (b) prove your 
conjecture.

27. f 1x 2  2 sin2
 3x  cos 6x

28. f 1x 2  sin x cot 
x

2
, g1x 2  cos x

29–46 ■ Solving Trigonometric Equations  Solve the equation in 
the interval 30, 2p 2 .
29. 4 sin u  3  0 

30. 5 cos u  3  0

31. cos x sin x  sin x  0 

32. sin x  2 sin2x  0

33. 2 sin2x  5 sin x  2  0

34. sin x  cos x  tan x  1

35. 2 cos2x  7 cos x  3  0 

36. 4 sin2x  2 cos2x  3

37. 
1  cos x

1  cos x
 3 

38. sin x  cos 2x

39. tan3x  tan2x  3 tan x  3  0

40. cos 2x csc2x  2 cos 2x 

41. tan 12 x  2 sin 2x  csc x

42. cos 3x  cos 2x  cos x  0

43. tan x  sec x  !3 

44. 2 cos x  3 tan x  0

45. cos x  x2  1 

46. esinx  x
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CHAPTER 7 ■ Review 615

 47. range of a Projectile  If a projectile is fired with velocity √0 
at an angle u, then the maximum height it reaches (in ft) is 
modeled by the function

M1u 2 
√ 

2
0 sin2

 u

64

  Suppose √0  400 ft/s.

(a) At what angle u should the projectile be fired so that the 
maximum height it reaches is 2000 ft?

(b) Is it possible for the projectile to reach a height of  
3000 ft?

(c) Find the angle u for which the projectile will travel 
highest.

M(¨)
¨

 48. Displacement of a Shock Absorber  The displacement of an 
automobile shock absorber is modeled by the function

f 1 t 2  20.2t sin 4pt

  Find the times when the shock absorber is at its equilibrium 
position (that is, when f 1 t 2  0 2 .  [Hint: 2 x  0 for all  
real x.]

49–58 ■ value of Expressions  Find the exact value of the 
expression.

 49. cos 15 50. sin 
5p

12

 51. tan 
p

8
 52. 2  sin 

p

12
  cos 

p

12

 53. sin 5 cos 40  cos 5 sin 40

 54. 
tan 66  tan 6

1  tan 66 tan 6

 55. cos2
  

p

8
 sin2

  

p

8  
56. 

1

2
  cos 

p

12


!3

2
 sin 

p

12

 57. cos 37.5 cos 7.5 58. cos 67.5  cos 22.5

59–64 ■ Evaluating Expressions Involving Trigonometric  
Functions  Find the exact value of the expression given that 
sec x  3

2, csc y  3, and x and y are in Quadrant I.

59. sin1x  y 2  60. cos1x  y 2
61. tan1x  y 2  62. sin 2x

63. cos 
y

2
 64. tan 

y

2

65–66 ■ Evaluating Expressions Involving Inverse Trigonometric 
Functions  Find the exact value of the expression.

65. tanA2 cos1 37 B  66. sinAtan1 34  cos1 5
13 B

67–68 ■ Expressions Involving Inverse Trigonometric Functions   
Write the expression as an algebraic expression in the variable(s).

67. tan12 tan1
 x 2  68. cos1sin1

 x  cos1
 y 2

 69. viewing Angle of a Sign  A 10-ft-wide highway sign is adja-
cent to a roadway, as shown in the figure. As a driver 
approaches the sign, the viewing angle u changes.

(a) Express viewing angle u as a function of the distance x 
between the driver and the sign.

(b) The sign is legible when the viewing angle is 2  or 
greater. At what distance x does the sign first become  
legible?

¨

x

10 ft

 70. viewing Angle of a Tower  A 380-ft-tall building supports a 
40-ft communications tower (see the figure). As a driver 
approaches the building, the viewing angle u of the tower 
changes.

(a) Express the viewing angle u as a function of the  
distance x between the driver and the building.

(b) At what distance from the building is the viewing angle u 
as large as possible?

x

380 ft

40 ft

¨
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1–8 ■ Verify each identity.

 1. tan u sin u  cos u  sec u

 2. 
tan x

1  cos x
 csc x 11  sec x 2

 3. 
2 tan x

1  tan2
 x

 sin 2x

 4. sin x tan a x

2
b  1  cos x

 5. 2 sin213x 2  1  cos16x 2
 6. cos 4x  1  8 sin2

 x  8 sin4
 x

 7. a sin a x

2
b  cos a x

2
bb

2

 1  sin x

 8. Let x  2 sin u, p/2 , u , p/2. Simplify the expression

x

"4  x 
2

 9. Find the exact value of each expression.

(a) sin 8 cos 22  cos 8 sin 22   (b) sin 75   (c) sin 
p

12

 10. For the angles a and b in the figures, find cos1a  b 2 .

2

1
å

3
2

∫

 11. Write sin 3x cos 5x as a sum of trigonometric functions.

 12. Write sin 2x  sin 5x as a product of trigonometric functions.

 13. If sin u   
4
5  and u is in Quadrant III, find tan1u/2 2 .

14–20 ■ Solve each trigonometric equation in the interval 30, 2p 2 . Give the exact value, if 
possible; otherwise, round your answer to two decimal places.

14. 3 sin u  1  0

15. 12 cos u  1 2 1sin u  1 2  0

16. 2 cos2
 u  5 cos u  2  0

17. sin 2u  cos u  0

 18. 5 cos 2u  2

 19. 2 cos2
 x  cos 2x  0

 20. 2 tan a x

2
b  csc x  0

 21. Find the exact value of cosA2 tan1 9
40 B .

 22. Rewrite the expression as an algebraic function of x and y: sin1cos1
 x  tan1

 y 2 .

cHAPTEr 7 TEST

A CUMULATIVE REVIEW TEST FOR CHAPTERS 5, 6, AND 7 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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Traveling and Standing Waves FocuS on MoDElIng

We’ve learned that the position of a particle in simple harmonic motion is described by 
a function of the form y  A sin vt (see Section 6.6). For example, if a string is moved 
up and down as in Figure 1, then the red dot on the string moves up and down in simple 
harmonic motion. Of course, the same holds true for each point on the string.

FIgurE 1

What function describes the shape of the whole string? If we fix an instant in time 
1 t  0 2  and snap a photograph of the string, we get the shape in Figure 2, which is 
modeled by

y  A sin kx

where y is the height of the string above the x-axis at the point x.

π
k

2π
k

y
A

_A
x

FIgurE 2 y  A sin kx

■ Traveling Waves
If we snap photographs of the string at other instants, as in Figure 3, it appears that the 
waves in the string “travel” or shift to the right.

FIgurE 3

The velocity of the wave is the rate at which it moves to the right. If the wave has 
velocity √, then it moves to the right a distance √t in time t. So the graph of the shifted 
wave at time t is

y1x, t 2  A sin k1x  √t 2
This function models the position of any point x on the string at any time t. We use the 
notation y1x, t 2  to indicate that the function depends on the two variables x and t. Here 
is how this function models the motion of the string.

■ If we fix x, then y1x, t 2  is a function of t only, which gives the position of the 
fixed point x at time t.

■ If we fix t, then y1x, t 2  is a function of x only, whose graph is the shape of the 
string at the fixed time t.
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618 Focus on Modeling

ExAMPlE 1 ■ A Traveling Wave
A traveling wave is described by the function

y1x, t 2  3 sin a 2x 
p

2
  tb         x  0

(a)  Find the function that models the position of the point x  p/6 at any time t. Ob-
serve that the point moves in simple harmonic motion.

(b)  Sketch the shape of the wave when t  0, 0.5, 1.0, 1.5, and 2.0. Does the wave 
appear to be traveling to the right?

(c) Find the velocity of the wave.

SoluTIon

(a) Substituting x  p/6, we get

y ap

6
, tb  3 sin a 2 #  

p

6


p

2
  tb  3 sin ap

3


p

2
  tb

 The function y  3 sinAp3  p
2  tB  describes simple harmonic motion with ampli-

tude 3 and period 2p/ 1p/2 2  4.

(b) The graphs are shown in Figure 4. As t increases, the wave moves to the right.

(c) We express the given function in the standard form y1x, t 2  A sin k1x  √t 2 .

 y1x, t 2  3 sin a 2x 
p

2
  tb     Given

  3 sin 2 a x 
p

4
  tb     Factor 2

 Comparing this to the standard form, we see that the wave is moving with veloc-
ity √  p/4. ■

■ Standing Waves
If two waves are traveling along the same string, then the movement of the string is 
determined by the sum of the two waves. For example, if the string is attached to a wall, 
then the waves bounce back with the same amplitude and speed but in the opposite 
direction. In this case, one wave is described by y  A sin k1x  √t 2 , and the reflected 
wave is described by y  A sin k1x  √t 2 . The resulting wave is

 y1x, t 2  A sin k1x  √t 2  A sin k1x  √t 2     Add the two waves

  2A sin kx cos k√t     Sum-to-Product Formula

The points where kx is a multiple of 2p are special, because at these points y  0  
for any time t. In other words, these points never move. Such points are called nodes. 
Figure 5 shows the graph of the wave for several values of t. We see that the wave does 
not travel but simply vibrates up and down. Such a wave is called a standing wave.

FIgurE 5 A standing wave

y

2A

_2A
x

62

y
3

_3

x40

FIgurE 4 Traveling wave
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  Traveling and Standing Waves 619

ExAMPlE 2 ■ A Standing Wave
Traveling waves are generated at each end of a wave tank 30 ft long, with equations

 y  1.5 sin ap

5
 x  3tb

and  y  1.5 sin ap

5
 x  3tb

(a) Find the equation of the combined wave, and find the nodes.

(b)  Sketch the graph for t  0, 0.17, 0.34, 0.51, 0.68, 0.85, and 1.02. Is this a stand-
ing wave?

SoluTIon

(a) The combined wave is obtained by adding the two equations.

 y  1.5 sin ap

5
 x  3tb  1.5 sin ap

5
 x  3tb     Add the two waves

  3 sin 
p

5
 x cos 3t     Sum-to-Product Formula

  The nodes occur at the values of x for which sin p5  x  0, that is, where p
5  x  kp  

(k an integer). Solving for x, we get x  5k. So the nodes occur at

x  0, 5, 10, 15, 20, 25, 30

(b)  The graphs are shown in Figure 6. From the graphs we see that this is a standing 
wave.

y

x

y

x

y

x

y

x

y

x

y

x

y

x

t=0 t=0.17 t=0.34 t=0.51 t=0.68 t=0.85 t=1.02

y

x

3

_3

0 20 3010

FIgurE 6  

y1x, t 2  3 sin 
p

5
 x cos 3t

 ■
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620 Focus on Modeling

ProBlEMS
 1. Wave on a canal  A wave on the surface of a long canal is described by the  

function

y1x, t 2  5 sin a2x 
p

2
  t b  x  0

(a) Find the function that models the position of the point x  0 at any time t.

(b) Sketch the shape of the wave when t  0, 0.4, 0.8, 1.2, and 1.6. Is this a traveling 
wave?

(c) Find the velocity of the wave.

 2. Wave in a rope  Traveling waves are generated at each end of a tightly stretched rope  
24 ft long, with equations

y  0.2 sin11.047x  0.524t 2  and  y  0.2 sin11.047x  0.524t 2
(a) Find the equation of the combined wave, and find the nodes.

(b) Sketch the graph for t  0, 1, 2, 3, 4, 5, and 6. Is this a standing wave?

 3. Traveling Wave  A traveling wave is graphed at the instant t  0. If it is moving to the 
right with velocity 6, find an equation of the form y1x, t 2  A sin1kx  k√t 2  for this wave.

4.6 9.2 13.8 x

y

2.7

_2.7

0

 4. Traveling Wave  A traveling wave has period 2p/3, amplitude 5, and velocity 0.5.

(a) Find the equation of the wave.

(b) Sketch the graph for t  0, 0.5, 1, 1.5, and 2.

 5. Standing Wave  A standing wave with amplitude 0.6 is graphed at several times t as 
shown in the figure. If the vibration has a frequency of 20 Hz, find an equation of the form 
y1x, t 2  A sin ax cos bt that models this wave.

1 2 3 x

y

0.6

_0.6

0 1 2 3 x

y

0.6

_0.6

0 1 2 3 x

y

0.6

_0.6

0

t=0 s t=0.010 s t=0.025 s
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  Traveling and Standing Waves 621

 6. Standing Wave  A standing wave has maximum amplitude 7 and nodes at 0, p/2, p, 
3p/2, 2p, as shown in the figure. Each point that is not a node moves up and down with 
period 4p. Find a function of the form y1x, t 2  A sin ax cos bt that models this wave.

y

x

7

_7

π
2 2

π 2π3π

 7. vibrating String  When a violin string vibrates, the sound produced results from a com-
bination of standing waves that have evenly placed nodes. The figure illustrates some of the 
possible standing waves. Let’s assume that the string has length p.

(a)  For fixed t, the string has the shape of a sine curve y  Asin ax. Find the appropriate 
value of a for each of the illustrated standing waves.

(b) Do you notice a pattern in the values of a that you found in part (a)? What would the 
next two values of a be? Sketch rough graphs of the standing waves associated with 
these new values of a.

(c) Suppose that for fixed t, each point on the string that is not a node vibrates  
with frequency 440 Hz. Find the value of b for which an equation of the form  
y  A cos bt would model this motion.

(d) Combine your answers for parts (a) and (c) to find functions of the form 
y1x, t 2  A sin ax cos bt that model each of the standing waves in the figure.  
(Assume that A  1.)

 8. Waves in a Tube  Standing waves in a violin string must have nodes at the ends of the 
string because the string is fixed at its endpoints. But this need not be the case with sound 
waves in a tube (such as a flute or an organ pipe). The figure shows some possible standing 
waves in a tube.

    Suppose that a standing wave in a tube 37.7 ft long is modeled by the function

y1x, t 2  0.3 cos 12 x cos 50pt

  Here y1x, t 2  represents the variation from normal air pressure at the point x feet from the 
end of the tube, at time t seconds.

(a) At what points x are the nodes located? Are the endpoints of the tube nodes?

(b) At what frequency does the air vibrate at points that are not nodes?

3
4
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In Section 1.2 we learned  how to graph points in rectangular coordinates. 
In this chapter we study a different way of locating points in the plane, 
called polar coordinates. Using rectangular coordinates is like describing a 
location in a city by saying that it’s at the corner of 2nd Street and 4th 
Avenue; these directions would help a taxi driver find the location. But we 
may also describe this same location “as the crow flies”; we can say that 
it’s 1.5 miles northeast of City Hall. These directions would help an 
airplane or hot air balloon pilot find the location. So instead of specifying 
the location with respect to a grid of streets and avenues, we specify it by 
giving its distance and direction from a fixed reference point. That’s what 
we do in the polar coordinate system. In polar coordinates the location of a 
point is given by an ordered pair of numbers: the distance of the point 
from the origin (or pole) and the angle from the positive x-axis. 

Why do we study different coordinate systems? It’s because certain 
curves are more naturally described in one coordinate system rather than 
another. For example, in rectangular coordinates lines and parabolas have 
simple equations, but equations of circles are rather complicated. We’ll see 
that in polar coordinates circles have very simple equations.

623

Polar Coordinates  
and Parametric Equations8

8.1 Polar Coordinates
8.2 Graphs of Polar Equations
8.3 Polar Form of Complex 

Numbers; De Moivre’s 
Theorem

8.4 Plane Curves and 
Parametric Equations

FoCus oN MoDEliNG
 The Path of a Projectile

© gary718/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



624 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

8.1  Polar CoorDiNaTEs
■ Definition of Polar Coordinates ■ relationship Between Polar and rectangular 
Coordinates ■ Polar Equations

In this section we define polar coordinates, and we learn how polar coordinates are re-
lated to rectangular coordinates.

■ Definition of Polar Coordinates
The polar coordinate system uses distances and directions to specify the location of 
a point in the plane. To set up this system, we choose a fixed point O in the plane called 
the pole (or origin) and draw from O a ray (half-line) called the polar axis as in Fig-
ure 1. Then each point P can be assigned polar coordinates P1r,  u 2 , where

r is the distance from O to P

u is the angle between the polar axis and the segment OP

We use the convention that u is positive if measured in a counterclockwise direction 
from the polar axis or negative if measured in a clockwise direction. If r is negative, 
then P1r,  u 2  is defined to be the point that lies 0  r 0  units from the pole in the direction 
opposite to that given by u (see Figure 2).

ExaMPlE 1 ■ Plotting Points in Polar Coordinates
Plot the points whose polar coordinates are given.

(a) 11,  3p/4 2       (b) 13,  p/6 2       (c) 13,  3p 2       (d) 14,  p/4 2
soluTioN  The points are plotted in Figure 3. Note that the point in part (d) lies 
4 units from the origin along the angle 5p/4, because the given value of r is negative.

P !1,     @3π
4

3π
4

O

P !3, _   @π
6

O π
6_ OP(3, 3π)

3π

O

P !_4,    @π
4

π
4

(a) (b) (c) (d)

FiGurE 3

Now Try Exercises 5 and 7 ■

Note that the coordinates 1r,  u 2  and 1r,  u  p 2  represent the same point, as 
shown in Figure 4. Moreover, because the angles u  2np (where n is any integer) all 

O

r

¨

P

Polar axis

FiGurE 1

O ¨

P(r, )̈
r<0

|r |

FiGurE 2

FiGurE 4
O

¨

P ( r, ¨)
P (_r, ¨+π)¨+π
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SECTION 8.1 ■ Polar Coordinates 625

have the same terminal side as the angle u, each point in the plane has infinitely  
many representations in polar coordinates. In fact, any point P1r,  u 2  can also be rep-
resented by

P1r,  u  2np 2  and  P1r,  u  12n  1 2p 2
for any integer n.

ExaMPlE 2 ■ Different Polar Coordinates for the same Point
(a) Graph the point with polar coordinates P12,  p/3 2 .
(b)  Find two other polar coordinate representations of P with r  0 and two with  

r  0.

soluTioN

(a) The graph is shown in Figure 5(a).

(b) Other representations with r  0 are

a 2,  

p

3
 2p b  a 2,  

7p

3
b     Add 2p to u

a 2,  

p

3
 2p b  a 2,   

5p

3
b     Add 2p to u

  Other representations with r  0 are

 a2,  
p

3
 p b  a2,  

4p

3
b     Replace r by r and add p to u

 a2,  
p

3
 p b  a2,   

2p

3
b     Replace r by r and add p to u

 The graphs in Figure 5 explain why these coordinates represent the same point.

(a)

O

2
4π
3

P !_2,     @4π
3

O

2

P !_2, _    @2π
3

2π
3_

O

2

P !2, _    @5π
3

5π
3_

P!2,     @7π
3

7π
3

O

2

O

2

π
3

π
3P !2,    @

(b) (c) (d) (e)

FiGurE 5

Now Try Exercise 11 ■

■ relationship Between Polar  
and rectangular Coordinates

Situations often arise in which we need to consider polar and rectangular coordinates 
simultaneously. The connection between the two systems is illustrated in Figure 6 (see 
next page), where the polar axis coincides with the positive x-axis. The formulas in the 
box are obtained from the figure using the definitions of the trigonometric functions and 
the Pythagorean Theorem. (Although we have pictured the case in which r  0 and u 
is acute, the formulas hold for any angle u and for any value of r.)
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626 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

rElaTioNshiP BETwEEN Polar aND rECTaNGular CoorDiNaTEs

1. To change from polar to rectangular coordinates, use the formulas

x  r cos u  and  y  r sin u

2. To change from rectangular to polar coordinates, use the formulas

r2  x2  y2  and  tan u 
y

x
 1x ? 0 2

ExaMPlE 3 ■  Converting Polar Coordinates  
to rectangular Coordinates

Find rectangular coordinates for the point that has polar coordinates 14,  2p/3 2 .
soluTioN  Since r  4 and u  2p/3, we have

 x  r cos u  4 cos 
2p

3
 4 # a 

1

2
b  2

 y  r sin u  4 sin 
2p

3
 4 # !3

2
 2!3

Thus the point has rectangular coordinates 12,  2!3 2 .
Now Try Exercise 29 ■

ExaMPlE 4 ■   Converting rectangular Coordinates  
to Polar Coordinates

Find polar coordinates for the point that has rectangular coordinates 12,  2 2 .
soluTioN  Using x  2, y  2, we get

r 
2  x2  y2  22  12 2 2  8

so r  2!2 or 2!2. Also

tan u 
y

x


2

2
 1

so u  3p/4 or p/4. Since the point 12,  2 2  lies in Quadrant IV (see Figure 7), we 
can represent it in polar coordinates as 12!2,  p/4 2  or 12!2,  3p/4 2 .

Now Try Exercise 37 ■

x0

r

¨
x

y

P(r, ¨)
P(x, y)

y

FiGurE 6

x

y

0

3π
4

π
4_

(2, _2)

!2 œ∑2, _   @

!_2 œ∑2,     @

π
4
3π
4

FiGurE 7

DisCovEry ProjECT

Mapping the world

In the Focus on Modeling on page 499 we learned how surveyors can make a map 
of a city or town. But mapping the whole world introduces a new difficulty. How is 

it possible to represent the spherical world we live on by a flat 
map? This challenge was faced by Renaissance explorers and 
their mapmakers, who developed several ingenious solutions. In 
this project we see how polar coordinates and trigonometry can 
help us make a map of the whole world on a flat sheet of paper.
You can find the project at www.stewartmath.com. ©
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SECTION 8.1 ■ Polar Coordinates 627

Note that the equations relating polar and rectangular coordinates do not uniquely 
determine r or u. When we use these equations to find the polar coordinates of a point, 
we must be careful that the values we choose for r and u give us a point in the correct 
quadrant, as we did in Example 4.

■ Polar Equations
In Examples 3 and 4 we converted points from one coordinate system to the other. Now 
we consider the same problem for equations.

ExaMPlE 5 ■  Converting an Equation from rectangular  
to Polar Coordinates

Express the equation x2  4y in polar coordinates.

soluTioN  We use the formulas x  r cos u and y  r sin u.

 x2  4y     Rectangular equation

 1r cos u 2 2  41r sin u 2     Substitute x  r cos u, y  r sin u

 r 
2

 cos2
 u  4r sin u     Expand

 r  4 
sin u

cos2
 u

    Divide by r cos2 u

 r  4 sec u tan u    Simplify

Now Try Exercise 47 ■

As Example 5 shows, converting from rectangular to polar coordinates is straight-
forward: Just replace x by r cos u and y by r sin u, and then simplify. But converting 
polar equations to rectangular form often requires more thought.

ExaMPlE 6 ■  Converting Equations from Polar  
to rectangular Coordinates

Express the polar equation in rectangular coordinates. If possible, determine the graph 
of the equation from its rectangular form.

(a) r  5 sec u      (b) r  2 sin u      (c) r  2  2 cos u

soluTioN

(a) Since sec u  1/cos u, we multiply both sides by cos u.

 r  5 sec u    Polar equation

 r cos u  5     Multiply by cos u

 x  5     Substitute x  r cos u

  The graph of x  5 is the vertical line in Figure 8.

(b)  We multiply both sides of the equation by r, because then we can use the  
formulas r2  x2  y2 and r sin u  y.

 r  2 sin u     Polar equation

 r 
2  2r sin u    Multiply by r

 x2  y2  2y     r2  x2  y2 and r sin u  y

 x2  y2  2y  0     Subtract 2y

 x2  1y  1 2 2  1     Complete the square in y

   This is the equation of a circle of radius 1 centered at the point 10,  1 2 . It is 
graphed in Figure 9.

x

y

0

x=5

FiGurE 8

x

y

0 1

1

FiGurE 9
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628 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

(c) We first multiply both sides of the equation by r:

r2  2r  2r cos u

   Using r2  x2  y2 and x  r cos u, we can convert two terms in the equation 
into rectangular coordinates, but eliminating the remaining r requires more work.

 x2  y2  2r  2x     r2  x2  y2 and r cos u  x

 x2  y2  2x  2r     Subtract 2x

 1x2  y2  2x 2 2  4r2     Square both sides

 1x2  y2  2x 2 2  41x2  y2 2     r2  x2  y2

   In this case the rectangular equation looks more complicated than the polar equa-
tion. Although we cannot easily determine the graph of the equation from its rect-
angular form, we will see in the next section how to graph it using the polar 
equation.

Now Try Exercises 55, 57, and 59 ■

CoNCEPTs
 1. We can describe the location of a point in the plane using 

  different   systems. The point P shown in 
the figure has rectangular coordinates 1 , 2 and polar  
coordinates 1 , 2.

x

y

0

P

1

1

 2. Let P be a point in the plane.

(a) If P has polar coordinates 1r, u 2  then it has rectangular 

 coordinates 1x, y 2  where x    and 

 y     .

(b) If P has rectangular coordinates 1x, y 2  then it has 

 polar coordinates 1r, u 2  where r2    and 

 tan u     .

3–4 ■ Yes or No? If No, give a reason.

 3. Do the polar coordinates 12, p/6 2  and 12, 7p/6 2  represent 
the same point?

 4. Do the equations relating polar and rectangular coordinates 
uniquely determine r and u?

skills
5–10 ■ Plotting Points in Polar Coordinates  Plot the point that 
has the given polar coordinates.

 5. 14,  p/4 2  6. 11,  0 2   7. 16,  7p/6 2
 8. 13,  2p/3 2  9. 12,  4p/3 2  10. 15,  17p/6 2

11–16 ■ Different Polar Coordinates for the same Point  Plot the 
point that has the given polar coordinates. Then give two other 
polar coordinate representations of the point, one with r  0 and 
the other with r  0.

 11. 13,  p/2 2  12. 12,  3p/4 2  13. 11,  7p/6 2
14. 12,  p/3 2  15. 15,  0 2  16. 13,  1 2

17–24 ■ Points in Polar Coordinates  Determine which point in 
the figure, P, Q, R, or S, has the given polar coordinates.

O

π
4

1
2

3
4 P

π
4

Q

R S

17. 14,  3p/4 2  18. 14,  3p/4 2
19. 14,  p/4 2  20. 14,  13p/4 2
21. 14,  23p/4 2  22. 14,  23p/4 2
23. 14,  101p/4 2  24. 14,  103p/4 2

8.1 ExErCisEs
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SECTION 8.1 ■ Polar Coordinates 629

25–26 ■ rectangular Coordinates to Polar Coordinates  A point 
is graphed in rectangular form. Find polar coordinates for the 
point, with r  0 and 0  u  2p.

25. 

x

y

0

P

1

1

 26. 

x

y

0

Q

1

1

27–28 ■ Polar Coordinates to rectangular Coordinates  A point 
is graphed in polar form. Find its rectangular coordinates.

27.  O

2π
3_

R

1
 28. 

O

S 5π
6

1

29–36 ■ Polar Coordinates to rectangular Coordinates  Find the 
rectangular coordinates for the point whose polar coordinates are 
given.

29. 14,  p/6 2  30. 16,  2p/3 2
31. 1!2,  p/4 2  32. 11,  5p/2 2
33. 15,  5p 2  34. 10,  13p 2
35. 16!2,  11p/6 2  36. 1!3,  5p/3 2

37–44 ■ rectangular Coordinates to Polar Coordinates  Convert 
the rectangular coordinates to polar coordinates with r  0 and  
0  u  2p.

37. 11,  1 2  38. 13 !3,  3 2
39. 1!8,  !8 2  40. 1!6,  !2 2
41. 13,  4 2  42. 11,  2 2
43. 16,  0 2  44. 10,  !3 2

45–50 ■ rectangular Equations to Polar Equations  Convert the 
equation to polar form.

45. x  y 46. x2  y2  9

47. y  x2 48. y  5

49. x  4 50. x2  y2  1

51–70 ■ Polar Equations to rectangular Equations  Convert the 
polar equation to rectangular coordinates.

51. r  7 52. r  3

53. u   

p

2
 54. u  p

55. r cos u  6 56. r  2 csc u

57. r  4 sin u 58. r  6 cos u

59. r  1  cos u 60. r  311  sin u 2
61. r  1  2 sin u 62. r  2  cos u

63. r 
1

sin u  cos u
 64. r 

1

1  sin u

 65. r 
4

1  2 sin u  
66. r 

2

1  cos u

67. r2  tan u 68. r2  sin 2u

69. sec u  2 70. cos 2u  1

DisCuss ■ DisCovEr ■ ProvE ■ wriTE
71. DisCuss ■ ProvE: The Distance Formula in Polar 

Coordinates
(a) Use the Law of Cosines to prove that the distance  

between the polar points 1r1,  u1 2  and 1r2,  u2 2  is
d  "r 

2
1  r 

2
2  2r1r2 cos1u2  u1 2

(b) Find the distance between the points whose polar coordi-
nates are 13,  3p/4 2  and 11,  7p/6 2 , using the formula 
from part (a).

(c) Now convert the points in part (b) to rectangular coordi-
nates. Find the distance between them, using the usual 
Distance Formula. Do you get the same answer?

72. DisCuss: Different Coordinate systems  As was noted in 
the overview of the chapter, certain curves are more naturally 
described in one coordinate system than in another. In each 
of the following situations, which coordinate system would 
be appropriate: rectangular or polar? Give reasons to support 
your answer. 

(a) You need to give directions to your house to a taxi driver. 

(b) You need to give directions to your house to a homing 
pigeon. 
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630 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

8.2 GraPhs oF Polar EquaTioNs
■ Graphing Polar Equations ■ symmetry ■ Graphing Polar Equations  
with Graphing Devices

The graph of a polar equation r  f 1u 2  consists of all points P that have at least one 
polar representation 1r,  u 2  whose coordinates satisfy the equation. Many curves that 
arise in mathematics and its applications are more easily and naturally represented by 
polar equations than by rectangular equations.

■ Graphing Polar Equations
A rectangular grid is helpful for plotting points in rectangular coordinates (see Figure 
1(a)). To plot points in polar coordinates, it is convenient to use a grid consisting of 
circles centered at the pole and rays emanating from the pole, as in Figure 1(b). We will 
use such grids to help us sketch polar graphs.

(a)  Grid for rectangular coordinates (b)  Grid for polar coordinates

3π
2

1 2 3 4 5 6

3π
4

C !3,     @4π
3

B!4,    @π
4

π
6

π
4

π
3

5π
4

7π
4

A!6,     @5π
6

π
2

0
O

π
x

y

0

P(_2, 3)

1
2
3
4
5

1 2 3 4 5_5 _4 _3 _2 _1
_1
_2
_3
_4
_5

Q(4, 2)

R(3, _5)

FiGurE 1

In Examples 1 and 2 we see that circles centered at the origin and lines that pass 
through the origin have particularly simple equations in polar coordinates.

ExaMPlE 1 ■ sketching the Graph of a Polar Equation
Sketch a graph of the equation r  3, and express the equation in rectangular 
coordinates.

soluTioN  The graph consists of all points whose r-coordinate is 3, that is, all points 
that are 3 units away from the origin. So the graph is a circle of radius 3 centered at 
the origin, as shown in Figure 2.

Squaring both sides of the equation, we get

 r 
2  32    Square both sides

 x2  y2  9     Substitute r2  x2  y2

So the equivalent equation in rectangular coordinates is x2  y2  9.

Now Try Exercise 17 ■

r=3

O

3π
4

π
4

5π
4

7π
4

2

FiGurE 2
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SECTION 8.2 ■ Graphs of Polar Equations 631

In general, the graph of the equation r  a is a circle of radius 0  a 0  centered at the 
origin. Squaring both sides of this equation, we see that the equivalent equation in rect-
angular coordinates is x2  y2  a2.

ExaMPlE 2 ■ sketching the Graph of a Polar Equation
Sketch a graph of the equation u  p/3, and express the equation in rectangular 
coordinates.

soluTioN  The graph consists of all points whose u-coordinate is p/3. This is the 
straight line that passes through the origin and makes an angle of p/3 with the polar 
axis (see Figure 3). Note that the points 1r,  p/3 2  on the line with r  0 lie in Quadrant 
I, whereas those with r  0 lie in Quadrant III. If the point 1x,  y 2  lies on this line, then

y

x
 tan u  tan 

p

3
 !3

Thus the rectangular equation of this line is y  !3x.

Now Try Exercise 19 ■

To sketch a polar curve whose graph isn’t as obvious as the ones in the preceding 
examples, we plot points calculated for sufficiently many values of u and then join them 
in a continuous curve. (This is what we did when we first learned to graph equations in 
rectangular coordinates.)

ExaMPlE 3 ■ sketching the Graph of a Polar Equation
Sketch a graph of the polar equation r  2 sin u.

soluTioN  We first use the equation to determine the polar coordinates of several 
points on the curve. The results are shown in the following table.

u 0 p/6 p/4 p/3 p/2 2p/3 3p/4 5p/6 p

r  2 sin u 0 1 !2 !3 2 !3 !2 1 0

We plot these points in Figure 4 and then join them to sketch the curve. The graph 
appears to be a circle. We have used values of u only between 0 and p, since the same 
points (this time expressed with negative r-coordinates) would be obtained if we 
allowed u to range from p to 2p.

1

π
6

π
4

π
3

π
2

2π
3

3π
4

5π
6

FiGurE 4 r  2 sin u

Now Try Exercise 21 ■

The polar equation r  2 sin u in  
rectangular coordinates is

x2  1 y  1 2 2  1

(see Section 8.1, Example 6(b)). From 
the rectangular form of the equation we 
see that the graph is a circle of radius 1 
centered at 10,  1 2 .

2π
3

π
3

4π
3

5π
3

π
3

π
3¨=

O 2

FiGurE 3
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632 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

In general, the graphs of equations of the form

r  2a sin u  and  r  2a cos u

are circles with radius 0  a 0  centered at the points with polar coordinates 1a,  p/2 2  and 1a,  0 2 , 
respectively.

ExaMPlE 4 ■ sketching the Graph of a Cardioid
Sketch a graph of r  2  2 cos u.

soluTioN  Instead of plotting points as in Example 3, we first sketch the graph of  
r  2  2 cos u in rectangular coordinates in Figure 5. We can think of this graph as 
a table of values that enables us to read at a glance the values of r that correspond to 
increasing values of u. For instance, we see that as u increases from 0 to p/2, r (the 
distance from O) decreases from 4 to 2, so we sketch the corre sponding part of the 
polar graph in Figure 6(a). As u increases from p/2 to p, Figure 5 shows that r 
decreases from 2 to 0, so we sketch the next part of the graph as in Figure 6(b). As  
u increases from p to 3p/2, r increases from 0 to 2, as shown in part (c). Finally, as  
u increases from 3p/2 to 2p, r increases from 2 to 4, as shown in part (d). If we let u 
increase beyond 2p or decrease beyond 0, we would simply retrace our path. Com-
bining the portions of the graph from parts (a) through (d) of Figure 6, we sketch the 
complete graph in part (e).

(a) (b) (c) (d) (e)

O

π
2¨=

¨=0 O

π
2¨=

¨=π O

3π
2¨=

¨=π O ¨=2π

3π
2¨=

O 2

FiGurE 6 Steps in sketching r  2  2 cos u

Now Try Exercise 25 ■

The curve in Figure 6 is called a cardioid because it is heart-shaped. In general, the 
graph of any equation of the form

r  a11 6 cos u 2  or  r  a11 6 sin u 2
is a cardioid.

ExaMPlE 5 ■ sketching the Graph of a Four-leaved rose
Sketch the curve r  cos 2u.

soluTioN  As in Example 4, we first sketch the graph of r  cos 2u in rectangular 
coordinates, as shown in Figure 7. As u increases from 0 to p/4, Figure 7 shows that 
r decreases from 1 to 0, so we draw the corresponding portion of the polar curve  
in Figure 8 (indicated by ①). As u increases from p/4 to p/2, the value of r goes 
from 0 to 1. This means that the distance from the origin increases from 0 to 1, but 
instead of being in Quadrant I, this portion of the polar curve (indicated by ②) lies 
on the opposite side of the origin in Quadrant III. The remainder of the curve is 
drawn in a similar fashion, with the arrows and numbers indicating the order in 

The polar equation r  2  2 cos u in 
rectangular coordinates is

1x2  y2  2x 2 2  41x2  y2 2
(see Section 8.1, Example 6(c)). The 
simpler form of the polar equation 
shows that it is more natural to describe 
cardioids using polar coordinates.

¨

r

0 3π
2

π
2

π 2π

FiGurE 5 r  2  2 cos u
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SECTION 8.2 ■ Graphs of Polar Equations 633

which the portions are traced out. The resulting curve has four petals and is called a 
four-leaved rose.

FiGurE 8 Four-leaved rose r  cos 2u 
sketched in polar coordinates

¨=0
¨=π

3π
4¨=

π
2¨=

¨=π
4

1
2

5π
4

3π
2

7π
4

r

1

π 2π0

_1

π
4

π
2

3π
4

¨

FiGurE 7 Graph of r  cos 2u sketched in rectangular coordinates

Now Try Exercise 29 ■

In general, the graph of an equation of the form

r  a cos nu  or  r  a sin nu

is an n-leaved rose if n is odd or a 2n-leaved rose if n is even (as in Example 5).

■ symmetry
In graphing a polar equation, it’s often helpful to take advantage of symmetry. We list 
three tests for symmetry; Figure 9 shows why these tests work.

TEsTs For syMMETry

1. If a polar equation is unchanged when we replace u by u, then the graph is 
symmetric about the polar axis (Figure 9(a)).

2. If the equation is unchanged when we replace r by r, or u by u  p, then 
the graph is symmetric about the pole (Figure 9(b)).

3. If the equation is unchanged when we replace u by p  u, then the graph is 
symmetric about the vertical line u  p/2 (the y-axis) (Figure 9(c)).

FiGurE 9

O

(r, ¨)

(_r, ¨)

(a)  Symmetry about the polar axis (b)  Symmetry about the pole

O

(r, ¨)

(r, _¨)

_¨
¨

(c)  Symmetry about the line ¨= π
2

O

(r, ¨)(r, π _ ¨)

π-¨
¨

π
2¨=

The graphs in Figures 2, 6(e), and 8 are symmetric about the polar axis. The graph 
in Figure 8 is also symmetric about the pole. Figures 4 and 8 show graphs that are sym-
metric about u  p/2. Note that the four-leaved rose in Figure 8 meets all three tests 
for symmetry.
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In rectangular coordinates the zeros of the function y  f 1x 2  correspond to the  
x-intercepts of the graph. In polar coordinates the zeros of the function r  f 1u 2  are the 
angles u at which the curve crosses the pole. The zeros help us sketch the graph, as is  
illustrated in the next example.

ExaMPlE 6 ■ using symmetry to sketch a limaçon
Sketch a graph of the equation r  1  2 cos u.

soluTioN  We use the following as aids in sketching the graph.

symmetry.  Since the equation is unchanged when u is replaced by u, the graph is 
symmetric about the polar axis.

Zeros.  To find the zeros, we solve

 0  1  2 cos u

 cos u   

1

2

 u 
2p

3
, 

4p

3

Table of values.  As in Example 4, we sketch the graph of r  1  2 cos u in rect-
angular coordinates to serve as a table of values (Figure 10).

Now we sketch the polar graph of r  1  2 cos u from u  0 to u  p and then 
use symmetry to complete the graph in Figure 11.

Now Try Exercise 37 ■

The curve in Figure 11 is called a limaçon, after the Middle French word for snail. 
In general, the graph of an equation of the form

r  a 6 b cos u    or    r  a 6 b sin u

is a limaçon. The shape of the limaçon depends on the relative size of a and b (see the 
box on the next page).

■ Graphing Polar Equations with Graphing Devices 
Although it’s useful to be able to sketch simple polar graphs by hand, we need a graph-
ing calculator or computer when the graph is as complicated as the one in Figure 12. 
Fortunately, most graphing calculators are capable of graphing polar equations directly.

ExaMPlE 7 ■ Drawing the Graph of a Polar Equation
Graph the equation r  cos12u/3 2 .
soluTioN  We need to determine the domain for u. So we ask ourselves: How many 
times must u go through a complete rotation (2p radians) before the graph starts to 
repeat itself? The graph repeats itself when the same value of r is obtained at u and  
u  2np. Thus we need to find an integer n so that

cos 
21u  2np 2

3
 cos 

2u

3

For this equality to hold, 4np/3 must be a multiple of 2p, and this first happens when  
n  3. Therefore we obtain the entire graph if we choose values of u between u  0 
and u  0  213 2p  6p. The graph is shown in Figure 13.

Now Try Exercise 47 ■

FiGurE 10

¨

r

0 2π
3

π
3

π 2π

3

_1

FiGurE 11 r  1  2 cos u

2π
3¨=

4π
3¨=

2

FiGurE 12 r  sin u  sin315 u/2 2

1

_1

_1 1

FiGurE 13 r  cos12u/3 2
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SECTION 8.2 ■ Graphs of Polar Equations 635

ExaMPlE 8 ■ a Family of Polar Equations
Graph the family of polar equations r  1  c sin u for c  3, 2.5, 2, 1.5, 1. How 
does the shape of the graph change as c changes?

soluTioN  Figure 14 shows computer-drawn graphs for the given values of c. When  
c  1, the graph has an inner loop; the loop decreases in size as c decreases. When  
c  1, the loop disappears, and the graph becomes a cardioid (see Example 4).

c=3.0 c=2.5 c=2.0 c=1.5 c=1.0

FiGurE 14 A family of limaçons r  1  c sin u in the viewing rectangle 32.5, 2.54 by 30.5, 4.54
Now Try Exercise 51 ■

The box below gives a summary of some of the basic polar graphs used in calculus.

soME CoMMoN Polar CurvEs

Circles and Spiral 

r=a
circle

r=a ß ¨
circle

r=a ç ¨
circle

r=a¨
spiral

Limaçons 

a<b
limaçon with

inner loop

a=b
cardioid

a>b
dimpled limaçon

a≥2b
convex limaçon

r  a  b sin u

r  a  b cos u

1a  0,  b  0 2
Orientation depends on  
the trigonometric function  
(sine or cosine) and the sign of b.

Roses 

r=a ç 2¨
4-leaved rose

r=a ç 3¨
3-leaved rose

r=a ç 4¨
8-leaved rose

r=a ç 5¨
5-leaved rose

r  a sin nu

r  a cos nu

n-leaved if n is odd 

2n-leaved if n is even 

Lemniscates 

r™=a™ ß 2¨
lemniscate

r™=a™ ç 2¨
lemniscate

Figure-eight-shaped  
curves
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CoNCEPTs
 1. To plot points in polar coordinates, we use a grid consisting 

  of   centered at the pole and   emanating 
from the pole. 

 2. (a)  To graph a polar equation r  f 1u 2 , we plot all the 

   points 1r, u 2  that   the equation. 

(b) The simplest polar equations are obtained by setting  
r or u equal to a constant. The graph of the polar 

 equation r  3 is a   with radius   

 centered at the    . The graph of the polar 

 equation u  p/4 is a   passing through the 

   with slope    . Graph these polar  
equations below.

2O 2O

skills
3–8 ■ Graphs of Polar Equations  Match the polar equation with 
the graphs labeled I–VI. Use the table on page 635 to help you.

 3. r  3 cos u  4. r  3

 5. r  2  2 sin u  6. r  1  2 cos u

 7. r  sin 3u  8. r  sin 4u

I II

1

1

III IV

3 1 3

V VI

1 1 3

9–16 ■ Testing for symmetry  Test the polar equation for symme-
try with respect to the polar axis, the pole, and the line u  p/2.

 9. r  2  sin u 10. r  4  8 cos u

 11. r  3 sec u 12. r  5 cos u csc u

13. r 
4

3  2 sin u
 14. r 

5

1  3 cos u

15. r2  4 cos 2u 16. r2  9 sin u

17–22 ■ Polar to rectangular  Sketch a graph of the polar equa-
tion, and express the equation in rectangular coordinates.

17. r  2 18. r  1

19. u  p/2 20. u  5p/6

21. r  6 sin u 22. r  cos u

23–46 ■ Graphing Polar Equations  Sketch a graph of the polar 
equation.

23. r  2 cos u 24. r  3 sin u

25. r  2  2 cos u 26. r  1  sin u

27. r  311  sin u 2  28. r  cos u  1

29. r  sin 2u 30. r  2 cos 3u

31. r  cos 5u 32. r  sin 4u

33. r  2 sin 5u 34. r  3 cos 4u

35. r  !3  2 sin u 36. r  2  sin u

37. r  !3  cos u 38. r  1  2 cos u

39. r  2  2!2 cos u 40. r  3  6 sin u

41. r2  cos 2u 42. r2  4 sin 2u

43. r  u,  u  0  (spiral)

44. r u  1,  u  0  (reciprocal spiral)

45. r  2  sec u  (conchoid)

 46. r  sin u tan u  (cissoid)

47–50 ■ Graphing Polar Equations  Use a graphing device to 
graph the polar equation. Choose the domain of u to make sure 
you produce the entire graph.

47. r  cos1u/2 2  48. r  sin18u/5 2
49. r  1  2 sin1u/2 2   (nephroid)

50. r  "1  0.8 sin2
 u  (hippopede)

8.2 ExErCisEs
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SECTION 8.2 ■ Graphs of Polar Equations 637

51–52 ■ Families of Polar Equations  These exercises involve 
families of polar equations.

51. Graph the family of polar equations r  1  sin nu for  
n  1, 2, 3, 4, and 5. How is the number of loops related to n?

52. Graph the family of polar equations r  1  c sin 2u for  
c  0.3, 0.6, 1, 1.5, and 2. How does the graph change as  
c increases?

53–56 ■ special Polar Equations  Match the polar equation with 
the graphs labeled I–IV. Give reasons for your answers.

53. r  sin1u/2 2  54. r  1/!u

55. r  u sin u 56. r  1  3 cos13u 2

1 1

III

10

III IV

1

skills Plus
57–60 ■ rectangular to Polar  Sketch a graph of the rectangular 
equation.  [Hint: First convert the equation to polar coordinates.]

57. 1x2  y2 2 3  4x2y2 58. 1x2  y2 2 3  1x2  y2 2 2
59. 1x2  y2 2 2  x2  y2 60. x2  y2  1x2  y2  x 2 2
61. a Circle in Polar Coordinates  Consider the polar equation 

r  a cos u  b sin u.

(a) Express the equation in rectangular coordinates, and use 
this to show that the graph of the equation is a circle. 
What are the center and radius?

(b) Use your answer to part (a) to graph the equation 
r  2 sin u  2 cos u.

62. a Parabola in Polar Coordinates 
(a) Graph the polar equation r  tan u sec u in the viewing 

rectangle 33, 34 by 31, 94.
(b) Note that your graph in part (a) looks like a parabola (see 

Section 3.1). Confirm this by converting the equation to 
rectangular coordinates.

aPPliCaTioNs
63. orbit of a satellite  Scientists and engineers often use polar 

equations to model the motion of satellites in earth orbit. 
Let’s consider a satellite whose orbit is modeled by the 

equation r  22500/ 14  cos u 2 , where r is the distance in 
miles between the satellite and the center of the earth and u is 
the angle shown in the following figure.

(a) On the same viewing screen, graph the circle r  3960 
(to represent the earth, which we will assume to be a 
sphere of radius 3960 mi) and the polar equation of the 
satellite’s orbit. Describe the motion of the satellite as u 
increases from 0 to 2p.

(b) For what angle u is the satellite closest to the earth? Find 
the height of the satellite above the earth’s surface for 
this value of u.

¨

r

64. an unstable orbit  The orbit described in Exercise 63 is sta-
ble because the satellite traverses the same path over and over 
as u increases. Suppose that a meteor strikes the satellite and 
changes its orbit to

r 

22500a1 
u

40
b

4  cos u

(a) On the same viewing screen, graph the circle r  3960 
and the new orbit equation, with u increasing from 0 to 
3p. Describe the new motion of the satellite.

(b) Use the TRACE feature on your graphing calculator to 
find the value of u at the moment the satellite crashes 
into the earth.

DisCuss ■ DisCovEr ■ ProvE ■ wriTE
65. DisCuss ■ DisCovEr: a Transformation of Polar Graphs   

How are the graphs of

r  1  sin a u 
p

6
b

  and r  1  sin a u 
p

3
b

  related to the graph of r  1  sin u? In general, how is the 
graph of r  f 1u  a 2  related to the graph of r  f 1u 2 ?

66. DisCuss: Choosing a Convenient Coordinate system  Com-
pare the polar equation of the circle r  2 with its equation 
in rectangular coordinates. In which coordinate system is the 
equation simpler? Do the same for the equation of the four-
leaved rose r  sin 2u. Which coordinate system would you 
choose to study these curves?

67. DisCuss: Choosing a Convenient Coordinate system  Com-
pare the rectangular equation of the line y  2 with its polar 
equation. In which coordinate system is the equation simpler? 
Which coordinate system would you choose to study lines?
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638 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

8.3 Polar ForM oF CoMPlEx NuMBErs; DE MoivrE’s ThEorEM
■ Graphing Complex Numbers ■ Polar Form of Complex Numbers  
■ De Moivre’s Theorem ■ nth roots of Complex Numbers

In this section we represent complex numbers in polar (or trigonometric) form. This 
enables us to find the nth roots of complex numbers. To describe the polar form of 
complex numbers, we must first learn to work with complex numbers graphically.

■ Graphing Complex Numbers
To graph real numbers or sets of real numbers, we have been using the number line, 
which has just one dimension. Complex numbers, however, have two components: a 
real part and an imaginary part. This suggests that we need two axes to graph complex 
numbers: one for the real part and one for the imaginary part. We call these the real axis 
and the imaginary axis, respectively. The plane determined by these two axes is called 
the complex plane. To graph the complex number a  bi, we plot the ordered pair of 
numbers 1a,  b 2  in this plane, as indicated in Figure 1.

ExaMPlE 1 ■ Graphing Complex Numbers
Graph the complex numbers z1  2  3i, z2  3  2i, and z1  z2.

soluTioN  We have z1  z2  12  3i 2  13  2i 2  5  i. The graph is shown in 
Figure 2.

Now Try Exercise 19 ■

ExaMPlE 2 ■ Graphing sets of Complex Numbers
Graph each set of complex numbers.

(a) S  5a  bi 0  a  06       

(b) T  5a  bi 0  a  1, b  06
soluTioN

(a)  S is the set of complex numbers whose real part is nonnegative. The graph is 
shown in Figure 3(a).

(b)  T is the set of complex numbers for which the real part is less than 1 and the 
imaginary part is nonnegative. The graph is shown in Figure 3(b).

Im

Re0

(b)

1

Im

Re0

(a)FiGurE 3

Now Try Exercise 21 ■

FiGurE 1

Imaginary
axis

Real
axis

bi a+bi

a0

FiGurE 2

Im

Re

3i
z⁄=2+3i

z¤=3-2i

z⁄+z¤=5+i2i

i

_i

_2i

2          4
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SECTION 8.3 ■ Polar Form of Complex Numbers; De Moivre’s Theorem 639

Recall that the absolute value of a real number can be thought of as its distance from 
the origin on the real number line (see Section P.2). We define absolute value for com-
plex numbers in a similar fashion. Using the Pythagorean Theorem, we can see from 
Figure 4 that the distance between a  bi and the origin in the complex plane is 

"a 
2  b 

2. This leads to the following definition.

MoDulus oF a CoMPlEx NuMBEr

The modulus (or absolute value) of the complex number z  a  bi is

0  z 0  "a 
2  b 

2

ExaMPlE 3 ■ Calculating the Modulus
Find the moduli of the complex numbers 3  4i and 8  5i.

soluTioN

 0  3  4i 0  "32  42  !25  5

 0  8  5i 0  "82  15 2 2  !89

Now Try Exercise 9 ■

ExaMPlE 4 ■ absolute value of Complex Numbers
Graph each set of complex numbers.

(a) C  5z  @ 0  z 0  16       (b) D  5z  @ 0  z 0  16
soluTioN

(a)  C is the set of complex numbers whose distance from the origin is 1. Thus C is a 
circle of radius 1 with center at the origin, as shown in Figure 5.

(b)  D is the set of complex numbers whose distance from the origin is less than or 
equal to 1. Thus D is the disk that consists of all complex numbers on and inside 
the circle C of part (a), as shown in Figure 6.

Im

Re0_1

_i

i
C

|z |=1

1

FiGurE 5

Im

Re0_1

_i

i
D

|z |≤1

1

FiGurE 6

Now Try Exercises 23 and 25 ■

■ Polar Form of Complex Numbers
Let z  a  bi be a complex number, and in the complex plane let’s draw the line seg-
ment joining the origin to the point a  bi (see Figure 7 on the next page). The length 

of this line segment is r  0  z 0  "a 
2  b 

2. If u is an angle in standard position whose 

The plural of modulus is moduli.

Im

Re

bi
a+bi

0 a

œ∑∑∑∑∑∑a™+b™
b

FiGurE 4
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640 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

terminal side coincides with this line segment, then by the definitions of sine and cosine 
(see Section 5.3)

a  r cos u  and  b  r sin u

so z  r cos u  ir sin u  r 1 cos u  i sin u 2 . We have shown the following.

Polar ForM oF CoMPlEx NuMBErs

A complex number z  a  bi has the polar form (or trigonometric form)

z  r 1cos u  i sin u 2
where r  0  z 0  "a 

2  b 
2 and tan u  b/a. The number r is the modulus of 

z, and u is an argument of z.

The argument of z is not unique, but any two arguments of z differ by a multiple of 
2p. When determining the argument, we must consider the quadrant in which z lies, as 
we see in the next example.

ExaMPlE 5 ■ writing Complex Numbers in Polar Form
Write each complex number in polar form.

(a) 1  i      (b) 1  !3 i      (c) 4!3  4i      (d) 3  4i

soluTioN  These complex numbers are graphed in Figure 8, which helps us find their 
arguments.

Im

Re

i
1+i

10
¨

Im

Re

4i
3+4i

30
¨

Im

Re

œ∑3 i_1+œ∑3 i

_1 0

¨

Im

Re

_4i_4 œ∑3-4i

_4 œ∑3 0

¨

(a) (b) (c) (d)

FiGurE 8

(a) An argument is u  p/4 and r  !1  1  !2. Thus

1  i  !2 a cos 
p

4
 i sin 

p

4
b

(b) An argument is u  2p/3 and r  !1  3  2. Thus

1  !3 i  2 a cos 
2p

3
 i sin 

2p

3
b

(c)  An argument is u  7p/6 (or we could use u  5p/6), and 
r  !48  16  8. Thus

4 !3  4i  8 a cos 
7p

6
 i sin 

7p

6
b

(d) An argument is u  tan1 
 
4
3 and r  "32  42  5. So

3  4i  5CcosAtan1 4
3B  i sinAtan1 4

3B D
Now Try Exercises 29, 31, 33, and 43 ■

 tan u  1
1  1

 u  p
4

 tan u 
!3

1
 !3

 u  2p
3

 tan u 
4

4 !3


1

!3
 u  7p

6

 tan u  4
3

 u  tan1 
 
4
3

Im

Re

bi
a+bi

a0
¨

r

FiGurE 7
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SECTION 8.3 ■ Polar Form of Complex Numbers; De Moivre’s Theorem 641

The Addition Formulas for Sine and Cosine that we discussed in Section 7.2 greatly 
simplify the multiplication and division of complex numbers in polar form. The follow-
ing theorem shows how.

MulTiPliCaTioN aND DivisioN oF CoMPlEx NuMBErs

If the two complex numbers z1 and z2 have the polar forms

 z1  r11cos u1  i sin u1 2  and  z2  r21cos u2  i sin u2 2
then

 z1z2  r1r2 3cos1u1  u2 2  i sin1u1  u2 2 4     Multiplication

 
z1

z2


r1

r2
3cos1u1  u2 2  i sin1u1  u2 2 4  z2 ? 0    Division

This theorem says:

To multiply two complex numbers, multiply the moduli and add the arguments.

To divide two complex numbers, divide the moduli and subtract the arguments.

Proof  To prove the Multiplication Formula, we simply multiply the two complex 
numbers:

 z1z2  r1r21cos u1  i sin u1 2 1cos u2  i sin u2 2
  r1r2 3cos u1 cos u2  sin u1 sin u2  i1sin u1 cos u2  cos u1 sin u2 2 4
  r1r2 3cos1u1  u2 2  i sin1u1  u2 2 4

In the last step we used the Addition Formulas for Sine and Cosine.
The proof of the Division Formula is left as an exercise. (See Exercise 101.) ■

ExaMPlE 6 ■ Multiplying and Dividing Complex Numbers
Let

z1  2 a cos 
p

4
 i sin 

p

4
b  and  z2  5 a cos 

p

3
 i sin 

p

3
b

Find (a) z1z2 and (b) z1/z2.

soluTioN

(a) By the Multiplication Formula

 z1z2  12 2 15 2 c cos ap

4


p

3
b  i sin ap

4


p

3
b d

  10 a cos 
7p

12
 i sin 

7p

12
b

  To approximate the answer, we use a calculator in radian mode and get

 z1z2 < 1010.2588  0.9659i 2
  2.588  9.659i
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642 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

(b) By the Division Formula

 
z1

z2


2

5
c cos ap

4


p

3
b  i sin ap

4


p

3
b d

  
2

5
c cos a 

p

12
b  i sin a 

p

12
b d

  
2

5
a cos 

11p

12
 i sin 

11p

12
b

Using a calculator in radian mode, we get the approximate answer:

z1

z2
<

2

5
 10.9659  0.2588i 2  0.3864  0.1035i

Now Try Exercise 49 ■

■ De Moivre’s Theorem
Repeated use of the Multiplication Formula gives the following useful formula for rais-
ing a complex number to a power n for any positive integer n.

DE MoivrE’s ThEorEM

If z  r 1cos u  i sin u 2 , then for any integer n

zn  rn1cos nu  i sin nu 2

This theorem says: To take the nth power of a complex number, we take the nth power 
of the modulus and multiply the argument by n.

Proof  By the Multiplication Formula

 z2  zz  r2 3cos1u  u 2  i sin1u  u 2 4
  r21cos 2u  i sin 2u 2

Now we multiply z2 by z to get

 z3  z2z  r3 3cos12u  u 2  i sin12u  u 2 4
  r31cos 3u  i sin 3u 2

Repeating this argument, we see that for any positive integer n

zn  rn1cos nu  i sin nu 2
A similar argument using the Division Formula shows that this also holds for negative  
integers. ■

ExaMPlE 7 ■ Finding a Power using De Moivre’s Theorem
Find A12  1

2 iB10
.

soluTioN  Since 1
2  1

2 i  1
2 
11  i 2 , it follows from Example 5(a) that

1

2


1

2
 i 

!2

2
 a cos 

p

4
 i sin 

p

4
b
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SECTION 8.3 ■ Polar Form of Complex Numbers; De Moivre’s Theorem 643

So by De Moivre’s Theorem

 a 1

2


1

2
 ib

10

 a !2

2
b

10

a cos 
10p

4
 i sin 

10p

4
b

  
25

210 a cos 
5p

2
 i sin 

5p

2
b 

1

32
 i

Now Try Exercise 65 ■

■ nth roots of Complex Numbers
An nth root of a complex number z is any complex number „ such that „ n  z. De 
Moivre’s Theorem gives us a method for calculating the nth roots of any complex number.

nth rooTs oF CoMPlEx NuMBErs

If z  r 1cos u  i sin u 2  and n is a positive integer, then z has the n distinct nth 
roots

„k  r 
1/n c cos a u  2kp

n
b  i sin a u  2kp

n
b d

for k  0, 1, 2, . . . , n  1.

Proof  To find the nth roots of z, we need to find a complex number „ such that

„ 
n  z

Let’s write z in polar form:

z  r 1cos u  i sin u 2
One nth root of z is

„  r 
1/n a cos 

u

n
 i sin 

u

n
b

since by De Moivre’s Theorem, „ n  z. But the argument u of z can be replaced by  
u  2kp for any integer k. Since this expression gives a different value of „ for k  0, 
1, 2, . . . , n  1, we have proved the formula in the theorem. ■

The following observations help us use the preceding formula.

FiNDiNG ThE nth rooTs oF z  r(cos u  i sin u)

1. The modulus of each nth root is r1/n.

2. The argument of the first root is u/n.

3. We repeatedly add 2p/n to get the argument of each successive root.

These observations show that, when graphed, the nth roots of z are spaced equally 
on the circle of radius r1/n.
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644 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

ExaMPlE 8 ■ Finding roots of a Complex Number
Find the six sixth roots of z  64, and graph these roots in the complex plane.

soluTioN  In polar form, z  641cos p  i sin p 2 . Applying the formula for nth 
roots with n  6, we get

„k  641/6 c cos ap  2kp

6
b  i sin ap  2kp

6
b d

for k  0, 1, 2, 3, 4, 5. Using 641/6  2, we find that the six sixth roots of 64 are

 „0  2 a cos 
p

6
 i sin 

p

6
b  !3  i

 „1  2 a cos 
p

2
 i sin 

p

2
b  2i

 „2  2 a cos 
5p

6
 i sin 

5p

6
b  !3  i

 „3  2 a cos 
7p

6
 i sin 

7p

6
b  !3  i

 „4  2 a cos 
3p

2
 i sin 

3p

2
b  2i

 „5  2 a cos 
11p

6
 i sin 

11p

6
b  !3  i

All these points lie on a circle of radius 2, as shown in Figure 9.

Now Try Exercise 81 ■

When finding roots of complex numbers, we sometimes write the argument u  
of the complex number in degrees. In this case the nth roots are obtained from the 
formula

„k  r 
1/n c cos a u  360k

n
b  i sin a u  360k

n
b d

for k  0, 1, 2, . . . , n  1.

We add 2p/6  p/3 to each argument 
to get the argument of the next root.

DisCovEry ProjECT

Fractals

Most of the things we model in this book follow regular predictable patterns. 
But many real-world phenomena—such as a cloud, a jagged coastline, or a 
flickering flame—appear to have random or even chaotic shapes. Fractals  
allow us to model such shapes and many others. Surprisingly, the extremely 
complex shapes of fractals and their infinite detail are produced by exceedingly 
simple rules and endless repetitions that involve iterating simple functions 
whose inputs and outputs are complex numbers. You can find the project at 
www.stewartmath.com.
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FiGurE 9 The six sixth roots of  
z  64
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SECTION 8.3 ■ Polar Form of Complex Numbers; De Moivre’s Theorem 645

ExaMPlE 9 ■ Finding Cube roots of a Complex Number
Find the three cube roots of z  2  2i, and graph these roots in the complex 
plane.

soluTioN  First we write z in polar form using degrees. We have 
r  "22  22  2!2 and u  45. Thus

z  2!2 1cos 45  i sin 45 2
Applying the formula for nth roots (in degrees) with n  3, we find that the cube 
roots of z are of the form

 „k  A2!2B1/3 c cos a 45  360k

3
b  i sin a 45  360k

3
b d

where k  0, 1, 2. Thus the three cube roots are

 „0  !2 1cos 15  i sin 15 2 < 1.366  0.366i   
 12!2 2 1/3  123/2 2 1/3

  21/2  !2
 „1  !2 1cos 135  i sin 135 2  1  i

 „2  !2 1cos 255  i sin 255 2 < 0.366  1.366i

The three cube roots of z are graphed in Figure 10. These roots are spaced equally on 
a circle of radius !2.

Now Try Exercise 77 ■

ExaMPlE 10 ■  solving an Equation using the nth roots Formula
Solve the equation z6  64  0.

soluTioN  This equation can be written as z6  64. Thus the solutions are the sixth 
roots of 64, which we found in Example 8.

Now Try Exercise 87 ■

We add 360/3  120 to each  
argument to get the argument of the 
next root.

Im

Re0 œ∑2

„‚

œ∑2 i

_œ∑2 i

_œ∑2

„⁄

„¤

FiGurE 10 The three cube roots of  
z  2  2i

CoNCEPTs
 1. A complex number z  a  bi has two parts: a is the 

  part, and b is the   part. To graph  
a  bi, we graph the ordered pair 1 , 2 in the complex 
plane.

 2. Let z  a  bi.

(a)  The modulus of z is r     , and an argument of 

 z is an angle u satisfying tan u     .

(b)  We can express z in polar form as z     ,  
where r is the modulus of z and u is the argument  
of z. 

 3. (a)  The complex number z  1  i in polar form is 

   z     . 

(b)  The complex number z  2a cos 
p

6
 i sin 

p

6
b  in  

rectangular form is z     .

(c)  The complex number graphed below can be expressed in 

   rectangular form as   or in polar form as    . 

Re

Im

0

z

1

i

8.3 ExErCisEs
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 4. How many different nth roots does a nonzero complex  

number have?    . The number 16 has   

fourth roots. These roots are    ,    , 

   , and    . In the complex plane these roots 

all lie on a circle of radius    . Graph the roots on the 
following graph. 

Re

Im

0 4

i

skills
5–14 ■ a Complex Number and its Modulus  Graph the complex 
number and find its modulus.

 5. 4i   6. 3i

 7. 2   8. 6

 9. 5  2i 10. 7  3i

 11. !3  i 12. 1 
!3

3
 i

 13. 
3  4i

5
 14. 

!2  i !2

2

15–16 ■ Graphing Complex Numbers  Sketch the complex num-
bers z, 2z, z, and 1

2 z on the same complex plane.

15. z  1  i 16. z  1  i!3

17–18 ■ Graphing a Complex Number and its Complex  
Conjugate  Sketch the complex number z and its complex  
conjugate z on the same complex plane.

17. z  8  2i 18. z  5  6i

19–20 ■ Graphing Complex Numbers  Sketch z1, z2, z1  z2,  
and z1z2 on the same complex plane.

19. z1  2  i,  z2  2  i

20. z1  1  i,  z2  2  3i

21–28 ■ Graphing sets of Complex Numbers  Sketch the set in 
the complex plane.

21. 5z  a  bi 0  a  0, b  06
22. 5z  a  bi 0  a  1, b  16
23. 5z @ 0  z 0  36  24. 5z @ 0  z 0  16
25. 5z @ 0  z 0  26  26. 5z @  2  0  z 0  56
27. 5z  a  bi 0  a  b  26
28. 5z  a  bi 0  a  b6

29–48 ■ Polar Form of Complex Numbers  Write the complex 
number in polar form with argument u between 0 and 2p.

29. 1  i 30. 1  i 31. 2  2i

32. !2  !2 i 33. !3  i 34. 5  5!3 i

35. 2!3  2i 36. 3  3!3 i 37. 2i 

38. 5i 39. 3 40. !2

41. !6  !2 i 42. !5  !15 i 43. 4  3i

44. 3  2i 45. 41!3  i 2  46. i1!2  !6 i 2
47. 311  i 2  48. 2i11  i 2

49–56 ■ Products and quotients of Complex Numbers  Find the 
product z1z2 and the quotient z1/z2. Express your answer in polar form.

49. z1  3 a cos 
p

3
 i sin 

p

3
b ,  z2  2 a cos 

p

6
 i sin 

p

6
b

50. z1  !3 a  cos 
5p

4
 i sin 

5p

4
b ,  z2  21  cos p  i sin p 2

51. z1  !2 a cos 
5p

3
 i sin 

5p

3
b ,  

  z2  2!2 a cos 
3p

2
 i sin 

3p

2
b

52. z1   cos 
3p

4
 i sin 

3p

4
,  z2   cos 

p

3
 i sin 

p

3

53.  z1  41cos 120  i sin 120 2 ,
   z2  21cos 30  i sin 30 2
54.  z1  !21cos 75  i sin 75 2 ,
   z2  3!21cos 60  i sin 60 2
55.  z1  41cos 200  i sin 200 2 ,
   z2  251cos 150  i sin 150 2
56.  z1  4

5 1cos 25  i sin 25 2 ,
   z2  1

5 1cos 155  i sin 155 2

57–64 ■ Products and quotients of Complex Numbers  Write z1 
and z2 in polar form, and then find the product z1z2 and the quo-
tients z1/z2 and 1/z1.

57. z1  !3  i, z2  1  !3 i

58. z1  !2  !2 i, z2  1  i

59. z1  2!3  2i, z2  1  i

60. z1  !2 i, z2  3  3!3 i

61. z1  5  5i,  z2  4 62. z1  4!3  4i, z2  8i

63. z1  20, z2  !3  i 64. z1  3  4i,  z2  2  2i

65–76 ■ Powers using De Moivre’s Theorem  Find the indicated 
power using De Moivre’s Theorem.

65. 1!3  i 2 6 66. 11  i 2 10

67. 1!2  !2 i 2 5 68. 11  i 2 7

69. a !2

2


!2

2
 i b

12

 70. 1!3  i 210

8.4 PlaNE CurvEs aND ParaMETriC EquaTioNs
■ Plane Curves and Parametric Equations ■ Eliminating the Parameter ■ Finding  
Parametric Equations for a Curve ■ using Graphing Devices to Graph Parametric Curves

So far, we have described a curve by giving an equation (in rectangular or polar coor-
dinates) that the coordinates of all the points on the curve must satisfy. But not all 
curves in the plane can be described in this way. In this section we study parametric 
equations, which are a general method for describing any curve.

■ Plane Curves and Parametric Equations
We can think of a curve as the path of a point moving in the plane; the x- and  
y-coordinates of the point are then functions of time. This idea leads to the following 
definition.
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71. 12  2i 2 8 72. a 

1

2


!3

2
 i b

15

73. 11  i 2 7 74. 13  !3 i 2 4
75. 12!3  2i 25 76. 11  i 28

77–86 ■ roots of Complex Numbers  Find the indicated roots, 
and graph the roots in the complex plane.

77. The square roots of 4!3  4i

78. The cube roots of 4!3  4i

79. The fourth roots of 81i 

80. The fifth roots of 32

81. The eighth roots of 1 

82. The cube roots of 1  i

83. The cube roots of i 

84. The fifth roots of i

85. The fourth roots of 1

86. The fifth roots of 16  16!3 i

87–92 ■ solving Equations using nth roots  Solve the equation.

87. z4  1  0 88. z8  i  0

89. z 
3  4!3  4i  0 90. z6  1  0

91. z3  1  i 92. z3  1  0

skills Plus
93–96 ■ Complex Coefficients and the quadratic Formula  The 
quadratic formula works whether the coefficients of the equation 
are real or complex. Solve the following equations using the qua-
dratic formula and, if necessary, De Moivre’s Theorem.

93. z2  iz  1  0 94. z2  iz  2  0

95. z2  2iz  2  0 96. z2  11  i 2z  i  0

97–98 ■ Finding nth roots of a Complex Number  Let 
„  cos 12p/n 2  i sin 12p/n 2 , where n is a positive integer.

 97. Show that the n distinct roots of 1 are

1, „, „2, „3, . . . , „n1

 98. If z ? 0 and s is any nth root of z, show that the n distinct 
roots of z are

s, s„, s„2, s„3, . . . , s„n1

DisCuss ■ DisCovEr ■ ProvE ■ wriTE
 99. DisCuss: sums of roots of unity  Find the exact values of 

all three cube roots of 1 (see Exercise 97), and then add 
them. Do the same for the fourth, fifth, sixth, and eighth 
roots of 1. What do you think is the sum of the nth roots of 1 
for any n?

100. DisCuss: Products of roots of unity  Find the product of 
the three cube roots of 1 (see Exercise 97). Do the same for 
the fourth, fifth, sixth, and eighth roots of 1. What do you 
think is the product of the nth roots of 1 for any n?

101.  ProoF: Division in Polar Form  If the two complex num-
bers z1 and z2 have the polar forms 

z1  r11cos u1  i sin u1 2
  and z2  r21cos u2  i sin u2 2
  show that

z1

z2


r1

r2
 3cos 1u1  u2 2  i sin 1u1  u2 2 4

  [Hint: Multiply numerator and denominator by the complex 
conjugate of z2 and simplify.]

8.4 PlaNE CurvEs aND ParaMETriC EquaTioNs
■ Plane Curves and Parametric Equations ■ Eliminating the Parameter ■ Finding  
Parametric Equations for a Curve ■ using Graphing Devices to Graph Parametric Curves

So far, we have described a curve by giving an equation (in rectangular or polar coor-
dinates) that the coordinates of all the points on the curve must satisfy. But not all 
curves in the plane can be described in this way. In this section we study parametric 
equations, which are a general method for describing any curve.

■ Plane Curves and Parametric Equations
We can think of a curve as the path of a point moving in the plane; the x- and  
y-coordinates of the point are then functions of time. This idea leads to the following 
definition.
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648 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

PlaNE CurvEs aND ParaMETriC EquaTioNs

If f and g are functions defined on an interval I, then the set of points 
1f 1 t 2 , g1 t 22  is a plane curve. The equations

x  f 1 t 2   y  g1 t 2
where t  I, are parametric equations for the curve, with parameter t.

ExaMPlE 1 ■ sketching a Plane Curve
Sketch the curve defined by the parametric equations

x  t2  3t   y  t  1

soluTioN  For every value of t we get a point on the curve. For example, if t  0, 
then x  0 and y  1, so the corresponding point is 10, 1 2 . In Figure 1 we plot 
the points 1x, y 2  determined by the values of t shown in the following table.

t=_2

t=5

t=_1
t=0

t=4
t=3

t=2

t=1

y

x
1

5 10

FiGurE 1

t x y

2 10 3
1 4 2

0 0 1
1 2 0
2 2 1
3 0 2
4 4 3
5 10 4

As t increases, a particle whose position is given by the parametric equations 
moves along the curve in the direction of the arrows.

Now Try Exercise 3 ■

If we replace t by t in Example 1, we obtain the parametric equations

x  t2  3t   y  t  1

The graph of these parametric equations (see Figure 2) is the same as the curve in Fig-
ure 1 but traced out in the opposite direction. On the other hand, if we replace t by 2t 
in Example 1, we obtain the parametric equations

x  4t2  6t   y  2t  1

The graph of these parametric equations (see Figure 3) is again the same but is traced 
out “twice as fast.” Thus a parametrization contains more information than just the 
shape of the curve; it also indicates how the curve is being traced out.

t=2

t=_5

t=1
t=0

t=_4
t=_3

t=_2

t=_1

y

x
1

5 10

FiGurE 2 x  t2  3t, y  t  1

t=_1

t=0

t=2

t=1

y

x
1

5 10

FiGurE 3 x  4t2  6t, y  2t  1

The arrows on the curve indicate the 
direction of the curve for increasing 
values of t.
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■ Eliminating the Parameter
Often a curve given by parametric equations can also be represented by a single rect-
angular equation in x and y. The process of finding this equation is called eliminating 
the parameter. One way to do this is to solve for t in one equation, then substitute into 
the other.

ExaMPlE 2 ■ Eliminating the Parameter
Eliminate the parameter in the parametric equations of Example 1.

soluTioN  First we solve for t in the simpler equation, then we substitute into the 
other equation. From the equation y  t  1 we get t  y  1. Substituting into the 
equation for x, we get

x  t2  3t  1y  1 2 2  31y  1 2  y2  y  2

Thus the curve in Example 1 has the rectangular equation x  y2  y  2, so it is a 
parabola.

Now Try Exercise 5 ■

Eliminating the parameter often helps us identify the shape of a curve, as we see in 
the next two examples.

ExaMPlE 3 ■ Modeling Circular Motion
The following parametric equations model the position of a moving object at time t 
(in seconds): 

x  cos t   y  sin t   t  0

Describe and graph the path of the object.

soluTioN  To identify the curve, we eliminate the parameter. Since cos2t  sin2t  1 
and since x  cos t and y  sin t for every point 1x, y 2  on the curve, we have

x2  y2  1cos t 2 2  1sin t 2 2  1

This means that all points on the curve satisfy the equation x2  y2  1, so the graph is 
a circle of radius 1 centered at the origin. As t increases from 0 to 2p, the point given 
by the parametric equations starts at 11, 0 2  and moves counterclockwise once around 
the circle, as shown in Figure 4. So the object completes one revolution around the cir-
cle in 2p seconds. Notice that the parameter t can be interpreted as the angle shown in 
the figure.

FiGurE 4

3π
2t=

π
2t=

0
t

t=0

(1, 0)

(ç t, ß t)

t=2π

t=π
x

y

Now Try Exercise 27 ■

Be
ttm

an
n/

Co
rb

is

Maria Gaetana aGnesi (1718–1799) 
is famous for having written Instituzioni 
Analitiche, one of the first calculus 
textbooks.

Agnesi was born into a wealthy family 
in Milan, Italy, the oldest of 21 children. 
She was a child prodigy, mastering many 
languages at an early age, including Latin, 
Greek, and Hebrew. At the age of 20 she 
published a series of essays on philosophy 
and natural science. After her mother died, 
Agnesi took on the task of educating her 
brothers. In 1748 Agnesi published her 
famous textbook, which she originally 
wrote as a text for tutoring her brothers. 
The book compiled and explained the 
mathematical knowledge of the day. It 
contains many carefully chosen examples, 
one of which is the curve now known as 
the “witch of Agnesi” (see Exercise 66,  
page 655). One review calls her book an 
“exposition by examples rather than by 
theory.”  The book gained Agnesi immedi-
ate recognition. Pope Benedict XIV 
appointed her to a position at the Univer-
sity of Bologna, writing,  “we have had the 
idea that you should be awarded the well-
known chair of mathematics, by which it 
comes of itself that you should not thank 
us but we you.”  This appointment was an 
extremely high honor for a woman, since 
very few women then were even allowed 
to attend university. Just two years later, 
Agnesi’s father died, and she left mathe-
matics completely. She became a nun and 
devoted the rest of her life and her wealth 
to caring for sick and dying women, her-
self dying in poverty at a poorhouse of 
which she had once been director.
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650 CHAPTER 8 ■ Polar Coordinates and Parametric Equations 

ExaMPlE 4 ■ sketching a Parametric Curve
Eliminate the parameter, and sketch the graph of the parametric equations

x  sin t   y  2  cos2 t

soluTioN  To eliminate the parameter, we first use the trigonometric identity  
cos2t  1  sin2t to change the second equation:

y  2  cos2 t  2  11  sin2t 2  1  sin2 t

Now we can substitute sin t  x from the first equation to get

y  1  x2

so the point 1x, y 2  moves along the parabola y  1  x2. However, since  
1  sin t  1, we have 1  x  1, so the parametric equations represent only  
the part of the parabola between x  1 and x  1. Since sin t is periodic, the point 
1x, y 2  1sin t, 2  cos2 t 2  moves back and forth infinitely often along the parabola 
between the points 11, 2 2  and 11, 2 2 , as shown in Figure 5.

Now Try Exercise 15 ■

■ Finding Parametric Equations for a Curve
It is often possible to find parametric equations for a curve by using some geometric 
properties that define the curve, as in the next two examples.

ExaMPlE 5 ■ Finding Parametric Equations for a Graph
Find parametric equations for the line of slope 3 that passes through the point 12, 6 2 .
soluTioN  Let’s start at the point 12, 6 2  and move up and to the right along this 
line. Because the line has slope 3, for every 1 unit we move to the right, we must 
move up 3 units. In other words, if we increase the x-coordinate by t units, we must 
correspondingly increase the y-coordinate by 3t units. This leads to the parametric 
equations

x  2  t   y  6  3t

To confirm that these equations give the desired line, we eliminate the parameter. We 
solve for t in the first equation and substitute into the second to get

y  6  31x  2 2  3x

Thus the slope-intercept form of the equation of this line is y  3x, which is a line of 
slope 3 that does pass through 12, 6 2  as required. The graph is shown in Figure 6.

Now Try Exercise 31 ■

ExaMPlE 6 ■ Parametric Equations for the Cycloid
As a circle rolls along a straight line, the curve traced out by a fixed point P on the 
circumference of the circle is called a cycloid (see Figure 7). If the circle has radius a 
and rolls along the x-axis, with one position of the point P being at the origin, find 
parametric equations for the cycloid.

P

P

P

FiGurE 7

FiGurE 6

y

x
0

6 t

3t

2

FiGurE 5

x0

y
(1, 2)(_1, 2)
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soluTioN  Figure 8 shows the circle and the point P after the circle has rolled 
through an angle u (in radians). The distance d1O, T 2  that the circle has rolled must 
be the same as the length of the arc PT, which, by the arc length formula, is au (see 
Section 5.1). This means that the center of the circle is C1au, a 2 .

Let the coordinates of P be 1x, y 2 . Then from Figure 8 (which illustrates the case  
0  u  p/2), we see that

 x  d1O, T 2  d1P, Q 2  au  a sin u  a1u  sin u 2
 y  d1T, C 2  d1Q, C 2  a  a cos u  a11  cos u 2

so parametric equations for the cycloid are

x  a1u  sin u 2   y  a11  cos u 2
Now Try Exercise 53 ■

The cycloid has a number of interesting physical properties. It is the “curve of quickest 
descent” in the following sense. Let’s choose two points P and Q that are not directly 
above each other and join them with a wire. Suppose we allow a bead to slide down the 
wire under the influence of gravity (ignoring friction). Of all possible shapes into which 
the wire can be bent, the bead will slide from P to Q the fastest when the shape is half of 
an arch of an inverted cycloid (see Figure 9). The cycloid is also the “curve of equal de-
scent” in the sense that no matter where we place a bead B on a cycloid-shaped wire, it 
takes the same time to slide to the bottom (see Figure 10). These rather surprising proper-
ties of the cycloid were proved (using calculus) in the 17th century by several mathemati-
cians and physicists, including Johann Bernoulli, Blaise Pascal, and Christiaan Huygens.

FiGurE 9

P

Q
Cycloid

FiGurE 10

B

B

B

■ using Graphing Devices to Graph Parametric Curves 
Most graphing calculators and computer graphing programs can be used to graph para-
metric equations. Such devices are particularly useful in sketching complicated curves 
like the one shown in Figure 11.

FiGurE 11  
x  t  2 sin 2t, y  t  2 cos 5t

8

_8

_6.5 6.5

ExaMPlE 7 ■ Graphing Parametric Curves
Use a graphing device to draw the following parametric curves. Discuss their similari-
ties and differences.

(a) x  sin 2t (b) x  sin 3t
 y  2 cos t  y  2 cos t

FiGurE 8

P

x0

y

T

C (a¨, a)a ¨

x
y

a¨

Q
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soluTioN  In both parts (a) and (b) the graph will lie inside the rectangle given  
by 1  x  1, 2  y  2, since both the sine and the cosine of any number  
will be between 1 and 1. Thus we may use the viewing rectangle 31.5, 1.5 4  by 
32.5, 2.5 4 .
(a)  Since 2 cos t is periodic with period 2p (see Section 6.3) and since sin 2t has 

period p, letting t vary over the interval 0  t  2p gives us the complete graph, 
which is shown in Figure 12(a).

(b)  Again, letting t take on values between 0 and 2p gives the complete graph shown 
in Figure 12(b).

Both graphs are closed curves, which means that they form loops with the same 
starting and ending point; also, both graphs cross over themselves. However, the 
graph in Figure 12(a) has two loops, like a figure eight, whereas the graph in Fig-
ure 12(b) has three loops.

Now Try Exercise 39 ■

The curves graphed in Example 7 are called Lissajous figures. A Lissajous figure is 
the graph of a pair of parametric equations of the form

x  A sin v1t   y  B cos v2t

where A, B, v1, and v2 are positive real constants. Since sin v1t and cos v2t are  
both between 1 and 1, a Lissajous figure will lie inside the rectangle determined by  
A  x  A, B  y  B. This fact can be used to choose a viewing rectangle when 
graphing a Lissajous figure, as in Example 7.

Recall from Section 8.1 that rectangular coordinates 1x, y 2  and polar coordinates 
1r, u 2  are related by the equations x  r cos u, y  r sin u. Thus we can graph the polar 
equation r  f1u 2  by changing it to parametric form as follows.

 x  r cos u  f 1u 2  cos u    Since r  f 1u 2
 y  r sin u  f 1u 2  sin u

Replacing u by the standard parametric variable t, we have the following result.

Polar EquaTioNs iN ParaMETriC ForM

The graph of the polar equation r  f 1u 2  is the same as the graph of the  
parametric equations

x  f 1 t 2  cos t   y  f 1 t 2  sin t

ExaMPlE 8 ■ Parametric Form of a Polar Equation 
Consider the polar equation r  u, 1  u  10p.

(a) Express the equation in parametric form.

(b) Draw a graph of the parametric equations from part (a).

soluTioN

(a) The given polar equation is equivalent to the parametric equations

x  t cos t   y  t sin t

(b)  Since 10p  31.42, we use the viewing rectangle 332, 32 4  by 332, 32 4 , and 
we let t vary from 1 to 10p. The resulting graph shown in Figure 13 is a spiral.

Now Try Exercise 47 ■

(a)  x=ß 2t, y=2 ç t

2.5

_2.5

_1.5 1.5

(b)  x=ß 3t, y=2 ç t

2.5

_2.5

_1.5 1.5

FiGurE 12

32

_32

_32 32

FiGurE 13 x  t cos t, y  t sin t

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 8.4 ■ Plane Curves and Parametric Equations 653

CoNCEPTs
 1. (a)  The parametric equations x  f 1 t 2  and y  g 1 t 2  give 

the coordinates of a point 1x, y 2  1f 1 t 2 , g 1 t 22  for  
appropriate values of t. The variable t is called a 

   .

(b)  Suppose that the parametric equations x  t, y  t2, 
t  0, model the position of a moving object at time t. 
When t  0, the object is at 1 , 2, and when t  1, 
the object is at 1 , 2.

(c)  If we eliminate the parameter in part (b), we get the 

equation y     . We see from this equation that 

the path of the moving object is a    . 

 2. (a)  True or False? The same curve can be described by para-
metric equations in many different ways. 

(b)  The parametric equations x  2t, y  12t 2 2 model the 
position of a moving object at time t. When t  0, the 
object is at 1 , 2, and when t  1, the object is at  
1 , 2.

(c)  If we eliminate the parameter, we get the equation  

y     , which is the same equation as in Exer-
cise 1(c). So the objects in Exercises 1(b) and 2(b) move 

along the same   but traverse the path differ-
ently. Indicate the position of each object when t  0 
and when t  1 on the following graph. 

y

0 1

1

x

skills
3–26 ■ sketching a Curve by Eliminating the Parameter  A pair 
of parametric equations is given. (a) Sketch the curve represented 
by the parametric equations. Use arrows to indicate the direction of 
the curve as t increases. (b) Find a rectangular-coordinate equation 
for the curve by eliminating the parameter.

 3. x  2t,  y  t  6

 4. x  6t  4,  y  3t,  t  0

 5. x  t2,  y  t  2,  2  t  4

 6. x  2t  1,  y  At  1
2 B2

 7. x  !t,  y  1  t 

 8. x  t2,  y  t4  1

 9. x 
1

t
, y  t  1 10. x  t  1, y 

t

t  1

 11. x  4t2,  y  8t3 12. x  0  t 0 , y  @  1  0  t 0 @
13. x  2 sin t,  y  2 cos t,  0  t  p

14. x  2 cos t,  y  3 sin t,  0  t  2p

15. x  sin2t,  y  sin4t 16. x  sin2t,  y  cos t

17. x  cos t,  y  cos 2t 18. x  cos 2t,  y  sin 2t

19. x  sec t,  y  tan t,  0  t  p/2

20. x  cot t,  y  csc t,  0  t  p

21. x  tan t,  y  cot t,  0  t  p/2

22. x  et,  y  et 23. x  e2t,  y  et

24. x  sec t,  y  tan2t,  0  t  p/2

25. x  cos2t,  y  sin2t

26. x  cos3t,  y  sin3t,  0  t  2p

27–30 ■ Circular Motion  The position of an object in circular 
motion is modeled by the given parametric equations. Describe 
the path of the object by stating the radius of the circle, the posi-
tion at time t  0, the orientation of the motion (clockwise or 
counterclockwise), and the time t that it takes to complete one 
revolution around the circle. 

27. x  3 cos t, y  3 sin t 28. x  2 sin t, y  2 cos t

29. x   sin 2t, y   cos 2t 30. x  4 cos 3t, y  4 sin 3t

31–36 ■ Parametric Equations for Curves  Find parametric 
equations for the curve with the given properties.

31. The line with slope 1
2, passing through 14, 1 2

32. The line with slope 2, passing through 110, 20 2
33. The line passing through 16, 7 2  and 17, 8 2
34. The line passing through 112, 7 2  and the origin

35. The circle x2  y2  a2.

36. The ellipse

x2

a2 
y2

b2  1

37. Path of a Projectile  If a projectile is fired with an initial 
speed of √0 ft/s at an angle a above the horizontal, then its 
position after t seconds is given by the parametric equations

x  1√0 cos a 2 t   y  1√0 sin a 2 t  16t2

  (where x and y are measured in feet). Show that the path of 
the projectile is a parabola by eliminating the parameter t.

38. Path of a Projectile  Referring to Exercise 37, suppose a gun 
fires a bullet into the air with an initial speed of 2048 ft/s at 
an angle of 30 to the horizontal.

(a) After how many seconds will the bullet hit the ground?

(b) How far from the gun will the bullet hit the ground?

(c) What is the maximum height attained by the bullet?

8.4 ExErCisEs
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39–44 ■ Graphs of Parametric Equations  Use a graphing device 
to draw the curve represented by the parametric equations.

39. x  sin t,  y  2 cos 3t

40. x  2 sin t,  y  cos 4t

41. x  3 sin 5t,  y  5 cos 3t

42. x  sin 4t,  y  cos 3t

43. x  sin1cos t 2 , y  cos1 t3/2 2 , 0  t  2p

44. x  2 cos t  cos 2t,  y  2 sin t  sin 2t

45–48 ■ Parametric Form of a Polar Equation  A polar equation 
is given. (a) Express the polar equation in parametric form.  
(b) Use a graphing device to graph the parametric equations you 
found in part (a).

45. r  2u/12,  0  u  4p 46. r  sin u  2 cos u

47. r 
4

2  cos u
 48. r  2sin u

49–52 ■ Graphs of Parametric Equations  Match the parametric 
equations with the graphs labeled I–IV. Give reasons for your 
answers.

49. x  t3  2t,  y  t2  t

50. x  sin 3t,  y  sin 4t

51. x  t  sin 2t,  y  t  sin 3t

52. x  sin1 t  sin t 2 , y  cos1 t  cos t 2

0 x

y

0 x

yI II

0 x

y

0 x

yIII IV

53. Finding Parametric Equations for a Curve  Two circles of 
radius a and b are centered at the origin, as shown in the 
figure. As the angle u increases, the point P traces out a curve 
that lies between the circles.

(a) Find parametric equations for the curve, using u as the  
parameter.

(b) Graph the curve using a graphing device, with a  3 and 
b  2.

(c) Eliminate the parameter, and identify the curve.

¨
x0

y

a
b P

54. Finding Parametric Equations for a Curve  Two circles of 
radius a and b are centered at the origin, as shown in the 
figure.

(a) Find parametric equations for the curve traced out by the 
point P, using the angle u as the parameter. (Note that 
the line segment AB is always tangent to the larger 
circle.)

(b) Graph the curve using a graphing device, with a  3 and 
b  2.

¨
x0

y

a
b P

A

B

55. Curtate Cycloid  
(a) In Example 6, suppose the point P that traces out the 

curve lies not on the edge of the circle but rather at a 
fixed point inside the rim, at a distance b from the center 
(with b  a). The curve traced out by P is called a  
curtate cycloid (or trochoid). Show that parametric 
equations for the curtate cycloid are

x  au  b sin u   y  a  b cos u

(b) Sketch the graph using a  3 and b  2.

56. Prolate Cycloid  
(a) In Exercise 55 if the point P lies outside the circle at a 

distance b from the center (with b  a), then the curve 
traced out by P is called a prolate cycloid. Show that 
parametric equations for the prolate cycloid are the same 
as the equations for the curtate cycloid.

(b) Sketch the graph for the case in which a  1 and  
b  2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 8.4 ■ Plane Curves and Parametric Equations 655

skills Plus
57. Parametric Equations of a hyperbola  Eliminate the parame-

ter u in the following parametric equations. (This curve is 
called a hyperbola; see page 844.)

x  a tan u   y  b sec u

58. Parametric Equations of a hyperbola  Show that the follow-
ing parametric equations represent a part of the hyperbola of 
Exercise 57.

x  a!t   y  b!t  1

59–62 ■ Graphs of Parametric Equations  Sketch the curve 
given by the parametric equations.

59. x  t cos t,  y  t sin t,  t  0

60. x  sin t,  y  sin 2t

61. x 
3t

1  t3 , y 
3t2

1  t3

62. x  cot t,  y  2 sin2t,  0  t  p

63. hypocycloid  A circle C of radius b rolls on the inside of a 
larger circle of radius a centered at the origin. Let P be a fixed 
point on the smaller circle, with initial position at the point 
1a, 0 2  as shown in the figure. The curve traced out by P is 
called a hypocycloid.

b

C

P (a, 0)¨
x0

y

(a) Show that parametric equations for the hypocycloid are

 x  1a  b 2  cos u  b cos a a  b

b
  u b

 y  1a  b 2  sin u  b sina a  b

b
  u b

(b) If a  4b, the hypocycloid is called an astroid. Show that 
in this case the parametric equations can be reduced to

x  a cos3 u   y  a sin3 u

 Sketch the curve. Eliminate the parameter to obtain an 
equation for the astroid in rectangular coordinates.

64. Epicycloid  If the circle C of Exercise 63 rolls on the outside 
of the larger circle, the curve traced out by P is called an  
epicycloid. Find parametric equations for the epicycloid.

65. longbow Curve  In the following figure, the circle of radius 
a is stationary, and for every u, the point P is the midpoint of 
the segment QR. The curve traced out by P for 0  u  p is 

called the longbow curve. Find parametric equations for this 
curve.

P

Q

¨
0

a

R
y=2a

x

y
2a

66. The witch of agnesi  A curve, called a witch of Agnesi, con-
sists of all points P determined as shown in the figure.

(a) Show that parametric equations for this curve can be 
written as

x  2a cot u   y  2a sin2  u

(b) Graph the curve using a graphing device, with a  3.

¨
x0

y

a

y=2a

PA

C

67. Eliminating the Parameter  Eliminate the parameter u in the 
parametric equations for the cycloid (Example 6) to obtain a 
rectangular coordinate equation for the section of the curve 
given by 0  u  p.

aPPliCaTioNs
68. The rotary Engine  The Mazda RX-8 uses an unconven-

tional engine (invented by Felix Wankel in 1954) in which 
the pistons are replaced by a triangular rotor that turns in a 
special housing as shown in the figure on the next page. The 
vertices of the rotor maintain contact with the housing at all 
times, while the center of the triangle traces out a circle of 
radius r, turning the drive shaft. The shape of the housing is 
given by the parametric equations below (where R is the dis-
tance between the vertices and center of the rotor):

 x  r cos 3u  R cos u   y  r sin 3u  R sin u

(a) Suppose that the drive shaft has radius r  1. Graph  
the curve given by the parametric equations for the  
following values of R: 0.5, 1, 3, 5.
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(b) Which of the four values of R given in part (a) seems to 
best model the engine housing illustrated in the figure?

69. spiral Path of a Dog  A dog is tied to a cylindrical tree  
trunk of radius 1 ft by a long leash. He has managed to wrap 
the entire leash around the tree while playing in the yard, and 
he finds himself at the point 11, 0 2  in the figure. Seeing a 
squirrel, he runs around the tree counterclockwise, keeping 
the leash taut while chasing the intruder.

(a) Show that parametric equations for the dog’s path (called 
an involute of a circle) are

x  cos u  u sin u   y  sin u  u cos u

 [Hint: Note that the leash is always tangent to the tree, so 
OT is perpendicular to TD.]

(b) Graph the path of the dog for 0  u  4p.

D

T

O
¨

x

y

1

1

1

DisCuss ■ DisCovEr ■ ProvE ■ wriTE
70. DisCovEr ■ wriTE: More information in Parametric  

Equations  In this section we stated that parametric equa-
tions contain more information than just the shape of a 
curve. Write a short paragraph explaining this statement. 
Use the following example and your answers to parts (a) 
and (b) below in your explanation.

    The position of a particle is given by the parametric 
equations

x  sin t   y  cos t

  where t represents time. We know that the shape of the path 
of the particle is a circle.

(a) How long does it take the particle to go once around the 
circle? Find parametric equations if the particle moves 
twice as fast around the circle.

(b) Does the particle travel clockwise or counterclockwise 
around the circle? Find parametric equations if the  
particle moves in the opposite direction around the 
circle.

71. DisCuss: Different ways of Tracing out a Curve  The curves 
C, D, E, and F are defined parametrically as follows, where 
the parameter t takes on all real values unless otherwise 
stated:

 C: x  t, y  t2

 D: x  !t, y  t, t  0

 E: x  sin t, y  sin2
 t

 F: x  3t, y  32t

(a) Show that the points on all four of these curves satisfy 
the same rectangular coordinate equation.

(b) Draw the graph of each curve and explain how the curves 
differ from one another.

Polar Coordinates (p. 624)
In the polar coordinate system the location of a point P in the 
plane is determined by an ordered pair 1r, u 2 , where r is the dis-
tance from the pole O to P and u is the angle formed by the polar 
axis and the ray OP

>
, as shown in the figure. 

O

r

¨

P

Polar axis

Polar and rectangular Coordinates (p. 626)
Any point P in the plane has polar coordinates P1r, u 2  and rect-
angular coordinates P1x, y 2 , as shown.

x0

r

¨
x

y

P(r, ¨)
P(x, y)

y

■ ProPErTiEs aND ForMulas

ChaPTEr 8 ■ rEviEw
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■ To change from polar to rectangular coordinates, we use 
the equations 

x  r cos u  and  y  r sin u

■ To change from rectangular to polar coordinates, we use 
the equations

r2  x2  y2  and  tan u 
y

x

Polar Equations and Graphs (pp. 630, 635)
A polar equation is an equation in the variables r and u. The 
graph of a polar equation r  f 1u 2  consists of all points 1r, u 2  
whose coordinates satisfy the equation. 

symmetry in Graphs of Polar Equations (p. 633)
We can test a polar equation for symmetry as follows. The graph 
of a polar equation is 

■ symmetric about the polar axis if the equation is 
unchanged when we replace u by u;

■ symmetric about the pole if the equation is unchanged 
when we replace r by r, or u by u  p.

■ symmetric about the vertical line u  p/2 if the equation 
is unchanged when we replace u by p  u.

Complex Numbers (pp. 638–639)
A complex number is a number of the form a  bi, where  
i 2  1 and where a and b are real numbers. For the complex 
number z  a  bi, a is called the real part and b is called the 
imaginary part. A complex number a  bi is graphed in the 
complex plane as shown.

Imaginary
axis

Real
axis

bi a+bi

a0

The modulus (or absolute value) of a complex number 
z  a  bi is

0  z 0  "a2  b2

Polar Form of Complex Numbers (p. 640)
A complex number z  a  bi has the polar form (or trigono-
metric form)

z  r 1cos u  i sin u 2
where r  0  z 0  and  tan u  b/a. The number r is the modulus of 
z and u is the argument of z. 

Multiplication and Division of Complex Numbers  
in Polar Form (p. 641)
Suppose the complex numbers z1 and z2 have the following polar 
form:

z1  r11cos u1  i sin u1 2
z2  r21cos u2  i sin u2 2

Then 

 z1z2  r1r2 3cos 1u1  u2 2  i sin 1u1  u2 2 4

 
z1

z2


r1

r2
 3cos 1u1  u2 2  i sin 1u1  u2 2 4

De Moivre’s Theorem (p. 642)
If z  r 1cos u  i sin u 2  is a complex number in polar form and 
n is a positive integer, then

zn  rn
 1cos nu  i sin nu 2

nth roots of Complex Numbers (p. 643)
If z  r 1cos u  i sin u 2  is a complex number in polar form and 
n is a positive integer, then z has the n distinct nth roots 
„0, „1, c, „n1, where 

„k  r1/n c cos a u  2kp

n
b  i sin a u  2kp

n
bd

where k  0, 1, 2, c, n  1

Finding the nth roots of z (p. 643)
To find the nth roots of z  r 1cos u  i sin u 2 , we use the fol-
lowing observations:

1. The modulus of each nth root is r1/n.

2. The argument of the first root „0 is u/n.

3. Repeatedly add 2p/n to get the argument of each successive 
root.

Parametric Equations (p. 648)
If f and g are functions defined on an interval I, then the set of 
points 1f 1 t 2 , g1 t 22  is a plane curve. The equations

x  f 1 t 2    y  g1 t 2
where t [ I , are parametric equations for the curve, with 
parameter t. 

Polar Equations in Parametric Form (p. 652)
The graph of the polar equation r  f 1u 2  is the same as the 
graph of the parametric equations 

x  f 1 t 2  cos t   y  f 1 t 2  sin t

 1. (a) Explain the polar coordinate system. 

(b) Graph the points with polar coordinates 12, p/3 2  and  
11, 3p/4 2 .

(c) State the equations that relate the rectangular coordinates 
of a point to its polar coordinates. 

(d) Find rectangular coordinates for 12, p/3 2 .
(e) Find polar coordinates for P12, 2 2 . 

■ CoNCEPT ChECk
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 2. (a) What is a polar equation? 

(b) Convert the polar equation r   sin u to an equivalent 
rectangular equation.

 3. (a) How do we graph a polar equation?

(b) Sketch a graph of the polar equation r  4  4 cos u. 
What is the graph called?

 4. (a)  What is the complex plane? How do we graph a complex 
number z  a  bi in the complex plane?

(b) What are the modulus and argument of the complex 
number z  a  bi?

(c) Graph the point z  !3  i, and find the modulus and 
argument of z.

 5. (a) How do we express the complex number z in polar form?

(b) Express z  !3  i in polar form.

 6. Let z1  2 a cos 
p

3
 i sin 

p

3
b

  and z2  5 a cos 
p

4
 i sin 

p

4
b

(a) Find the product z1z2.

(b) Find the quotient z1/z2.

 7. (a) State De Moivre’s Theorem. 

(b) Use De Moivre’s Theorem to find the fifth power of 

 z  2 a cos 
p

3
 i sin 

p

3
b .

 8. (a)  State the formula for the nth roots of a complex number 
z  r 1cos u  i sin u 2 .

(b) How do we find the nth roots of a complex number?

(c) Find the three third roots of z  8.

 9. (a) What are parametric equations? 

(b) Sketch a graph of the following parametric equations, 
using arrows to indicate the direction of the curve.

x  t  1  y  t2  2  t  2

(c) Eliminate the parameter to obtain an equation in  
x and y.

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ ExErCisEs

1–6 ■ Polar Coordinates to rectangular Coordinates  A point 
P1r, u 2  is given in polar coordinates. (a) Plot the point P.  
(b) Find rectangular coordinates for P.

 1. 112,  p/6 2   2. 18,  3p/4 2
 3. 13,  7p/4 2   4. 1!3,  2p/3 2
 5. 14!3,  5p/3 2   6. 16!2,  p/4 2

7–12 ■ rectangular Coordinates to Polar Coordinates  A point 
P1x, y 2  is given in rectangular coordinates. (a) Plot the point P. 
(b) Find polar coordinates for P with r  0. (c) Find polar coor-
dinates for P with r  0.

 7. 18,  8 2   8. 1!2,  !6 2
 9. 16!2,  6!2 2  10. 13!3,  3 2
11. 13,  !3 2  12. 14,  4 2

13–16 ■ rectangular Equations to Polar Equations  (a) Convert 
the equation to polar coordinates and simplify. (b) Graph the 
equation.  [Hint: Use the form of the equation that you find  
easier to graph.]

13. x  y  4 14. xy  1

15. x2  y2  4x  4y 16. 1x2  y2 2 2  2xy

17–24 ■ Polar Equations to rectangular Equations  (a) Sketch 
the graph of the polar equation. (b) Express the equation in rect-
angular coordinates.

17. r  3  3 cos u 18. r  3 sin u

19. r  2 sin 2u 20. r  4 cos 3u

21. r2  sec 2u 22. r2  4 sin 2u

23. r  sin u  cos u 24. r 
4

2  cos u

25–28 ■ Graphing Polar Equations  Use a graphing device to 
graph the polar equation. Choose the domain of u to make sure 
you produce the entire graph.

25. r  cos1u/3 2
 26. r  sin19u/4 2
27. r  1  4 cos1u/3 2
 28. r  u sin u,  6p  u  6p

29–34 ■ Complex Numbers  A complex number is given.  
(a) Graph the complex number in the complex plane. (b) Find  
the modulus and argument. (c) Write the number in polar form.

29. 4  4i 30. 10i

31. 5  3i 32. 1  !3 i

33. 1  i 34. 20

35–38 ■ Powers using De Moivre’s Theorem  Use De Moivre’s 
Theorem to find the indicated power.

35. 11  !3 i 2 4 36. 11  i 2 8

37. 1!3  i 24 38. a 1

2


!3

2
 i b

20
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39–42 ■ roots of Complex Numbers  Find the indicated roots.

39. The square roots of 16i

40. The cube roots of 4  4!3 i

41. The sixth roots of 1 42. The eighth roots of i

43–46 ■ Parametric Curves  A pair of parametric equations is 
given. (a) Sketch the curve represented by the parametric equa-
tions. Use arrows to indicate the direction of the curve as t 
increases. (b) Find a rectangular-coordinate equation for the curve 
by eliminating the parameter.

43. x  1  t2,  y  1  t 44. x  t2  1,  y  t2  1

45. x  1  cos t,  y  1  sin t,  0  t  p/2

46. x 
1

t
 2, y 

2

t2, 0  t  2

47–48 ■ Graphs of Parametric Equations  Use a graphing device 
to draw the parametric curve.

47. x  cos 2t,  y  sin 3t

48. x  sin1 t  cos 2t 2 , y  cos1 t  sin 3t 2

49. Finding Parametric Equations for a Curve  In the figure, the 
point P is the midpoint of the segment QR and 0  u  p/2. 
Using u as the parameter, find a para metric representation for 
the curve traced out by P.

P

¨
0

1
R

Q

1 x

y
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 1. (a) Convert the point whose polar coordinates are 18,  5p/4 2  to rectangular coordinates.

(b)  Find two polar coordinate representations for the rectangular coordinate point 
16,  2!3 2 , one with r  0 and one with r  0 and both with 0  u  2p.

 2. (a) Graph the polar equation r  8 cos u. What type of curve is this?

(b) Convert the equation to rectangular coordinates.

 3. Graph the polar equation r  3  6 sin u. What type of curve is this?

 4. Let z  1  !3 i.

(a) Graph z in the complex plane.

(b) Write z in polar form.

(c) Find the complex number z9.

 5. Let z1  4 a cos  

7p

12
 i sin  

7p

12
b and z2  2 a cos  

5p

12
 i sin  

5p

12
b .

  Find z1z2 and 
z1

z2
.

 6. Find the cube roots of 27i, and sketch these roots in the complex plane.

 7. (a)  Sketch the curve represented by the parametric equations below. Use arrows to indicate 
the direction of the curve as t increases.

x  3 sin t  3   y  2 cos t   0  t  p

(b) Eliminate the parameter t in part (a) to obtain an equation for this curve in  
rectangular coordinates.

 8. Find parametric equations for the line of slope 2 that passes through the point 13, 5 2 .
 9. The position of an object in circular motion is modeled by the parametric equations

x  3 sin 2t   y  3 cos 2t

  where t is measured in seconds.

(a) Describe the path of the object by stating the radius of the circle, the position at time 
t  0, the orientation of motion (clockwise or counterclockwise), and the time t it 
takes to complete one revolution around the circle.

(b) Suppose the speed of the object is doubled. Find new parametric equations that model 
the motion of the object. 

(c) Find a rectangular-coordinate equation for the same curve by eliminating the 
parameter.

(d) Find a polar equation for the same curve.

ChaPTEr 8 TEsT
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The Path of a Projectile FoCus oN MoDEliNG

Modeling motion is one of the most important ideas in both classical and modern phys-
ics. Much of Isaac Newton’s work dealt with creating a mathematical model for how 
objects move and interact—this was the main reason for his invention of calculus. 
Albert Einstein developed his Special Theory of Relativity in the early 1900s to refine 
Newton’s laws of motion.

In this section we use coordinate geometry to model the motion of a projectile, such 
as a ball thrown upward into the air, a bullet fired from a gun, or any other sort of mis-
sile. A similar model was created by Galileo, but we have the advantage of using our 
modern mathematical notation to make describing the model much easier than it was 
for Galileo!

■ Parametric Equations for the Path of a Projectile
Suppose that we fire a projectile into the air from ground level, with an initial speed √0 
and at an angle u upward from the ground. If there were no gravity (and no air resis-
tance), the projectile would just keep moving indefinitely at the same speed and in the 
same direction. Since distance  speed  time, the projectile would travel a distance 
√0t, so its position at time t would be given by the following parametric equations (as-
suming that the origin of our coordinate system is placed at the initial location of the 
projectile; see Figure 1):

x  1√0 cos u 2 t   y  1√0 sin u 2 t    No gravity

But, of course, we know that gravity will pull the projectile back to ground level. By 
using calculus, it can be shown that the effect of gravity can be accounted for by sub-
tracting 1

2 gt2 from the vertical position of the projectile. In this expression, g is the 
gravitational acceleration: g  32 ft/s2  9.8 m/s2. Thus we have the following para-
metric equations for the path of the projectile:

x  1√0 cos u 2 t   y  1√0 sin u 2 t  1
2 gt2    With gravity

ExaMPlE ■ The Path of a Cannonball
Find parametric equations that model the path of a cannonball fired into the air with 
an initial speed of 150.0 m/s at a 30 angle of elevation. Sketch the path of the can-
nonball.

soluTioN  Substituting the given initial speed and angle into the general parametric 
equations of the path of a projectile, we get

 x  1150.0 cos 30 2 t   y  1150.0 sin 30 2 t  1
2 19.8 2 t2    

Substitute  
√0  150.0, u  30

 x  129.9t    y  75.0t  4.9t2     Simplify

This path is graphed in Figure 2.

FiGurE 2 Path of a cannonball

y

500 x
(meters)

  ■

x0

√‚t

¨
√‚t ç ¨

√‚t ß ¨

y

FiGurE 1
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662 Focus on Modeling

■ range of a Projectile
How can we tell where and when the cannonball of the above example hits the ground? 
Since ground level corresponds to y  0, we substitute this value for y and solve for t.

 0  75.0t  4.9t2     Set y  0

 0  t175.0  4.9t 2     Factor

 t  0  or  t 
75.0

4.9
< 15.3     Solve for t

The first solution, t  0, is the time when the cannon was fired; the second solution 
means that the cannonball hits the ground after 15.3 s of flight. To see where this hap-
pens, we substitute this value into the equation for x, the horizontal location of the 
cannonball.

x  129.9115.3 2 < 1987.5 m

The cannonball travels almost 2 km before hitting the ground.
Figure 3 shows the paths of several projectiles, all fired with the same initial speed 

but at different angles. From the graphs we see that if the firing angle is too high or too 
low, the projectile doesn’t travel very far.

¨=85*
¨=75*
¨=60*
¨=45*
¨=30*
¨=15*
¨=5*

y

x0
FiGurE 3 Paths of projectiles

Let’s try to find the optimal firing angle—the angle that shoots the projectile as far 
as possible. We’ll go through the same steps as we did in the preceding example, but 
we’ll use the general parametric equations instead. First, we solve for the time when the 
projectile hits the ground by substituting y  0.

 0  1√0 sin u 2 t  1
2 gt2  Substitute y  0

 0  t1√0 sin u  1
2 gt 2   Factor

 0  √0 sin u  1
2 gt   Set second factor equal to 0

 t 
2√0 sin u

g   Solve for t

Galileo Galilei (1564–1642) was 
born in Pisa, Italy. He studied medicine 
but later abandoned this in favor of sci-
ence and mathematics. At the age of 25, 
by dropping cannonballs of various sizes 
from the Leaning Tower of Pisa, he dem-
onstrated that light objects fall at the 
same rate as heavier ones. This contra-
dicted the then-accepted view of 
Aristotle that heavier objects fall more 
quickly. Galileo also showed that the 
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distance an object falls is proportional to the square of the time it has 
been falling, and from this he was able to prove that the path of a pro-
jectile is a parabola.

Galileo constructed the first telescope and, using it, discovered the 
moons of Jupiter. His advocacy of the Copernican view that the earth 
revolves around the sun (rather than being stationary) led to his being called 
before the Inquisition. By then an old man, he was forced to recant his views, 
but he is said to have muttered under his breath, “Nevertheless, it does 
move.” Galileo revolutionized science by expressing scientific principles in the 
language of mathematics. He said, “The great book of nature is written in 
mathematical symbols.”  
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  The Path of a Projectile 663

Now we substitute this into the equation for x to see how far the projectile has traveled 
horizontally when it hits the ground.

 x  1√0 cos u 2 t   Parametric equation for x

  1√0 cos u 2 a 2√0 sin u

g b   Substitute t  12√0 sin u 2 /g

 
2√ 

2
0 sin u cos u

g
  Simplify

  
√ 

2
0 sin 2u

g   Use identity sin 2u  2 sin u cos u

We want to choose u so that x is as large as possible. The largest value that the sine of 
any angle can have is 1, the sine of 90. Thus we want 2u  90, or u  45. So to send 
the projectile as far as possible, it should be shot up at an angle of 45. From the last 
equation in the preceding display, we can see that it will then travel a distance x  √2

0/g.

ProBlEMs
 1.  Trajectories are Parabolas  From the graphs in Figure 3 the paths of projectiles  

appear to be parabolas that open downward. Eliminate the parameter t from the general 
parametric equations to verify that these are indeed parabolas.

 2.  Path of a Baseball  Suppose a baseball is thrown at 30 ft/s at a 60 angle to the  
horizontal from a height of 4 ft above the ground.

(a) Find parametric equations for the path of the baseball, and sketch its graph.

(b) How far does the baseball travel, and when does it hit the ground?

 3.  Path of a rocket  Suppose that a rocket is fired at an angle of 5 from the vertical with 
an initial speed of 1000 ft/s.

(a) Find the length of time the rocket is in the air.

(b) Find the greatest height it reaches.

(c) Find the horizontal distance it has traveled when it hits the ground.

(d) Graph the rocket’s path.

 4. Firing a Missile  The initial speed of a missile is 330 m/s.

(a) At what angle should the missile be fired so that it hits a target 10 km away? (You 
should find that there are two possible angles.) Graph the missile paths for both angles.

(b) For which angle is the target hit sooner?

 5. Maximum height  Show that the maximum height reached by a projectile as a function 
of its initial speed √0 and its firing angle u is

y 
√ 2

0 sin2
 u

2g

 6.  shooting into the wind  Suppose that a projectile is fired into a headwind that pushes 
it back so as to reduce its horizontal speed by a constant amount „. Find parametric equa-
tions for the path of the projectile.

 7.  shooting into the wind  Using the parametric equations you derived in Problem 6, 
draw graphs of the path of a projectile with initial speed √0  32 ft/s, fired into a headwind  
of „  24 ft/s, for the angles u  5, 15, 30, 40, 45, 55, 60, and 75. Is it still true that 
the greatest range is attained when firing at 45? Draw some more graphs for different an-
gles, and use these graphs to estimate the optimal firing angle.
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664 Focus on Modeling

 8.  simulating the Path of a Projectile  The path of a projectile can be simulated on a 
graphing calculator. On the TI-83, use the “Path” graph style to graph the general paramet-
ric equations for the path of a projectile, and watch as the circular cursor moves, simulating 
the motion of the projectile. Selecting the size of the Tstep determines the speed of the  
“projectile.”

(a) Simulate the path of a projectile. Experiment with various values of u. Use √0  10 ft/s 
and Tstep  0.02. Part (a) of the figure below shows one such path.

(b) Simulate the path of two projectiles, fired simultaneously, one at u  30 and the other 
at u  60. This can be done on the TI-83 using Simul mode (“simultaneous” mode). 
Use √0  10 ft/s and Tstep  0.02. See part (b) of the figure. Where do the projec-
tiles land? Which lands first?

(c) Simulate the path of a ball thrown straight up 1u  90 2 . Experiment with values  
of √0 between 5 and 20 ft/s. Use the “Animate” graph style and Tstep  0.02.  
Simulate the path of two balls thrown simultaneously at different speeds. To bet- 
ter distinguish the two balls, place them at different x-coordinates (for example,  
x  1 and x  2). See part (c) of the figure. How does doubling √0 change the  
maximum height the ball reaches?

(a) (b) (c)

2

0 3

2

0 3

2

0 3
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Many real-world quantities are described mathematically by just one 
number: their “size” or magnitude. For example, quantities such as mass, 
volume, distance, and temperature are described by their magnitude. But 
many other real-world quantities involve both magnitude and direction. 
Such quantities are described mathematically by vectors. For example, if 
you push a car with a certain force, the direction in which you push on the 
car is important; you get different results if you push the car forward, 
backward, or perhaps sideways. So force is a vector. The result of several 
forces acting on an object can be evaluated by using vectors. For example, 
we’ll see how we can combine the vector forces of wind and water on the 
sails and hull of a sailboat to find the direction in which the boat will sail. 
Analyzing these vector forces helps sailors to sail against the wind by 
tacking. (See Discovery Project: Sailing Against the Wind referenced on 
page 681.)
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Vectors in Two and Three 
Dimensions9

9.1 Vectors in Two Dimensions
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666 CHAPTER 9 ■ Vectors in Two and Three Dimensions

9.1 VECTors in Two DiMEnsions
■ Geometric Description of Vectors ■ Vectors in the Coordinate Plane ■ using Vectors  
to Model Velocity and Force

In applications of mathematics, certain quantities are determined completely by their 
magnitude—for example, length, mass, area, temperature, and energy. We speak of a 
length of 5 m or a mass of 3 kg; only one number is needed to describe each of these 
quantities. Such a quantity is called a scalar.

On the other hand, to describe the displacement of an object, two numbers are re-
quired: the magnitude and the direction of the displacement. To describe the velocity of 
a moving object, we must specify both the speed and the direction of travel. Quantities 
such as displacement, velocity, acceleration, and force that involve magnitude as well 
as direction are called directed quantities. One way to represent such quantities math-
ematically is through the use of vectors.

■ Geometric Description of Vectors
A vector in the plane is a line segment with an assigned direction. We sketch a vector 
as shown in Figure 1 with an arrow to specify the direction. We denote this vector by 
AB

>
. Point A is the initial point, and B is the terminal point of the vector AB

>
. The 

length of the line segment AB is called the magnitude or length of the vector and is 
denoted by 0  AB

>
 0 . We use boldface letters to denote vectors. Thus we write u  AB

>
.

Two vectors are considered equal if they have equal magnitude and the same direction. 
Thus all the vectors in Figure 2 are equal. This definition of equality makes sense if we 
think of a vector as representing a displacement. Two such displacements are the same if 
they have equal magnitudes and the same direction. So the vectors in Figure 2 can be 
thought of as the same displacement applied to objects in different locations in the plane.

If the displacement u  AB
>
 is followed by the displacement v  BC

>
, then the result-

ing displacement is AC
>
 as shown in Figure 3. In other words, the single displacement 

represented by the vector AC
>
 has the same effect as the other two displacements together. 

We call the vector AC
>
 the sum of the vectors AB

>
 and BC

>
, and we write AC

>
 AB

>
 BC

>
. 

(The zero vector, denoted by 0, represents no displacement.) Thus to find the sum of 
any two vectors u and v, we sketch vectors equal to u and v with the initial point of one 
at the terminal point of the other (see Figure 4(a)). If we draw u and v starting at the 
same point, then u  v is the vector that is the diagonal of the parallelogram formed by 
u and v shown in Figure 4(b).

FiGurE 4 Addition of vectors

v

u

u+v

v

u

u+v

(a) (b)

If c is a real number and v is a vector, we define a new vector cv as follows: The 
vector cv has magnitude 0  c 0  0  v 0  and has the same direction as v if c  0 and the op-
posite direction if c  0. If c  0, then cv  0, the zero vector. This process is called 
multiplication of a vector by a scalar. Multiplying a vector by a scalar has the effect 
of stretching or shrinking the vector. Figure 5 shows graphs of the vector cv for differ-
ent values of c. We write the vector 11 2 v as v. Thus v is the vector with the same 
length as v but with the opposite direction.

u=AB

A

B

FiGurE 1

FiGurE 2

A B

C

AB

BC
AC=AB+BC

FiGurE 3
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SECTION 9.1 ■ Vectors in Two Dimensions 667

The difference of two vectors u and v is defined by u  v  u  1v 2 . Figure 6 
shows that the vector u  v is the other diagonal of the parallelogram formed by u and v.

v1
3_ _2v_v2vv1

2v

FiGurE 5 Multiplication of a vector by a scalar

u+v

_v

v

u

uu-v

FiGurE 6 Subtraction of  
vectors

■ Vectors in the Coordinate Plane
So far, we’ve discussed vectors geometrically. By placing a vector in a coordinate plane, 
we can describe it analytically (that is, by using components). In Figure 7(a), to go from 
the initial point of the vector v to the terminal point, we move a1 units to the right and 
a2 units upward. We represent v as an ordered pair of real numbers.

v  8a1, a29
where a1 is the horizontal component of v and a2 is the vertical component of v. 
Remember that a vector represents a magnitude and a direction, not a particular arrow 
in the plane. Thus the vector a1, a2 has many different representations, depending on 
its initial point (see Figure 7(b)).

(a) (b)

a⁄

a¤v

x

y

a⁄

a¤v
a⁄

a¤v

0x

y

a⁄

a¤v

0

FiGurE 7

Using Figure 8, we can state the relationship between a geometric representation of 
a vector and the analytic one as follows.

CoMPonEnT ForM oF a VECTor

If a vector v is represented in the plane with initial point P1x1, y1 2  and terminal 
point Q1x2, y2 2 , then

v  8x2  x1, y2  y19

ExaMPLE 1 ■ Describing Vectors in Component Form
(a)  Find the component form of the vector u with initial point 12,  5 2  and terminal 

point 13,  7 2 .
(b)  If the vector v  3, 7 is sketched with initial point 12,  4 2 , what is its terminal 

point?

(c)  Sketch representations of the vector w  2, 3 with initial points at 10,  0 2 , 
12,  2 2 , 12,  1 2 , and 11,  4 2 .

Note the distinction between the vector 
a1, a2 and the point 1a1, a2 2 .

x⁄ x¤ x

y

v

P

Q

x¤-x⁄

y¤-y⁄

y⁄

y¤

0

FiGurE 8
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668 CHAPTER 9 ■ Vectors in Two and Three Dimensions

soLuTion

(a) The desired vector is

u  83  12 2 , 7  59  85,  29
(b) Let the terminal point of v be 1x, y 2 . Then

8x  2, y  49  83,  79
  So x  2  3 and y  4  7, or x  5 and y  11. The terminal point is 15,  11 2 .
(c) Representations of the vector w are sketched in Figure 9.

now Try Exercises 11, 19, and 23 ■

We now give analytic definitions of the various operations on vectors that we have 
described geometrically. Let’s start with equality of vectors. We’ve said that two vectors 
are equal if they have equal magnitude and the same direction. For the vectors 
u  8a1, a29 and v  8b1, b29 this means that a1  b1 and a2  b2. In other words, two 
vectors are equal if and only if their corresponding components are equal. Thus all the 
arrows in Figure 7(b) represent the same vector, as do all the arrows in Figure 9.

Applying the Pythagorean Theorem to the triangle in Figure 10, we obtain the fol-
lowing formula for the magnitude of a vector.

MaGniTuDE oF a VECTor

The magnitude or length of a vector v  8a1, a29 is
0  v 0  "a1

2  a2
2

ExaMPLE 2 ■ Magnitudes of Vectors
Find the magnitude of each vector.
(a) u  2, 3      (b) v  5, 0      (c) w  3

5,  
4
5

soLuTion

(a) 0  u 0  "22  13 2 2  !13

(b) 0  v 0  "52  02  !25  5

(c) 0  w 0  #A35B2  A45B2  # 9
25  16

25  1

now Try Exercise 37 ■

The following definitions of addition, subtraction, and scalar multiplication of vec-
tors correspond to the geometric descriptions given earlier. Figure 11 shows how the 
analytic definition of addition corresponds to the geometric one.

aLGEbraiC oPEraTions on VECTors

If u  8a1, a29 and v  8b1, b29, then

 u  v  8a1  b1, a2  b29
 u  v  8a1  b1, a2  b29

 cu  8ca1, ca29  c [ R

x

y

20

4

w
w

w

w

FiGurE 9

x

y

a⁄

a¤
v= a⁄, a¤��

|v |=œ∑∑∑∑∑∑a™⁄+a™¤

0

FiGurE 10

u

v
u+v

b¤

a¤
b⁄a⁄

FiGurE 11
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SECTION 9.1 ■ Vectors in Two Dimensions 669

ExaMPLE 3 ■ operations with Vectors
If u  2, 3 and v  1, 2, find u  v, u  v, 2 u, 3 v, and 2 u  3 v.

soLuTion  By the definitions of the vector operations we have

 u  v  82,  39  81,  29  81,  19
 u  v  82,  39  81,  29  83,  59

 2 u  282,  39  84,  69
 3 v  381,  29  83,  69

2 u  3 v  282,  39  381,  29  84,  69  83,  69  81,  09
now Try Exercise 31 ■

The following properties for vector operations can be easily proved from the 
definitions. The zero vector is the vector 0  0, 0. It plays the same role for addition 
of vectors as the number 0 does for addition of real numbers.

ProPErTiEs oF VECTors

Vector addition Multiplication by a scalar

u  v  v  u c1u  v 2  cu  cv

u  1v  w 2  1u  v 2  w 1c  d 2u  cu  du

u  0  u 1cd 2u  c1du 2  d1cu 2
u  1u 2  0 1 u  u

Length of a vector 0 u  0

0  cu 0  0  c 0  0  u 0  c0  0

A vector of length 1 is called a unit vector. For instance, in Example 2(c) the vector 
w  3

5, 
4
5 is a unit vector. Two useful unit vectors are i and j, defined by

i  81,  09  j  80,  19
(See Figure 12.) These vectors are special because any vector can be expressed in terms 
of them. (See Figure 13.)

VECTors in TErMs oF i anD j

The vector v  8a1, a29 can be expressed in terms of i and j by

v  8a1, a29  a1 i  a2 
j

ExaMPLE 4 ■ Vectors in Terms of i and j
(a) Write the vector u  5, 8 in terms of i and j.

(b) If u  3 i  2 j and v  i  6 j, write 2 u  5 v in terms of i and j.

soLuTion

(a) u  5 i  18 2 j  5 i  8 j

1

1

y

x0

j

i

FiGurE 12

x

y

0

v

a⁄ i

a¤ j

(a⁄, a¤)

FiGurE 13
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670 CHAPTER 9 ■ Vectors in Two and Three Dimensions

(b)  The properties of addition and scalar multiplication of vectors show that we can 
manipulate vectors in the same way as algebraic expressions. Thus

 2 u  5 v  213 i  2 j 2  51i  6 j 2
  16 i  4 j 2  15 i  30 j 2
  i  34 j

now Try Exercises 27 and 35 ■

Let v be a vector in the plane with its initial point at the origin. The direction of v 
is u, the smallest positive angle in standard position formed by the positive x-axis and 
v (see Figure 14). If we know the magnitude and direction of a vector, then Figure 14 
shows that we can find the horizontal and vertical components of the vector.

HorizonTaL anD VErTiCaL CoMPonEnTs oF a VECTor

Let v be a vector with magnitude 0  v 0  and direction u.
Then v  8a1, a29  a1 i  a2 j, where

a1  0  v 0  cos u  and  a2  0  v 0  sin u

Thus we can express v as

v  0  v 0  cos u i  0  v 0  sin u j

ExaMPLE 5 ■ Components and Direction of a Vector
(a)  A vector v has length 8 and direction p/3. Find the horizontal and vertical  

components, and write v in terms of i and j.

(b) Find the direction of the vector u  !3 i  j.

soLuTion

(a) We have v  a, b, where the components are given by

a  8 cos  

p

3
 4  and  b  8 sin  

p

3
 4!3

  Thus v  84,  4 !3 9  4 i  4!3 j.

(b) From Figure 15 we see that the direction u has the property that

tan u 
1

!3
  

!3

3

   Thus the reference angle for u is p/6. Since the terminal point of the vector u is 
in Quadrant II, it follows that u  5p/6.

now Try Exercises 41 and 51 ■

■ using Vectors to Model Velocity and Force
The velocity of a moving object is modeled by a vector whose direction is the direction 
of motion and whose magnitude is the speed. Figure 16 on the next page shows some 
vectors u, representing the velocity of wind flowing in the direction N 30 E, and a 
vector v, representing the velocity of an airplane flying through this wind at the point 
P. It’s obvious from our experience that wind affects both the speed and the direction 

The use of bearings (such as N 30 E) 
to describe directions is explained on 
page 484 in Section 5.6.

x

y

u

0

1

_œ∑3

¨

FiGurE 15

x

y

|v |
|v | ß ¨

|v | ç ¨
0

¨
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SECTION 9.1 ■ Vectors in Two Dimensions 671

of an airplane. Figure 17 indicates that the true velocity of the plane (relative to the 
ground) is given by the vector w  u  v.

0

60*

N

P
u

v

y

x

FiGurE 16

0

y

x
P

u

v

w=u+v

FiGurE 17

ExaMPLE 6 ■ The True speed and Direction of an airplane
An airplane heads due north at 300 mi/h. It experiences a 40 mi/h crosswind flowing 
in the direction N 30  E, as shown in Figure 16.

(a)  Express the velocity v of the airplane relative to the air and the velocity u of the 
wind, in component form.

(b) Find the true velocity of the airplane as a vector.

(c) Find the true speed and direction of the airplane.

soLuTion

(a)  The velocity of the airplane relative to the air is v  0 i  300 j  300 j. By the 
formulas for the components of a vector we find that the velocity of the wind is

 u  140 cos 60° 2 i  140 sin 60° 2 j
  20 i  20!3 j

  20 i  34.64 j

(b) The true velocity of the airplane is given by the vector w  u  v:

 w  u  v  120 i  20!3 j 2  1300 j 2
  20 i  120!3  300 2 j
  20 i  334.64 j

(c) The true speed of the airplane is given by the magnitude of w:

0  w 0  "120 2 2  1334.64 2 2  335.2 mi/h

   The direction of the airplane is the direction u of the vector w. The angle u has 
the property that tan u  334.64/20  16.732, so u  86.6. Thus the airplane is 
heading in the direction N 3.4  E.

now Try Exercise 59 ■

ExaMPLE 7 ■ Calculating a Heading
A woman launches a boat from one shore of a straight river and wants to land at the 
point directly on the opposite shore. If the speed of the boat (relative to the water) is 
10 mi/h and the river is flowing east at the rate of 5 mi/h, in what direction should she 
head the boat in order to arrive at the desired landing point?

The true velocity is the velocity  
relative to the ground.
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672 CHAPTER 9 ■ Vectors in Two and Three Dimensions

soLuTion  We choose a coordinate system with the origin at the initial position of 
the boat as shown in Figure 18. Let u and v represent the velocities of the river and 
the boat, respectively. Clearly, u  5 i, and since the speed of the boat is 10 mi/h, we 
have 0  v 0  10, so

v  110 cos u 2 i  110 sin u 2 j
where the angle u is as shown in Figure 18. The true course of the boat is given by the 
vector w  u  v. We have

 w  u  v  5 i  110 cos u 2 i  110 sin u 2 j
  15  10 cos u 2 i  110 sin u 2 j

Since the woman wants to land at a point directly across the river, her direction 
should have horizontal component 0. In other words, she should choose u in such a 
way that

 5  10 cos u  0

 cos u   
1
2

 u  120°

Thus she should head the boat in the direction u  120 (or N 30  W).

now Try Exercise 57 ■

Force is also represented by a vector. Intuitively, we can think of force as describing 
a push or a pull on an object, for example, a horizontal push of a book across a table or 
the downward pull of the earth’s gravity on a ball. Force is measured in pounds (or in 
newtons, in the metric system). For instance, a man weighing 200 lb exerts a force of 
200 lb downward on the ground. If several forces are acting on an object, the resultant 
force experienced by the object is the vector sum of these forces.

ExaMPLE 8 ■ resultant Force
Two forces F1 and F2 with magnitudes 10 and 20 lb, respectively, act on an object at a 
point P as shown in Figure 19. Find the resultant force acting at P.

soLuTion  We write F1 and F2 in component form:

 F1  110 cos 45° 2 i  110 sin 45° 2 j  10  

!2

2
  i  10  

!2

2
  j

  5!2 i  5!2 j

 F2  120 cos 150° 2 i  120 sin 150° 2 j  20  

!3

2
  i  20 a 1

2
b j

  10!3 i  10 j

So the resultant force F is

 F  F1  F2

  15!2 i  5!2 j 2  110!3 i  10 j 2
  15!2  10!3 2 i  15!2  10 2 j
  10 i  17 j

The resultant force F is shown in Figure 20.

now Try Exercise 67 ■

N

x

y

u

wv

¨ 

0

FiGurE 18

y

x0

F¤ F⁄
150*

45*

P

FiGurE 19

F

y

x0

F¤ F⁄

P

FiGurE 20
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SECTION 9.1 ■ Vectors in Two Dimensions 673

ConCEPTs
 1. (a)  A vector in the plane is a line segment with an assigned 

direction. In Figure I below, the vector u has initial point 

      and terminal point    . Sketch the  
vectors 2 u and u  v. 

(b) A vector in a coordinate plane is expressed by using  
components. In Figure II below, the vector u has initial 
point 1 , 2 and terminal point 1 , 2. In compo-

   nent form we write u  8 , 9, and v  8 , 9. 
  Then 2 u  8 , 9 and u  v  8 , 9.

I II

y

x0

1

1

u

v

u

v

A

B

D

C

 2. (a)  The length of a vector w  8a1, a29 is 0  w 0     , 
so the length of the vector u in Figure II is 

   0  u 0     .

(b)  If we know the length 0  w 0  and direction u of a vector w, 
then we can express the vector in component form as 

   w  8 , 9.

skiLLs
3–8 ■ sketching Vectors  Sketch the vector indicated. (The  
vectors u and v are shown in the figure.)

 3. 2 u y

x

u
v

0 1

3

 4. v

 5. u  v

 6. u  v

 7. v  2 u

 8. 2 u  v

9–18 ■ Component Form of Vectors  Express the vector with 
initial point P and terminal point Q in component form.

 9. 
Q

y

x

P

0 1

1

 10. y

x

P

Q

0 1

1

 11. 

P

Q

y

x0 1

1

 12. 

P

y

x

Q

0 1

1

13. P13,  2 2 , Q18,  9 2  14. P11,  1 2 , Q19,  9 2
15. P15,  3 2 , Q11,  0 2  16. P11,  3 2 , Q16,  1 2
17. P11,  1 2 , Q11,  1 2
18. P18,  6 2 , Q11,  1 2

19–22 ■ sketching Vectors  Sketch the given vector with initial 
point 14, 32, and find the terminal point.

19. u  82, 49 20. u  81, 29 
21. u  84, 39 22. u  88, 19 

23–26 ■ sketching Vectors  Sketch representations of the given 
vector with initial points at 10, 0 2 , 12, 3 2 , and 13, 5 2 .
23. u  83, 59 24. u  84, 69
25. u  87, 29 26. u  80, 99

27–30 ■ writing Vectors in Terms of i and j  Write the given vec-
tor in terms of i and j.

27. u  81, 49 28. u  82, 109
29. u  83, 09 30. u  80, 59

31–36 ■ operations with Vectors  Find 2 u, 3v, u  v, and 
3 u  4 v for the given vectors u and v.

31. u  82,  79, v  83,  19 32. u  82,  59, v  82,  89
33. u  80,  19, v  82,  09
34. u  i, v  2 j

35. u  2 i, v  3 i  2 j 36. u  i  j, v  i  j

37–40 ■ Magnitude of Vectors  Find 0  u 0 , 0  v 0 , 0  2 u 0 , 0  12 v 0 , 
0  u  v 0 , 0  u  v 0 , and 0  u 0  0  v 0 .

37. u  2 i  j, v  3 i  2 j

38. u  2 i  3 j, v  i  2 j

39. u  810,  19, v  82,  29
40. u  86,  69, v  82,  19

41–46 ■ Components of a Vector  Find the horizontal and verti-
cal components of the vector with given length and direction, and 
write the vector in terms of the vectors i and j.

41. 0  v 0  40, u  30° 42. 0  v 0  50, u  120°

43. 0  v 0  1, u  225° 44. 0  v 0  800, u  125°

45. 0  v 0  4, u  10° 46. 0  v 0  !3, u  300°

9.1 ExErCisEs
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674 CHAPTER 9 ■ Vectors in Two and Three Dimensions

47–52 ■ Magnitude and Direction of a Vector  Find the magni-
tude and direction (in degrees) of the vector.

47. v  3, 4 48. v  h 

!2

2
,   

!2

2
i

49. v  12, 5 50. v  40, 9

51. v  i  !3  j 52. v  i  j

aPPLiCaTions
53. Components of a Force  A man pushes a lawn mower with a 

force of 30 lb exerted at an angle of 30 to the ground. Find 
the horizontal and vertical components of the force.

54. Components of a Velocity  A jet is flying in a direction  
N 20  E with a speed of 500 mi/h. Find the north and east 
components of the velocity.

55. Velocity  A river flows due south at 3 mi/h. A swimmer  
attempting to cross the river heads due east swimming at  
2 mi/h relative to the water. Find the true velocity of the 
swimmer as a vector.

2 mi/h

3 mi/h

56. Velocity  Suppose that in Exercise 55 the current is flowing 
at 1.2 mi/h due south. In what direction should the swimmer 
head in order to arrive at a landing point due east of his  
starting point?

57. Velocity  The speed of an airplane is 300 mi/h relative to the 
air. The wind is blowing due north with a speed of 30 mi/h. In 
what direction should the airplane head in order to arrive at a 
point due west of its location?

58. Velocity  A migrating salmon heads in the direction  
N 45  E, swimming at 5 mi/h relative to the water. The pre-
vailing ocean currents flow due east at 3 mi/h. Find the true 
velocity of the fish as a vector.

59. True Velocity of a Jet  A pilot heads his jet due east. The jet 
has a speed of 425 mi/h relative to the air. The wind is blow-
ing due north with a speed of 40 mi/h.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a vec-
tor in component form.

(c) Find the true velocity of the jet as a vector.

(d) Find the true speed and direction of the jet.

60. True Velocity of a Jet  A jet is flying through a wind that is 
blowing with a speed of 55 mi/h in the direction N 30 E (see 
the figure). The jet has a speed of 765 mi/h relative to the air, 
and the pilot heads the jet in the direction N 45  E.

(a) Express the velocity of the wind as a vector in compo-
nent form.

(b) Express the velocity of the jet relative to the air as a vec-
tor in component form.

(c) Find the true velocity of the jet as a vector.

(d) Find the true speed and direction of the jet.

N

30°

45°

61. True Velocity of a Jet  Find the true speed and direction of 
the jet in Exercise 60 if the pilot heads the plane in the  
direction N 30  W.

62. True Velocity of a Jet  In what direction should the pilot in 
Exercise 60 head the plane for the true course to be due north?

63. Velocity of a boat  A straight river flows east at a speed of 
10 mi/h. A boater starts at the south shore of the river and 
heads in a direction 60 from the shore (see the figure). The 
motorboat has a speed of 20 mi/h relative to the water.

(a) Express the velocity of the river as a vector in compo-
nent form.

(b) Express the velocity of the motorboat relative to the  
water as a vector in component form.

(c) Find the true velocity of the motorboat.

(d) Find the true speed and direction of the motorboat.

60*

N

64. Velocity of a boat  The boater in Exercise 63 wants to  
arrive at a point on the north shore of the river directly  
opposite the starting point. In what direction should the  
boat be headed?

65. Velocity of a boat  A boat heads in the direction N 72 E. The 
speed of the boat relative to the water is 24 mi/h. The water is 

9.2 THE DoT ProDuCT
■ The Dot Product of Vectors ■ The Component of u along v ■ The Projection of u  
onto v ■ work

In this section we define an operation on vectors called the dot product. This con- 
cept is especially useful in calculus and in applications of vectors to physics and  
engineering.

■ The Dot Product of Vectors
We begin by defining the dot product of two vectors.
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SECTION 9.2 ■ The Dot Product 675

flowing directly south. It is observed that the true direction of 
the boat is directly east.

(a) Express the velocity of the boat relative to the water as a 
vector in component form.

(b) Find the speed of the water and the true speed of the boat.

66. Velocity  A woman walks due west on the deck of an ocean 
liner at 2 mi/h. The ocean liner is moving due north at a 
speed of 25 mi/h. Find the speed and direction of the woman 
relative to the surface of the water.

67–72 ■ Equilibrium of Forces  The forces F1, F2, . . . , Fn  
acting at the same point P are said to be in equilibrium if the  
resultant force is zero, that is, if F1  F2  . . .  Fn  0. Find  
(a) the resultant forces acting at P, and (b) the additional force 
required (if any) for the forces to be in equilibrium.

67. F1  2, 5,  F2  3, 8

68. F1  3, 7,  F2  4, 2,  F3  7, 9

69. F1  4 i  j,  F2  3 i  7 j,  F3  8 i  3 j,   
F4  i  j

70. F1  i  j,  F2  i  j,  F3  2 i  j

71. y

x0

10

60*
8

6

30*
20*

F⁄

F¤

F‹

72. y

x

P

0

F¤

F‹
F⁄

F›

1 3 5

2

4

73. Equilibrium of Tensions  A 100-lb weight hangs from a 
string as shown in the figure. Find the tensions T1 and T2 in 
the string.

100

50* 30*

T⁄ T¤

74. Equilibrium of Tensions  The cranes in the figure are lifting 
an object that weighs 18,278 lb. Find the tensions T1 and T2.

41.5*22.3*

T2
T1

DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
75. DisCuss: Vectors That Form a Polygon  Suppose that n vec-

tors can be placed head to tail in the plane so that they form a 
polygon. (The figure shows the case of a hexagon.) Explain 
why the sum of these vectors is 0.

9.2 THE DoT ProDuCT
■ The Dot Product of Vectors ■ The Component of u along v ■ The Projection of u  
onto v ■ work

In this section we define an operation on vectors called the dot product. This con- 
cept is especially useful in calculus and in applications of vectors to physics and  
engineering.

■ The Dot Product of Vectors
We begin by defining the dot product of two vectors.
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676 CHAPTER 9 ■ Vectors in Two and Three Dimensions

DEFiniTion oF THE DoT ProDuCT

If u  8a1, a29 and v  8b1, b29 are vectors, then their dot product, denoted by 
u # v, is defined by 

u # v  a1b1  a2b2

Thus to find the dot product of u and v, we multiply corresponding components and 
add. The dot product is not a vector; it is a real number, or scalar.

ExaMPLE 1 ■ Calculating Dot Products
(a) If u  3, 2 and v  4, 5 then

u # v  13 2 14 2  12 2 15 2  2

(b) If u  2 i  j and v  5 i  6 j, then

u # v  12 2 15 2  11 2 16 2  4

now Try Exercises 5(a) and 11(a) ■

The proofs of the following properties of the dot product follow easily from the 
definition.

ProPErTiEs oF THE DoT ProDuCT

1. u # v  v # u

2. 1cu 2 # v  c1u # v 2  u # 1cv 2
3. 1u  v 2 # w  u # w  v # w

4. 0  u 0 2  u # u

Proof  We prove only the last property. The proofs of the others are left as exercises. 
Let u  8a1, a29. Then

 u # u  a1a1  a2a2  a2
1  a2

2  0  u 0 2 ■

Let u and v be vectors, and sketch them with initial points at the origin. We define 
the angle u between u and v to be the smaller of the angles formed by these represen-
tations of u and v (see Figure 1). Thus 0  u  p. The next theorem relates the angle 
between two vectors to their dot product.

THE DoT ProDuCT THEorEM

If u is the angle between two nonzero vectors u and v, then

u # v  0  u 0 0  v 0  cos u

Proof  Applying the Law of Cosines to triangle AOB in Figure 2 gives

0  u  v 0 2  0  u 0 2  0  v 0 2  2 0  u 0 0  v 0  cos u

y

x0

v

u
¨

FiGurE 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 9.2 ■ The Dot Product 677

Using the properties of the dot product, we write the left-hand side as follows:

 0  u  v 0 2  1u  v 2 # 1u  v 2
  u # u  u # v  v # u  v # v

  0  u 0 2  21u # v 2  0  v 0 2
Equating the right-hand sides of the displayed equations, we get

 0  u 0 2  21u # v 2  0  v 0 2  0  u 0 2  0  v 0 2  2 0  u 0 0  v 0  cos u

 21u # v 2  2 0  u 0 0  v 0  cos u

 u # v  0  u 0 0  v 0  cos u

This proves the theorem. ■

The Dot Product Theorem is useful because it allows us to find the angle between two 
vectors if we know the components of the vectors. The angle is obtained simply by solving 
the equation in the Dot Product Theorem for cos u. We state this important result explicitly.

anGLE bETwEEn Two VECTors

If u is the angle between two nonzero vectors u and v, then

cos u 
u # v
0  u 0 0  v 0

ExaMPLE 2 ■ Finding the angle between Two Vectors
Find the angle between the vectors u  2, 5 and v  4, 3.

soLuTion  By the formula for the angle between two vectors we have

cos u 
u # v
0  u 0 0  v 0 

12 2 14 2  15 2 13 2
!4  25 !16  9


7

5 !29

Thus the angle between u and v is

u  cos1 a 7

5 !29
b  105.1°

now Try Exercises 5(b) and 11(b) ■

Two nonzero vectors u and v are called perpendicular, or orthogonal, if the angle 
between them is p/2. The following theorem shows that we can determine whether two 
vectors are perpendicular by finding their dot product.

orTHoGonaL VECTors

Two nonzero vectors u and v are perpendicular if and only if u  v  0.

Proof  If u and v are perpendicular, then the angle between them is p/2, so

u # v  0  u 0 0  v 0  cos 
p

2
 0

Conversely, if u  v  0, then

0  u 0 0  v 0  cos u  0

Since u and v are nonzero vectors, we conclude that cos u  0, so u  p/2. Thus u 
and v are orthogonal. ■

y

x0

v

u
¨

u-v

B

A

FiGurE 2
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678 CHAPTER 9 ■ Vectors in Two and Three Dimensions

ExaMPLE 3 ■ Checking whether Two Vectors are Perpendicular
Determine whether the vectors in each pair are perpendicular.

(a) u  3, 5 and v  2, 8      (b) u  2, 1 and v  1, 2

soLuTion

(a) u # v  13 2 12 2  15 2 18 2  34 ? 0, so u and v are not perpendicular.

(b) u # v  12 2 11 2  11 2 12 2  0, so u and v are perpendicular.

now Try Exercises 15 and 17 ■

■ The Component of u along v
The component of u along v (also called the component of u in the direction of v or 
the scalar projection of u onto v) is defined to be

0  u 0  cos u

where u is the angle between u and v. Figure 3 gives a geometric interpretation of this 
concept. Intuitively, the component of u along v is the magnitude of the portion of u 
that points in the direction of v. Notice that the component of u along v is negative if 
p/2  u  p.

v

u

¨

|u| 

v

u
¨

|u| cos ¨cos ¨FiGurE 3

In analyzing forces in physics and engineering, it’s often helpful to express a vector 
as a sum of two vectors lying in perpendicular directions. For example, suppose a car 
is parked on an inclined driveway as in Figure 4. The weight of the car is a vector w 
that points directly downward. We can write

w  u  v

where u is parallel to the driveway and v is perpendicular to the driveway. The vector u 
is the force that tends to roll the car down the driveway, and v is the force experienced 
by the surface of the driveway. The magnitudes of these forces are the compo nents of w 
along u and v, respectively.

u

w

v

u

w v
u

w

v

w

FiGurE 4

ExaMPLE 4 ■ resolving a Force into Components
A car weighing 3000 lb is parked on a driveway that is inclined 15  to the hori zontal, 
as shown in Figure 5.

(a)  Find the magnitude of the force required to prevent the car from rolling down the 
driveway.

Note that the component of u along v 
is a scalar, not a vector.
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SECTION 9.2 ■ The Dot Product 679

(b)  Find the magnitude of the force experienced by the driveway due to the weight of 
the car.

soLuTion  The car exerts a force w of 3000 lb directly downward. We resolve w into 
the sum of two vectors u and v, one parallel to the surface of the driveway and the 
other perpendicular to it, as shown in Figure 5.

(a)  The magnitude of the part of the force w that causes the car to roll down the 
driveway is

0  u 0  component of w along u  3000 cos 75 °  776

   Thus the force needed to prevent the car from rolling down the driveway is about 
776 lb.

(b) The magnitude of the force exerted by the car on the driveway is

0  v 0  component of w along v  3000 cos 15 °  2898

  The force experienced by the driveway is about 2898 lb.

now Try Exercise 49 ■

The component of u along v can be computed by using dot products:

0  u 0  cos u 
0  v 0 0  u 0  cos u

0  v 0 
u # v
0  v 0

We have shown the following.

THE CoMPonEnT oF u aLonG v

The component of u along v (or the scalar projection of u onto v) is 

compv u 
u # v
0  v 0

ExaMPLE 5 ■ Finding Components
Let u  1, 4 and v  2, 1. Find the component of u along v.

soLuTion  From the formula for the component of u along v we have

compv u 
u # v
0  v 0 

11 2 12 2  14 2 11 2
!4  1


2

!5

now Try Exercise 25 ■

■ The Projection of u onto v
Figure 6 shows representations of the vectors u and v. The projection of u onto v, de-
noted by projv u, is the vector parallel to v and whose length is the component of u 
along v as shown in Figure 6. To find an expression for projv u, we first find a unit vec-
tor in the direction of v and then multiply it by the component of u along v:

 projv u  1component of u along v 2 1unit vector in direction of v 2

  a u # v
0  v 0 b  

v
0  v 0  a u # v

0  v 0 2 b v

We often need to resolve a vector u into the sum of two vectors, one parallel to v and 
one orthogonal to v. That is, we want to write u  u1  u2, where u1 is parallel to v and 
u2 is orthogonal to v. In this case, u1  projv u and u2  u  projv u (see Exercise 43).

u
15*

15*

75*

w v

FiGurE 5

v

u

v

u

projv u

projv u

FiGurE 6
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680 CHAPTER 9 ■ Vectors in Two and Three Dimensions

THE VECTor ProJECTion oF u onTo v

The projection of u onto v is the vector projv u given by

projv u  a u # v
0  v 0 2 b v

If the vector u is resolved into u1 and u2, where u1 is parallel to v and u2 is 
orthogonal to v, then

u1  projv u  and  u2  u  projv u

ExaMPLE 6 ■ resolving a Vector into orthogonal Vectors
Let u  2, 9 and v  1, 2.

(a) Find projv u.

(b) Resolve u into u1 and u2, where u1 is parallel to v and u2 is orthogonal to v.

soLuTion

(a) By the formula for the projection of one vector onto another we have

 projv u  a u # v
0 v 0 2 b v

    
Formula for projection

  a 82,  99 # 81,  29
11 2 2  22 b 81,  29

    
Definition of u and v

  4 81,  29  84,  89
(b) By the formula in the preceding box we have u  u1  u2, where

 u1  projv u  84,  89     From part (a)

 u2  u  projv u  82,  99  84,  89  82,  19
now Try Exercise 29 ■

■ work
One use of the dot product occurs in calculating work. In everyday use, the term work 
means the total amount of effort required to perform a task. In physics, work has a tech-
nical meaning that conforms to this intuitive meaning. If a constant force of magnitude 
F moves an object through a distance d along a straight line, then the work done is

W  Fd  or  work  force 3 distance

If F is measured in pounds and d in feet, then the unit of work is a foot-pound (ft-lb). 
For example, how much work is done in lifting a 20-lb weight 6 ft off the ground? Since 
a force of 20 lb is required to lift this weight and since the weight moves through a 
distance of 6 ft, the amount of work done is

W  Fd  120 2 16 2  120 ft-lb

This formula applies only when the force is directed along the direction of motion. In 
the general case, if the force F moves an object from P to Q, as in Figure 7, then only 
the component of the force in the direction of D  PQ

>
 affects the object. Thus the ef-

fective magnitude of the force on the object is

compD F  0  F 0  cos u

So the work done is

W  force 3 distance  1 0  F 0  cos u 2 0  D 0  0  F 0 0  D 0  cos u  F # D

Note that the projection of u onto v is a 
vector, not a scalar.

F

¨
D|F| cos ¨

R

P
Q

FiGurE 7
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SECTION 9.2 ■ The Dot Product 681

We have derived the following simple formula for calculating work.

work

The work W done by a force F in moving along a vector D is

W  F # D

ExaMPLE 7 ■ Calculating work
A force is given by the vector F  2, 3 and moves an object from the point 11,  3 2  to 
the point 15,  9 2 . Find the work done.

soLuTion  The displacement vector is

D  85  1,  9  39  84,  69
So the work done is

W  F # D  82,  39 # 84,  69  26

If the unit of force is pounds and the distance is measured in feet, then the work done 
is 26 ft-lb.

now Try Exercise 35 ■

ExaMPLE 8 ■ Calculating work
A man pulls a wagon horizontally by exerting a force of 20 lb on the handle. If the 
handle makes an angle of 60 with the horizontal, find the work done in moving the 
wagon 100 ft.

soLuTion  We choose a coordinate system with the origin at the initial position of 
the wagon (see Figure 8). That is, the wagon moves from the point P10,  0 2  to the 
point Q1100,  0 2 . The vector that represents this displacement is

D  100 i

The force on the handle can be written in terms of components (see Section 9.1) as

F  120 cos 60 2 i  120 sin 60 2 j  10 i  10!3 j

Thus the work done is

W  F # D  110 i  10!3 j 2 # 1100 i 2  1000 ft-lb

now Try Exercise 47 ■

Q(100, 0)

y

xP(0, 0)

60*

FiGurE 8

DisCoVEry ProJECT

sailing against the wind

Sailors depend on the wind to propel their boats. But what if the wind is blow-
ing in a direction opposite to that in which they want to travel? Although it is 
impossible to sail directly against the wind, it is possible to sail at an angle into 
the wind so that the sailboat can make headway against the wind. In this project 
we discover how vectors that model the sail, the keel, and the wind can be com-
bined to find the direction in which the boat will move. You can find the project 
at www.stewartmath.com.
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682 CHAPTER 9 ■ Vectors in Two and Three Dimensions

ConCEPTs
1–2 ■ Let u  8a1, a29 and v  8b1, b29 be nonzero vectors in the 
plane, and let u be the angle between them.

 1. The dot product of u and v is defined by 

u # v   

  The dot product of two vectors is a    , not a 
vector.

 2. The angle u satisfies

cos u 
            

               

  So if u # v  0, the vectors are    .

 3. (a)  The component of u along v is the scalar 0  u 0  cos u  
and can be expressed in terms of the dot product as 

    compv u     . Sketch this component in 
the figure below.

  (b)  The projection of u onto v is the vector 

   projv u     . Sketch this projection  
 in the figure below.

u

v

¨

 4. The work done by a force F in moving an object along a 

  vector D is W     .

skiLLs
5–14 ■ Dot Products and angles between Vectors  Find  
(a) u  v and (b) the angle between u and v to the nearest degree.

 5. u  2, 0,  v  1, 1

 6. u  i  !3 j, v  !3 i  j

 7. u  2, 7,  v  3, 1

 8. u  6, 6,  v  1, 1

 9. u  3, 2,  v  1, 2

 10. u  2 i  j,  v  3 i  2 j

 11. u  5 j, v  i  !3 j

 12. u  i  j,  v  i  j

13. u  i  3 j,  v  4 i  j

14. u  3 i  4 j,  v  2 i  j

15–20 ■ Perpendicular Vectors?  Determine whether the given 
vectors are perpendicular.

15. u  6, 4,  v  2, 3 16. u  0, 5,  v  4, 0

 17. u  2, 6,  v  4, 2 18.  u  2 i,  v  7 j

19. u  2 i  8 j,  v  12 i  3 j

20. u  4 i,  v  i  3 j

21–24 ■ Dot Products  Find the indicated quantity, assuming 
that u  2 i  j, v  i  3 j, and w  3 i  4 j.

21. u  v  u  w 22. u # 1v  w 2
23. 1u  v 2 # 1u  v 2  24. 1u # v 2 1u # w 2

25–28 ■ The Component of u along v  Find the component of u 
along v.

25. u  4, 6,  v  3, 4

26. u  83,  59, v  81/!2,  1/!29
27. u  7 i  24 j,  v  j

28. u  7 i,  v  8 i  6 j

29–34 ■ Vector Projection of u onto v  (a) Calculate projv u.  
(b) Resolve u into u1 and u2, where u1 is parallel to v and u2 is 
orthogonal to v.

29. u  2, 4,  v  1, 1

30. u  7, 4,  v  2, 1

31. u  1, 2,  v  1, 3

32. u  11, 3,  v  3, 2

33. u  2, 9,  v  3, 4

34. u  1, 1,  v  2, 1

35–38 ■ Calculating work  Find the work done by the force F 
in moving an object from P to Q.

35. F  4 i  5 j;  P10,  0 2 , Q13,  8 2
36. F  400 i  50 j;  P11,  1 2 , Q1200,  1 2
37. F  10 i  3 j;  P12,  3 2 , Q16,  2 2
38. F  4 i  20 j;  P10, 10 2 , Q15, 25 2

skiLLs Plus
39–42 ■ Properties of Vectors  Let u, v, and w be vectors, and 
let c be a scalar. Prove the given property.

39. u  v  v  u

40. 1cu 2 # v  c1u # v 2  u # 1cv 2
41. 1u  v 2 # w  u # w  v # w

42. 1u  v 2 # 1u  v 2  0  u 0 2  0  v 0 2
43. Projection  Show that projv u and u  projv u are orthogonal.

44. Projection  Evaluate v  projv u.

aPPLiCaTions
45. work  The force F  4 i  7 j moves an object 4 ft along 

the x-axis in the positive direction. Find the work done if the 
unit of force is the pound.

9.2 ExErCisEs

9.3 THrEE-DiMEnsionaL CoorDinaTE GEoMETry
■ The Three-Dimensional rectangular Coordinate system ■ Distance Formula in Three 
Dimensions ■ The Equation of a sphere

To locate a point in a plane, two numbers are necessary. We know that any point in the 
Cartesian plane can be represented as an ordered pair 1a, b2 of real numbers, where a is 
the x-coordinate and b is the y-coordinate. In three-dimensional space, a third dimen-
sion is added, so any point in space is represented by an ordered triple 1a, b, c2 of real  
numbers. 
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SECTION 9.3 ■ Three-Dimensional Coordinate Geometry 683

46. work  A constant force F  2, 8 moves an object along a 
straight line from the point 12,  5 2  to the point 111,  13 2 . Find 
the work done if the distance is measured in feet and the 
force is measured in pounds.

47. work  A lawn mower is pushed a distance of 200 ft along a 
horizontal path by a constant force of 50 lb. The handle of 
the lawn mower is held at an angle of 30 from the horizontal 
(see the figure). Find the work done.

30*

48. work  A car drives 500 ft on a road that is inclined 12 to 
the horizontal, as shown in the following figure. The car 
weighs 2500 lb. Thus gravity acts straight down on the car 
with a constant force F  2500 j. Find the work done by 
the car in overcoming gravity.

12*

_2500j

49. Force  A car is on a driveway that is inclined 10 to the hori-
zontal. A force of 490 lb is required to keep the car from roll-
ing down the driveway.

(a) Find the weight of the car.

(b) Find the force the car exerts against the driveway.

50. Force  A car is on a driveway that is inclined 25 to the hori-
zontal. If the car weighs 2755 lb, find the force required to 
keep it from rolling down the driveway.

51. Force  A package that weighs 200 lb is placed on an  
inclined plane. If a force of 80 lb is just sufficient to keep the 
package from sliding, find the angle of inclination of  
the plane. (Ignore the effects of friction.)

52. Force  A cart weighing 40 lb is placed on a ramp inclined at 
15 to the horizontal. The cart is held in place by a rope 
inclined at 60 to the horizontal, as shown in the figure. Find 
the force that the rope must exert on the cart to keep it from 
rolling down the ramp.

15*

60*

DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
53. DisCuss ■ DisCoVEr ■ wriTE: Distance from a Point to 

a Line  Let L be the line 2x  4y  8, and let P be the point 
13,  4 2 .
(a) Show that the points Q10,  2 2  and R12,  1 2  lie on L.

(b) Let u  QP
>
 and v  QR

>
, as shown in the figure. Find  

w  projv u.

(c) Sketch a graph that explains why 0  u  w 0  is the dis-
tance from P to L. Find this distance.

(d) Write a short paragraph describing the steps you would 
take to find the distance from a given point to a given 
line.

y

x

P

0

u

v
Q R

L

9.3 THrEE-DiMEnsionaL CoorDinaTE GEoMETry
■ The Three-Dimensional rectangular Coordinate system ■ Distance Formula in Three 
Dimensions ■ The Equation of a sphere

To locate a point in a plane, two numbers are necessary. We know that any point in the 
Cartesian plane can be represented as an ordered pair 1a, b2 of real numbers, where a is 
the x-coordinate and b is the y-coordinate. In three-dimensional space, a third dimen-
sion is added, so any point in space is represented by an ordered triple 1a, b, c2 of real  
numbers. 
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684 CHAPTER 9 ■ Vectors in Two and Three Dimensions

■ The Three-Dimensional rectangular Coordinate 
system

To represent points in space, we first choose a fixed point O (the origin) and three di-
rected lines through O that are perpendicular to each other, called the coordinate axes 
and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as being 
horizontal and the z-axis as being vertical, and we draw the orientation of the axes as in 
Figure 1. 

The three coordinate axes determine the three coordinate planes illustrated in Fig-
ure 2(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane is the 
plane that contains the y- and z-axes; the xz-plane is the plane that contains the x- and 
z-axes. These three coordinate planes divide space into eight parts, called octants. 

(b) Coordinate “walls”

z

right wall

left w
all

y
x floor

0

(a) Coordinate planes

yz-plane

xy-plane

xz-p
lane

0

x

z

y

FiGurE 2

Because people often have difficulty visualizing diagrams of three-dimensional fig-
ures, you may find it helpful to do the following (see Figure 2(b)). Look at any bottom 
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, 
the wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs 
along the intersection of the floor and the left wall; the y-axis runs along the intersection 
of the floor and the right wall. The z-axis runs up from the floor toward the ceiling along 
the intersection of the two walls.

Now any point P in space can be located by a unique ordered triple of real numbers 
1a, b, c 2 , as shown in Figure 3. The first number a is the x-coordinate of P, the second 
number b is the y-coordinate of P, and the third number c is the z-coordinate of P. The 
set of all ordered triples 5 1x, y, z 2  0  x, y, z [ R6  forms the three-dimensional rectan-
gular coordinate system. 

ExaMPLE 1 ■ Plotting Points in Three Dimensions 
Plot the points 12, 4, 7 2  and 14, 3, 5 2 .
soLuTion  The points are plotted in Figure 4. 

_5
0

0

4

(2, 4, 7)

7

2

(_4, 3, _5)

3
_4

yx

z

yx

z

FiGurE 4

now Try Exercise 3(a) ■

y
x

O

z

FiGurE 1 Coordinate axes

O

b

a
c

P(a, b, c)

yx

z

FiGurE 3 Point P 1a, b, c 2
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SECTION 9.3 ■ Three-Dimensional Coordinate Geometry 685

In two-dimensional geometry the graph of an equation involving x and y is a curve 
in the plane. In three-dimensional geometry an equation in x, y, and z represents a sur-
face in space.

ExaMPLE 2 ■ surfaces in Three-Dimensional space 
Describe and sketch the surfaces represented by the following equations:

(a) z  3          (b) y  5 

soLuTion 

(a)  The surface consists of the points P1x, y, z 2  where the z-coordinate is 3. This is the 
horizontal plane that is parallel to the xy-plane and three units above it, as in Figure 5.

(b)  The surface consists of the points P1x, y, z 2  where the y-coordinate is 5. This is 
the vertical plane that is parallel to the xz-plane and five units to the right of it, as 
in Figure 6.

FiGurE 5 The plane z  3 FiGurE 6 The plane y  5

0

3

y

z

x

0

5 y

z

x

now Try Exercise 7 ■

■ Distance Formula in Three Dimensions
The familiar formula for the distance between two points in a plane is easily extended 
to the following three-dimensional formula.

DisTanCE ForMuLa in THrEE DiMEnsions

The distance between the points P1x1, y1, z1 2  and Q1x2, y2, z2 2  is 

d1P, Q 2  "1x2  x1 2 2  1  y2  y1 2 2  1z2  z1 2 2

Proof  To prove this formula, we construct a rectangular box as in Figure 7, where 
P1x1, y1, z1 2  and Q1x2, y2, z2 2  are diagonally opposite vertices and the faces of the box 
are parallel to the coordinate planes. If A and B are the vertices of the box that are in-
dicated in the figure, then

d1P, A 2  0  x2  x1 0     d1A, B 2  0  y2  y1 0     d1Q, B 2  0  z2  z1 0
Triangles PAB and PBQ are right triangles, so by the Pythagorean Theorem we have

 1d1P, Q 22 2  1d1P, B 22 2  1d1Q, B 22 2
 1d1P, B 22 2  1d1P, A 22 2  1d1A, B 22 2

Combining these equations, we get

 1d1P, Q 22 2  1d1P, A 22 2  1d1A, B 22 2  1d1Q, B 22 2
  0  x2  x1 0 2  0  y2  y1 0 2  0  z2  z1 0 2

Therefore

 d1P, Q 2  "1x2  x1 2 2  1y2  y1 2 2  1z2  z1 2 2 ■

0

z

y

P(x⁄, y⁄, z⁄)
Q(x¤, y¤, z¤)

A(x¤, y⁄, z⁄)
B(x¤, y¤, z⁄)

x

FiGurE 7
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686 CHAPTER 9 ■ Vectors in Two and Three Dimensions

ExaMPLE 3 ■ using the Distance Formula 
Find the distance between the points P12, 1, 7 2  and Q11, 3, 5 2 . 
soLuTion  We use the Distance Formula:

d1P, Q 2  "11  2 2 2  13  11 22 2  15  7 2 2  !1  4  4  3

now Try Exercise 3(b) ■

■ The Equation of a sphere
We can use the Distance Formula to find an equation for a sphere in a three-dimensional  
coordinate space.

EquaTion oF a sPHErE

An equation of a sphere with center C1h, k, l 2  and radius r is 

1x  h 2 2  1  y  k 2 2  1z  l 2 2  r2

Proof  A sphere with radius r is the set of all points P1x, y, z 2  whose distance from 
the center C is the constant r (see Figure 8). By the Distance Formula we have

3d1P, C 2 4 2  1x  h 2 2  1 y  k 2 2  1z  l 2 2
Since the distance d1P, C 2  is equal to r, we get the desired formula. ■

ExaMPLE 4 ■ Finding the Equation of a sphere 
Find an equation of a sphere with radius 5 and center C12, 1, 3 2 . 
soLuTion  We use the general equation of a sphere, with r  5, h  2, k  1, and 
l  3:

1x  2 2 2  1 y  1 2 2  1z  3 2 2  25

now Try Exercise 11 ■

ExaMPLE 5 ■ Finding the Center and radius of a sphere 
Show that x2  y2  z2  4x  6y  2z  6  0 is the equation of a sphere, and 
find its center and radius.

soLuTion  We complete the squares in the x-, y-, and z-terms to rewrite the given 
equation in the form of an equation of a sphere.

 x2  y2  z2  4x  6y  2z  6  0   Given equation

 1x2  4x  4 2  1y2  6y  9 2  1z2  2z  1 2  6  4  9  1  Complete squares

 1x  2 2 2  1 y  3 2 2  1z  1 2 2  8   Factor into squares

Comparing this with the standard equation of a sphere, we can see that the center is 
12, 3, 1 2  and the radius is !8  2!2.

now Try Exercise 15 ■

0

z

x
y

r

P(x, y, z)

C(h, k, l)

FiGurE 8 Sphere with radius r and 
center C1h, k, l 2
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SECTION 9.3 ■ Three-Dimensional Coordinate Geometry 687

The intersection of a sphere with a plane is called the trace of the sphere in the 
plane. 

ExaMPLE 6 ■ Finding the Trace of a sphere 
Describe the trace of the sphere 1x  2 2 2  1 y  4 2 2  1z  5 2 2  36 in  
(a) the xy-plane and (b) the plane z  9.

soLuTion 

(a)  In the xy-plane the z-coordinate is 0. So the trace of the sphere in the xy-plane 
consists of all the points on the sphere whose z-coordinate is 0. We replace z by 0 
in the equation of the sphere and get

 1x  2 2 2  1y  4 2 2  10  5 2 2  36    Replace z by 0

 1x  2 2 2  1 y  4 2 2  25  36    Calculate

 1x  2 2 2  1y  4 2 2  11    Subtract 25

  Thus the trace of the sphere is the circle 

1x  2 2 2  1 y  4 2 2  11    z  0

   which is a circle of radius !11 that is in the xy-plane, centered at 12, 4, 0 2  (see 
Figure 9(a)).

(b)  The trace of the sphere in the plane z  9 consists of all the points on the sphere 
whose z-coordinate is 9. So we replace z by 9 in the equation of the sphere and 
get

 1x  2 2 2  1 y  4 2 2  19  5 2 2  36    Replace z by 0

 1x  2 2 2  1 y  4 2 2  16  36    Calculate

 1x  2 2 2  1 y  4 2 2  20    Subtract 16

  Thus the trace of the sphere is the circle 

1x  2 2 2  1 y  4 2 2  20    z  9

   which is a circle of radius !20 that is 9 units above the xy-plane, centered at 
12, 4, 9 2  (see Figure 9(b)).

0

(x-2)2+(y-4)2=11, z=0

(a) (b)

0

(x-2)2+(y-4)2=20, z=9

z=9

z=0

z

y
x

z

y
x

FiGurE 9 The trace of a sphere in the planes z  0 and z  9

now Try Exercise 19 ■
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ConCEPTs
1–2 ■ Refer to the figure.

0 2

3

5

P

 1. In a three-dimensional coordinate system the three mutually 

  perpendicular axes are called the  -axis, the  -axis, and 

  the  -axis. Label the axes in the figure. The point P in the 
figure has coordinates 1 , , 2. The equation of the 
plane passing through P and parallel to the xz-plane is 

     .

 2. The distance between the point P1x1, y1, z1 2  and Q1x2, y2, z2 2   
  is given by the formula d1P, Q 2     .  

The distance between the point P in the figure and the origin  

  is    . The equation of the sphere centered at P 

  with radius 3 is    .

skiLLs
3–6 ■ Plotting Points and Finding Distance in Three Dimensions   
Two points P and Q are given. (a) Plot P and Q. (b) Find the  
distance between P and Q.

 3. P13, 1, 0 2 , Q11, 2, 5 2  
 4. P15, 0, 10 2 , Q13, 6, 7 2
 5. P12, 1, 0 2 , Q112, 3, 0 2  
 6. P15, 4, 6 2 , Q18, 7, 4 2

7–10 ■ surfaces in Three Dimensions  Describe and sketch the 
surface represented by the given equation.

 7. x  4  8. y  2

 9. z  8 10. y  1 

11–14 ■ Equation of a sphere  Find an equation of a sphere 
with the given radius r and center C.

11. r  5;  C12, 5, 3 2
 12. r  3;  C11, 4, 7 2
13. r  !6;  C13, 1, 0 2
 14. r  !11;  C110, 0, 1 2

15–18 ■ Center and radius of a sphere  Show that the equation 
represents a sphere, and find its center and radius.

15. x2  y2  z2  10x  2y  8z  9

16. x2  y2  z2  4x  6y  2z  10

17. x2  y2  z2  12x  2y 

18. x2  y2  z2  14y  6z 

19–20 ■ Trace of a sphere  In these exercises we find the trace 
of a sphere in a plane.

19. Describe the trace of the sphere 

1x  1 2 2  1 y  2 2 2  1z  10 2 2  100 

  (a) in the yz-plane and (b) in the plane x  4.

20. Describe the trace of the sphere 

x2  1 y  4 2 2  1z  3 2 2  144 

  (a) in the xz-plane and (b) in the plane z  2.

aPPLiCaTions
21. spherical water Tank  A water tank is in the shape of a 

sphere of radius 5 ft. The tank is supported on a metal circle 
4 ft below the center of the sphere, as shown in the figure. 
Find the radius of the metal circle.

5 ft

22. a spherical buoy  A spherical buoy of radius 2 ft floats in a 
calm lake. Six inches of the buoy are submerged. Place a 
coordinate system with the origin at the center of the sphere.

(a) Find an equation of the sphere. 

(b) Find an equation of the circle formed at the waterline of 
the buoy.

2 ft

9.3 ExErCisEs

9.4 VECTors in THrEE DiMEnsions
■ Vectors in space ■ Combining Vectors in space ■ The Dot Product for Vectors  
in space ■ Direction angles of a Vector

Recall that vectors are used to indicate a quantity that has both magnitude and direction. 
In Section 9.1 we studied vectors in the coordinate plane, where the direction is re-
stricted to two dimensions. Vectors in space have a direction that is in three-dimensional 
space. The properties that hold for vectors in the plane hold for vectors in space as well. 

■ Vectors in space
Recall from Section 9.1 that a vector can be described geometrically by its initial point 
and terminal point. When we place a vector v in space with its initial point at the origin, 
we can describe it algebraically as an ordered triple:

v  8a1, a2, a39
where a1, a2, and a3 are the components of v (see Figure 1). Recall also that a vector has 
many different representations, depending on its initial point. The following definition 
gives the relationship between the algebraic and geometric representations of a vector.

CoMPonEnT ForM oF a VECTor in sPaCE

If a vector v is represented in space with initial point P1x1, y1, z1 2  and terminal 
point Q1x2, y2, z2 2 , then

v  8x2  x1, y2  y1, z2  z19

ExaMPLE 1 ■ Describing Vectors in Component Form 
(a)  Find the components of the vector v with initial point P11, 4, 5 2  and terminal 

point Q13, 1, 1 2 .
(b)  If the vector w  82, 1, 39 has initial point 12, 1, 1 2 , what is its terminal point? 

soLuTion 

(a) The desired vector is

v  83  1, 1  14 2 , 1  59  82, 5, 69
   See Figure 2.

(b) Let the terminal point of w be 1x, y, z 2 . Then 

w  8x  2, y  1, z  11 2 9
   Since w  82, 1, 39, we have x  2  2, y  1  1, and z  1  3. So 

x  0, y  2, and z  2, and the terminal point is 10, 2, 2 2 .
now Try Exercises 3 and 7 ■
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DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
23. DisCuss: Visualizing a set in space  Try to visualize the set 

of all points 1x, y, z 2  in a coordinate space that are equidis-
tant from the points P10, 0, 0 2  and Q10, 3, 0 2 . Use the Dis-
tance Formula to find an equation for this surface, and 
observe that it is a plane.

24. DisCuss: Visualizing a set in space  Try to visualize the set 
of all points 1x, y, z 2  in a coordinate space that are twice as 
far from the points Q10, 3, 0 2  as from the point P10, 0, 0 2 . 
Use the Distance Formula to show that the set is a sphere, 
and find its center and radius.

9.4 VECTors in THrEE DiMEnsions
■ Vectors in space ■ Combining Vectors in space ■ The Dot Product for Vectors  
in space ■ Direction angles of a Vector

Recall that vectors are used to indicate a quantity that has both magnitude and direction. 
In Section 9.1 we studied vectors in the coordinate plane, where the direction is re-
stricted to two dimensions. Vectors in space have a direction that is in three-dimensional 
space. The properties that hold for vectors in the plane hold for vectors in space as well. 

■ Vectors in space
Recall from Section 9.1 that a vector can be described geometrically by its initial point 
and terminal point. When we place a vector v in space with its initial point at the origin, 
we can describe it algebraically as an ordered triple:

v  8a1, a2, a39
where a1, a2, and a3 are the components of v (see Figure 1). Recall also that a vector has 
many different representations, depending on its initial point. The following definition 
gives the relationship between the algebraic and geometric representations of a vector.

CoMPonEnT ForM oF a VECTor in sPaCE

If a vector v is represented in space with initial point P1x1, y1, z1 2  and terminal 
point Q1x2, y2, z2 2 , then

v  8x2  x1, y2  y1, z2  z19

ExaMPLE 1 ■ Describing Vectors in Component Form 
(a)  Find the components of the vector v with initial point P11, 4, 5 2  and terminal 

point Q13, 1, 1 2 .
(b)  If the vector w  82, 1, 39 has initial point 12, 1, 1 2 , what is its terminal point? 

soLuTion 

(a) The desired vector is

v  83  1, 1  14 2 , 1  59  82, 5, 69
   See Figure 2.

(b) Let the terminal point of w be 1x, y, z 2 . Then 

w  8x  2, y  1, z  11 2 9
   Since w  82, 1, 39, we have x  2  2, y  1  1, and z  1  3. So 

x  0, y  2, and z  2, and the terminal point is 10, 2, 2 2 .
now Try Exercises 3 and 7 ■
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(a⁄, a¤, a‹)

v

z

yx

FiGurE 1 v  8a1, a2, a39

0

(3, 1, _1)

(1, _4, 5)

v= 2, 5, _6��

z

x y

FiGurE 2 v  82, 5, 69
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The following formula is a consequence of the Distance Formula, since the vector 
v  8a1, a2, a39 in standard position has initial point 10, 0, 02 and terminal point 1a1, a2, a3 2 .

MaGniTuDE oF a VECTor in THrEE DiMEnsions

The magnitude of the vector v  8a1, a2, a39 is 

0  v 0  "a2
1  a2

2  a2
3 

ExaMPLE 2 ■ Magnitude of Vectors in Three Dimensions
Find the magnitude of the given vector.

(a) u  83, 2, 59    (b) v  80, 3, 19    (c) w  80, 0, 19
soLuTion 

(a) 0  u 0  "32  22  52  !38

(b) 0  v 0  "02  32  11 2 2  !10

(c) 0  w 0  "02  02  11 2 2  1

now Try Exercise 11 ■

■ Combining Vectors in space
We now give definitions of the algebraic operations involving vectors in three dimensions.

aLGEbraiC oPEraTions on VECTors in THrEE DiMEnsions

If u  8a1, a2, a39, v  8b1, b2, b39, and c is a scalar, then

 u  v  8a1  b1, a2  b2, a3  b39
 u  v  8a1  b1, a2  b2, a3  b39

 cu  8ca1, ca2, ca39  

ExaMPLE 3 ■ operations with Three-Dimensional Vectors 
If u  81, 2, 49 and v  86, 1, 19 find u  v, u  v, and 5 u  3 v.

soLuTion  Using the definitions of algebraic operations, we have

 u  v  81  6, 2  1, 4  19  87, 3, 59
 u  v  81  6, 2  11 2 , 4  19  85, 1, 39

 5 u  3 v  581, 2, 49  386, 1, 19  85, 10, 209  818, 3, 39  813, 7, 179
now Try Exercise 15 ■

Recall that a unit vector is a vector of length 1. The vector w in Example 2(c) is an 
example of a unit vector. Some other unit vectors in three dimensions are

i  81, 0, 09    j  80, 1, 09    k  80, 0, 19
as shown in Figure 3. Any vector in three dimensions can be written in terms of these 
three vectors (see Figure 4).

k
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x

z
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ExPrEssinG VECTors in TErMs oF i, j, anD k

The vector v  8a1, a2, a39 can be expressed in terms of i, j, and k by 

v  8a1, a2, a39  a1 i  a2 j  a3 k

All the properties of vectors on page 669 in Section 9.1 hold for vectors in three 
dimensions as well. We use these properties in the next example.

ExaMPLE 4 ■ Vectors in Terms of i, j, and k
(a)  Write the vector u  85, 3, 69 in terms of i, j, and k.

(b)  If u  i  2 j  3 k and v  4 i  7 k, express the vector 2 u  3 v in terms of 
i, j, and k.

soLuTion 

(a) u  5 i  13 2 j  6 k  5 i  3 j  6 k

(b)  We use the properties of vectors to get the following:

 2 u  3 v  212 i  2 j  3 k 2  314 i  7 k 2
  4 i  4 j  6 k  12 i  21 k

  16 i  4 j  15 k

now Try Exercises 19 and 23 ■

■ The Dot Product for Vectors in space
We define the dot product for vectors in three dimensions. All the properties of the dot 
product, including the Dot Product Theorem (page 676), hold for vectors in three  
dimensions. 

DEFiniTion oF THE DoT ProDuCT For VECTors in THrEE DiMEnsions

If u  8a1, a2, a39 and v  8b1, b2, b39 are vectors in three dimensions, then their 
dot product is defined by 

u # v  a1b1  a2b2  a3b3

ExaMPLE 5 ■  Calculating Dot Products for Vectors  
in Three Dimensions

Find the given dot product.

(a) 81, 2, 39 # 86, 5, 19    
(b) 12 i  3 j  k 2 # 1i  2 j  8 k 2
soLuTion 

(a) 81, 2, 39 # 86, 5, 19  11 2 16 2  12 2 15 2  13 2 11 2  1

(b)  12 i  3 j  k 2 # 1i  2 j  8 k 2  82, 3, 19 # 81, 2, 89
    12 2 11 2  13 2 12 2  11 2 18 2  16

now Try Exercises 25 and 27 ■
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Recall that the cosine of the angle between two vectors can be calculated by using 
the dot product (page 677). The same property holds for vectors in three dimensions. 
We restate this property here for emphasis.

anGLE bETwEEn Two VECTors

Let u and v be vectors in space, and let u be the angle between them. Then

cos u 
u # v
0  u 0 0  v 0

In particular, u and v are perpendicular (or orthogonal) if and only if 
u # v  0.

ExaMPLE 6 ■ Checking whether Two Vectors are Perpendicular
Show that the vector u  2 i  2 j  k is perpendicular to 5 i  4 j  2 k.

soLuTion  We find the dot product.

12 i  2 j  k 2 # 15 i  4 j  2 k 2  12 2 15 2  12 2 14 2  11 2 12 2  0

Since the dot product is 0, the vectors are perpendicular. See Figure 5.

now Try Exercise 29 ■

■ Direction angles of a Vector
The direction angles of a nonzero vector v  a1 i  a2 j  a3 k are the angles a, b, 
and g in the interval 30, p 4  that the vector v makes with the positive x-, y-, and z-axes 
(see Figure 6). The cosines of these angles, cos a, cos b, and cos g, are called the  
direction cosines of the vector v. By using the formula for the angle between two vec-
tors, we can find the direction cosines of v: 

cos a 
v # i
0  v 0 0  i 0 

a1

0  v 0     cos b 
v # j

0  v 0 0  j 0 
a2

0  v 0     cos g 
v # k
0  v 0 0  k 0 

a3

0  v 0

DirECTion anGLEs oF a VECTor

If v  a1 i  a2 j  a3 k is a nonzero vector in space, the direction angles a, b, 
and g satisfy

cos a 
a1

0  v 0     cos b 
a2

0  v 0     cos g 
a3

0  v 0
In particular, if 0  v 0  1, then the direction cosines of v are simply the compo-
nents of v. 

ExaMPLE 7 ■ Finding the Direction angles of a Vector
Find the direction angles of the vector v  i  2 j  3 k.

soLuTion  The length of the vector v is 0  v 0  "12  22  32  !14. From the 
above box we get

cos a 
1

!14
    cos b 

2

!14
    cos g 

3

!14

v
a⁄

�
�

�

z

yx

FiGurE 6 Direction angles of the 
vector v

u= 2, 2, _1��
v= 5, _4, 2�� z

y

x

FiGurE 5 The vectors u and v are 
perpendicular.
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Since the direction angles are in the interval 30, p 4  and since cos1 gives angles in 
that same interval, we get a, b, and g by simply taking cos1 of the above equations.

a  cos1
 

1

!14
 74  b  cos1

 

2

!14
 58  g  cos1

 

3

!14
 37

now Try Exercise 37 ■

The direction angles of a vector uniquely determine its direction but not its length. 
If we also know the length of the vector v, the expressions for the direction cosines of 
v allow us to express the vector as

v  8 0  v 0 cos a, 0  v 0 cos b, 0  v 0 cos g9

From this we get 

 v  0  v 0 8cos a, cos b, cos g9

 
v
0  v 0  8cos a, cos b, cos g9

Since v/ 0  v 0  is a unit vector, we get the following.

ProPErTy oF DirECTion CosinEs

The direction angles a, b, and g of a nonzero vector v in space satisfy the fol-
lowing equation:

cos2
 a  cos2

 b  cos2
 g  1

This property indicates that if we know two of the direction cosines of a vector, we 
can find the third up to its sign. 

ExaMPLE 8 ■ Finding the Direction angles of a Vector
A vector makes an angle a  p/3 with the positive x-axis and an angle b  3p/4 
with the positive y-axis. Find the angle g that the vector makes with the positive 
z-axis, given that g is an obtuse angle.

soLuTion  By the property of the direction angles we have 

 cos2
 a  cos2

 b  cos2
 g  1

 cos2 
p

3
 cos2 

3p

4
 cos2

 g  1

 a 1

2
b

2

 a 

1

!2
b

2

 cos2
 g  1

 cos2
 g 

1

4

 cos g 
1

2
    or     cos g   

1

2

 g 
p

3
    or     g 

2p

3

Since we require g to be an obtuse angle, we conclude that g  2p/3.

now Try Exercise 41 ■

An angle u is acute if 0  u  p/2 
and is obtuse if p/2  u  p.
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ConCEPTs
 1. A vector in three dimensions can be written in either of two 

forms: in coordinate form as v  8a1, a2, a39 and in terms of 

  the   vectors i, j, and k as v     . 

  The magnitude of the vector v is 0  v 0     . 

  So 84, 2, 49  i  j  k and 

  7 j  24 k  8 , , 9.

 2. The angle u between the vectors u and v satisfies 

  cos u 
           
            . So if u and v are perpendicular, then 

  u # v     . If u  84, 5, 69 and v  83, 0, 29 then 

  u # v     , so u and v are    .

skiLLs
3–6 ■ Vectors in Component Form  Find the vector v with ini-
tial point P and terminal point Q.

 3. P11, 1, 0 2 , Q10, 2, 5 2
  4. P11, 2, 1 2 , Q13, 1, 2 2
 5. P16, 1, 0 2 , Q10, 3, 0 2
  6. P11, 1, 1 2 , Q10, 0, 1 2

7–10 ■ Terminal Point of a Vector  If the vector v has initial 
point P, what is its terminal point?

 7. v  83, 4, 29, P12, 0, 1 2  
 8. v  80, 0, 19, P10, 1, 1 2
 9. v  82, 0, 29, P13, 0, 3 2  
10. v  823, 5, 129, P16, 4, 2 2  

11–14 ■ Magnitude of a Vector  Find the magnitude of the 
given vector.

11. 82, 1, 29 12. 85, 0, 129
13. 83, 5, 49 14. 81, 6, 2"29

15–18 ■ operations with Vectors  Find the vectors u  v, 
u  v, and 3 u  1

2 v.

15. u  82, 7, 39, v  80, 4, 19
16. u  80, 1, 39, v  84, 2, 09
17. u  i  j, v  j  2 k

18. u  8a, 2b, 3c9, v  84a, b, 2c9

19–22 ■ writing Vectors in Terms of i, j, and k  Express the 
given vector in terms of the unit vectors i, j, and k.

19. 812, 0, 29 20. 80, 3, 59
21. 83, 3, 09 22. 8a, 13  

a, 49

23–24 ■ operations with Vectors  Two vectors u and v are 
given. Express the vector 2 u  3 v (a) in component form 
8a1, a2, a39 and (b) in terms of the unit vectors i, j, and k.

23. u  80, 2, 19, v  81, 1, 09 
24. u  83, 1, 09, v  83, 0, 59
25–28 ■ Dot Products  Two vectors u and v are given. Find 
their dot product u # v.

25. u  82, 5, 09, v  8  12, 1, 109 
26. u  83, 0, 49, v  82, 4, 12 9
27. u  6 i  4 j  2 k, v  5

6 i  3
2 j  k

28. u  3 j  2 k, v  5
6 i  5

3 j

29–32 ■ Perpendicular Vectors?  Determine whether or not the 
given vectors are perpendicular.

29. 84, 2, 49, 81, 2, 29 30. 4 j  k, i  2 j  9 k

31. 80.3, 1.2, 0.99, 810, 5, 109
32. 8x, 2x, 3x9, 85, 7, 39
33–36 ■ angle between Two Vectors  Find the angle between u 
and v, rounded to the nearest tenth degree.

33. u  82, 2, 19, v  81, 2, 29
34. u  84, 0, 29, v  82, 1, 09
35. u  j  k, v  i  2 j  3 k

36. u  i  2 j  2 k, v  4 i  3 k

37–40 ■ Direction angles of a Vector  Find the direction angles 
of the given vector, rounded to the nearest degree.

37. 3 i  4 j  5 k 38. i  2 j  k

39. 82, 3, 69 40. 82, 1, 29
41–44 ■ Direction angles of a Vector  Two direction angles of a 
vector are given. Find the third direction angle, given that it is 
either obtuse or acute as indicated. (In Exercises 43 and 44, round 
your answers to the nearest degree.)

41. a 
p

3
, g 

2p

3
; b is acute 

42. b 
2p

3
, g 

p

4
; a is acute

43. a  60°, b  50°; g is obtuse 

 44. a  75°, g  15°

skiLLs Plus
45–46 ■ impossible Direction angles  Explain why it is impos-
sible for a vector to have the given direction angles.

45. a  20°, b  45° 46. a  150°, g  25°

47. Parallel Vectors  Two nonzero vectors are parallel if they point 
in the same direction or in opposite directions. This means that 
if two vectors are parallel, one must be a scalar multiple of the 

9.4 ExErCisEs

9.5 THE Cross ProDuCT
■ The Cross Product ■ Properties of the Cross Product ■ area of a Parallelogram  
■ Volume of a Parallelepiped

In this section we define an operation on vectors that allows us to find a vector which 
is perpendicular to two given vectors.

■ The Cross Product
Given two vectors u  8a1, a2, a39 and v  8b1, b2, b39, we often need to find a vector w 
perpendicular to both u and v. If we write w  8c1, c2, c39, then u # w  0 and 
v # w  0, so 

 a1c1  a2c2  a3c3  0

 b1c1  b2c2  b3c3  0
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other. Determine whether the given vectors u and v are parallel. 
If they are, express v as a scalar multiple of u.

(a) u  83, 2, 49, v  86, 4, 89
(b) u  89, 6, 129, v  812, 8, 169
(c) u  i  j  k, v  2 i  2 j  2 k

48. unit Vectors  A unit vector is a vector of magnitude 1. Mul-
tiplying a vector by a scalar changes its magnitude but not its 
direction. 

(a) If a vector v has magnitude m, what scalar multiple of v 
has magnitude 1 (that is, is a unit vector)?

(b) Multiply each of the following vectors by an appropriate 
scalar to change them into unit vectors:

81, 2, 29 86, 8, 109 86, 5, 99

aPPLiCaTions
 49. resultant of Four Forces  An object located at the origin in  

a three-dimensional coordinate system is held in equilibrium 
by four forces. One has magnitude 7 lb and points in the 
direction of the positive x-axis, so it is represented by the 
vector 7i. The second has magnitude 24 lb and points in  
the direction of the positive y-axis. The third has magnitude 
25 lb and points in the direction of the negative z-axis.

(a) Use the fact that the four forces are in equilibrium (that 
is, their sum is 0) to find the fourth force. Express it in 
terms of the unit vectors i, j, and k.

(b) What is the magnitude of the fourth force?

50. Central angle of a Tetrahedron  A tetrahedron is a solid with 
four triangular faces, four vertices, and six edges, as shown 
in the figure. In a regular tetrahedron the edges are all of the 
same length. Consider the tetrahedron with vertices 
A11, 0, 0 2 , B10, 1, 0 2 , C10, 0, 1 2 , and D11, 1, 1 2 .
(a) Show that the tetrahedron is regular.

(b) The center of the tetrahedron is the point EA12, 12, 12 B  (the 
“average” of the vertices). Find the angle between the 
vectors that join the center to any two of the vertices (for 
instance, /AEB). This angle is called the central angle 
of the tetrahedron.

  [Note: In a molecule of methane (CH4) the four hydrogen 
atoms form the vertices of a regular tetrahedron with the car-
bon atom at the center. In this case chemists refer to the cen-
tral angle as the bond angle. In the figure, the tetrahedron in 
the exercise is shown, with the vertices labeled H for hydro-
gen and the center labeled C for carbon.]

H

H
H

H

C

z

y

x

DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
51. DisCuss ■ ProVE: Vector Equation of a sphere  Let 

u  82, 2, 29, v  82, 2, 09, and r  8x, y, z9. 
(a) Show that the vector equation 1r  u 2 # 1r  v 2  0 

represents a sphere, by expanding the dot product and 
simplifying the resulting algebraic equation.

(b) Find the center and radius of the sphere.

(c) Interpret the result of part (a) geometrically, using the 
fact that the dot product of two vectors is 0 only if the 
vectors are perpendicular.  [Hint: Draw a diagram 
showing the endpoints of the vectors u, v, and r, noting 
that the endpoints of u and v are the endpoints of a diam-
eter and the endpoint of r is an arbitrary point on the 
sphere.]

(d) Using your observations from part (a), find a vector 
equation for the sphere in which the points 10, 1, 3 2  and 
12, 1, 4 2  form the endpoints of a diameter. Simplify 
the vector equation to obtain an algebraic equation for 
the sphere. What are its center and radius?

9.5 THE Cross ProDuCT
■ The Cross Product ■ Properties of the Cross Product ■ area of a Parallelogram  
■ Volume of a Parallelepiped

In this section we define an operation on vectors that allows us to find a vector which 
is perpendicular to two given vectors.

■ The Cross Product
Given two vectors u  8a1, a2, a39 and v  8b1, b2, b39, we often need to find a vector w 
perpendicular to both u and v. If we write w  8c1, c2, c39, then u # w  0 and 
v # w  0, so 

 a1c1  a2c2  a3c3  0

 b1c1  b2c2  b3c3  0
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You can check that one of the solutions of this system of equations is the vector 
w  8a2b3  a3b2, a3b1  a1b3, a1b2  a2b19. This vector is called the cross product of 
u and v and is denoted by u 3 v.

THE Cross ProDuCT

If u  8a1, a2, a39 and v  8b1, b2, b39 are three-dimensional vectors, then the 
cross product of u and v is the vector 

u 3 v  8a2b3  a3b2,  a3b1  a1b3,  a1b2  a2b19

The cross product u 3 v of two vectors u and v, unlike the dot product, is a vector 
(not a scalar). For this reason it is also called the vector product. Note that u 3 v is 
defined only when u and v are vectors in three dimensions.

To help us remember the definition of the cross product, we use the notation of de-
terminants. A determinant of order two is defined by 

`  a b

c d
`  ad  bc

For example,

`  2 1

6 4
`  214 2  116 2  14

A determinant of order three is defined in terms of second-order determinants as

†  
a1 a2 a3

b1 b2 b3

c1 c2 c3

†  a1 `  b2 b3

c2 c3
`  a2 `  b1 b3

c1 c3
`  a3 `  b1 b2

c1 c2
`

Observe that each term on the right side of the above equation involves a number ai in 
the first row of the determinant, and ai is multiplied by the second-order determinant 
obtained from the left side by deleting the row and column in which ai appears. Notice 
also the minus sign in the second term. For example,

 †
1 2 1

3 0 1

5 4 2

†  1 `  0 1

4 2
`  2 `  3 1

5 2
`  11 2 `  3 0

5 4
`

  110  4 2  216  15 22  11 2 112  0 2  38

We can write the definition of the cross product using determinants as

 †
i j k

a1 a2 a3

b1 b2 b3

†  ` a2 a3

b2 b3
` i  `  a1 a3

b1 b3
` j  `  a1 a2

b1 b2
` k

  1a2b3  a3b2 2 i  1a1b3  a3b1 2 j  1a1b2  a2b1 2k
Although the first row of the above determinant consists of vectors, we expand it as if 
it were an ordinary determinant of order 3. The symbolic formula given by the above 
determinant is probably the easiest way to remember and compute cross products.

ExaMPLE 1 ■ Finding a Cross Product 
If u  80, 1, 39 and v  82, 0, 19, find u 3 v. 

Determinants and their properties are 
studied in Section 11.4.
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SECTION 9.5 ■ The Cross Product 697

soLuTion  We use the formula above to find the cross product of u and v:

 u 3 v  †
i j k
0 1 3

2 0 1

†

  `  1 3

0 1
` i  `  0 3

2 1
` j  `  0 1

2 0
` k

  11  0 2 i  10  6 2 j  10  12 22k
  i  6 j  2 k

So the desired vector is i  6 j  2 k.

now Try Exercise 3 ■

■ Properties of the Cross Product
One of the most important properties of the cross product is the following theorem.

Cross ProDuCT THEorEM

The vector u 3 v is orthogonal (perpendicular) to both u and v. 

Proof  To show that u 3 v is orthogonal to u, we compute their dot product and 
show that it is 0.

 1u 3 v 2 # u  `  a2 a3

b2 b3
` a1  `  a1 a3

b1 b3
` a2  `  a1 a2

b1 b2
` a3

  a11a2b3  a3b2 2  a21a1b3  a3b1 2  a31a1b2  a2b1 2
  a1a2b3  a1a3b2  a1a2b3  a2a3b1  a1a3b2  a2a3b1

  0

A similar computation shows that 1u 3 v 2 # v  0. Therefore u 3 v is orthogonal to  
u and to v. ■

ExaMPLE 2 ■ Finding an orthogonal Vector 
If u  j  3 k and v  2 i  k, find a unit vector that is orthogonal to the plane 
containing the vectors u and v. 

soLuTion  By the Cross Product Theorem the vector u 3 v is orthogonal to the 
plane containing the vectors u and v. (See Figure 1.) In Example 1 we found 
u 3 v  i  6 j  2 k. To obtain an orthogonal unit vector, we multiply u 3 v by 
the scalar 1/ 0  u 3 v 0 : 

u 3 v
0  u 3 v 0 

i  6 j  2 k

"12  62  22


i  6 j  2 k

!41

So the desired vector is 
1

!41
 1 i  6 j  2 k 2 .

now Try Exercise 9 ■

v= 2, 0, _1 ��

u= 0, _1, 3 ��

u � v= 1, 6, 2��

z

y
x

FiGurE 1 The vector u 3 v is per-
pendicular to u and v.
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698 CHAPTER 9 ■ Vectors in Two and Three Dimensions

ExaMPLE 3 ■ Finding a Vector Perpendicular to a Plane 
Find a vector perpendicular to the plane that passes through the points P11, 4, 6 2 , 
Q12, 5, 1 2 , and R11, 1, 1 2 .
soLuTion  By the Cross Product Theorem the vector PQ

>
3 PR

>
 is perpendicular to 

both PQ
>
 and PR

>
 and is therefore perpendicular to the plane through P, Q, and R. We 

know that 

 PQ
>
 12  1 2 i  15  4 2 j  11  6 2k  3 i  j  7 k

 PR
>
 11  1 2 i  11  4 2 j  11  6 2k  5 j  5 k

We compute the cross product of these vectors:

 PQ
>
3 PR

>
 †  

i j k
3 1 7

0 5 5

†

  15  35 2 i  115  0 2 j  115  0 2k  40 i  15 j  15 k

So the vector 840, 15, 159 is perpendicular to the given plane. Notice that any 
nonzero scalar multiple of this vector, such as 88, 3, 39, is also perpendicular to 
the plane.

now Try Exercise 17 ■

If u and v are represented by directed line segments with the same initial point (as 
in Figure 2), then the Cross Product Theorem says that the cross product u 3 v points 
in a direction perpendicular to the plane through u and v. It turns out that the direction 
of u 3 v is given by the right-hand rule: If the fingers of your right hand curl in the 
direction of a rotation (through an angle less than 180°) from u to v, then your thumb 
points in the direction of u 3 v (as in Figure 2). You can check that the vector u 3 v 
in Figure 1 satisfies the right-hand rule.

¨u
v

u � v

FiGurE 2 Right-hand rule

Now that we know the direction of the vector u 3 v, the remaining thing we need 
is the length 0  u 3 v 0 . 

LEnGTH oF THE Cross ProDuCT 

If u is the angle between u and v (so 0  u  p), then

0  u 3 v 0  0  u 0 0  v 0 sin u

In particular, two nonzero vectors u and v are parallel if and only if

u 3 v  0

M
ar

y 
Ev

an
s 

Pi
ct

ur
e 

Li
br

ar
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am

y

WiLLiaM RoWan HaMiLton  
(1805–1865) was an Irish mathematician 
and physicist. He was raised by his uncle 
(a linguist) who noticed that Hamilton 
had a remarkable ability to learn lan-
guages. When he was five years old, he 
could read Latin, Greek, and Hebrew. At 
age eight he added French and Italian, 
and by age ten he had mastered Arabic 
and Sanskrit.

Hamilton was also a calculating prodigy 
and competed in contests of mental arith-
metic.  He entered Trinity College in Dublin, 
Ireland, where he studied science; he was 
appointed Professor of Astronomy there 
while still an undergraduate. 

Hamilton made many contributions to 
mathematics and physics, but he is best 
known for his invention of quaternions. 
Hamilton knew that we can multiply vec-
tors in the plane by considering them as 
complex numbers. He was looking for a 
similar multiplication for points in space. 
After thinking about this problem for over 
20 years, he discovered the solution in a 
flash of insight while walking near 
Brougham Bridge in Dublin: He realized 
that a fourth dimension is needed to make 
the multiplication work. He carved the for-
mula for his quaternions into the bridge, 
where it still stands. Later, the American 
mathematician Josiah Willard Gibbs 
extracted the dot product and cross prod-
uct of vectors from the properties of qua-
ternion multiplication. Quaternions are 
used today in computer graphics because 
of their ability to easily describe special 
rotations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 9.5 ■ The Cross Product 699

Proof  We apply the definitions of the cross product and length of a vector. You can 
verify the algebra in the first step by expanding the right-hand sides of the first and 
second lines and then comparing the results.

 0  u 3 v 0 2  1a2b3  a3b2 2 2  1a1b3  a3b1 2 2  1a1b2  a2b1 2 2     Definitions

  1a2
1  a2

2  a2
3 2 1b2

1  b2
2  b2

3 2  1a1b1  a2b2  a3b3 2 2    Verify algebra

  0  u 0 2 0  v 0 2  1u # v 2 2     Definitions

  0  u 0 2 0  v 0 2  0  u 0 2 0  v 0 2 cos2
 u     Property of Dot Product

  0  u 0 2 0  v 0 211  cos2
 u 2     Factor

  0  u 0 2 0  v 0 2  sin2
 u     Pythagorean Identity

The result follows by taking square roots and observing that "sin2
 u  sin u because 

sin u $ 0 when 0  u  p. ■

We have now completely determined the vector u 3 v geometrically. The vector 
u 3 v is perpendicular to both u and v, and its orientation is determined by the right-
hand rule. The length of u 3 v is 0  u 0 0  v 0 sin u.

■ area of a Parallelogram
We can use the cross product to find the area of a parallelogram. If u and v are repre-
sented by directed line segments with the same initial point, then they determine a 
parallelogram with base 0  u 0 , altitude 0  v 0 sin u, and area

A  0  u 0 1 0  v 0 sin u 2  0  u 3 v 0
(See Figure 3.) Thus we have the following way of interpreting the magnitude of a cross 
product.

arEa oF a ParaLLELoGraM 

The length of the cross product u 3 v is the area of the parallelogram deter-
mined by u and v.

ExaMPLE 4 ■ Finding the area of a Triangle 
Find the area of the triangle with vertices P11, 4, 6 2 , Q12, 5, 1 2 , and R11, 1, 1 2 .
soLuTion  In Example 3 we computed that PQ

>
3 PR

>
 840, 15, 159. The area of 

the parallelogram with adjacent sides PQ and PR is the length of this cross product:

0  PQ
>
3 PR

> 0  "140 2 2  115 2 2  152  5!82

The area A of the triangle PQR is half the area of this parallelogram, that is, 5
2!82.

now Try Exercises 21 and 25 ■

■ Volume of a Parallelepiped
The product u # 1v 3 w 2  is called the scalar triple product of the vectors u, v, and w. 
You can check that the scalar triple product can be written as the following determinant:

u # 1v 3 w 2  †  
a1 a2 a3

b1 b2 b3

c1 c2 c3

†

u

v

¨

|v | ß ¨

FiGurE 3 Parallelogram determined 
by u and v.
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700 CHAPTER 9 ■ Vectors in Two and Three Dimensions

The geometric significance of the scalar triple product can be seen by considering the 
parallelepiped* determined by the vectors u, v, and w (see Figure 4). The area of the 
base parallelogram is A  0  v 3 w 0 . If u is the angle between u and v 3 w, then  
the height h of the parallelepiped is h  0  u 0 0  cos u 0 . (We must use 0  cos u 0  instead of 
cos u in case u  p/2.) Therefore the volume of the parallelepiped is 

V  Ah  0  v 3 w 0 0  u 0 0  cos u 0  0  u # 1v 3 w 2 0
The last equality follows from the Dot Product Theorem on page 676.

h u
w

v

v � w

¨

FiGurE 4 Parallelepiped determined 
by u, v, and w

We have proved the following formula.

VoLuME oF a ParaLLELEPiPED 

The volume of the parallelepiped determined by the vectors u, v, and w is the 
magnitude of their scalar triple product:

V  0  u # 1v 3 w 2 0
In particular, if the volume of the parallelepiped is 0, then the vectors u, v, and 
w are coplanar, that is, they lie in the same plane.

ExaMPLE 5 ■ Coplanar Vectors 
Use the scalar triple product to show that the vectors u  81, 4, 79, v  82, 1, 49, 
and w  80, 9, 189 are coplanar.

soLuTion  We compute the scalar triple product:

 u # 1v 3 w 2  †  
1 4 7

2 1 4

0 9 18

†

  1 `  1 4

9 18
`  4 `  2 4

0 18
`  17 2 `  2 1

0 9
`

  1118 2  4136 2  7118 2  0

So the volume of the parallelepiped is 0, and hence the vectors u, v, and w are 
coplanar.

now Try Exercise 29 ■

*The word parallelepiped is derived from Greek roots which together mean, roughly, “parallel faces.” 
While the word is often pronounced “par-al-lel-uh-PIE-ped,” the more etymologically correct pronunciation 
is “par-al-lel-EP-uh-ped.”
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ConCEPTs
 1. The cross product of the vectors u  8a1, a2, a39 and 

v  8b1, b2, b39 is the vector

   u 3 v  †  
i j k
         

         

†

  

 

  i    j    k

  So the cross product of u  81, 0, 19 and v  82, 3, 09 
  is u 3 v     .

 2. The cross product of two vectors u and v is   
to u and to v. Thus if both vectors u and v lie in a plane, 

  the vector u 3 v is   to the plane.

skiLLs
3–8 ■ Cross Products  For the given vectors u and v, find the 
cross product u 3 v.

 3. u  81, 0, 39, v  82, 3, 09
 4. u  80, 4, 19, v  81, 1, 29
 5. u  86, 2, 89, v  89, 3, 129 
 6. u  82, 3, 49, v  8  16,  

1
4,  

1
3 9

 7. u  i  j  k, v  3 i  4 k

 8. u  3 i  j, v  3 j  k

9–12 ■ orthogonal Vectors  Two vectors u and v are given.  
(a) Find a vector orthogonal (perpendicular) to both u and v.  
(b) Find a unit vector orthogonal (perpendicular) to both u  
and v.

 9. u  81, 1, 19, v  81, 1, 19
10. u  82, 5, 39, v  83, 2, 19
11. u  1

2 i  j  2
3 k, v  6 i  12 j  6 k

12. u  3 j  5 k, v  i  2 k

13–16 ■ Length of a Cross Product  The lengths of two vectors 
u and v and the angle u between them are given. Find the length 
of their cross product, 0 u 3 v 0 .
13. 0  u 0  6, 0  v 0  1

2, u  60

14. 0  u 0  4, 0  v 0  5,  u  30

15. 0  u 0  10, 0  v 0  10, u  90

16. 0  u 0  0.12, 0  v 0  1.25, u  75

17–20 ■ Vectors Perpendicular to a Plane  Find a vector that 
is perpendicular to the plane passing through the three given 
points.

17. P10, 1, 0 2 ,  Q11, 2, 1 2 ,  R12, 1, 0 2
18. P13, 4, 5 2 ,  Q11, 2, 3 2 ,  R14, 7, 6 2

19. P11, 1, 5 2 ,  Q12, 2, 0 2 ,  R10, 0, 0 2
20. P13, 0, 0 2 ,  Q10, 2, 5 2 ,  R12, 0, 6 2

21–24 ■ area of a Parallelogram  Find the area of the parallelo-
gram determined by the given vectors.

21. u  83, 2, 19, v  81, 2, 39 
22. u  80, 3, 29, v  85, 6, 09
23. u  2 i  j  4 k, v  1

2 i  2 j  3
2 k

24. u  i  j  k, v  i  j  k

25–28 ■ area of a Triangle  Find the area of ^PQR.

25. P11, 0, 1 2 ,  Q10, 1, 0 2 ,  R12, 3, 4 2
26. P12, 1, 0 2 ,  Q10, 0, 1 2 ,  R14, 2, 0 2
27. P16, 0, 0 2 ,  Q10, 6, 0 2 ,  R10, 0, 6 2
28. P13, 2, 6 2 ,  Q11, 4, 6 2 ,  R13, 4, 6 2

29–34 ■ Volume of a Parallelepiped  Three vectors u, v, and w 
are given. (a) Find their scalar triple product u # 1v 3 w 2 . (b) Are 
the vectors coplanar? If not, find the volume of the parallelepiped 
that they determine.

29. u  81, 2, 39, v  83, 2, 19, w  80, 8, 109
30. u  83, 0, 49, v  81, 1, 19, w  87, 4, 09
31. u  82, 3, 29, v  81, 4, 09, w  83, 1, 39
32. u  81, 1, 09, v  81, 0, 19, w  80, 1, 19
33. u  i  j  k, v  j  k, w  i  j  k

34. u  2 i  2 j  3 k, v  3 i  j  k, w  6 i

aPPLiCaTions
35. Volume of a Fish Tank  A fish tank in an avant-garde restau-

rant is in the shape of a parallelepiped with a rectangular 
base that is 300 cm long and 120 cm wide. The front and 
back faces are vertical, but the left and right faces are 
slanted at 30° from the vertical and measure 120 cm by  
150 cm. (See the figure.)

(a) Let u, v, and w be the three vectors shown in the  
figure. Find u # 1v 3 w 2 .  [Hint: Recall that 
u # v  0  u 0 0  v 0 cos u and 0  u 3 v 0  0  u 0 0  v 0 sin u.]

(b) What is the capacity of the tank in liters?   
[Note: 1 L = 1000 cm3.]

30*
u

v

w

9.5 ExErCisEs
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702 CHAPTER 9 ■ Vectors in Two and Three Dimensions

36. rubik’s Tetrahedron  Rubik’s Cube, a puzzle craze of the 
1980s that remains popular to this day, inspired many similar 
puzzles. The one illustrated in the figure is called Rubik’s 
Tetrahedron; it is in the shape of a regular tetrahedron, with 
each edge !2 inches long. The volume of a regular tetrahe-
dron is one-sixth the volume of the parallelepiped determined 
by any three edges that meet at a corner.

(a) Use the triple product to find the volume of Rubik’s  
Tetrahedron.  [Hint: See Exercise 50 in Section 9.4, 
which gives the corners of a tetrahedron that has the 
same shape and size as Rubik’s Tetrahedron.]

(b) Construct six identical regular tetrahedra using modeling 
clay. Experiment to see how they can be put together to 
create a parallelepiped that is determined by three edges 
of one of the tetrahedra (thus confirming the above state-
ment about the volume of a regular tetrahedron). 

DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
37. DisCoVEr ■ ProVE: order of operations in the Triple  

Product  Given three vectors u, v, and w, their scalar triple 
product can be performed in six different orders:

u # 1v 3 w 2 , u # 1w 3 v 2 , v # 1u 3 w 2 ,
v # 1w 3 u 2 , w # 1u 3 v 2 , w # 1v 3 u 2

(a) Calculate each of these six triple products for the 
vectors: 

u  80, 1, 19  v  81, 0, 19  w  81, 1, 09
(b) On the basis of your observations in part (a), make a 

conjecture about the relationships between these six  
triple products.

(c) Prove the conjecture you made in part (b).

9.6 EquaTions oF LinEs anD PLanEs
■ Equations of Lines ■ Equations of Planes

In this section we find equations for lines and planes in a three-dimensional coordinate 
space. We use vectors to help us find such equations. 

■ Equations of Lines
A line L in three-dimensional space is determined when we know a point P01x0, y0, z0 2  
on L and the direction of L. In three dimensions the direction of a line is described 
by a vector v parallel to L. If we let r0 be the position vector of P0 (that is, the vec-
tor OP0

>
), then for all real numbers t the terminal points P of the position vectors 

r0  t v trace out a line parallel to v and passing through P0 (see Figure 1). Each 
value of the parameter t gives a point P on L. So the line L is given by the position 
vector r, where

r  r0  t v

for t [ R. This is the vector equation of a line.
Let’s write the vector v in component form v  8a, b, c9 and let r0  8x0, y0, z09 and 

r  8x, y, z9. Then the vector equation of the line becomes 

 8x, y, z9  8x0, y0, z09  t 8a, b, c9
  8x0  ta, y0  tb, z0  tc9

Since two vectors are equal if and only if their corresponding components are equal, we 
have the following result.

The position vector of a point 
1a1, a2, a3 2  is the vector 8a1, a2, a39; 
that is, it is the vector from the origin 
to the point.

0

v
P‚

P

L r‚ � tvr‚

tv

z

y
x

FiGurE 1
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SECTION 9.6 ■ Equations of Lines and Planes 703

ParaMETriC EquaTions For a LinE

A line passing through the point P1x0, y0, z0 2  and parallel to the vector 
v  8a, b, c9 is described by the parametric equations 

 x  x0  at

 y  y0  bt

 z  z0  ct

where t is any real number. 

ExaMPLE 1 ■ Equations of a Line 
Find parametric equations for the line that passes through the point 15, 2, 3 2  and is 
parallel to the vector v  83, 4, 29.
soLuTion  We use the above formula to find the parametric equations:

 x  5  3t

 y  2  4t

 z  3  2t

where t is any real number. (See Figure 2.)

now Try Exercise 3 ■

ExaMPLE 2 ■ Equations of a Line 
Find parametric equations for the line that passes through the points 11, 2, 6 2  and 
12, 3, 7 2 .
soLuTion  We first find a vector determined by the two points:

v  82  11 2 , 3  2, 7  69  83, 5, 139
Now we use v and the point 11, 2, 6 2  to find the parametric equations:

 x  1  3t

 y  2  5t

 z  6  13t

where t is any real number. A graph of the line is shown in Figure 3.

now Try Exercise 9 ■

In Example 2 we used the point 11, 2, 6 2  to get the parametric equations of the 
line. We could instead use the point 12, 3, 7 2 . The resulting parametric equations 
would look different but would still describe the same line (see Exercise 37).

■ Equations of Planes
Although a line in space is determined by a point and a direction, the “direction” of a 
plane cannot be described by a vector in the plane. In fact, different vectors in a plane 
can have different directions. But a vector perpendicular to a plane does completely 
specify the direction of the plane. Thus a plane in space is determined by a point 

0

v= 3, _4, 2��

(5, _2, 3)

z

yx

FiGurE 2 Line through 15, 2, 3 2  
with direction v  83, 4, 29

v= 3, _5, _13��
(2, _3, _7)

(_1, 2, 6)

z

yx

FiGurE 3 Line through 11, 2, 6 2  
and 12, 3, 7 2
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704 CHAPTER 9 ■ Vectors in Two and Three Dimensions

P01x0, y0, z0 2  in the plane and a vector n that is orthogonal to the plane. This orthogonal 
vector n is called a normal vector. To determine whether a point P1x, y, z 2  is in the 
plane, we check whether the vector P0P

>
 with initial point P0 and terminal point P is 

orthogonal to the normal vector. Let r0 and r be the position vectors of P0 and P, respec-
tively. Then the vector P0P

>
 is represented by r  r0 (see Figure 4). So the plane is de-

scribed by the tips of the vectors r satisfying 

n # 1r  r0 2  0

This is the vector equation of the plane. 
Let’s write the normal vector n in component form n  8a, b, c9 and let r0  8x0, y0, z09 

and r  8x, y, z9. Then the vector equation of the plane becomes 

8a, b, c9 # 8x  x0, y  y0, z  z09  0

Performing the dot product, we arrive at the following equation of the plane in the 
variables x, y, and z. 

EquaTion oF a PLanE

The plane containing the point P1x0, y0, z0 2  and having the normal vector 
n  8a, b, c9 is described by the equation 

a1x  x0 2  b1 y  y0 2  c1z  z0 2  0

ExaMPLE 3 ■ Finding an Equation for a Plane 
A plane has normal vector n  84, 6, 39 and passes through the point 
P13, 1, 2 2 .
(a) Find an equation of the plane.

(b) Find the intercepts, and sketch a graph of the plane.

soLuTion 

(a) By the above formula for the equation of a plane we have 

 41x  3 2  61 y  11 22  31z  12 22  0     Formula

 4x  12  6y  6  3z  6  0     Expand

 4x  6y  3z  12    Simplify

  Thus an equation of the plane is 4x  6y  3z  12. 

(b)  To find the x-intercept, we set y  0 and z  0 in the equation of the plane and 
solve for x. Similarly, we find the y- and z-intercepts.

x-intercept: Setting y  0, z  0, we get x  3.

y-intercept: Setting x  0, z  0, we get y  2.

z-intercept: Setting x  0, y  0, we get z  4.

   So the graph of the plane intersects the coordinate axes at the points 13, 0, 0 2 , 
10, 2, 0 2 , and 10, 0, 4 2 . This enables us to sketch the portion of the plane shown 
in Figure 5.

now Try Exercise 15 ■

ExaMPLE 4 ■ Finding an Equation for a Plane 
Find an equation of the plane that passes through the points P11, 4, 6 2 , 
Q12, 5, 1 2 , and R11, 1, 1 2 .

Notice that in Figure 5 the axes have 
been rotated so that we get a better view.

P

P‚n

r‚

r-r‚

r

0

z

y
x

FiGurE 4

(0, _2, 0)

(0, 0, 4)

(3, 0, 0)

0

z

y

x

FiGurE 5 The plane 
4x  6y  3z  32
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SECTION 9.6 ■ Equations of Lines and Planes 705

soLuTion  The vector n  PQ
>
3 PR

>
 is perpendicular to both PQ

>
 and PR

>
 and is 

therefore perpendicular to the plane through P, Q, and R. In Example 3 of Section 9.5 
we found PQ

>
3 PR

>
 840, 15, 159. Using the formula for an equation of a plane, 

we have 

 401x  1 2  151y  4 2  151z  6 2  0     Formula

 40x  40  15y  60  15z  90  0     Expand

 40x  15y  15z  10    Simplify

 8x  3y  3z  2     Divide by 5

So an equation of the plane is 8x  3y  3z  2. A graph of this plane is shown in 
Figure 6.

now Try Exercise 21 ■

In Example 4 we used the point P to obtain the equation of the plane. You can check 
that using Q or R gives the same equation.

(1, _1, 1)

(1, 4, 6)

(_2, 5, _1)

0

z

y
x

FiGurE 6 A plane through three 
points

ConCEPTs
 1. A line in space is described algebraically by using 

    equations. The line that passes through the 
point P1x0, y0, z0 2  and is parallel to the vector v  8a, b, c9 is 

  described by the equations x     , 

  y     , z     .

 2. The plane containing the point P1x0, y0, z0 2  and having the 
normal vector n  8a, b, c9 is described algebraically by the 

  equation    .

skiLLs
3–8 ■ Equations of Lines  Find parametric equations for  
the line that passes through the point P and is parallel to the  
vector v.

 3. P11, 0, 2 2 , v  83, 2, 39 
 4. P10, 5, 3 2 , v  82, 0, 49
 5. P13, 2, 1 2 , v  80, 4, 29
 6. P10, 0, 0 2 , v  84, 3, 59
 7. P11, 0, 2 2 , v  2 i  5 k

 8. P11, 1, 1 2 , v  i  j  k

9–14 ■ Equations of Lines  Find parametric equations for the 
line that passes through the points P and Q.

 9. P11, 3, 2 2 , Q12, 1, 1 2
 10. P12, 1, 2 2 , Q10, 1, 3 2
11. P11, 1, 0 2 , Q10, 2, 2 2  
 12. P13, 3, 3 2 , Q17, 0, 0 2
13. P13, 7, 5 2 , Q17, 3, 5 2  
14. P112, 16, 18 2 , Q112, 6, 0 2

15–20 ■ Equations of Planes  A plane has normal vector n and 
passes through the point P. (a) Find an equation for the plane.  
(b) Find the intercepts, and sketch a graph of the plane.

15. n  81, 1, 19, P10, 2, 3 2  
16. n  83, 2, 09, P11, 2, 7 2  
17. n  83, 0,  

1
2 9, P12, 4, 8 2

18. n  823,  
1
3, 19, P16, 0, 3 2

19. n  3 i  j  2 k, P10, 2, 3 2
20. n  i  4 j, P11, 0, 9 2

21–26 ■ Equations of Planes  Find an equation of the plane  
that passes through the points P, Q, and R.

21. P16, 2, 1 2 , Q15, 3, 1 2 , R17, 0, 0 2
22. P13, 4, 5 2 , Q11, 2, 3 2 , R14, 7, 6 2
23. PA3, 13, 5B, QA4, 23, 3B, R12, 0, 1 2
24. PA32, 4, 2B, QA 

1
2, 2, 0B, RA 

1
2, 0, 2B

25. P16, 1, 1 2 , Q13, 2, 0 2 , R10, 0, 0 2
26. P12, 0, 0 2 , Q10, 2, 2 2 , R10, 0, 4 2

skiLLs Plus
27–30 ■ Equations of Lines  A description of a line is given. 
Find parametric equations for the line.

27. The line crosses the z-axis where z  4 and crosses the  
xy-plane where x  2 and y  5.

28. The line crosses the x-axis where x  2 and crosses the  
z-axis where z  10.

29. The line perpendicular to the xz-plane that contains the point 
12, 1, 5 2 .

30. The line parallel to the y-axis that crosses the xz-plane where 
x  3 and z  2.

9.6 ExErCisEs
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706 CHAPTER 9 ■ Vectors in Two and Three Dimensions

31–32 ■ Equations of Planes  A description of a plane is given. 
Find an equation for the plane.

31. The plane that crosses the x-axis where x  1, the y-axis 
where y  3, and the z-axis where z  4.

32. The plane that is parallel to the plane x  2y  4z  6 and 
contains the origin.

33–34 ■ More Equations of Planes  A description of a plane is 
given. Find an equation for the plane.

33. The plane that contains all the points that are equidistant 
from the points P13, 2, 5 2  and Q11, 1, 4 2 .

34. The plane that contains the line x  1  t, y  2  t,  
z  3t and the point P12, 0, 6 2 .  [Hint: A vector from 
any point on the line to P will lie in the plane.]

DisCuss ■ DisCoVEr ■ ProVE ■ wriTE
35. DisCoVEr: intersection of a Line and a Plane  A line has 

parametric equations 

x  2  t  y  3t  z  5  t

  and a plane has equation 5x  2y  2z  1.

(a) For what value of t does the corresponding point on the 
line intersect the plane?

(b) At what point do the line and the plane intersect?

36. DisCuss ■ DisCoVEr: Lines and Planes  A line is parallel 
to the vector v, and a plane has normal vector n.

(a) If the line is perpendicular to the plane, what is the rela-
tionship between v and n (parallel or perpendicular)?

(b) If the line is parallel to the plane (that is, the line and the 
plane do not intersect), what is the relationship between 
v and n (parallel or perpendicular)?

(c) Parametric equations for two lines are given. Which line 
is parallel to the plane x  y  4z  6? Which line is 
perpendicular to this plane?

 Line 1:  x  2t, y  3  2t, z  4  8t

 Line 2:  x  2t, y  5  2t, z  3  t

37. DisCuss: same Line: Different Parametric Equations  Every 
line can be described by infinitely many different sets of 
parametric equations, since any point on the line and any 
vector parallel to the line can be used to construct the equa-
tions. But how can we tell whether two sets of parametric 
equations represent the same line? Consider the following 
two sets of parametric equations:

  Line 1:  x  1  t, y  3t, z  6  5t

  Line 2:  x  1  2t, y  6  6t, z  4  10t

(a) Find two points that lie on Line 1 by setting t  0 and 
t  1 in its parametric equations. Then show that these 
points also lie on Line 2 by finding two values of the 
parameter that give these points when substituted into the 
parametric equations for Line 2.

(b) Show that the following two lines are not the same by 
finding a point on Line 3 and then showing that it does 
not lie on Line 4.

 Line 3:  x  4t, y  3  6t, z  5  2t

 Line 4:  x  8  2t, y  9  3t, z  6  t

Vectors in Two Dimensions (p. 667)
A vector is a quantity with both magnitude and direction. A vec-
tor in the coordinate plane is expressed in terms of two coordi-
nates or components

v  8a1, a29
If a vector v has its initial point at P1x1, y1 2  and its terminal point 
at Q1x2, y2 2 , then 

v  8x2  x1, y2  y19
Let u  8a1, a29, v  8b1, b29, and  c [ R. The operations on vec-
tors are defined as follows. 

 u  v  8a1  b1, a2  b29    Addition

 u  v  8a1  b1, a2  b29    Subtraction

 cu  8ca1, ca29     Scalar multiplication

The vectors i and j are defined by 

i  81, 09  j  80, 19

Any vector v  8a1, a29 can be expressed as 

v  a1 i  a2 
j

Let v  8a1, a29. The magnitude (or length) of v is

0  v 0  "a2
1  a2

2

The direction of v is the smallest positive angle u in standard posi-
tion formed by the positive x-axis and v (see the figure below).

If v  8a1, a29, then the components of v satisfy

a1  0  v 0  cos u  a2  0  v 0  sin u

x

y

v
|v | ß ¨

|v | ç ¨
0

¨

■ ProPErTiEs anD ForMuLas

CHaPTEr 9 ■ rEViEw
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The Dot Product of Vectors  (p. 676)
If u  8a1, a29 and v  8b1, b29, then their dot product is  

u # v  a1b1  a2b2

If u is the angle between u and v, then

u # v  0  u 0  0  v 0 cos u

The angle u between u and v satisfies

cos u 
u # v
0  u 0  0  v 0

The vectors u and v are perpendicular if and only if 

u # v  0

The component of u along v (a scalar) and the projection of u 
onto v (a vector) are given by 

compv u 
u # v
0  v 0   projv u  a u # v

0  v 0 2 bv

¨ v

u

v

u

¨

projv ucompv u

The work W done by a force F in moving along a vector D is 

W  F # D

Three-Dimensional Coordinate Geometry (p. 684)
A coordinate system in space consists of a fixed point O (the  
origin) and three directed lines through O that are perpendicular 
to each other, called the coordinate axes and labeled the x-axis, 
y-axis, and z-axis. The coordinates of a point P1a, b, c 2  determine 
its location relative to the coordinate axes. 

O

b

a
c

P(a, b, c)

yx

z

The distance between the points P1x1, y1, z1 2  and Q1x2, y2, z2 2  is 
given by the Distance Formula:

d1P, Q 2  "1x2  x1 2 2  1y2  y1 2 2  1z2  z1 2 2
The equation of a sphere with center C1h, k, l 2  and radius r is 

1x  h 2 2  1y  k 2 2  1z  l 2 2  r2

Vectors in Three Dimensions (p. 689)
A vector in space is a line segment with a direction.  We sketch  
a vector as an arrow to indicate the direction. A vector in the 

three- dimensional coordinate system is expressed in terms of 
three coordinates or components

v  8a1, a2, a39
If a vector v has its initial point at P1x1, y1, z1 2  and its terminal 
point at Q1x2, y2, z2 2 , then 

v  8x2  x1, y2  y1, z2  z19
Let u  8a1, a2, a39, v  8b1, b2, b39, and c [ R. The operations 
of vector addition, vector subtraction, scalar multiplication are 
defined as follows:

 u  v  8a1  b1, a2  b2, a3  b39
 u  v  8a1  b1, a2  b2, a3  b39

 cu  8ca1, ca2, ca39
The vectors i, j, and k are defined by 

i  81, 0, 09  j  80, 1, 09  k  80, 0, 19
Any vector v  8a1, a2, a39 can be expressed as 

v  a1 i  a2 
j  a3 k

Let v  8a1, a2, a39. The magnitude (or length) of v is

0  v 0  "a2
1  a2

2  a2
3

The direction angles of a nonzero vector v  8a1, a2, a39 are the 
angles a, b, and g in the interval 30, p 4  that the vector v makes 
with the positive x-, y-, and z-axes. They are given by 

cos a 
a1

0  v 0   cos b 
a2

0  v 0   cos g 
a3

0  v 0
The direction angles satisfy the equation 

cos2
 a  cos2

 b  cos2
 g  1

The Dot Product of Vectors in space (p. 691)
If u  8a1, a2, a39 and v  8b1, b2, b39 are vectors in space, then 
their dot product is

u # v  a1b1  a2b2  a3b3

If u is the angle between u and v, then

u # v  0  u 0  0  v 0 cos u

The angle u between u and v satisfies

cos u 
u # v
0  u 0  0  v 0

The vectors u and v are perpendicular if and only if 

u # v  0

The Cross Product of Vectors in space (p. 695)
If u  8a1, a2, a39 and v  8b1, b2, b39 are vectors in space, then 
their cross product is the vector 

u 3 v  1a2b3  a3b2 2 i  1a1b3  a3b1 2 j  1a1b2  a2b1 2k
We can calculate the cross product using determinants.

u 3 v  †
i j k

a1 a2 a3

b1 b2 b3

†

The vector u 3 v is orthogonal (or perpendicular) to both u and v.
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708 CHAPTER 9 ■ Vectors in Two and Three Dimensions

The cross product satisfies 

0  u 3 v 0  0  u 0  0  v 0  sin u

The vectors u and v are parallel if and only if 

u 3 v  0

The area of the parallelogram determined by the vectors u and 
v is 

A  0  u 3 v 0
The volume of the parallelepiped determined by the vectors u, 
v, and w is 

V  0  u # 1v 3 w 2  0

Equations of Lines and Planes (p. 702)
A line passing through the point P1x0, y0, z0 2 and parallel to the 
vector v  8a, b, c9 is described by the parametric equations

 x  x0  at

 y  y0  bt

 z  z0  ct

where t is any real number.

A plane containing the point P1x0, y0, z0 2 and having the normal 
vector n  8a, b, c9 is described by the equation

a1x  x0 2  b1y  y0 2  c1z  z0 2  0

 1. (a)  What is a vector in the plane? How do we represent a 
vector in the coordinate plane?

(b) Find the vector with initial point 12, 3 2  and terminal 
point 14, 10 2 .

(c) Let v  82, 19. If the initial point of v is placed at 
P11, 1 2 , where is its terminal point? Sketch several rep-
resentations of v.

(d) How is the magnitude of v  8a1, a29 defined? Find the 
magnitude of w  83, 49. 

(e) What are the vectors i and j? Express the vector 
v  85, 99 in terms of i and j. 

(f) Let v  8a1, a29 be a vector in the coordinate plane. What 
is meant by the direction u of v? What are the coordi-
nates of v in terms of its length and direction? Sketch a 
figure to illustrate your answer.

(g) Suppose that v has length 0  v 0  5 and direction 
u  p/6. Express v in terms of its coordinates. 

 2. (a) Define addition and scalar multiplication for vectors. 

(b) If u  82, 39 and v  85, 99, find u  v and 4 u.

 3. (a)  Define the dot product of the vectors u  8a1, a29 and 
v  8b1, b29, and state the formula for the angle u 
between u and v.

(b) If u  82, 39 and v  81, 49, find u # v and find the angle 
between u and v.

 4. (a)  Describe the three-dimensional coordinate system. What 
are the coordinate planes?

(b) What is the distance from the point 13, 2, 5 2  to each of 
the coordinate planes? 

(c) State the formula for the distance between the points 
P1x1, y1, z1 2  and Q1x2, y2, z2 2 .

(d) Find the distance between the points P11, 2, 3 2  and 
Q13, 1, 4 2 .

(e) State the equation of a sphere with center C1h, k, l 2  and 
radius r.

(f) Find an equation for the sphere of radius 5 centered at 
the point 11, 2, 3 2 .

 5. (a)  What is a vector in space? How do we represent a vector 
in a three-dimensional coordinate system?

(b) Find the vector with initial point 12, 3, 1 2  and terminal 
point 14, 10, 5 2 .

(c) How is the magnitude of v  8a1, a2, a39 defined? Find 
the magnitude of w  83, 4, 19.

(d) What are the vectors i, j, and k? Express the vector 
v  85, 9, 19 in terms of i, j, and k. 

 6. (a) Define addition and scalar multiplication for vectors. 

(b) If u  82, 3, 19 and v  85, 9, 29, find u  v and 4 u.

 7. (a)  Define the dot product of the vectors u  8a1, a2, a39 and 
v  8b1, b2, b39, and state the formula for the angle u 
between u and v.

(b) If u  82, 3, 19 and v  81, 4, 59, find u # v.

 8. (a)  Define the cross product of the vectors u  8a1, a2, a39 
and v  8b1, b2, b39.

(b) True or False? The vector u 3 v is perpendicular to both 
u and v.

(c) Let u and v be vectors in space. State the formula that 
relates the magnitude of u 3 v and the angle u between 
u and v.

(d) How can we use the cross product to determine whether 
two vectors are parallel? 

 9. (a)  What are the two properties that determine a line in 
space? Give parametric equations for a line in space.

(b) Find parametric equations for the line through the point 
12, 4, 1 2  and parallel to the vector v  87, 5, 39.

 10. (a)  What are the two properties that determine a plane in 
space? State the equation of a plane.

(b) Find an equation for the plane passing through the point 
16, 4, 3 2 and with normal vector n  85, 3, 29.

■ ConCEPT CHECk

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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■ ExErCisEs

Exercises 1–24 deal with vectors in two dimensions.

1–4 ■ operations with Vectors  Find 0  u 0 , u  v, u  v, 2 u, 
and 3 u  2 v.

 1. u  82, 39, v  88, 19  2. u  85, 29, v  83, 09
 3. u  2 i  j, v  i  2 j  4. u  3 j, v  i  2 j

5–6 ■ Component Form of a Vector  A description of a vector is 
given. Express the vector in component form.

 5. Find the vector with initial point P10, 3 2  and terminal point 
Q13, 1 2 .

 6. If the vector 5 i  8 j is placed in the plane with its initial 
point at P15, 6 2 , find its terminal point.

7–8 ■ Length and Direction of Vectors  Find the length and 
direction of the given vector.

 7. u  82, 2!39  8. v  2 i  5 j

9–10 ■ Component Form of a Vector  The length 0  u 0  and 
direction u of a vector u are given. Express u in component form.

 9. 0  u 0  20, u  60 10. 0  u 0  13.5, u  125

11. resultant Force  Two tugboats are pulling a barge as shown 
in the figure. One pulls with a force of 2.0 3 104 lb in the 
direction N 50° E, and the other pulls with a force of 
3.4 3 104 lb in the direction S 75° E.

(a) Find the resultant force on the barge as a vector.

(b) Find the magnitude and direction of the resultant force.

12. True Velocity of a Plane  An airplane heads N 60° E at a 
speed of 600 mi/h relative to the air. A wind begins to blow 
in the direction N 30° W at 50 mi/h. (See the figure.)

(a) Find the velocity of the airplane as a vector.

(b) Find the true speed and direction of the airplane.

N

30˚

60˚

50 mi/h

600 mi/h

13–16 ■ Dot Products  Find the vectors 0  u 0 , u # u, and u # v.

13. u  84, 39, v  89, 89 
14. u  85, 129, v  810, 49
15. u  2 i  2 j, v  i  j

16. u  10 j, v  5 i  3 j

17–20 ■ orthogonal Vectors  Are u and v orthogonal? If not, 
find the angle between them.

17. u  84, 29, v  83, 69
 18. u  85, 39, v  82, 69
19. u  2 i  j, v  i  3 j

 20. u  i  j, v  i  j

21–24 ■ scalar and Vector Projections  Two vectors u and v are 
given. (a) Find the component of u along v. (b) Find projv u.  
(c) Resolve u into the vectors u1 and u2, where u1 is parallel to  
v and u2 is perpendicular to v.

21. u  83, 19, v  86, 19 
22. u  88, 69, v  820, 209
23. u  i  2 j, v  4 i  9 j

24. u  2 i  4 j, v  10 j

Exercises 25–54 deal with three-dimensional coordinate geometry.

25–26 ■ Distance between Points  Plot the given points, and find 
the distance between them.

25. P11, 0, 2 2 , Q13, 2, 3 2  26. P10, 2, 4 2 , Q11, 3, 0 2

27–28 ■ Finding an Equation of a sphere  Find an equation of 
the sphere with the given radius r and center C.

27. r  6, C10, 0, 0 2  28. r  2, C11, 2, 4 2

29–30 ■ Equations of spheres  Show that the equation repre-
sents a sphere, and find its center and radius.

29. x2  y2  z2  2x  6y  4z  2

30. x2  y2  z2  4y  4z

31–32 ■ operations with Vectors  Find 0  u 0 , u  v, u  v, 
and 3

4 u  2v.

31. u  84, 2, 49, v  82, 3, 19
32. u  6 i  8 k, v  i  j  k

33–36 ■ angle between Vectors  Two vectors u and v are given. 
(a) Find their dot product u # v. (b) Are u and v perpendicular? If 
not, find the angle between them.

33. u  83, 2, 49, v  83, 1, 29
34. u  82, 6, 59, v  81,  

1
2, 19

35. u  2 i  j  4 k, v  3 i  2 j  k

36. u  j  k, v  i  j
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CHaPTEr 9
37–40 ■ Cross Products and orthogonal Vectors  Two vectors u 
and v are given. (a) Find their cross product u 3 v. (b) Find a 
unit vector that is perpendicular to both u and v.

37. u  81, 1, 39, v  85, 0, 29
38. u  82, 3, 09, v  80, 4, 19
39. u  i  j, v  2 j  k

40. u  i  j  k, v  i  j  k

41. area of a Triangle  Find the area of the triangle with vertices 
P12, 1, 1 2 , Q10, 0, 3 2 , and R12, 4, 0 2 .

42. area of a Parallelogram  Find the area of the parallelogram 
determined by the vectors u  84, 1, 19 and v  81, 2, 29.

43. Volume of a Parallelepiped  Find the volume of the parallel-
epiped determined by the vectors u  2 i  j, v  2 j  k, 
and w  3 i  j  k.

44. Volume of a Parallelepiped  A parallelepiped has one vertex 
at the origin; the three edges that have the origin as one end-
point extend to the points P10, 2, 2 2 , Q13, 1, 1 2 , and 
R11, 4, 1 2 . Find the volume of the parallelepiped.

45–46 ■ Equations of Lines  Find parametric equations for the 
line that passes through P and is parallel to v.

45. P12, 0, 6 2 , v  83, 1, 09
46. P15, 2, 8 2 , v  2 i  j  5 k

47–48 ■ Equations of Lines  Find parametric equations for the 
line that passes through the points P and Q.

47. P16, 2, 3 2 , Q14, 1, 2 2
48. P11, 0, 0 2 , Q13, 4, 2 2

49–50 ■ Equations of Planes  Find an equation for the plane 
with normal vector n and passing through the point P.

49. n  82, 3, 59, P12, 1, 1 2
50. n  i  2 j  7 k, P12, 5, 2 2

51–52 ■ Equations of Planes  Find an equation of the plane that 
passes through the points P, Q, and R.

51. P11, 1, 1 2 , Q13, 4, 2 2 , R16, 1, 0 2
52. P14, 0, 0 2 , Q10, 3, 0 2 , R10, 0, 5 2
53. Equation of a Line  Find parametric equations for the line 

that crosses the x-axis where x  2 and the z-axis where 
z  4.

54. Equation of a Plane  Find an equation of the plane that con-
tains the line x  2  2t, y  4t, z  6 and the point 
P15, 3, 0 2 . 
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 1. Let u be the vector with initial point P13, 1 2  and terminal point Q13, 9 2 .
(a) Graph u in the coordinate plane.

(b) Express u in terms of i and j.

(c) Find the length of u.

 2. Let u  81, 39, and let v  86, 29.
(a) Find u  3 v.

(b) Find 0  u  v 0 .
(c) Find u # v.

(d) Are u and v perpendicular?

 3. Let u  84!3, 49.
(a) Graph u in the coordinate plane, with initial point 10, 0 2 .
(b) Find the length and direction of u.

 4. A river is flowing due east at 8 mi/h. A man heads his motorboat in the direction N 30° E 
in the river. The speed of the motorboat relative to the water is 12 mi/h. 

(a) Express the true velocity of the motorboat as a vector.

(b) Find the true speed and direction of the motorboat.

 5. Let u  3 i  2 j and v  5 i  j.

(a) Find the angle between u and v.

(b) Find the component of u along v.

(c) Find projv u.

 6. Find the work done by the force F  3 i  5 j in moving an object from the point 12, 2 2  to 
the point 17, 13 2 .

 7. Let P14, 3, 1 2  and Q16, 1, 3 2  be two points in three-dimensional space. 

(a) Find the distance between P and Q.

(b)  Find an equation for the sphere whose center is P and for which the segment PQ
>
 is a  

radius of the sphere.

(c)  The vector u has initial point P and terminal point Q. Express u both in component 
form and using the vectors i, j, and k.

 8. Calculate the given quantity if

u  i  j  2 k  v  3 i  2 j  k  w  j  5 k

(a) 2u  3v (b) 0  u 0
(c) u # v (d) u 3 v

(e) 0  v 3 w 0  (f)  u # 1v 3 w 2
(g) The angle between u and v (rounded to the nearest degree)

 9. Find two unit vectors that are perpendicular to both j  2 k and i  2 j  3 k.

10. (a)  Find a vector perpendicular to the plane that contains the points P11, 0, 0 2 , 
Q12, 0, 1 2 , and R11, 4, 3 2 .

(b) Find an equation for the plane that contains P, Q, and R.

(c) Find the area of triangle PQR.

11. Find parametric equations for the line that contains the points P12, 4, 7 2  and 
Q10, 3, 5 2 .

CHaPTEr 9 TEsT

A CUMULATIVE REVIEW TEST FOR CHAPTERS 8 AND 9 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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To model the gravitational force near the earth or the flow of wind on a surface of the 
earth, we use vectors. For example, at each point on the surface of the earth air flows with 
a certain speed and direction. We represent the air currents by vectors. If we graph many 
of these vectors, we get a “picture” or a graph of the flow of the air. (See Figure 1.) 

■ Vector Fields in the Plane
A vector field in the coordinate plane is a function that assigns a vector to each point 
in the plane (or to each point in some subset of the plane). For example, 

F1x, y 2  x i  y j

is a vector field that assigns the vector x i  y j to the point 1x, y2. We graph this vector 
field in the next example.

ExaMPLE 1 ■ Graphing a Vector Field in the Plane
Graph the vector field F1x, y 2  x i  y j. What does the graph indicate?

soLuTion  The table gives the vector field at several points. In Figure 2 we sketch the 
vectors in the table together with several other vectors in the vector field.

5

_5

_5

y

x5

FiGurE 2

xx, yc F 5 x i 1 y j

11, 3 2  i  3 j
13, 3 2  3 i  3 j
14, 6 2  4 i  6 j
16, 1 2  6 i  j
16, 6 2  6 i  6 j

We see from the graph that the vectors in the field point away from the origin, and 
the farther from the origin, the greater the magnitude of the vector. ■

ExaMPLE 2 ■ Graphing a Vector Field in the Plane
A potter’s wheel has a radius of 5 in. The velocity of each point on the wheel is given 
by the vector field F1x, y 2  y i  x j. What does the graph indicate?

soLuTion  The table gives the vector field at several points. In Figure 3 we sketch the 
vectors in the table.

xx, yc Fxx, yc xx, yc Fxx, yc

11, 0 2 80, 19 11, 0 2 80, 19
12, 2 2 82, 29 12, 2 2 82, 29
13, 0 2 80, 39 13, 0 2 80, 39
10, 1 2 81, 09 10, 1 2 81, 09
12, 2 2 82, 29 12, 2 2 82, 29
10, 3 2 83, 09 10, 3 2 83, 09

We see from the graph that the wheel is rotating counterclockwise and that the 
points at the edge of the wheel have a higher velocity than do the points near the cen-
ter of the wheel. ■

Vector FieldsFoCus on MoDELinG

z

y

x

FiGurE 1 Wind represented by a 
vector field

y

x0
F(1, 0)

F(2, 2)F(0, 3)

FiGurE 3
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  Vector Fields 713

Graphing vector fields requires graphing a lot of vectors. Some graphing calculators 
and computer programs are capable of graphing vector fields. You can also find many 
Internet sites that have applets for graphing vector fields. The vector field in Example 2 
is graphed with a computer program in Figure 4. Notice how the computer scales the 
lengths of the vectors so that they are not too long yet are proportional to their true 
lengths.

■ Vector Fields in space
A vector field in three-dimensional space is a function that assigns a vector to each 
point in space (or to each point in some subset of space). For example, 

F1x, y, z 2  2x i  y j  z2 k

is a vector field that assigns the vector 2x i  y j  z3 k to the point 1x, y, z 2 . In general, 
it is difficult to draw a vector field in space by hand, since we must draw many vectors 
with the proper perspective. The vector field in the next example is particularly simple, 
so we’ll sketch it by hand.

ExaMPLE 3 ■ Graphing a Vector Field in space
Graph the vector field F1x, y, z 2  z k. What does the graph indicate?

soLuTion  A graph is shown in Figure 5. Notice that all vectors are vertical and point 
upward above the xy-plane and downward below it. The magnitude of each vector 
increases with the distance from the xy-plane.  ■

The gravitational pull of the earth in the space surrounding it is mathematically mod-
eled by a vector field. According to Newton’s Law of Gravity, the gravitational force F 
is directed toward the center of the earth and is inversely proportional to the distance 
from the center of the earth. The magnitude of the force is 

F  G 
Mm

r2

where M is the mass of the earth, m is mass of an object in proximity to the earth, r is 
the distance from the object to the center of the earth, and G is the universal gravita-
tional constant. 

To model the gravitational force, let’s place a three-dimensional coordinate system 
with the origin at the center of the earth. The gravitational force at the point 1x, y, z 2  is 
directed toward the origin. A unit vector pointing toward the origin is 

u   

x i  y j  z k

"x2  y2  z2

To obtain the gravitational vector field, we multiply this unit vector by the appropriate 
magnitude, namely, GMm/r2. Since the distance r from the point 1x, y, z 2  to the origin 

is r  "x2  y2  z2, it follows that r2  x2  y2  z2. So we can express the 
gravitational vector field as 

F1x, y, z 2  GMm 
x i  y j  z k

1x2  y2  z2 2 3/2

Some of the vectors in the gravitational field F are pictured in Figure 6.

5

_5

_5 5

FiGurE 4

0

z

y
x

FiGurE 5

FiGurE 6 The gravitational field
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714 Focus on Modeling

ProbLEMs 
1–6 ■ Sketch the vector field F by drawing a diagram as in Figure 3.

 1. F1x, y 2  1
2 i  1

2 j  2. F1x, y 2  i  x j

 3. F1x, y 2  y i  1
2 j  4. F1x, y 2  1x  y 2 i  x j

 5. F1x, y 2 
y i  x j

"x2  y2
  6. F1x, y 2 

y i  x j

"x2  y2

7–10 ■ Sketch the vector field F by drawing a diagram as in Figure 5.

 7. F1x, y, z 2  j  8. F1x, y, z 2  j  k

 9. F1x, y, z 2  z j 10. F1x, y, z 2  y k

11–14 ■ Match the vector field F with the graphs labeled I–IV.

11. F1x, y 2  8 y, x9 12. F1x, y 2  81, sin y9
13. F1x, y 2  8x  2, x  19 14. F1x, y 2  8 y, 1/x9

3 5

_3

_3 3

_5

_5 5

5

_5

_5 5

I II III IV3

_3

_3 3

15–18 ■ Match the vector field F with the graphs labeled I–IV.

15. F1x, y, z 2  i  2 j  3 k 16. F1x, y, z 2  i  2 j  z k

17. F1x, y, z 2  x i  y j  3 k 18. F1x, y, z 2  x i  y j  z k

z
1
0

_1

y 10_1 x1 0 _1

z
1

_1

y 10_1 x1 0 _1
0y 1_1 x1 0 _1

z
1
0

_1

z
1
0

_1

y 10_1 1 0 _1
x

I II III IV

 19. Flow Lines in a Current  The current in a turbulent bay is described by the velocity vec-
tor field 

F1x, y 2  1x  y 2 i  1x  y 2 j
  A graph of the vector field F is shown. If a small toy boat is put in this bay, we can tell 

from the graph of the vector field what path the boat would follow. Such paths are called 
flow lines (or streamlines) of the vector field. A streamline starting at 11, 3 2  is shown in 
blue in the figure. Sketch streamlines starting at the given point. 

(a) 11, 4 2      (b) 12, 1 2     (c) 11, 2 2  

5

_5

_5

y

x5
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Throughout the preceding chapters  we modeled real-world situations by  
equations. But many real-world situations involve too many variables to be 
modeled by a single equation. For example, weather depends on the 
relationships among many variables, including temperature, wind speed, air 
pressure, and humidity. So to model the weather (and forecast a snowstorm 
like the one pictured above), scientists use many equations, each having 
many variables. Such collections of equations, called systems of equations, 
work together to describe the weather. Systems of equations with hundreds 
of variables are used by airlines to establish consistent flight schedules and 
by telecommunications companies to find efficient routings for telephone 
calls. In this chapter we learn how to solve systems of equations that consist 
of several equations in several variables. 

715

Systems of Equations  
and Inequalities10

10.1 Systems of Linear 
Equations in Two 
Variables

10.2 Systems of Linear 
Equations in Several 
Variables

10.3 Partial Fractions
10.4 Systems of Nonlinear 

Equations
10.5 Systems of Inequalities

FocuS oN ModELINg
 Linear Programming

© Dainis Derics/Shutterstock.com
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716 CHAPTER 10 ■ Systems of Equations and Inequalities 

10.1 SySTEMS oF LINEar EquaTIoNS IN Two VarIabLES
■ Systems of Linear Equations and Their Solutions ■ Substitution Method ■ Elimination 
Method ■ graphical Method ■ The Number of Solutions of a Linear System in Two 
Variables ■ Modeling with Linear Systems

■ Systems of Linear Equations and Their Solutions
A system of equations is a set of equations that involve the same variables. A system 
of linear equations is a system of equations in which each equation is linear. A solu-
tion of a system is an assignment of values for the variables that makes each equation 
in the system true. To solve a system means to find all solutions of the system.

Here is an example of a system of linear equations in two variables:

b2x  y  5

x  4y  7
    

Equation 1

Equation 2

We can check that x  3 and y  1 is a solution of this system.

 Equation 1 Equation 2

  2x  y  5  x  4y  7

 213 2  1  5  ✓ 3  411 2  7  ✓

The solution can also be written as the ordered pair 13, 1 2 .
Note that the graphs of Equations 1 and 2 are lines (see Figure 1). Since the solution 

13, 1 2  satisfies each equation, the point 13, 1 2  lies on each line. So it is the point of in-
tersection of the two lines.

(3,	1)

1 3

2x-y=5

1

0

x+4y=7

y

x

FIgurE 1

■ Substitution Method
To solve a system using the substitution method, we start with one equation in the 
system and solve for one variable in terms of the other variable.

SubSTITuTIoN METhod 

1. Solve for one Variable.  Choose one equation, and solve for one variable in 
terms of the other variable.

2. Substitute.  Substitute the expression you found in Step 1 into the other 
equation to get an equation in one variable, then solve for that variable.

3. back-Substitute.  Substitute the value you found in Step 2 back into the 
expression found in Step 1 to solve for the remaining variable.

A linear equation in two variables is an 
equation of the form

ax  by  c

The graph of a linear equation is a line 
(see Section 1.3).
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SECTION 10.1 ■ Systems of Linear Equations in Two Variables 717

ExaMPLE 1 ■ Substitution Method
Find all solutions of the system.

b2x    y  1

3x  4y  14
    

Equation 1

Equation 2

 SoLuTIoN Solve for one variable.  We solve for y in the first equation.

y  1  2x    Solve for y in Equation 1

Substitute.  Now we substitute for y in the second equation and solve for x.

 3x  411  2x 2    14    Substitute y  1  2x into Equation 2

 3x  4  8x    14    Expand

 5x  4    14    Simplify

 5x    10    Subtract 4

 x  2    Solve for x

back-substitute.  Next we back-substitute x  2 into the equation y  1  2x.

y  1  212 2  5    Back-substitute

Thus x  2 and y  5, so the solution is the ordered pair 12, 5 2 . Figure 2 shows 
that the graphs of the two equations intersect at the point 12, 5 2 .

(_2,	5)

y

x
1

2x+y=1

3x+4y=14

1

0FIgurE 2

Now Try Exercise 5 ■

■ Elimination Method
To solve a system using the elimination method, we try to combine the equations using 
sums or differences so as to eliminate one of the variables.

ELIMINaTIoN METhod

1. adjust the coefficients.  Multiply one or more of the equations by appropri-
ate numbers so that the coefficient of one variable in one equation is the neg-
ative of its coefficient in the other equation.

2. add the Equations.  Add the two equations to eliminate one variable, then 
solve for the remaining variable.

3. back-Substitute.  Substitute the value that you found in Step 2 back into one 
of the original equations, and solve for the remaining variable.

chEck your aNSwEr

x  2, y  5:

b  212 2  5  1

312 2  415 2  14 ✓
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718 CHAPTER 10 ■ Systems of Equations and Inequalities 

ExaMPLE 2 ■ Elimination Method
Find all solutions of the system.

b3x  2y  14

0x  2y  2
    

Equation 1

Equation 2

SoLuTIoN  Since the coefficients of the y-terms are negatives of each other, we can 
add the equations to eliminate y.

 b3x  2y  14

0x  2y  2
    System

  4x  16    Add

 x  4     Solve for x

Now we back-substitute x  4 into one of the original equations and solve for y. Let’s 
choose the second equation because it looks simpler.

 x  2y  2     Equation 2

 4  2y  2     Back-substitute x  4 into Equation 2

 2y  2    Subtract 4

 y  1     Solve for y

The solution is 14, 1 2 . Figure 3 shows that the graphs of the equations in the system 
intersect at the point 14, 1 2 .

Now Try Exercise 9 ■

■ graphical Method 
In the graphical method we use a graphing device to solve the system of equations.

graPhIcaL METhod

1. graph Each Equation.  Express each equation in a form suitable for the 
graphing calculator by solving for y as a function of x. Graph the equations 
on the same screen.

2. Find the Intersection Point(s).  The solutions are the x- and y-coordinates of 
the point(s) of intersection.

ExaMPLE 3 ■ graphical Method
Find all solutions of the system

b  1.35x  2.13y  2.36

 2.16x  0.32y  1.06

SoLuTIoN  Solving for y in terms of x, we get the equivalent system 

b  y  0.63x  1.11

 y  6.75x  3.31

See Appendix C, Graphing with a 
Graphing Calculator, for guidelines  
on using a graphing calculator. See 
Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
graphing instructions. 

(4,	1)

y

x
1

7

x-2y=2

3x+2y=14

1

0

FIgurE 3
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SECTION 10.1 ■ Systems of Linear Equations in Two Variables 719

where we have rounded the coefficients to two decimals. Figure 4 shows that the two 
lines intersect. Zooming in, we see that the solution is approximately 10.30, 1.30 2 .

5

_5

_1.5 1.5

FIgurE 4

Now Try Exercises 13 and 51 ■

■ The Number of Solutions of a Linear System  
in Two Variables

The graph of a linear system in two variables is a pair of lines, so to solve the system 
graphically, we must find the intersection point(s) of the lines. Two lines may intersect 
in a single point, they may be parallel, or they may coincide, as shown in Figure 5. So 
there are three possible outcomes in solving such a  system.

NuMbEr oF SoLuTIoNS oF a LINEar SySTEM IN Two VarIabLES

For a system of linear equations in two variables, exactly one of the following 
is true. (See Figure 5.)

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system that has no solution is said to be inconsistent. A system with infinitely 
many solutions is called dependent.

0 x

y

0 x

y

0 x

y

(a) Lines intersect at a
single point. The system
has one solution.

(b) Lines are parallel and
do not intersect. The
system has no solution.

(c) Lines coincide—equations
are for the same line. The system
has infinitely many solutions. FIgurE 5

ExaMPLE 4 ■ a Linear System with one Solution
Solve the system and graph the lines.

b3x  y  0

5x  2y  22
    

Equation 1

Equation 2
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720 CHAPTER 10 ■ Systems of Equations and Inequalities 

SoLuTIoN  We eliminate y from the equations and solve for x.

 b6x  2y  0

5x  2y  22

    2 3 Equation 1

 11x  2y  22    Add

 x  2     Solve for x

Now we back-substitute into the first equation and solve for y:

 612 2  2y  0     Back-substitute x  2

 2y  12    Subtract 12

 y  6     Solve for y

The solution of the system is the ordered pair 12, 62, that is,

x  2  y  6

The graph in Figure 6 shows that the lines in the system intersect at the point 12, 62.
Now Try Exercise 23 ■

ExaMPLE 5 ■ a Linear System with No Solution
Solve the system.

b 8x  2y  5

12x  3y  7
    

Equation 1

Equation 2

SoLuTIoN  This time we try to find a suitable combination of the two equations to 
eliminate the variable y. Multiplying the first equation by 3 and the second equation 
by 2 gives

 b 24x  6y  15

24x  6y  14
    

3 3 Equation 1

2 3 Equation 2

 0  29    Add

Adding the two equations eliminates both x and y in this case, and we end up with  
0  29, which is obviously false. No matter what values we assign to x and y, we can-
not make this statement true, so the system has no solution. Figure 7 shows that the 
lines in the system are parallel so do not intersect. The system is inconsistent.

Now Try Exercise 37 ■

ExaMPLE 6 ■ a Linear System with Infinitely Many Solutions
Solve the system.

b3x  6y  12

4x  8y  16
    

Equation 1

Equation 2

SoLuTIoN  We multiply the first equation by 4 and the second equation by 3 to pre-
pare for subtracting the equations to eliminate x. The new equations are

b12x  24y  48

12x  24y  48
    

4 3 Equation 1

3 3 Equation 2

We see that the two equations in the original system are simply different ways of 
expressing the equation of one single line. The coordinates of any point on this line 

chEck your aNSwEr

x  2, y  6:

b
312 2  16 2  0

512 2  216 2  22 ✓

3x-y=0y

x2

6

5x+2y=22

(2,	6)

FIgurE 6

8x-2y=5

1

1

_12x+3y=7

x0

y

FIgurE 7
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SECTION 10.1 ■ Systems of Linear Equations in Two Variables 721

give a solution of the system. Writing the equation in slope-intercept form, we have 
y  1

2 x  2. So if we let t represent any real number, we can write the solution as

 x  t

 y  1
2 t  2

We can also write the solution in ordered-pair form as

At, 12 t  2B
where t is any real number. The system has infinitely many solutions (see Figure 8).

Now Try Exercise 39 ■

In Example 3, to get specific solutions we have to assign values to t. For instance, if 
t  1, we get the solution A1,  

3
2B . If t  4, we get the solution 14, 0 2 . For every value 

of t we get a different solution. (See Figure 8.)

■ Modeling with Linear Systems
Frequently, when we use equations to solve problems in the sciences or in other  
areas, we obtain systems like the ones we’ve been considering. When modeling with 
systems of equations, we use the following guidelines, which are similar to those in 
 Section P.9.

guIdELINES For ModELINg wITh SySTEMS oF EquaTIoNS

1. Identify the Variables.  Identify the quantities that the problem asks you to 
find. These are usually determined by a careful reading of the question posed 
at the end of the problem. Introduce notation for the variables (call them x 
and y or some other letters).

2. Express all unknown quantities in Terms of the Variables.  Read the problem 
again, and express all the quantities mentioned in the problem in terms of the 
variables you defined in Step 1.

3. Set up a System of Equations.  Find the crucial facts in the problem that give 
the relationships between the expressions you found in Step 2. Set up a sys-
tem of equations (or a model) that expresses these relationships.

4. Solve the System and Interpret the results.  Solve the system you found in 
Step 3, check your solutions, and state your final answer as a sentence that 
answers the question posed in the problem.

The next two examples illustrate how to model with systems of equations.

ExaMPLE 7 ■ a distance-Speed-Time Problem
A woman rows a boat upstream from one point on a river to another point 4 mi away 
in 11

2 hours. The return trip, traveling with the current, takes only 45 min. How fast 
does she row relative to the water, and at what speed is the current flowing?

SoLuTIoN Identify the variables.  We are asked to find the rowing speed and the 
speed of the current, so we let

x  rowing speed (mi/h)

y  current speed (mi/h)

current

4 mi

!t, t-2@

1

1

1
2

x0

y

t=4

t=1

FIgurE 8
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Express unknown quantities in terms of the variable.  The woman’s speed when 
she rows upstream is her rowing speed minus the speed of the current; her speed 
downstream is her rowing speed plus the speed of the current. Now we translate this 
information into the language of algebra.

In Words In Algebra

Rowing speed x
Current speed y
Speed upstream x  y
Speed downstream x  y

Set up a system of equations.  The distance upstream and downstream is 4 mi, so 
using the fact that speed 3 time   distance for both legs of the trip, we get

speed upstream  3 time upstream   distance traveled

speed downstream  3 time downstream   distance traveled

In algebraic notation this translates into the following equations.

 1x  y 2 32  4    Equation 1

 1x  y 2 34  4    Equation 2

(The times have been converted to hours, since we are expressing the speeds in miles 
per hour.) 

Solve the system.  We multiply the equations by 2 and 4, respectively, to clear the 
denominators.

 b3x  3y  8

3x  3y  16
    

2 3 Equation 1

4 3 Equation 2

 16x  3y  24    Add

 1x  3y  4     Solve for x

Back-substituting this value of x into the first equation (the second works just as well) 
and solving for y, we get

 314 2  3y  8     Back-substitute x  4

 3y  8  12    Subtract 12

 y  4
3     Solve for y

The woman rows at 4 mi/h, and the current flows at 11
3 mi/h.

chEck your aNSwEr

Speed upstream is Speed downstream is

    
distance

time


4  mi

11
2 h

 2 
2
3 mi/h     

distance

time


4  mi
3
4 h

 5 
1
3 mi/h

and this should equal and this should equal

    rowing speed  current flow     rowing speed  current flow

         4 mi/h  4
3 mi/h  2 

2
3  mi/h          4 mi/h  4

3 mi/h  5 
1
3  mi/h ✓

Now Try Exercise 65 ■

Weather Prediction
Modern meteorologists do much more 
than predict tomorrow’s weather. They 
research long-term weather patterns, 
depletion of the ozone layer, global 
warming, and other effects of human 
activity on the weather. But daily 
weather prediction is still a major part of 
meteorology; its value is measured by 
the innumerable human lives that are 
saved each year through accurate predic-
tion of hurricanes, blizzards, and other 
catastrophic weather phenomena. Early 
in the 20th century mathematicians pro-
posed to model weather with equations 
that used the current values of hundreds 
of atmospheric variables. Although this 
model worked in principle, it was impos-
sible to predict future weather patterns 
with it because of the difficulty of mea-
suring all the variables accurately and 
solving all the equations. Today, new 
mathematical models combined with 
high-speed computer simulations and 
better data have vastly improved 
weather prediction. As a result, many 
human as well as economic disasters 
have been averted. Mathematicians at 
the National Oceanographic and Atmos-
pheric Administration (NOAA) are contin-
ually researching better methods of 
weather  prediction.

Mathematics in the Modern World

Ra
ch

el
 E

ps
te

in
/P

ho
to

Ed
it
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SECTION 10.1 ■ Systems of Linear Equations in Two Variables 723

ExaMPLE 8 ■ a Mixture Problem
A vintner fortifies wine that contains 10% alcohol by adding a 70% alcohol solution 
to it. The resulting mixture has an alcoholic strength of 16% and fills 1000 one-liter 
bottles. How many liters (L) of the wine and of the alcohol solution does the vint-
ner use?

SoLuTIoN Identify the variables.  Since we are asked for the amounts of wine and 
alcohol, we let

x  amount of wine used (L)

y  amount of alcohol solution used (L)

Express all unknown quantities in terms of the variable.  From the fact that the 
wine contains 10% alcohol and the solution contains 70% alcohol, we get the 
following.

In Words In Algebra

Amount of wine used (L) x
Amount of alcohol solution used (L) y
Amount of alcohol in wine (L) 0.10x
Amount of alcohol in solution (L) 0.70y

Set up a system of equations.  The volume of the mixture must be the total of the 
two volumes the vintner is adding together, so

x  y  1000

Also, the amount of alcohol in the mixture must be the total of the alcohol contributed 
by the wine and by the alcohol solution, that is,

 0.10x  0.70y  10.16 21000

 0.10x  0.70y  160     Simplify

 x  7y  1600     Multiply by 10 to clear decimals

Thus we get the system

bx  y  1000

x  7y  1600
    

Equation 1

Equation 2

Solve the system.  Subtracting the first equation from the second eliminates the vari-
able x, and we get

 6y  600    Subtract Equation 1 from Equation 2

 y  100    Solve for y

We now back-substitute y  100 into the first equation and solve for x.

 x  100  1000    Back-substitute y  100

 x  900     Solve for x

The vintner uses 900 L of wine and 100 L of the alcohol solution.

Now Try Exercise 67 ■
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coNcEPTS
 1. The system of equations

b2x  3y  7

5x  y  9

  is a system of two equations in the two variables   

  and    . To determine whether 15, 1 2  is a solution of 
  this system, we check whether x  5 and y  1 satisfy 

  each   in the system. Which of the following are 
solutions of this system? 

15, 1 2 , 11, 3 2 , 12, 1 2
 2. A system of equations in two variables can be solved by the 

    method, the   method, 

  or the   method.

 3. A system of two linear equations in two variables can have 

  one solution,   solution, or   

    solutions.

 4. The following is a system of two linear equations in two  
variables. 

b  x  y  1

2x  2y  2

  The graph of the first equation is the same as the graph of the 

  second equation, so the system has      
solutions. We express these solutions by writing

x  t

y   

  where t is any real number. Some of the solutions of this 

  system are 11,  2, 13,  2, and 15,  2.

SkILLS
5–8 ■ Substitution Method  Use the substitution method to find 
all solutions of the system of equations.

 5. b
0x  0y  81

4x  3y  18
  6. b3x  0y  1

5x  2y  1

 7. b x  y  2

2x  3y  9
  8. b2x  y  7

x  2y  2

9–12 ■ Elimination Method  Use the elimination method to find 
all solutions of the system of equations.

 9. b
3x  4y     10

4x  4y  2
 10. b2x  5y  15

4x  4y  21

 11. b 3x  2y  13

6x  5y  28
 12. b2x  5y  18

3x  4y  19

13–14 ■ graphical Method  Two equations and their graphs are 
given. Find the intersection point(s) of the graphs by solving the 
system.

13. e2x  y  1

x  2y  8
 14. b

 x  y  2

2x  y  5

1

1

y

x0

 

1

1

0

y

x

15–20 ■ Number of Solutions determined graphically  Graph 
each linear system, either by hand or using a graphing device. 
Use the graph to determine whether the system has one solution, 
no solution, or infinitely many solutions. If there is exactly one 
solution, use the graph to find it.

 15. b   x  y  4

2x  y  2
 16. b2x  y  4

3x  y  6

 17. b 2x  3y  12

x  3
2 y  4

 18. b 2x  6y  0

3x  9y  18

 19. bx  1
2 y  5

  2x  y   10
 20. b12x  15y  18

2x  5
2   y  3

21–50 ■ Solving a System of Equations  Solve the system, or 
show that it has no solution. If the system has infinitely many solu-
tions, express them in the ordered-pair form given in Example 6.

 21. b x  y  4

x  y  0
 22. bx  y  3

x  3y  7

 23. b2x  3y  9

4x  3y  9
 24. b 3x  2y  0

x  2y  8

 25. b
x  3y  5

2x  y  3
 26. b

  x  y  7

2x  3y  1

 27. bx  y  2

4x  3y  3
 28. b4x  3y    28

9x  y  6

 29. b x  2y  7

5x  y  2
 30. b4x  12y  0

12x  4y  160

 31. b  
 

1
3 x  1

6 y  1
2
3 x  1

6 y  3
 32. b

3
4 x  1

2 y  5

 
1
4 x  3

2 y  1

 33. b  
 
1
2 x  1

3 y  2

 
1
5 x  2

3 y  8
 34. b 0.2x  0.2y  1.8

0.3x  0.5y  3.3

 35. b3x  2y  8

x  2y  0
 36. b4x  2y  16

x  5y  70

 37. b x  4y  8

3x  12y  2
 38. b3x  5y  2

9x  15y  6

10.1 ExErcISES
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SECTION 10.1 ■ Systems of Linear Equations in Two Variables 725

 39. b 2x  6y  10

3x  9y  15
 40. b  2x  3y  8

14x  21y  3

 41. b6x  4y  12

9x  6y  18
 42. b 25x  75y     100

10x  30y  40

 43. b8s  3t  3

5s  2t  1
 44. b u  30√  5

3u  80√  5

45. b
1
2 x  3

5 y  3
5
3 x  2y  10

 46. b
3
2 x  1

3 y  1
2

2x  1
2 y   

1
2

 47. b0.4x  1.2y  14

12x  5y  10
 48. b  26x  10y  4

0.6x  1.2y  3

 49. b
1
3 x  1

4 y  2

8x  6y  10
 50. b 

1
10 x  1

2 y  4

    2x  10y  80

51–54 ■ Solving a System of Equations graphically  Use a 
graphing device to graph both lines in the same viewing rectan-
gle. (Note that you must solve for y in terms of x before graphing 
if you are using a graphing calculator.) Solve the system either by 
zooming in and using trace  or by using Intersect. Round 
your answers to two decimals.

 51. b
0.21x  3.17y  9.51

2.35x  1.17y  5.89

 52. b18.72x  14.91y  12.33

6.21x  12.92y  17.82

 53. b2371x  6552y  13,591

9815x  992y  618,555

 54. b435x  912y  0

132x  455y  994

SkILLS Plus
55–58 ■ Solving a general System of Equations  Find x and y in 
terms of a and b.

 55. b
 x  y  0

 x  ay  1
 1a ? 1 2

 56. b  ax  by  0

x   y  1
 1a ? b 2

 57. b  ax  by  1

 bx  ay  1
 1a2  b2 ? 0 2  

 58. b ax    by  0

 a2x  b2y  1
 1a ? 0, b ? 0, a ? b 2

aPPLIcaTIoNS
59.  Number Problem  Find two numbers whose sum is 34 and 

whose difference is 10.

60.  Number Problem  The sum of two numbers is twice their 
difference. The larger number is 6 more than twice the 
smaller. Find the numbers.

61.  Value of coins  A man has 14 coins in his pocket, all of which 
are dimes and quarters. If the total value of his change is 
$2.75, how many dimes and how many quarters does he have?

62.  admission Fees  The admission fee at an amusement park is 
$1.50 for children and $4.00 for adults. On a certain day, 
2200 people entered the park, and the admission fees that 
were collected totaled $5050. How many children and how 
many adults were admitted?

63.  gas Station  A gas station sells regular gas for $2.20 per gal-
lon and premium gas for $3.00 a gallon. At the end of a busi-
ness day 280 gallons of gas had been sold, and receipts totaled 
$680. How many gallons of each type of gas had been sold?

64.  Fruit Stand  A fruit stand sells two varieties of strawberries: 
standard and deluxe. A box of standard strawberries sells for 
$7, and a box of deluxe strawberries sells for $10. In one day 
the stand sold 135 boxes of strawberries for a total of $1110. 
How many boxes of each type were sold?

65.  airplane Speed  A man flies a small airplane from Fargo to 
Bismarck, North Dakota—a distance of 180 mi. Because he is 
flying into a headwind, the trip takes him 2 h. On the way 
back, the wind is still blowing at the same speed, so the return 
trip takes only 1 h 12 min. What is his speed in still air, and 
how fast is the wind blowing?

Bismarck
180 mi

wind

Fargo

66.  boat Speed  A boat on a river travels downstream between 
two points, 20 mi apart, in 1 h. The return trip against the 
current takes 2 

1
2 h. What is the boat’s speed, and how fast 

does the current in the river flow?

current

20 mi

67.  Nutrition  A researcher performs an experiment to test a  
hypothesis that involves the nutrients niacin and retinol. She 
feeds one group of laboratory rats a daily diet of precisely 
32 units of niacin and 22,000 units of retinol. She uses two 
types of commercial pellet foods. Food A contains 0.12 unit  
of niacin and 100 units of retinol per gram. Food B contains 
0.20 unit of niacin and 50 units of retinol per gram. How many 
grams of each food does she feed this group of rats each day?
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726 CHAPTER 10 ■ Systems of Equations and Inequalities 

68. coffee blends  A customer in a coffee shop purchases a 
blend of two  coffees: Kenyan, costing $3.50 a pound, and  
Sri Lankan, costing $5.60 a pound. He buys 3 lb of the blend, 
which costs him $11.55. How many pounds of each kind 
went into the mixture?

69. Mixture Problem  A chemist has two large containers of sul-
furic acid solution, with different concentrations of acid in 
each container. Blending 300 mL of the first solution and  
600 mL of the second gives a mixture that is 15% acid, 
whereas blending 100 mL of the first with 500 mL of the sec-
ond gives a 12 

1
2% acid mixture. What are the concentrations 

of sulfuric acid in the original containers?

70. Mixture Problem  A biologist has two brine solutions, one 
containing 5% salt and another containing 20% salt. How 
many milliliters of each solution should she mix to obtain  
1 L of a solution that contains 14% salt?

71. Investments  A woman invests a total of $20,000 in two  
accounts, one paying 5% and the other paying 8% simple  
interest per year. Her annual interest is $1180. How much did 
she invest at each rate?

72. Investments  A man invests his savings in two accounts, one 
paying 6% and the other paying 10% simple interest per year. 
He puts twice as much in the lower-yielding account because 
it is less risky. His annual interest is $3520. How much did 
he invest at each rate?

73. distance, Speed, and Time  John and Mary leave their house 
at the same time and drive in opposite directions. John drives 
at 60 mi/h and travels 35 mi farther than Mary, who  
drives at 40 mi/h. Mary’s trip takes 15 min longer than 
John’s. For what length of time does each of them drive?

74. aerobic Exercise  A woman keeps fit by bicycling and  
running every day. On Monday she spends 1

2 h at each  
activity, covering a total of 12 

1
2  mi. On Tuesday she runs for  

12 min and cycles for 45 min, covering a total of 16 mi.  
Assuming that her running and cycling speeds don’t change 
from day to day, find these speeds.

75. Number Problem  The sum of the digits of a two-digit  
number is 7. When the digits are reversed, the number is  
increased by 27. Find the number.

76. area of a Triangle  Find the area of the triangle that lies in 
the first quadrant (with its base on the x-axis) and that is 
bounded by the lines y  2x  4 and y  4x  20.

y=2x-4

0 x

y

y=_4x+20

dIScuSS ■ dIScoVEr ■ ProVE ■ wrITE
77. dIScuSS: The Least Squares Line  The least squares line  

or regression line is the line that best fits a set of points in  
the plane. We studied this line in the Focus on Modeling  
that follows Chapter 1 (see page 174). By using calculus, it  
can be shown that the line that best fits the n data points 
1x1, y1 2 , 1x2, y2 2 , c, 1xn, yn 2  is the line y  ax  b, where 
the coefficients a and b satisfy the following pair of linear 
equations. (The notation g n

k1 xk stands for the sum of all the 
x’s. See Section 13.1 for a complete description of sigma 1g2 
notation.)

a a
n

k1
xkb

 
a  nb  a

n

k1
yk

a a
n

k1
xk

2 b
 

a  a a
n

k1
xkb

 
b  a

n

k1
xk yk

  Use these equations to find the least squares line for the fol-
lowing data points.

11, 3 2 , 12, 5 2 , 13, 6 2 , 15, 6 2 , 17, 9 2
  Sketch the points and your line to confirm that the line fits 

these points well. If your calculator computes regression 
lines, see whether it gives you the same line as the  formulas.

10.2 SySTEMS oF LINEar EquaTIoNS IN SEVEraL VarIabLES
■ Solving a Linear System ■ The Number of Solutions of a Linear System ■ Modeling  
using Linear Systems

A linear equation in n variables is an equation that can be put in the form

a1x1  a2x2  . . .  anxn  c

where a1, a2, . . . , an and c are real numbers, and x1, x2, . . . , xn are the variables. If we 
have only three or four variables, we generally use x, y, z, and „ instead of x1, x2, x3, and 
x4. Such equations are called linear because if we have just two variables, the equation 
is a1x  a2y  c, which is the equation of a line. Here are some examples of equations 
in three variables that illustrate the difference between linear and nonlinear equations.
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SECTION 10.2 ■ Systems of Linear Equations in Several Variables 727

 Linear equations Nonlinear equations

 6x1  3x2  !5x3  10 x2  3y  !z  5

 x  y  z  2„  1
2 x1x2  6x3  6

In this section we study systems of linear equations in three or more variables.

■ Solving a Linear System
The following are two examples of systems of linear equations in three variables. The 
second system is in triangular form; that is, the variable x doesn’t appear in the second 
equation, and the variables x and y do not appear in the third equation.

A system of linear equations   A system in triangular form

 c
x  2y  z  1

x  3y  3z  4

2x  3y  z  10

 c
x  2y  z  1

y  2z  5

z  3

It’s easy to solve a system that is in triangular form by using back-substitution. So our 
goal in this section is to start with a system of linear equations and change it to a system 
in triangular form that has the same solutions as the original system. We begin by show-
ing how to use back-substitution to solve a system that is already in triangular form.

ExaMPLE 1 ■ Solving a Triangular System using back-Substitution
Solve the following system using back-substitution:

c
x  2y  z   1

y  2z  5

z  3

  

Equation 1

Equation 2

Equation 3

SoLuTIoN  From the last equation we know that z  3. We back-substitute this  
into the second equation and solve for y.

 y  213 2  5  Back-substitute z  3 into Equation 2

 y  1  Solve for y

Then we back-substitute y  1 and z  3 into the first equation and solve  
for x.

 x  211 2  13 2  1  Back-substitute y  1 and z  3 into Equation 1

x  2  Solve for x

The solution of the system is x  2, y  1, z  3. We can also write the solution  
as the ordered triple 12, 1, 3 2 .

Now Try Exercise 7 ■

To change a system of linear equations to an equivalent system (that is, a system 
with the same solutions as the original system), we use the elimination method. This 
means that we can use the following operations.

oPEraTIoNS ThaT yIELd aN EquIVaLENT SySTEM

1. Add a nonzero multiple of one equation to another.

2. Multiply an equation by a nonzero constant.

3. Interchange the positions of two equations.

Not linear because it contains 
the square and the square  
root of a variable

Not linear because it contains  
a product of variables
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To solve a linear system, we use these operations to change the system to an equiva-
lent triangular system. Then we use back-substitution as in Example 1. This process is 
called Gaussian elimination.

ExaMPLE 2 ■ Solving a System of Three Equations in Three Variables
Solve the following system using Gaussian elimination:

c
3x  2y  3z   1

3x  2y  z   13

3x  2y  5z  3

  

Equation 1

Equation 2

Equation 3

SoLuTIoN  We need to change this to a triangular system, so we begin by eliminat ing 
the x-term from the second equation.

 x  2y  0z  13  Equation 2

 x  2y  3z  1  Equation 1

 4y  4z  12  Equation 2  11 2 3 Equation 1  new Equation 2

This gives us a new, equivalent system that is one step closer to triangular form.

c
x  2y  3z  1

4y  4z  12

3x  2y  5z  3

  

Equation 1

Equation 2

Equation 3

Now we eliminate the x-term from the third equation.

c
x  2y  03z  01

4y  14z  12

8y  14z  00  Equation 3  13 2 3 Equation 1  new Equation 3

 

Then we eliminate the y-term from the third equation.

c
x  2y  3z   1

x  4y  4z  12

x  2y  6z  24  Equation 3  12 2 3 Equation 2  new Equation 3

The system is now in triangular form, but it will be easier to work with if we divide 
the second and third equations by the common factors of each term.

c
x  2y  3z  1

y  3z  3

z  4

  1
4  3 Equation 2  new Equation 2

 
1
6  3 Equation 3  new Equation 3

Now we use back-substitution to solve the system. From the third equation we get  
z  4. We back-substitute this into the second equation and solve for y.

y  14 2  3  Back-substitute z  4 into Equation 2

 y  7  Solve for y

Now we back-substitute  y  7 and z  4 into the first equation and solve for x.

x  217 2  314 2  1  Back-substitute y  7 and z  4 into Equation 1

 x  3  Solve for x

The solution of the system is x  3, y  7, z  4, which we can write as the ordered 
triple 13, 7, 42.

Now Try Exercise 17 ■

 3x  2y  5z  3

 3x  6y  9z  3

 8y  14z  0

 8y  14z  0

 8y  8z  24

 6z  24

chEck your aNSwEr

x  3, y  7, z  4: 

 13 2  217 2  314 2  01

 13 2  217 2  14 2  13

 313 2  217 2  514 2  3 ✓
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■ The Number of Solutions of a Linear System
The graph of a linear equation in three variables is a plane in three-dimensional space. 
A system of three equations in three variables represents three planes in space. The 
solutions of the system are the points where all three planes intersect. Three planes may 
intersect in a point, in a line, or not at all, or all three planes may coincide. Figure 1 
illustrates some of these possibilities. Checking these possibilities we see that there are 
three possible outcomes when solving such a system.

NuMbEr oF SoLuTIoNS oF a LINEar SySTEM

For a system of linear equations, exactly one of the following is true.

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

A system with no solution is said to be inconsistent, and a system with infinitely 
many solutions is said to be dependent. As we see in the next example, a linear system 
has no solution if we end up with a false equation after applying Gaussian elimination 
to the system.

(a) The three planes intersect at a 
single point. The system has 
one solution.

(b) The three planes intersect
at more than one point. The
system has infinitely many
solutions.

(c) The three planes have no point
in common. The system has no
solution.

FIgurE 1

ExaMPLE 3 ■ a System with No Solution
Solve the following system:

c
x  2y  2z  1

2x  2y  z  6

3x  4y  3z  5

  

Equation 1

Equation 2

Equation 3

SoLuTIoN  To put this in triangular form, we begin by eliminating the x-terms from 
the second equation and the third equation.

c
x  2y  2z  1

2y  3z  4

3x  4y  3z  5

    Equation 2  12 2 3 Equation 1  new Equation 2

c
x  2y  2z  1

2y  3z  4

2y  3z  2    Equation 3  13 2 3 Equation 1  new Equation 3
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Now we eliminate the y-term from the third equation.

c
x  2y  2z  1

2y  3z  4

0  2    Equation 3  11 2 3 Equation 2  new Equation 3

The system is now in triangular form, but the third equation says 0  2, which is 
false. No matter what values we assign to x, y, and z, the third equation will never be 
true. This means that the system has no solution.

Now Try Exercise 29 ■

ExaMPLE 4 ■ a System with Infinitely Many Solutions
Solve the following system:

c
x  y  5z  2

2x  y  4z  2

2x  4y  2z  8

  

Equation 1

Equation 2

Equation 3

SoLuTIoN  To put this in triangular form, we begin by eliminating the x-terms from 
the second equation and the third equation.

c
x  3y  5z  2

3y  6z  6

2x  4y  2z  8

    Equation 2  12 2 3 Equation 1  new Equation 2

c
x  y  5z  2

3y  6z  6

6y  12z   12    Equation 3  12 2 3 Equation 1  new Equation 3

Now we eliminate the y-term from the third equation.

c
x  y  5z   2

3y  6z    6

0    0     Equation 3  12 2 3 Equation 2  new Equation 3

The new third equation is true, but it gives us no new information, so we can drop it 
from the system. Only two equations are left. We can use them to solve for x and y in 
terms of z, but z can take on any value, so there are infinitely many solutions.

dIScoVEry ProjEcT

best Fit Versus Exact Fit

The law of gravity is precise. But when we obtain data on the distance an object 
falls in a given time, our measurements are not exact. We can, however, find the 
line (or parabola) that best fits our data. Not all of the data points will lie on the 
line (or parabola). But if we are given just two points, we can find a line of 
exact fit—that is, a line that passes through the two points. Similarly, we can 
find a parabola through three points. In this project we compare exact data with 
models of real-world data.You can find the project at www.stewartmath.com.
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SECTION 10.2 ■ Systems of Linear Equations in Several Variables 731

To find the complete solution of the system, we begin by solving for y in terms of 
z, using the new second equation.

 3y  6z  6     Equation 2

 y  2z  2     Multiply by 1
3

 y  2z  2    Solve for y

Then we solve for x in terms of z, using the first equation.

 x  12z  2 2  5z  2     Substitute y  2z  2 into Equation 1

 x  3z  2  2     Simplify

 x  3z    Solve for x

To describe the complete solution, we let z be any real number t. The solution is

x  3t

 y  2t  2

z  t

We can also write this as the ordered triple 13t, 2t  2, t2.
Now Try Exercise 33 ■

In the solution of Example 4 the variable t is called a parameter. To get a  specific 
solution, we give a specific value to the parameter t. For instance, if we set t  2, we get

 x  312 2  6

 y  212 2  2  6

 z  2

Thus 16, 6, 22 is a solution of the system. Here are some other solutions of the system 
obtained by substituting other values for the parameter t.

Parameter t Solution x23t, 2t  2, tc

1 13, 0, 12
 0 10, 2, 02
 3 19, 8, 32
10 130, 22, 102

You should check that these points satisfy the original equations. There are infinitely 
many choices for the parameter t, so the system has infinitely many solutions.

■ Modeling using Linear Systems
Linear systems are used to model situations that involve several varying quantities. In 
the next example we consider an application of linear systems to finance.

ExaMPLE 5 ■  Modeling a Financial Problem using a Linear System
Jason receives an inheritance of $50,000. His financial advisor suggests that he invest 
this in three mutual funds: a money-market fund, a blue-chip stock fund, and a high-
tech stock fund. The advisor estimates that the money-market fund will return 5% 
over the next year, the blue-chip fund 9%, and the high-tech fund 16%. Jason wants a 
total first-year return of $4000. To avoid excessive risk, he decides to invest three 
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732 CHAPTER 10 ■ Systems of Equations and Inequalities 

times as much in the money-market fund as in the high-tech stock fund. How much 
should he invest in each fund?

SoLuTIoN

Let x  amount invested in the money-market fund

 y  amount invested in the blue-chip stock fund

	 z  amount invested in the high-tech stock fund

We convert each fact given in the problem into an equation.

x  y  z  50,000

0.05x  0.09y  0.16z  4000

x  3z
    

Total amount invested is $50,000

Total investment return is $4000

Money-market amount is 3 3 high-tech amount

Multiplying the second equation by 100 and rewriting the third, we get the following 
system, which we solve using Gaussian elimination.

c
x  y  z  050,000

5x  9y  16z  400,000

x  3z  0

    100 3 Equation 2

Subtract 3z

c
x  y  z  50,000

4y  11z  150,000

     y  4z   50,000

    Equation 2  15 2 3 Equation 1  new Equation 2

Equation 3  11 2 3 Equation 1  new Equation 3

c
x  y  z  50,000

           5z  50,000

     y  4z  50,000

    Equation 2  4 3 Equation 3  new Equation 2

c
x  y  z  50,000

z  10,000

y  4z  50,000

    A 
1
5 B 3 Equation 2

11 2 3 Equation 3

c
x  y    z  50,000

y  4z  50,000

z  10,000

    Interchange Equations 2 and 3

Now that the system is in triangular form, we use back-substitution to find that  
x  30,000, y  10,000, and z  10,000. This means that Jason should invest 

$30,000 in the money-market fund

$10,000 in the blue-chip stock fund

$10,000 in the high-tech stock fund

Now Try Exercise 39 ■

coNcEPTS
1–2 ■ These exercises refer to the following system:

c 

x  y  z  2

x  2y  z  3

3x  y  2z  2

 1.  If we add 2 times the first equation to the second equation, 

 the second equation becomes       .

 2.  To eliminate x from the third equation, we add    
times the first equation to the third equation. The third 

 equation becomes       .

10.2 ExErcISES
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SkILLS
3–6 ■ Is the System of Equations Linear?  State whether the 
equation or system of equations is  linear.

 3. 6x  !3y  1
2 z  0  4. x2  y2  z2  4

 5. c 

xy  3y  z  5

x  y2  5z  0

2x  yz  3

  6. c
x  2y  3z  10

2x  5y  2

y  2z  4

7–12 ■ Triangular Systems  Use back-substitution to solve the 
triangular system.

 7. c
x  3y  z  0

y  z  3

z  2

  8. c
3x  3y  z  0

y  4z  10

z  3

 9. c 

x  2y  z  7

y  3z  9

2z  6

 10. c
x  2y  3z  10

2y  z  2

3z  12

11. c
2x  y  6z  5

y  4z  0

2z  1

 12. c 

4x  3z  10

2y  3z  6
1
2z  4

13–16 ■ Eliminating a Variable  Perform an operation on the 
given system that eliminates the indicated variable. Write the new 
equivalent system.

13. c
3x  y  z  4

x  y  2z  0

x  2y  z  1

 14. c
5x  2y  3z  3

10x  3y  z  20

x  3y  z  8

  Eliminate the x-term  Eliminate the x-term 
  from the second equation.  from the second equation.

15. c
2x  y  3z  5

2x  3y  z  13

6x  5y  z  7

 16. c
x  3y  2z  1

y  z  1

2y  z  1

  Eliminate the x-term  Eliminate the y-term 
  from the third equation.  from the third equation.

17–38 ■ Solving a System of Equations in Three Variables  Find 
the complete solution of the linear system, or show that it is 
inconsistent.

 17. c 

x  y  z  4

2y  z  1

x  y  2z  5

 18. c 

 x  y  2z  0

x  y  2z  2

 x  y    z      2

19. c 

x  2y  z  6

y  3z  16

x  3y  2z  14

 20. c 

x  2y  3z  10

3y  z  7

x  y  z  7

21. c 

x  y  z  4

x  3y  3z  10

2x  y  z  3

 22. c
x  y  z  0

x  2y  5z  3

3x  y  6

23. c
x  4z  1

2x  y  6z  4

2x  3y  2z  8

 24. c
 x  y  2z  2

 3x  y  5z  8

 2x  y  2z  7

25. c 

2x  4y    z     2

x  2y  3z  4

3x    y    z     1

 26. c
2x  y  4z  8

x  y  4z  3

2x  y  4z  18

27. c
2y  4z  1

2x  y  2z  1

4x  2y  0

 28. c
y  z  1

6x  2y  z  2

x  y  3z  2

 29. c
 x  2y  z  1

 2x  3y  4z  3

 3x  6y  3z  4

 30. c
x  2y     5z  4

x             2z  0

4x  2y  11z  2

31. c 

2x  3y  z  1

x  2y  3

x  3y  z  4

 32. c
 x  2y  3z  5

 2x  y  z  5

 4x  3y  7z  5

 33. c 

x  y  z  0

x  2y  3z  3

2x  3y  4z  3

 34. c 

x  2y  z  3

2x  5y  6z  7

2x  3y  2z  5

35. c 

2x  3y  2z  0

2x  3y  4z  4

4x  6y  2z  4

 36. c 

2x  4y  z  3

x  2y  4z  6

x  2y  2z  0

37. d   

2x  2y  2z  2„  6

2x  2y  2z  2„  3

2x  2y  2z  2„  2

2x  2y  3z  2„  0

 38. d  

x  y  z  „  0

x  y  2z  2„  0

2x  2y  3z  4„  1

2x  3y  4z  5„  2

aPPLIcaTIoNS
 39. Financial Planning  Mark has $100,000 to invest. His  

financial consultant advises him to diversify his investment  
in three types of bonds: short-term, intermediate-term, and  
long-term. The short-term bonds pay 4%, the intermediate-
term bonds pay 5%, and the long-term bonds pay 6% simple 
interest per year. Mark wishes to realize a total annual 
income of 5.1%, with equal amounts invested in short- and 
intermediate-term bonds. How much should he invest in  
each type of bond?

40. Financial Planning  Cyndee wants to invest $50,000. Her 
financial planner advises her to invest in three types of 
accounts: one paying 3%, one paying 5 

1
2%, and one  

paying 9% simple interest per year. Cyndee wants to put 
twice as much in the lowest-yielding, least-risky account  
as in the highest-yielding account. How much should she 
invest in each account to achieve a total annual return of 
$2540?

41. agriculture  A farmer has 1200 acres of land on which he 
grows corn, wheat, and soybeans. It costs $45 per acre to grow 
corn, $60 to grow wheat, and $50 to grow soybeans. Because 
of market demand, the farmer will grow twice as many acres 
of wheat as of corn. He has allocated $63,750 for the cost of 
growing his crops. How many acres of each crop should he 
plant? 
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42.  gas Station  A gas station sells three types of gas: Regular 
for $3.00 a gallon, Performance Plus for $3.20 a gallon, and 
Premium for $3.30 a gallon. On a particular day 6500 gallons 
of gas were sold for a total of $20,050. Three times as many 
gallons of Regular as Premium gas were sold. How many  
gallons of each type of gas were sold that day?

43.  Nutrition  A biologist is performing an experiment on the 
effects of various combinations of vitamins. She wishes to 
feed each of her laboratory rabbits a diet that contains exactly 
9 mg of niacin, 14 mg of thiamin, and 32 mg of riboflavin. 
She has available three different types of com mercial rabbit 
pellets; their vitamin content (per ounce) is given in the table. 
How many ounces of each type of food should each rabbit be 
given daily to satisfy the experiment  requirements?

Type A Type B Type C

Niacin (mg/oz) 2 3 1
Thiamin (mg/oz) 3 1 3
Riboflavin (mg/oz) 8 5 7

44.  diet Program  Nicole started a new diet that requires each 
meal to have 460 calories, 6 g of fiber, and 11 g of fat. The 
table shows the fiber, fat, and calorie content of one serving 
of each of three breakfast foods. How many servings of each 
food should Nicole eat to follow her diet?

Food Fiber (g) Fat (g) Calories

Toast 2 1 100
Cottage cheese 0 5 120
Fruit 2 0  60

45.  juice blends  The Juice Company offers three kinds of 
smoothies: Midnight Mango, Tropical Torrent, and Pineapple 
Power. Each smoothie contains the amounts of juices shown 
in the table. 

Smoothie
Mango 

juice (oz)
 Pineapple 
juice (oz)

Orange 
juice (oz)

Midnight Mango 8 3 3
Tropical Torrent 6 5 3
Pineapple Power 2 8 4

   On a particular day the Juice Company used 820 oz of mango 
juice, 690 oz of pineapple juice, and 450 oz of orange juice. 
How many smoothies of each kind were sold that day?

46.  appliance Manufacturing  Kitchen Korner produces refrig-
erators, dishwashers, and stoves at three different factories.  
The table gives the number of each product produced at each 
factory per day. Kitchen Korner receives an order for 110 
refrigerators, 150 dishwashers, and 114 ovens. How many 
days should each plant be scheduled to fill this order?

Appliance Factory A Factory B Factory C

Refrigerators  8 10 14
Dishwashers 16 12 10
Stoves 10 18  6

47.  Stock Portfolio  An investor owns three stocks: A, B, and C. 
The closing prices of the stocks on three successive trading 
days are given in the table.

Stock A Stock B Stock C

Monday $10 $25 $29
Tuesday $12 $20 $32
Wednesday $16 $15 $32

  Despite the volatility in the stock prices, the total value of the 
investor’s stocks remained unchanged at $74,000 at the end 
of each of these three days. How many shares of each stock 
does the investor own?

48.  Electricity  By using Kirchhoff’s Laws, it can be shown that 
the currents I1, I2, and I3 that pass through the three branches  
of the circuit in the figure satisfy the given linear system. 
Solve the system to find I1, I2, and I3.

c
I1  I2  I3  0

16I1  8I2  4I3  4

            8I2  4I3  5

16 �
4 V

8 �
5 V

4 �

I⁄

I¤

I‹

dIScuSS ■ dIScoVEr ■ ProVE ■ wrITE
49. ProVE: can a Linear System have Exactly Two Solutions?

(a)  Suppose that 1x0, y0, z02 and 1x1, y1, z12 are solutions of the 
system

c
a1x  b1y  c1z  d1

a2x  b2y  c2z  d2

a3x  b3y  c3z  d3

 Show that Q x0  x1

2
, 

y0  y1

2
, 

z0  z1

2
R  is also a solution.

(b) Use the result of part (a) to prove that if the system has 
two different solutions, then it has infinitely many 
 solutions.

10.3 ParTIaL FracTIoNS
■ distinct Linear Factors ■ repeated Linear Factors ■ Irreducible quadratic Factors  
■ repeated Irreducible quadratic Factors

To write a sum or difference of fractional expressions as a single fraction, we bring 
them to a common denominator. For example,

1

x  1


1

2x  1

12x  1 2  1x  1 2
1x  1 2 12x  1 2 

3x

2x2  x  1

But for some applications of algebra to calculus we must reverse this process—that is, 
we must express a fraction such as 3x/ 12x2  x  1 2  as the sum of the simpler frac-
tions 1/ 1x  1 2  and 1/ 12x  1 2 . These simpler fractions are called partial fractions; 
we learn how to find them in this section.

Let r be the rational function

r1x 2 
P1x 2
Q1x 2  

where the degree of P is less than the degree of Q. By the Linear and Quadratic Factors 
Theorem in Section 3.5, every polynomial with real coefficients can be  factored com-
pletely into linear and irreducible quadratic factors, that is, factors of the form ax  b 
and ax2  bx  c, where a, b, and c are real numbers. For instance,

x4  1  1x2  1 2 1x2  1 2  1x  1 2 1x  1 2 1x2  1 2
After we have completely factored the denominator Q of r, we can express r1x 2  as a 
sum of partial fractions of the form

A

1ax  b 2 i  and  
Ax  B

1ax2  bx  c 2  j

This sum is called the partial fraction decomposition of r. Let’s examine the details 
of the four possible cases.

■ distinct Linear Factors
We first consider the case in which the denominator factors into distinct linear factors.

caSE 1:  ThE dENoMINaTor IS a ProducT oF dISTINcT  
LINEar FacTorS

Suppose that we can factor Q1x2 as

Q1x 2  1a1x  b1 2 1a2x  b2 2  . . . 1an 
x  bn 2

with no factor repeated. In this case the partial fraction decomposition of 
P1x 2 /Q1x 2 	takes the form

P1x 2
Q1x 2 

A1

a1x  b1


A2

a2x  b2
 . . . 

An

an 
x  bn

The constants A1, A2, . . . , An are determined as in the following example.

Common denominator

Partial fractions

1

x  1


1

2x  1


3x

2x2  x  1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 10.3 ■ Partial Fractions 735

10.3 ParTIaL FracTIoNS
■ distinct Linear Factors ■ repeated Linear Factors ■ Irreducible quadratic Factors  
■ repeated Irreducible quadratic Factors

To write a sum or difference of fractional expressions as a single fraction, we bring 
them to a common denominator. For example,

1

x  1


1

2x  1

12x  1 2  1x  1 2
1x  1 2 12x  1 2 

3x

2x2  x  1

But for some applications of algebra to calculus we must reverse this process—that is, 
we must express a fraction such as 3x/ 12x2  x  1 2  as the sum of the simpler frac-
tions 1/ 1x  1 2  and 1/ 12x  1 2 . These simpler fractions are called partial fractions; 
we learn how to find them in this section.

Let r be the rational function

r1x 2 
P1x 2
Q1x 2  

where the degree of P is less than the degree of Q. By the Linear and Quadratic Factors 
Theorem in Section 3.5, every polynomial with real coefficients can be  factored com-
pletely into linear and irreducible quadratic factors, that is, factors of the form ax  b 
and ax2  bx  c, where a, b, and c are real numbers. For instance,

x4  1  1x2  1 2 1x2  1 2  1x  1 2 1x  1 2 1x2  1 2
After we have completely factored the denominator Q of r, we can express r1x 2  as a 
sum of partial fractions of the form

A

1ax  b 2 i  and  
Ax  B

1ax2  bx  c 2  j

This sum is called the partial fraction decomposition of r. Let’s examine the details 
of the four possible cases.

■ distinct Linear Factors
We first consider the case in which the denominator factors into distinct linear factors.

caSE 1:  ThE dENoMINaTor IS a ProducT oF dISTINcT  
LINEar FacTorS

Suppose that we can factor Q1x2 as

Q1x 2  1a1x  b1 2 1a2x  b2 2  . . . 1an 
x  bn 2

with no factor repeated. In this case the partial fraction decomposition of 
P1x 2 /Q1x 2 	takes the form

P1x 2
Q1x 2 

A1

a1x  b1


A2

a2x  b2
 . . . 

An

an 
x  bn

The constants A1, A2, . . . , An are determined as in the following example.

Common denominator

Partial fractions

1

x  1


1

2x  1


3x

2x2  x  1
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ExaMPLE 1 ■ distinct Linear Factors

Find the partial fraction decomposition of 
5x  7

x3  2x2  x  2
.

SoLuTIoN  The denominator factors as follows.

x3  2x2  x  2  x21x  2 2  1x  2 2  1x2  1 2 1x  2 2
  1x  1 2 1x  1 2 1x  2 2

This gives us the partial fraction decomposition

5x  7

x3  2x2  x  2


A

x  1


B

x  1


C

x  2

Multiplying each side by the common denominator, Óx  1ÔÓx  1ÔÓx  2Ô, we get

 5x  7  A1x  1 2 1x  2 2  B1x  1 2 1x  2 2  C1x  1 2 1x  1 2
  A1x2  3x  2 2  B1x2  x  2 2  C1x2  1 2  Expand

  1A  B  C 2x2  13A  B 2x  12A  2B  C 2  Combine like terms

If two polynomials are equal, then their coefficients are equal. Thus since 5x  7 has no 
x2-term, we have A  B  C  0. Similarly, by comparing the coefficients of x, we see 
that 3A  B  5, and by comparing constant terms, we get 2A  2B  C  7. This 
leads to the following system of linear equations for A, B, and C.

c
A  B  C  0

3A  B  5

2A  2B  C  7

    

Equation 1: Coefficients of x2

Equation 2: Coefficients of x

Equation 3: Constant coefficients

We use Gaussian elimination to solve this system.

c
A  B  C  0

 2B  3C  5

 4B  3C  7

    Equation 2  (3) 3 Equation 1

Equation 3  (2) 3 Equation 1

c
A  2B  3C  0

A  2B  3C  5

A  2B  3C  3

    

Equation 3  (2) 3 Equation 2

From the third equation we get C  1. Back-substituting, we find that B  1 and  
A  2. So the partial fraction decomposition is

5x  7

x3  2x2  x  2


2

x  1


1

x  1


1

x  2

Now Try Exercises 3 and 13 ■

The same approach works in the remaining cases. We set up the partial fraction de-
composition with the unknown constants A, B, C, . . . . Then we multiply each side of 
the resulting equation by the common denominator, combine like terms on the right-
hand side of the equation, and equate coefficients. This gives a set of linear equations 
that will always have a unique solution (provided that the partial fraction decomposition 
has been set up correctly).

■ repeated Linear Factors
We now consider the case in which the denominator factors into linear factors, some of 
which are repeated.

The Rhind PaPyRus is the oldest 
known mathematical document. It is an 
Egyptian scroll written in 1650 b.c. by the 
scribe Ahmes, who explains that it is an 
exact copy of a scroll written 200 years 
earlier. Ahmes claims that his papyrus 
contains “a thorough study of all things, 
insight into all that exists, knowledge of 
all obscure secrets.” Actually, the docu-
ment contains rules for doing arithmetic, 
including multiplication and division of 
fractions and several exercises with solu-
tions. The exercise shown below reads:  
“A heap and its seventh make nineteen; 
how large is the heap?” In solving prob-
lems of this sort, the Egyptians used par-
tial fractions because their number sys-
tem required all fractions to be written as 
sums of reciprocals of whole numbers. 
For example, 7

12  would be written as 
1
3  1

4 .
The papyrus gives a correct formula  

for the volume of a truncated pyramid, 
which the ancient Egyptians used when 
building the pyramids at Giza. It also gives 
the formula A  A89  dB2 for the area of a cir-
cle with diameter d. How close is this to the 
actual area?
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caSE 2:  ThE dENoMINaTor IS a ProducT oF LINEar FacTorS,  
SoME oF whIch arE rEPEaTEd

Suppose the complete factorization of Q1x 2  contains the linear factor ax  b  
repeated k times; that is, Óax  bÔk is a factor of Q1x 2 . Then, corresponding to 
each such factor, the partial fraction decomposition for P1x 2 /Q1x 2  contains

A1

ax  b


A2

1ax  b 2 2  . . . 
Ak

1ax  b 2 k

ExaMPLE 2 ■  repeated Linear Factors

Find the partial fraction decomposition of 
x2  1

x1x  1 2 3 .

SoLuTIoN  Because the factor x  1 is repeated three times in the denominator, the 
partial fraction decomposition has the form

x2  1

x1x  1 2 3 
A
x


B

x  1


C

1x  1 2 2 
D

1x  1 2 3
Multiplying each side by the common denominator, xÓx  1Ô3, gives

 x2  1  A1x  1 2 3  Bx1x  1 2 2  Cx1x  1 2  Dx

  A1x3  3x2  3x  1 2  B1x3  2x2  x 2  C1x2  x 2  Dx    Expand

  1A  B 2x3  13A  2B  C 2x2  13A  B  C  D 2x  A   Combine like terms

Equating coefficients, we get the following equations.

d

A  B  0

3A  2B  C  1

3A  B  C  D  0

A  1

    

Coefficients of x3

Coefficients of x2

Coefficients of x

Constant coefficients

If we rearrange these equations by putting the last one in the first position, we can 
easily see (using substitution) that the solution to the system is A  1, B  1,  
C  0, D  2, so the partial fraction decomposition is

x2  1

x1x  1 2 3 
1
x


1

x  1


2

1x  1 2 3
Now Try Exercises 5 and 29 ■

■ Irreducible quadratic Factors
We now consider the case in which the denominator has distinct irreducible quadratic 
factors.

caSE 3:  ThE dENoMINaTor haS IrrEducIbLE quadraTIc 
FacTorS, NoNE oF whIch IS rEPEaTEd

Suppose the complete factorization of Q1x 2  contains the quadratic factor  
ax2  bx  c (which can’t be factored further). Then, corresponding to this, the 
partial fraction decomposition of P1x 2 /Q1x 2  will have a term of the form

Ax  B

ax2  bx  c
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ExaMPLE 3 ■  distinct quadratic Factors

Find the partial fraction decomposition of 
2x2  x  4

x3  4x
.

SoLuTIoN  Since x3  4x  x1x2  4 2 , which can’t be factored further, we write

2x2  x  4

x3  4x


A
x


Bx  C

x2  4

Multiplying by x1x2  4 2 , we get

 2x2  x  4  A1x2  4 2  1Bx  C 2x
  1A  B 2x2  Cx  4A

Equating coefficients gives us the equations

c
A  B  2

A   C  1

A 4A  4

    

Coefficients of x2

Coefficients of x

Constant coefficients

so A  1, B  1, and C  1. The required partial fraction decomposition is

2x2  x  4

x3  4x


1
x


x  1

x2  4

Now Try Exercises 7 and 37 ■

■ repeated Irreducible quadratic Factors
We now consider the case in which the denominator has irreducible quadratic factors, 
some of which are repeated.

caSE 4:  ThE dENoMINaTor haS a rEPEaTEd IrrEducIbLE  
quadraTIc FacTor

Suppose the complete factorization of QÓxÔ contains the factor Óax2  bx  cÔk, 
where ax2  bx  c can’t be factored further. Then the partial fraction decom-
position of P1x 2 /Q1x 2  will have the terms

A1x  B1

ax2  bx  c


A2 
x  B2

1ax2  bx  c 2 2  . . . 
Ak 

x  Bk

1ax2  bx  c 2 k

ExaMPLE 4 ■  repeated quadratic Factors
Write the form of the partial fraction decomposition of

x5  3x2  12x  1

x31x2  x  1 2 1x2  2 2 3
SoLuTIoN

x5  3x2  12x  1

x31x2  x  1 2 1x2  2 2 3


A
x


B

x2 
C

x3 
Dx  E

x2  x  1


Fx  G

x2  2


Hx  I

1x2  2 2 2 
Jx  K

1x2  2 2 3
Now Try Exercises 11 and 41 ■
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SECTION 10.3 ■ Partial Fractions 739

To find the values of A, B, C, D, E, F, G, H, I, J, and K in Example 4, we would have 
to solve a system of 11 linear equations. Although possible, this would certainly involve 
a great deal of work!

The techniques that we have described in this section apply only to rational functions 
P1x 2 /Q1x 2  in which the degree of P is less than the degree of Q. If this isn’t the case, 
we must first use long division to divide Q into P.

ExaMPLE 5 ■ using Long division to Prepare for Partial Fractions
Find the partial fraction decomposition of

2x4  4x3  2x2  x  7

x3  2x2  x  2

SoLuTIoN  Since the degree of the numerator is larger than the degree of the denomi-
nator, we use long division to obtain

2x4  4x3  2x2  x  7

x3  2x2  x  2
 2x 

5x  7

x3  2x2  x  2

The remainder term now satisfies the requirement that the degree of the numerator is 
less than the degree of the denominator. At this point we proceed as in Example 1 to 
obtain the decomposition

2x4  4x3  2x2  x  7

x3  2x2  x  2
 2x 

2

x  1


1

x  1


1

x  2

Now Try Exercise 43 ■

 2x

 x3  2x2  x  2q2x4  4x3  2x2  x  7

 2x4  4x3  2x2  4x

 5x  7

coNcEPTS
1 –2 ■ For each rational function r, choose from (i) –(iv) the  
appropriate form for its partial fraction decomposition.

 1. r1x 2 
4

x1x  2 2 2

 (i) 
A

x
 

B

x  2
 (ii) 

A

x


B

1x  2 2 2

 (iii) 
A

x


B

x  2


C

1x  2 2 2  (iv) 
A

x


B

x  2


Cx  D

1x  2 2 2

 2. r1x 2 
2x  8

1x  1 2 1x2  4 2

 (i) 
A

x  1


B

x2  4

 (ii) 
A

x  1


Bx  C

x2  4

 (iii) 
A

x  1


B

x  2


C

x2  4

 (iv) 
Ax  B

x  1


Cx  D

x2  4

SkILLS
3–12 ■ Form of the Partial Fraction decomposition  Write the 
form of the partial fraction decomposition of the function (as in 
Example 4). Do not determine the numerical values of the 
coefficients.

 3. 
1

1x  1 2 1x  2 2   4. 
x

x2  3x  4

 5. 
x2  3x  5

1x  2 2 21x  4 2   6. 
1

x4  x3

 7. 
x2

1x  3 2 1x2  4 2   8. 
1

x4  1

 9. 
x3  4x2  2

1x2  1 2 1x2  2 2  10. 
x4  x2  1

x21x2  4 2 2

11. 
x3  x  1

x12x  5 2 31x2  2x  5 2 2  12. 
1

1x3  1 2 1x2  1 2

13–44 ■ Partial Fraction decomposition  Find the partial frac-
tion decomposition of the rational function.

13. 
2

1x  1 2 1x  1 2  14. 
2x

1x  1 2 1x  1 2

10.3 ExErcISES
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15. 
5

1x  1 2 1x  4 2  16. 
x  6

x1x  3 2

17. 
12

x2  9
 18. 

x  12

x2  4x

19. 
4

x2  4
 20. 

2x  1

x2  x  2

21. 
x  14

x2  2 x  8
 22. 

8x  3

2x2  x

23. 
x

8x2  10x  3
 24. 

7x  3

x3  2x2  3x

25. 
9x2  9x  6

2x3  x2  8x  4
 26. 

3x2  3x  27

1x  2 2 12x2  3x  9 2

27. 
x2  1

x3  x2  28. 
3x2  5x  13

13x  2 2 1x2  4x  4 2

29. 
2x

4x2  12x  9
 30. 

x  4

12x  5 2 2

31. 
4x2  x  2

x4  2x3  32. 
x3  2x2  4x  3

x4

33. 
10x2  27x  14

1x  1 2 31x  2 2  34. 
2x2  5x  1

x4  2x3  2x  1

35. 
3x3  22x2  53x  41

1x  2 2 21x  3 2 2  36. 
3x2  12x  20

x4  8x2  16

37. 
x  3

x3  3x
 38. 

3x2  2x  8

x3  x2  2x  2

39. 
2x3  7x  5

1x2  x  2 2 1x2  1 2  40. 
x2  x  1

2x4  3x2  1

41. 
x4  x3  x2  x  1

x1x2  1 2 2  42. 
2x2  x  8

1x2  4 2 2

43. 
x5  2x4  x3  x  5

x3  2x2  x  2
 

44. 
x5  3x4  3x3  4x2  4x  12

1x  2 2 21x2  2 2

SkILLS Plus
45. Partial Fractions  Determine A and B in terms of a and b.

ax  b

x2  1


A

x  1


B

x  1
 

46. Partial Fractions  Determine A, B, C, and D in terms of a 
and b.

ax3  bx2

1x2  1 2 2 
Ax  B

x2  1


Cx  D

1x2  1 2 2  

dIScuSS ■ dIScoVEr ■ ProVE ■ wrITE
47.  dIScuSS: recognizing Partial Fraction decompositions   

For each expression, determine whether it is already a partial 
fraction decomposition or whether it can be decomposed 
further.

(a) 
x

x2  1


1

x  1
 (b) 

x

1x  1 2 2

(c) 
1

x  1


2

1x  1 2 2  (d) 
x  2

1x2  1 2 2
48.  dIScuSS: assembling and disassembling Partial Fractions   

The following expression is a partial fraction decomposition.

2

x  1


1

1x  1 2 2 
1

x  1
 

   Use a common denominator to combine the terms into one 
fraction. Then use the techniques of this section to find its  
partial fraction decomposition. Did you get back the original 
expression?

10.4 SySTEMS oF NoNLINEar EquaTIoNS
■ Substitution and Elimination Methods ■ graphical Method

In this section we solve systems of equations in which the equations are not all linear. 
The methods we learned in Section 10.1 can also be used to solve nonlinear systems.

■ Substitution and Elimination Methods
To solve a system of nonlinear equations, we can use the substitution or elimination 
method, as illustrated in the next examples.

ExaMPLE 1 ■ Substitution Method
Find all solutions of the system.

b x2  y2  100

3x  y  10
    

Equation 1

Equation 2
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SECTION 10.4 ■ Systems of Nonlinear Equations 741

chEck your aNSwErS

x  0, y  10:

b  

10 2 2  110 2 2  100

 310 2  110 2  10  ✓

x  6, y  8:

b  16 2 2  18 2 2  36  64  100

 316 2  18 2  18  8  10  ✓

(6, 8)

(0, _10)

y

x60

6

≈+¥=100

3x-y=10

FIgurE 1

SoLuTIoN Solve for one variable.  We start by solving for y in the second equation.

y  3x  10    Solve for y in Equation 2

Substitute.  Next we substitute for y in the first equation and solve for x.

 x2  13x  10 2 2  100    Substitute y  3x  10 into Equation 1

 x2  19x2  60x  100 2  100    Expand

 10x2  60x  0     Simplify

 10x1x  6 2  0     Factor

 x  0  or  x  6     Solve for x

back-substitute.  Now we back-substitute these values of x into the equation  
y  3x  10.

For x  0:  y  310 2  10  10    Back-substitute

For x  6:  y  316 2  10   8     Back-substitute

So we have two solutions: 10, 10 2  and 16, 8 2 .
The graph of the first equation is a circle, and the graph of the second equation is a 

line. Figure 1 shows that the graphs intersect at the two points 10, 10 2  and 16, 8 2 .
Now Try Exercise 5 ■

ExaMPLE 2 ■ Elimination Method
Find all solutions of the system.

b  3x2  2y  26

 5x2  7y  3
    

Equation 1

Equation 2

SoLuTIoN  We choose to eliminate the x-term, so we multiply the first equation by 5 
and the second equation by 3. Then we add the two equations and solve for y.

b  
 15x2  10y    130

15x2  21y     9
    

5 3 Equation 1 

13 2 3 Equation 2

 11y    121    Add

 y  11    Solve for y

Now we back-substitute y  11 into one of the original equations, say 
3x2  2y  26, and solve for x .

 3x2  2111 2  26    Back-substitute y  11 into Equation 1

 3x2  48    Add 22

 x2  16    Divide by 3

 x  4  or  x  4     Solve for x

So we have two solutions: 14, 11 2  and 14, 11 2 .
The graphs of both equations are parabolas (see Section 3.1). Figure 2 shows that 

the graphs intersect at the two points 14, 11 2  and 14, 11 2 .
Now Try Exercise 11 ■

■ graphical Method
The graphical method is particularly useful in solving systems of nonlinear equations.

(4, _11)

y

x
2

3≈+2y=26

5

0

(_4, _11)

5≈+7y=3

FIgurE 2

chEck your aNSwErS

x  4, y  11:

b314 2 2  2111 2  26

514 2 2  7111 2  3  ✓

x  4, y  11:

b314 2 2  2111 2  26

514 2 2  7111 2  3  ✓
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742 CHAPTER 10 ■ Systems of Equations and Inequalities 

ExaMPLE 3 ■ graphical Method
Find all solutions of the system

e x2  y  2

2x  y  1

SoLuTIoN graph each equation.  To graph, we solve for y in each equation.

b  y  x2  2

 y  2x  1

Find intersection points.  Figure 3 shows that the graphs of these equations intersect 
at two points. Zooming in, we see that the solutions are

11, 1 2 and 13, 7 2

8

_3

_3 4
≈-y=2

(3, 7)

(_1, _1)

2x-y=_1

FIgurE 3

chEck your aNSwErS

x  1, y  1: x  3, y  7:

b   11 2 2  11 2  2

 211 2  11 2  1 ✓
    b  32  7  2

 213 2  7  1 ✓

Now Try Exercise 33 ■

ExaMPLE 4 ■  Solving a System of Equations graphically
Find all solutions of the system, rounded to one decimal place.

b  x2  y2  12

 y  2x2  5x
    

Equation 1

Equation 2

See Appendix C, Graphing with a 
Graphing Calculator, for guidelines  
on using a graphing calculator. See 
Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
graphing instructions.

Global Positioning 
system (GPs)
On a cold, foggy day in 1707 a 
British naval fleet was sailing 
home at a fast clip. The fleet’s 
navigators didn’t know it, but 
the fleet was only a few yards 
from the rocky shores of 
England. In the ensuing disas-
ter the fleet was totally 
destroyed. This tragedy could 
have been avoided had the 
navigators known their posi-

tions. In those days latitude was determined by the position of the North 
Star (and this could be done only at night in good weather), and 

Mathematics in the Modern World

longitude was determined by the position of the sun relative to where it 
would be in England at that same time. So navi gation required an accu-
rate method of telling time on ships. (The invention of the spring-loaded 
clock brought about the eventual solution.)

Since then, several different  methods have been developed  
to determine position, and all rely heavily on mathematics (see 
 LORAN, page 848). The latest method, called the Global Positioning  
System (GPS), uses triangulation. In this system, 24 satellites are stra-
tegically located above the surface of the earth. A handheld GPS 
device measures distance from a satellite, using the travel time of 
radio signals emitted from the satellite. Knowing the distances to 
three different satellites tells us that we are at the point of intersec-
tion of three different spheres. This uniquely determines our position 
(see  Exercise 51, page 745).

Co
ur

te
sy

 o
f N

AS
A
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SECTION 10.4 ■ Systems of Nonlinear Equations 743

SoLuTIoN  The graph of the first equation is a circle, and the graph of the second is a 
parabola. To graph the circle on a graphing calculator, we must first solve for y in 
terms of x.

 x2  y2  12

 y2  12  x2     Isolate y 2 on LHS

 y  6"12  x2    Take square roots

To graph the circle, we must graph both functions.

y  "12  x2  and  y  "12  x2

In Figure 4 the graph of the circle is shown in red, and the parabola is shown in blue. 
The graphs intersect in Quadrants I and II. Zooming in, or using the Intersect 
command, we see that the intersection points are 10.559, 3.4192 and 12.847, 1.9742. 
There also appears to be an intersection point in Quadrant IV. However, when we 
zoom in, we see that the curves come close to each other but don’t intersect (see Fig-
ure 5). Thus the system has two solutions; rounded to the nearest tenth, they are

10.6, 3.4 2 and  12.8, 2.0 2
5

_5

_7 7

(b)

Intersection
X=2.8467004  Y=1.973904

5

_5

_7 7

(a)

Intersection
X=-.5588296  Y=3.4187292

0.5 2.0

_4

_2

FIgurE 5 Zooming inFIgurE 4 x2  y2  12, y  2x2  5x

Now Try Exercise 37 ■

coNcEPTS
1–2 ■ The system of equations 

b2y  x2  0

y  x  4

is graphed below.

 1. Use the graph to find the solution(s) of the system.

 2.  Check that the solutions you found in Exercise 1 satisfy the 
system.

x0

y

1
1

SkILLS
3–8 ■ Substitution Method  Use the substitution method to find 
all solutions of the system of equations.

 3. b  

y  x2

y  x  12
  4. bx2  y2  25

y  2x

 5. bx2  y2  8

x  y  0
  6. b  x2  y  9

 x  y  3  0

 7. b x  y2  0

2x  5y2  75
  8. b x2  y  1

2x2  3y  17

9–14 ■ Elimination Method  Use the elimination method to find 
all solutions of the system of equations.

 9. b
x2  2y  1

x2  5y  29
 10. b3x2  4y  17

2x2  5y  2

11. b3x2  y2  11

x2  4y2  8
 12. b2x2  4y  13

  x2   y2    72

13. b x  y2  3  0

2x2  y2  4  0
 14. b x2  y2  1

2x2  y2  x  3

10.4 ExErcISES
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15–18 ■ Finding Intersection Points graphically  Two equations 
and their graphs are given. Find the intersection point(s) of the 
graphs by solving the system.

15. e x2  y  8

x  2y  6
 16. b  x  y2  4

 x  y2  2

1
0 1

y

x
 

1
0 2

y

x

17. b
 x2  y  0

 x3  2x  y  0 
18. b

x2  y2  4x

x  y2

 

0
11

y

x

 

0 1

1

y

x

19–32 ■ Solving Nonlinear Systems  Find all solutions of the 
system of equations.

19. b
 y  x2  4x

 y  4x  16
 20. b  x  y2  0

 y  x2  0

21. b  

x  2y  2

y2  x2  2x  4
 22. b  y  4  x2

 y  x2  4

23. bx  y  4

 xy  12

 24. b xy  24

2x2  y2  4  0

25. b x2y  16

x2  4y  16  0

 26. b  

x  !y  0

y2  4x2  12

27. bx2  y2  9

x2  y2  1
 28. b x2  2y2  2

2x2  3y  15

29. b 2x2  8y3  19

4x2  16y3  34
 30. b  x4  y3  17

3x4  5y3  53

31. µ
2
x


3
y

 1

 

4
x


7
y

 1

 32. µ  

4

x2 
6

y4 
7

2

1

x2 
2

y4  0

33–40 ■ graphical Method  Use the graphical method to find 
all solutions of the system of equations, rounded to two decimal 
places.

33. b  

y  x2  8x

y  2x  16
 34. by  x2  4x

2x  y  2

35. bx2  y2  25

x  3y  2
 36. bx2  y2  17

 x2  2x  y2  13

37. •
x2

9


y2

18
 1

y  x2  6x  2
 38. b  

x2  y2  3

y  x2  2x  8

39. b
x4  16y4  32

x2  2x  y  0
 40. b  

y  ex  ex

y  5  x2

SkILLS Plus
41–44 ■ Some Trickier Systems  Follow the hints and solve the 
systems.

41. b
log x  log y  3

2

2 log x  log y  0
 [Hint: Add the equations.]

42. b
2x  2 

y  10

4x  4 
y  68

 [Hint: Note that 4x  22x  12x 2 2.]

43. b
x  y  3 

 x3  y3  387
 

 [Hint: Factor the left-hand side of 
the second equation.]

44. b
 x2  xy  1

 xy  y2  3
  [Hint: Add the equations, and factor 

the result.]

aPPLIcaTIoNS
45.  dimensions of a rectangle  A rectangle has an area of  

180 cm2 and a perimeter of 54 cm. What are its dimensions?

46.  Legs of a right Triangle  A right triangle has an area of  
84 ft2 and a hypotenuse 25 ft long. What are the lengths of its 
other two sides?

47.  dimensions of a rectangle  The perimeter of a rectangle is 
70, and its diagonal is 25. Find its length and width.

48.  dimensions of a rectangle  A circular piece of sheet metal 
has a diameter of 20 in. The edges are to be cut off to form a 
rectangle of area 160 in2 (see the figure). What are the 
dimensions of the rectangle?

49.  Flight of a rocket  A hill is inclined so that its “slope” is 1
2 , 

as shown in the figure. We introduce a coordinate system 
with the  origin at the base of the hill and with the scales on 

10.5 SySTEMS oF INEquaLITIES
■ graphing an Inequality ■ Systems of Inequalities ■ Systems of Linear Inequalities  
■ application: Feasible regions

In this section we study systems of inequalities in two variables from a graphical point 
of view. 

■ graphing an Inequality
We begin by considering the graph of a single inequality. We already know that the 
graph of y  x2, for example, is the parabola in Figure 1. If we replace the equal sign 
by the symbol , we obtain the inequality

y  x 
2

Its graph consists of not just the parabola in Figure 1, but also every point whose  
y-coordinate is larger than x2. We indicate the solution in Figure 2(a) by shading the 
points above the parabola.
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SECTION 10.5 ■ Systems of Inequalities 745

the axes measured in meters. A rocket is fired from the base 
of the hill in such a way that its trajectory is the parabola 
y  x2  401x. At what point does the rocket strike the 
 hillside? How far is this point from the base of the hill (to the 
nearest centimeter)?

run

rise

=1
2

rise
runx

y

0

50.  Making a Stovepipe  A rectangular piece of sheet metal with 
an area of 1200 in2 is to be bent into a cylindrical length of 
stovepipe having a volume of 600 in3. What are the dimen-
sions of the sheet metal?

x

y

51.  global Positioning System (gPS)  The Global Positioning 
System determines the location of an object from its  

distances to satellites in orbit around the earth. In the sim-
plified, two-dimensional situation shown in the following 
figure, determine the coordinates of P from the fact that P 
is 26 units from satellite A and 20 units from  satellite B.

P(x,	y)
20

26
B(28,	20)

A(22,	32)y

xPlanet

dIScuSS ■ dIScoVEr ■ ProVE ■ wrITE
52.  dIScoVEr ■ ProVE: Intersection of a Parabola and a 

Line  On a sheet of graph paper or using a graphing calcula-
tor, draw the parabola y  x2. Then draw the graphs of the 
linear equation y  x  k on the same coordinate plane for 
various values of k. Try to choose values of k so that the line 
and the parabola intersect at two points for some of your k’s 
and not for others. For what value of k is there exactly one 
intersection point? Use the results of your experiment to 
make a conjecture about the values of k for which the 
 following system has two solutions, one solution, and no 
solution. Prove your conjecture.

b  

y  x2

y  x  k

10.5 SySTEMS oF INEquaLITIES
■ graphing an Inequality ■ Systems of Inequalities ■ Systems of Linear Inequalities  
■ application: Feasible regions

In this section we study systems of inequalities in two variables from a graphical point 
of view. 

■ graphing an Inequality
We begin by considering the graph of a single inequality. We already know that the 
graph of y  x2, for example, is the parabola in Figure 1. If we replace the equal sign 
by the symbol , we obtain the inequality

y  x 
2

Its graph consists of not just the parabola in Figure 1, but also every point whose  
y-coordinate is larger than x2. We indicate the solution in Figure 2(a) by shading the 
points above the parabola.

1

10

y

x

y=≈

FIgurE 1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



746 CHAPTER 10 ■ Systems of Equations and Inequalities 

Similarly, the graph of y  x2 in Figure 2(b) consists of all points on and below the 
parabola. However, the graphs of y  x2 and y  x2 do not include the points on the 
parabola itself, as indicated by the dashed curves in Figures 2(c) and 2(d).

(a) y≥≈

0

y

x

1

1

1

10

y

x

1

10

y

x

1

10

y

x

(b) y≤≈ (c) y>≈ (d) y<≈
FIgurE 2

The graph of an inequality, in general, consists of a region in the plane whose bound-
ary is the graph of the equation obtained by replacing the inequality sign 1, , ,  
or 2 with an equal sign. To determine which side of the graph gives the solution set of 
the inequality, we need only check test points.

graPhINg aN INEquaLITy

To graph an inequality, we carry out the following steps.

1. graph the Equation.  Graph the equation that corresponds to the inequality. 
Use a dashed curve for  or  and a solid curve for  or .

2. graph the Inequality.  The graph of the inequality consists of all the points 
on one side of the curve that we graphed in Step 1. We use test points on 
either side of the curve to determine whether the points on that side satisfy 
the inequality. If the point satisfies the inequality, then all the points on that 
side of the curve satisfy the inequality. In that case, shade that side of the 
curve to indicate that it is part of the graph. If the test point does not satisfy 
the inequality, then the region isn’t part of the graph.

ExaMPLE 1 ■ graphs of Inequalities
Graph each inequality.

(a) x2  y2  25   (b) x  2y  5

SoLuTIoN  We follow the guidelines given above.

(a)  graph the equation.  The graph of the equation x2  y2  25 is a circle of 
radius 5 centered at the origin. The points on the circle itself do not satisfy the 
inequality because it is of the form  , so we graph the circle with a dashed 
curve, as shown in Figure 3. 

   graph the inequality.  To determine whether the inside or the outside of the cir-
cle satisfies the inequality, we use the test points 10, 0 2  on the inside and 16, 0 2  
on the outside. To do this, we substitute the coordinates of each point into the 
inequality and check whether the result satisfies the inequality. 

Test point Inequality x2  y2 * 25 Conclusion

10, 0 2 02  02 
?

25 ✓ Part of graph

16, 0 2 62  02 
?

25 ✗ Not part of graph

   Our check shows that the points inside the circle satisfy the inequality. A graph of 
the inequality is shown in Figure 3.

Note that any point inside or outside 
the circle can serve as a test point. We 
have chosen these points for simplicity.

1
10

y

x

(6, 0)

FIgurE 3 Graph of x2  y2  25
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SECTION 10.5 ■ Systems of Inequalities 747

(b)  graph the equation.  We first graph the equation x  2y  5. The graph is the 
line shown in Figure 4. 

   graph the inequality.  Let’s use the test points 10, 0 2  and 15, 5 2  on either side 
of the line. 

Test point Inequality x  2y # 5 Conclusion

10, 0 2 0  210 2 
?

5 ✗ Not part of graph

15, 5 2 5  215 2 
?

5 ✓ Part of graph

  Our check shows that the points above the line satisfy the inequality. A graph of 
the inequality is shown in Figure 4.

1

10

y

x

FIgurE 4 Graph of x  2y  5

Now Try Exercises 15 and 21 ■

■ Systems of Inequalities
We now consider systems of inequalities. The solution set of a system of inequalities 
in two variables is the set of all points in the coordinate plane that satisfy every inequal-
ity in the system. The graph of a system of inequalities is the graph of the solution set.

To find the solution of a system of inequalities, we first graph each inequality in the 
system. The solution of the system consists of those points in the coordinate plane that 
belong to the solution of each inequality in the system. In other words, the solution of 
the system is the intersection of the solutions of the individual inequalities in the sys-
tem. So to solve a system of inequalities, we use the following guidelines.

ThE SoLuTIoN oF a SySTEM oF INEquaLITIES

To graph the solution of a system of inequalities, we carry out the following 
steps.

1. graph Each Inequality.  Graph each inequality in the system on the same graph.

2. graph the Solution of the System.  Shade the region where the graphs of all the 
inequalities intersect. All the points in this region satisfy each inequality, so 
they belong to the solution of the system. 

3. Find the Vertices.  Label the vertices of the region that you shaded in Step 2. 

ExaMPLE 2 ■ a System of Two Inequalities
Graph the solution of the system of inequalities, and label its vertices.

bx2  y2  25

x  2y  5

SoLuTIoN  These are the two inequalities of Example 1. Here we want to graph only 
those points that simultaneously satisfy both inequalities.

We can write the inequality in  
Example 1 as 

y   
1
2 
x  5

2

From this form of the inequality we see 
that the solution consists of the points 
with y-values on or above the line 
y   

1
2 
x  5

2. So the graph of the 
inequality is the region above the line.
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748 CHAPTER 10 ■ Systems of Equations and Inequalities 

Graph each inequality.  In Figure 5(a) we graph the solutions of the two inequalities 
on the same axes (in different colors). 

Graph the solution of the system.  The solution of the system of inequalities is the 
intersection of the two graphs. This is the region where the two regions overlap, which 
is the purple region graphed in Figure 5(b). 

Find the vertices.  The points 13, 4 2  and 15, 0 2  in Figure 5(b) are the vertices of 
the  solution set. They are obtained by solving the system of equations

bx2  y2  25

x  2y  5

We solve this system of equations by substitution. Solving for x in the second equa-
tion gives x  5  2y, and substituting this into the first equation gives

 15  2y 2 2  y2  25    Substitute x  5  2y

 125  20y  4y2 2  y2  25    Expand

 20y  5y2  0     Simplify

 5y14  y 2  0     Factor

Thus y  0 or y  4. When y  0, we have x  5  210 2  5, and when y  4, we 
have x  5  214 2  3. So the points of intersection of these curves are 15, 0 2  and 
13, 4 2 .

Note that in this case the vertices are not part of the solution set, since they don’t 
satisfy the inequality x2  y2  25 (so they are graphed as open circles in the figure). 
They simply show where the “corners” of the solution set lie.

Now Try Exercise 43 ■

■ Systems of Linear Inequalities
An inequality is linear if it can be put into one of the following forms:

ax  by  c      ax  by  c      ax  by  c      ax  by  c

In the next example we graph the solution set of a system of linear inequalities.

ExampLE 3 ■ a System of Four Linear Inequalities
Graph the solution set of the system, and label its vertices.

d

x  3y  12

x  y  8

x  0

y  0

SoLuTIoN Graph each inequality.  In Figure 6 we first graph the lines given by the equa-
tions that correspond to each inequality. To determine the graphs of the first two inequali-
ties, we need to check only one test point. For simplicity let’s use the point 10, 0 2 .

Inequality Test point x0, 0c Conclusion

x  3y  12 0  310 2 
?

12 ✓ Satisfies inequality
x  y  8 0  0 

?
8 ✓ Satisfies inequality

Since 10, 02 is below the line x  3y  12, our check shows that the region on or 
below the line must satisfy the inequality. Likewise, since 10, 0 2  is below the line  
x  y  8, our check shows that the region on or below this line must satisfy the 
inequality. The inequalities x  0 and y  0 say that x and y are nonnegative. These 
regions are sketched in Figure 6(a).

(a)

0

y

x

(b)

0

y

x

(5, 0)

(_3, 4)

FIGurE 5 bx2  y2  25

x  2y  5

(b)

0

y

x

(8, 0)

(6, 2)

(0, 4)

12

8

(a)

0

y

x
12

8
x+y=8

x=0

y=0
x+3y=12

8

4

FIGurE 6
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SECTION 10.5 ■ Systems of Inequalities 749

Graph the solution of the system.  The solution of the system of inequalities is the 
intersection of the graphs. This is the purple region graphed in Figure 6(b).

Find the vertices.  The coordinates of each vertex are obtained by simultaneously 
solving the equations of the lines that intersect at that vertex. From the system

bx 1 3y 5 12

x 1 y 5 8

we get the vertex 16, 22. The origin 10, 02 is also clearly a vertex. The other two verti-
ces are at the x- and y-intercepts of the corresponding lines: 18, 02 and 10, 42. In this 
case all the vertices are part of the solution set.

Now Try Exercise 51 ■

ExamplE 4 ■ a System of linear Inequalities
Graph the solution set of the system of inequalities, and label the vertices.

(a) d

10x 1 20y $ 60

30x 1 20y $ 100

10x 1 40y $ 80

x $ 0, y $ 0

   (b) d

10x 1 20y # 60

30x 1 20y $ 100

10x 1 40y $ 80

x $ 0, y $ 0

SoluTIoN 

(a) Graph each inequality.  We must graph the lines that correspond to these inequal-
ities and then shade the appropriate regions. The graph of 10x 1 20y $ 60 is the 
region above the line y 5 3 2 1

2 
x. The graph of 30x 1 20y $ 100 is the region 

above the line y 5 5 2 3
2 
x, and the graph of 10x 1 40y $ 80 is the region above 

the line y 5 2 2 1
4 
x.

  Graph the solution of the system.  The inequalities x $ 0 and y $ 0 indicate 
that the region is in the first quadrant. With this information we graph the system 
of inequalities in Figure 7. 

  Find the vertices.  We determine the vertices of the region by finding the points 
of intersection of the appropriate lines. You can check that the vertices of the 
region are the ones indicated in Figure 7.

(b) The graph of the first inequality 10x 1 20y # 60 is the region below the line
y 5 3 2 1

2 
x, and all the other inequalities are the same as those in part (a), so 

the solution to the system is the region (colored purple) shown in Figure 8.

FIGurE 7

30x+20y=100

10x+20y=60

10x+40y=80

0

y

x1

1
(4, 1) (8, 0)

(0, 5)

(2, 2)

FIGurE 8

30x+20y=100

10x+20y=60

10x+40y=80

0

y

x1

1
(4, 1)(2.4, 1.6) (8, 0)

(0, 5)

(2, 2)

Now Try Exercises 59 and 63 ■
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750 CHAPTER 10 ■ Systems of Equations and Inequalities 

ExaMPLE 5 ■ a System of Linear Inequalities 

Graph the solution set of the system of inequalities, and label the vertices.

c
x  2y  8

x  2y  4

3x  2y  8

SoLuTIoN graph each inequality.  We must graph the lines that correspond to  
these inequalities and then shade the appropriate regions, as in Example 2. We will 
use a graphing calculator, so we must first isolate y on the left-hand side of each 
inequality.

c  

y   
1
2 x  4

y  1
2 x  2

y  3
2 x  4

Using the shading feature of the calculator, we obtain the graph in Figure 9(a). Note 
that the calculator shades each region in a different pattern.

graph the solution of the system.  The solution set is the triangular region that is 
shaded in all three patterns. The solution set is graphed in Figure 9(b).

Find the vertices.  We use the trace  or the Intersect command to find the ver-
tices of the region. The vertices are labeled in Figure 9(b).

FIgurE 9

8

_2

_2 8

y

x0 1
1

(2, 3)

(4, 2)

(6, 5)

(a) Graphing calculator output (b) Graph of solution set

Now Try Exercise 65 ■

A region in the plane is called bounded if it can be enclosed in a (sufficiently large) 
circle. A region that is not bounded is called unbounded. For example, the regions 
graphed in Figures 3, 5(b), 6(b), 8, and 9 are bounded because they can be enclosed in a 
circle, as illustrated in Figure 10(a).  But the regions graphed in Figures 2, 4, and 7 are 
unbounded, because we cannot enclose them in a circle as illustrated in Figure 10(b). 

FIgurE 10

0

y

x1

1

0

y

x2

2

(a) A bounded region can be
enclosed in a circle.

(b) An unbounded region cannot be
enclosed in a circle.

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions on graphing inequalities. 
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■ application: Feasible regions
Many applied problems involve constraints on the variables. For instance, a factory 
manager has only a certain number of workers who can be assigned to perform jobs on 
the factory floor. A farmer deciding what crops to cultivate has only a certain amount 
of land that can be seeded. Such constraints or limitations can usually be expressed as 
systems of inequalities. When dealing with applied inequalities, we usually refer to the 
solution set of a system as a feasible region, because the points in the solution set rep-
resent feasible (or possible) values for the quantities being studied.

ExaMPLE 6 ■ restricting Pollutant outputs
A factory produces two agricultural pesticides, A and B. For every barrel of pesticide 
A, the factory emits 0.25 kg of carbon monoxide (CO) and 0.60 kg of sulfur dioxide 
(SO2); and for every barrel of pesticide B, it emits 0.50 kg of CO and 0.20 kg of SO2. 
Pollution laws restrict the factory’s output of CO to a maximum of 75 kg per day and 
its output of SO2 to a maximum of 90 kg per day.

(a)  Find a system of inequalities that describes the number of barrels of each pesti-
cide the factory can produce per day and still satisfy the pollution laws. Graph the 
feasible region.

(b)  Would it be legal for the factory to produce 100 barrels of pesticide A and 80 bar-
rels of pesticide B per day?

(c)  Would it be legal for the factory to produce 60 barrels of pesticide A and 160 bar-
rels of pesticide B per day?

SoLuTIoN

(a)  We state the constraints as a system of inequalities and then graph the solution of 
the system.

   Set up the inequalities.  We first identify and name the variables, and we then 
express each statement in the problem in terms of the variables. We let the vari-
able x represent the number of barrels of A produced per day and let y be the 
number of barrels of B produced per day. We can organize the information in the 
problem as follows.

In Words In Algebra

Barrels of A produced x
Barrels of B produced y
Total CO produced 0.25x  0.50y
Total SO2 produced 0.60x  0.20y

  From the information in the problem and the fact that x and y can’t be negative 
we obtain the following inequalities.

c
0.25x  0.50y  75

0.60x  0.20y  90

x  0, y  0

    At most 75 kg of CO can be produced

    At most 90 kg of SO2 can be produced

  Multiplying the first inequality by 4 and the second by 5 simplifies the system to 
the following:

c
x  2y  300

3x  y  450

x  0, y  0
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752 CHAPTER 10 ■ Systems of Equations and Inequalities 

  graph the solution set.  We first graph the equations 

x  2y  300

3x  y  450

  The graphs are the two lines shown in Figure 11. Using the test point 10, 0 2 , we 
see that the solution set of each of these inequalities is the region below the corre-
sponding line. So the solution to the system is the intersection of these sets as 
shown in Figure 11. 

(b)  Since the point 1100, 80 2 lies inside the feasible region, this production plan is  
legal (see Figure 11).

(c)  Since the point 160, 160 2 lies outside the feasible region, this production plan is 
not legal. It violates the CO restriction, although it does not violate the SO2  
restriction (see Figure 11).

Now Try Exercise 69 ■

0

y

x

(100, 80)

(60, 160)

300200100

200

100

400

300
3x+y=450

x+2y=300

FIgurE 11

coNcEPTS

 1. If the point 12, 3 2  is a solution of an inequality in x and y, 
then the inequality is satisfied when we replace x by 

  and y by    . Is the point 12, 3 2  a solution 
of the inequality 4x  2y  1? 

 2. To graph an inequality, we first graph the corresponding 

   . So to graph the inequality y  x  1, we  

first graph the equation    . To decide which  
side of the graph of the equation is the graph of the  

inequality, we use   points. Complete the table,  
and sketch a graph of the inequality by shading the appropri-
ate region.

Test point Inequality y " x  1 Conclusion

10, 0 2
10, 2 2

x

y

y=x+1

0 1

1

 3. If the point 12, 3 2  is a solution of a system of inequalities in x 
and y, then each inequality is satisfied when we replace x by 

  and y by    . Is the point 12, 3 2  a solution 
of the following system? 

e2x  4y  17

6x  5y  29

 4. Shade the solution of each system of inequalities on the given 
graph. 

(a) b  

x  y  0

x  y  2
 (b) b

x  y  0

x  y  2

y

x+y=2

x-y=0

x1

1

 

y

x+y=2

x-y=0

x1

1

(c) bx  y  0

x  y  2
 (d) bx  y  0

x  y  2

y

x+y=2

x-y=0

x1

1

 

y

x+y=2

x-y=0

x1

1

10.5 ExErcISES
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SkILLS
5–6 ■ Solutions of Inequalities  An inequality and several 
points are given. For each point determine whether it is a solution 
of the inequality.

 5. x  5y  3; 11, 2 2 , 11, 2 2 , 11, 2 2 , 18, 1 2
 6. 3x  2y  2; 12, 1 2 , 11, 3 2 , 11, 3 2 , 10, 1 2

7–8 ■ Solutions of Systems of Inequalities  A system of 
inequalities and several points are given. Determine which points 
are solutions of the system.

 7. e3x  2y  5

2x  y  3
; 10, 0 2 , 11, 2 2 , 11, 1 2 , 13, 1 2

 8. e x  2y  4

4x  3y  11
; 10, 0 2 , 11, 3 2 , 13, 0 2 , 11, 2 2

9–22 ■ graphing Inequalities  Graph the inequality.

 9. y  2x 10. y  3x

 11. y  2 12. x  1

 13. x  2 14. y  1

 15. y  x  3 16. y  1  x

 17. 2x  y  4 18. 3x  y  9  0

 19. x2  y  5 20. y  x2  1

 21. x2  y2  9 22. x2  1y  2 2 2  4

23–26 ■ graphing Inequalities  Use a graphing calculator to 
graph the linear inequality.

 23. 3x  2y  18 24. 4x  3y  9

 25. 5x  2y  8 26. 5x  3y  15

27–30 ■ Finding Inequalities from a graph  An equation and its 
graph are given. Find an inequality whose solution is the shaded 
region.

 27. y  1
2 x  1 28. y  x2  2

1
1

0

y

x

 

1
1

0

y

x

 29. x2  y2  4 30. y  x3  4x

1

1

0

y

x

 

1

1
0

y

x

31–58 ■ Systems of Inequalities  Graph the solution set of the 
system of inequalities. Find the coordinates of all vertices, and 
determine whether the solution set is bounded.

 31. b  

x  y  4

y  x
 32. b2x  3y  12

3x  y  21

33. b   

y  1
4 x  2

y  2x  5
 34. b  

x  y  0 

4  y  2x

 35. c 

y  2x  8

y   
1
2 x  5

x  0, y  0

 36. c 

4x  3y  18

2x  y  8

x  0, y  0

37. d

x  0

y  0

3x  5y  15

3x  2y  9

 38. c 

x  2

 y  12

2x  4y  8

39. b  

y  9  x2

x  0, y  0
 40. c 

y  x2

y  4

x  0

 41. b  

y  9  x2

y  x  3
 42. b  

y  x2

x  y  6

 43. b  

x2  y2  4

x  y  0
 44. d

x  0

y  0

x  y  10

x2  y2  9

 45. b  

x2  y  0

2x2  y  12
 46. e2x2  y  4

x2  y  8

 47. e x2  y2  9

2x  y2  1
 48. e x2  y2  4

x2  2y  1

 49. c 

x  2y  14

3x  y  0

x  y  2

 50. c
y  x  6

3x  2y  12

x  2y  2

 51. d  

x  0

y  0

x  5

x  y  7

 52. d

x  0

y  0

y  4

2x  y  8

 53. c
y  x  1

x  2y  12

x  1  0

 54. c
x  y  12

y  1
2 
x  6

3x  y  6

 55. c 

x2  y2  8

x  2

y  0

 56. c
x2  y  0

x  y  6

x  y  6

 57. c 

x2  y2  9

x  y  0

x  0

 58. c 

y  x3

y  2x  4

x  y  0

59–64 ■ Systems of Inequalities  Graph the system of inequali-
ties, label the vertices, and determine whether the region is 
bounded or unbounded.

 59. •
x  2y  14

3x  y  0

x  y  2

 60. •
x  2y  14

3x  y  0

x  y  2
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 61. •  

x  y  12

y  1
2 x  6

y  2x  6

 62. •
y  x  1

x  2y  12

x  1  0

 63. µ
30x  10y  50

10x  20y  50

10x  60y  90

x  0, y  0

 64. µ
x  y  6

4x  7y  39

x  5y  13

x  0, y  0

65–68 ■ graphing Systems of Inequalities  Use a graphing cal-
culator to graph the solution of the system of inequalities. Find 
the coordinates of all vertices,  rounded to one decimal place.

 65. c  

y  x  3

y  2x  6

y  8

 66. c
x  y  12

2x  y  24

x  y  6

 67. b  

y  6x  x2

x  y  4
 68. c 

y  x3

2x  y  0

y  2x  6

aPPLIcaTIoNS
 69. Planting crops  A farmer has 500 acres of arable land on 

which he wants to plant potatoes and corn. The farmer has 
$40,000 available for planting and $30,000 for fertilizer. 
Planting 1 acre of potatoes costs $90, and planting 1 acre of 
corn costs $50. Fertilizer costs $30 for 1 acre of potatoes and 
$80 for 1 acre of corn. 

(a) Find a system of inequalities that describes the number 
of acres of each crop that the farmer can plant with the 
available resources. Graph the feasible region.

(b) Can the farmer plant 300 acres of potatoes and 180 acres 
of corn?

(c) Can the farmer plant 150 acres of potatoes and 325 acres 
of corn?

 70. Planting crops  A farmer has 300 acres of arable land on 
which she wants to plant cauliflower and cabbage. The 
farmer has $17,500 available for planting and $12,000 for 
fertilizer. Planting 1 acre of cauliflower costs $70, and plant-
ing 1 acre of cabbage costs $35. Fertilizer costs $25 for  
1 acre of cauliflower and $55 for 1 acre of cabbage. 

(a) Find a system of inequalities that describes the number 
of acres of each crop that the farmer can plant with the 
available resources. Graph the feasible region.

(b) Can the farmer plant 155 acres of cauliflower and  
115 acres of cabbage?  

(c) Can the farmer plant 115 acres of cauliflower and  
175 acres of cabbage? 

 71.  Publishing books  A publishing company publishes  
a total of no more than 100 books every year. At least  
20 of these are nonfiction, but the company always publishes 
at least as much fiction as nonfiction. Find a system of 
inequalities that describes the possible numbers of fiction and 
nonfiction books that the company can produce each year 
consistent with these policies. Graph the solution set.

 72.  Furniture Manufacturing  A man and his daughter manufac-
ture unfinished tables and chairs. Each table requires 3 h of 
sawing and 1 h of assembly. Each chair requires 2 h of saw-
ing and 2 h of assembly. Between the two of them, they can 
put in up to 12 h of sawing and 8 h of assembly work each 
day. Find a system of inequalities that describes all possible 
combinations of tables and chairs that they can make daily. 
Graph the solution set.

 73.  coffee blends  A coffee merchant sells two different coffee 
blends. The Standard blend uses 4 oz of arabica and 12 oz of 
robusta beans per package; the Deluxe blend uses 10 oz of 
 arabica and 6 oz of robusta beans per package. The merchant 
has 80 lb of arabica and 90 lb of robusta beans available. 
Find a system of inequalities that describes the possible num-
ber of Standard and Deluxe packages the merchant can make. 
Graph the solution set.

 74.  Nutrition  A cat food manufacturer uses fish and beef by-
products. The fish contains 12 g of protein and 3 g of fat per 
ounce. The beef contains 6 g of protein and 9 g of fat per 
ounce. Each can of cat food must contain at least 60 g of pro-
tein and 45 g of fat. Find a system of inequalities that 
describes the possible number of ounces of fish and beef by-
products that can be used in each can to satisfy these mini-
mum requirements. Graph the solution set.

dIScuSS ■ dIScoVEr ■ ProVE ■ wrITE
 75. dIScuSS: Shading unwanted regions  To graph the solution 

of a system of inequalities, we have shaded the solution of each 
inequality in a different color; the solution of the system is the 
region where all the shaded parts overlap. Here is a different 
method: For each inequality, shade the region that does not sat-
isfy the inequality. Explain why the part of the plane that is left 
unshaded is the solution of the system. Solve the following sys-
tem by both methods. Which do you prefer? Why?

d

x  2y  4

x  y  1

x  3y  9

x  3
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Systems of Equations (p. 716)
A system of equations is a set of equations that involve the same 
variables. A system of linear equations is a system of equations 
in which each equation is linear. Systems of of linear equations in 
two variables (x and y) and three variables (x, y, and z) have the 
following forms:

 Linear system Linear system
 2 variables 3 variables

 
a11x  a12 

y  b1

a21x  a22 
y  b2 

a11x  a12 
y  a13z  b1

a21x  a22 
y  a23z  b2

a31x  a32 
y  a33z  b3

A solution of a system of equations is an assignment of values 
for the variables that makes each equation in the system true. To 
solve a system means to find all solutions of the system.

Substitution Method (p. 716)
To solve a pair of equations in two variables by substitution:

1.  Solve for one variable in terms of the other variable in one 
 equation.

2. Substitute into the other equation to get an equation in one 
 variable, and solve for this variable.

3. Back-substitute the value(s) of the variable you have found 
into either original equation, and solve for the remaining 
variable.

Elimination Method (p. 717)
To solve a pair of equations in two variables by elimination:

1. Adjust the coefficients by multiplying the equations by 
appropriate constants so that the term(s) involving one of the 
variables are of opposite sign in the equations.

2. Add the equations to eliminate that one variable; this gives  
an equation in the other variable. Solve for this variable.

3. Back-substitute the value(s) of the variable that you have 
found into either original equation, and solve for the remaining 
variable.

graphical Method (p. 718)
To solve a pair of equations in two variables graphically, first put 
each equation in function form, y  f 1x 2 .
1. Graph the equations on a common screen.

2. Find the points of intersection of the graphs. The solutions 
are the x- and y-coordinates of the points of intersection.

gaussian Elimination (p. 727)
When we use Gaussian elimination to solve a system of linear 
equations, we use the following operations to change the system 
to an equivalent simpler system:

1. Add a nonzero multiple of one equation to another.

2.  Multiply an equation by a nonzero constant.

3.  Interchange the position of two equations in the system.

Number of Solutions of a Linear System (p. 729)
A system of linear equations can have:

1. A unique solution for each variable.

2. No solution, in which case the system is inconsistent.

3. Infinitely many solutions, in which case the system is 
 dependent.

how to determine the Number of Solutions  
of a Linear System (p. 729)
When we use Gaussian elimination to solve a system of linear 
equations, then we can tell that the system has:

1.  No solution (is inconsistent) if we arrive at a false equation of 
the form 0  c, where c is nonzero.

2.  Infinitely many solutions (is dependent) if the system is con-
sistent but we end up with fewer equations than variables 
(after discarding redundant equations of the form 0  0).

Partial Fractions (pp. 735–739)
The partial fraction decomposition of a rational function 

r1x 2 
P1x 2
Q1x 2

(where the degree of P is less than the degree of Q) is a sum of 
 simpler fractional expressions that equal r1x 2  when brought to a 
common denominator. The denominator of each simpler fraction 
is either a linear or quadratic factor of Q1x 2  or a power of such a 
linear or quadratic factor. So to find the terms of the partial frac-
tion decomposition, we first factor Q1x 2  into linear and irreduc-
ible quadratic factors. The terms then have the following forms, 
depending on the factors of Q1x 2 .
1. For every distinct linear factor ax  b there is a term of the 

form 

A

ax  b

2. For every repeated linear factor 1ax  b 2m there are terms of 
the form

A1

ax  b


A2

1ax  b 2 2  . . . 
Am

1ax  b 2m
3. For every distinct quadratic factor ax2  bx  c there is a 

term of the form 

Ax  B

ax2  bx  c

4. For every repeated quadratic factor 1ax2  bx  c 2m there 
are terms of the form

A1x  B1

ax2  bx  c


A2x  B2

1ax2  bx  c 2 2  . . . 
Amx  Bm

1ax2  bx  c 2m

■ ProPErTIES aNd ForMuLaS
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graphing Inequalities (pp. 745–746)
To graph an inequality:

1. Graph the equation that corresponds to the inequality. This 
“boundary curve” divides the coordinate plane into separate 
 regions.

 2. Use test points to determine which region(s) satisfy the  inequality.

3. Shade the region(s) that satisfy the inequality, and use a solid 
line for the boundary curve if it satisfies the inequality ( or ) 
and a dashed line if it does not ( or ).

graphing Systems of Inequalities (p. 747)
To graph the solution of a system of inequalities (or feasible 
region determined by the inequalities):

1. Graph all the inequalities on the same coordinate plane.

2. The solution is the intersection of the solutions of all the 
inequalities, so shade the region that satisfies all the inequalities.

3. Determine the coordinates of the intersection points of all the 
boundary curves that touch the solution set of the system. 
These points are the vertices of the solution.

 1. (a)  What is a system of equations in the variables x, y, and z?

(b) What are the three methods we use to solve a system of 
equations?

 2. Consider the following system of equations:

e x  y  3

3x  y  1

(a) Describe the steps you would use to solve a system by 
the substitution method. Use the substitution method to 
solve the given system.

(b) Describe the steps you would use to solve a system by 
the elimination method. Use the elimination method to 
solve the given system.

(c) Describe the steps you would use to solve a system by 
the graphical method. Use the graph shown below to 
solve the system.

y

x+y=3

3x-y=1

x1

1

0

 3. What is a system of linear equations in the variables x, y, and z?

 4. For a system of two linear equations in two variables,

(a) How many solutions are possible?

(b) What is meant by an inconsistent system?

(c) What is meant by a dependent system?

 5. What operations can be performed on a linear system to 
arrive at an equivalent system?

 6. (a)  Explain how Gaussian elimination works.

(b) Use Gaussian elimination to put the following system in 
triangular form, and then solve the system.

 System Triangular form

 •
x  y  2z  3

x  2y  z  5

3x  y  5z  1

 7. (a)  How do we express a rational function r as a partial frac-
tion decomposition?

(b) Give the form of the partial fraction decomposition.

 (i)  
2x

1x  5 2 1x  1 2 2   

 (ii)  
2x

1x  5 2 1x2  1 2

 (iii) 
3x  1

x1x2  1 2 2
 8. (a)  How do we graph an inequality in two variables?

(b) Graphs of equations in two variables are shown. On 
each graph, shade the solution set of the indicated 
inequality.

y=3x-x™

y

x1

1

  

y

x+y=3

x1

1

0

 y  3x  x2 x  y  3

 9. (a)  How do we graph the solution set of a system of 
inequalities?

(b) Graphs of the equations in the following system of 
inequalities are given. Graph the solution set of the sys-
tem of inequalities.

e x  y  3

3x  y  1

y

x+y=3

3x-y=1

x1

1

0

■ coNcEPT chEck
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ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ ExErcISES

1–6 ■ Systems of Linear Equations in Two Variables  Solve the 
system of equations, and graph the lines.

 1. e 3x  y  5

2x  y  5
  2. e y    2x  6

y  x  3

 3. e 2x  7y  28

y  2
7 x  4

  4. e 6x  8y  15  

 
3
2 x  2y  4

 5. •
2x  y  1

x  3y  10

3x  4y  15

  6. •
2x  5y  9

x  3y  1

7x  2y  14

7–10 ■ Systems of Nonlinear Equations  Solve the system of 
equations.

 7. e y  x2  2x

y  6  x
  8. e x2  y2  8

y  x  2

 9. µ
3x 

4
y

 6

x 
8
y

 4

 10. e x2  y2  10

x2  2y2  7y  0

11–14 ■ Systems of Nonlinear Equations  Use a graphing device 
to solve the system. Round answers to the nearest hundredth.

11. e 0.32x  0.43y  0

7x  12y  341
 12. e!12x  3!2y  660

7137x  3931y  20,000

13. e x  y2  10

x  1
22 y  12

 14. e y  5x  x

y  x 
5  5

15–24 ■ Systems of Linear Equations in Several Variables  Solve 
the system of equations.

 15. •
x  2y  z  8

4x  z  9

2x  y  z  8

 16. •
x  y  3z  4

4x  2y  z  11

5x  y  z  16

17. •
x  y  2z  6

2x  5z  12

x  2y  3z  9

 18. •
x  2y  3z  1

x  3y  z  0

2x  6z  6

19. •
x  2y  3z  1

2x  y  z  3

2x  7y  11z  2

 20. d

x  y  z  „  2

2x  3z  5

x  2y  4„  9

x  y  2z  3„  5

21. e x  3y  z  4

4x  y  15z  5
 22. •

2x  3y  4z  3

4x  5y  9z  13

2x  7z  0

23. d

x  z  „  2

2x  y  2„  12

3y  z  „  4

x  y  z „  10

 24. •
x  4y  z  8

2x  6y  z  9

x  6y  4z  15

25. Finding ages of children  Eleanor has two children, Kieran 
and Siobhan. Kieran is 4 years older than Siobhan, and the 
sum of their ages is 22. How old are the children?

26. Investments  A man invests his savings in two accounts, one 
paying 6% interest per year and the other paying 7%. He has 
twice as much invested in the 7% account as in the 6% 
account, and his annual interest income is $600. How much is 
invested in each account?

27. Number of coins  A piggy bank contains 50 coins, all of 
them nickels, dimes, or quarters. The total value of the coins 
is $5.60, and the value of the dimes is five times the value of 
the nickels. How many coins of each type are there?

28. Number of Fish caught  Tornie is a commercial fisherman 
who trolls for salmon on the British Columbia coast. One day 
he catches a total of 25 fish of three salmon species: coho, 
sockeye, and pink. He catches three more coho than the other 
two species combined; moreover, he catches twice as many 
coho as sockeye. How many fish of each species has he 
caught?

29–36 ■ Partial Fraction decomposition  Find the partial frac-
tion decomposition of the rational expression.

29. 
3x  1

x2  2x  15
 30. 

8

x3  4x

31. 
2x  4

x1x  1 2 2  32. 
x  6

x3  2x2  4x  8

33. 
2x  1

x3  x
 34. 

5x2  3x  10

x4  x2  2

35. 
3x2  x  6

1x2  2 2 2  36. 
x2  x  1

x1x2  1 2 2

(c) Graphs of the equations in the following system of 
inequalities are given. Graph the solution set of the sys-
tem of inequalities.

e x  y  3

y  3x  x2

x+y=3
y=3x-x™

y

x1

1
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37–40 ■ Intersection Points  Two equations and their graphs are 
given. Find the intersection point(s) of the graphs by solving the 
system.

 37. e 2x  3y  7

x  2y  0
 38. e3x  y  8

y  x2  5x

1

1

0

y

x

 

20
2

y

x

 39. e x2  y  2

x2  3x  y  0
 40. e x  y  2

x2  y2  4y  4

10
1

y

x

 

2

10

y

x

41–42 ■ Finding an Inequality from a graph  An equation and 
its graph are given. Find an inequality whose solution is the 
shaded region.

 41. x  y2  4 42. x2  y2  8

1

1

0

y

x

 

1

1

0

y

x

43–46 ■ graphing Inequalities  Graph the inequality.

43. 3x  y  6 44. y  x2  3

45. x2  y2  9 46. x  y2  4

47–50 ■ Solution Set of a System of Inequalities  The figure 
shows the graphs of the equations corresponding to the given 
inequalities. Shade the solution set of the system of inequalities.

47. e y  x2  3x

y  1
3 x  1

 48. e y  x  1

x2  y2  1

11

0

y

x

 

1

1

0

y

x

49. •
x  y  2

y  x  2

x  3

 50. •
y  2x

y  2x

y   
1
2 x  2

1

1

0

y

x

 

4

40

y

x

51–54 ■ Systems of Inequalities  Graph the solution set of the 
system of inequalities. Find the coordinates of all vertices, and 
determine whether the solution set is bounded or unbounded.

51. e x2  y2  9

x  y  0

 52. e y  x2  4

y  20

53. •
x  0, y  0

x  2y  12

y  x  4

 54. •
x  4

x  y  24

x  2y  12

55–56 ■ general Systems of Equations  Solve for x, y, and z in 
terms of a, b, and c.

55. •
x  y  z  a

x  y  z  b

x  y  z  c

56. •
ax  by  cz  a  b  c

bx  by  cz  c

cx  cy  cz  c

  1a ? b, b ? c, c ? 0 2

57. general Systems of Equations  For what values of k  
do the following three lines have a common point of 
intersection?

 x  y  12

 kx  y  0

 y  x  2k

58.  general Systems of Equations  For what value of k does the 
following system have infinitely many solutions?

•
kx  y  z  0

x  2y  kz  0

x  3z  0

chaPTEr 10
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1–3 ■ A system of equations is given. (a) Determine whether the system is linear or nonlinear. 
(b) Find all solutions of the system.

 1. e x  3y  7

5x  2y  4
  2. e6x  y2  10

3x  y  5
  3. b

 x2  y2  100

 y  3x

 4. Use a graphing device to find all solutions of the system rounded to two decimal places.

e x  2y  1

y  x3  2x2

5–8 ■ A system of linear equations is given. (a) Find the complete solution of the system, or 
show that there is no solution. (b) State whether the system is inconsistent, dependent, or 
neither.

 5. c
x  2y  0z  3

x  3y  2z  3

2x  3y  0z  8

  6. c
x  y  9z  8

4z       7

3x  y  0z       5

 7. c
2x  0y  0z  0

3x  2y  3z  1

x  4y  5z  1  

8. c
x  y  2z  08

2x  y  20

2x  2y  5z  15

 9. In 2 
1
2  h an airplane travels 600 km against the wind. It takes 50 min to travel 300 km with 

the wind. Find the speed of the wind and the speed of the airplane in still air.

 10. Anne, Barry, and Cathy enter a coffee shop. Anne orders two coffees, one juice, and  
two doughnuts and pays $6.25. Barry orders one coffee and three doughnuts and pays 
$3.75. Cathy orders three coffees, one juice, and four doughnuts and pays $9.25. Find the 
price of coffee, juice, and doughnuts at this coffee shop.

11–12 ■ Graph the inequality.

11. 3x  4y  6 12. x2  y  3

13–14 ■ Graph the solution set of the system of inequalities. Label the vertices with their  
coordinates.

 13. c
2x  y  8

x  y  2

x  2y  4

 14. e  

x2  y  5

y  2x  5

15–16 ■ Find the partial fraction decomposition of the rational expression.

 15. 
4x  1

1x  1 2 21x  2 2  16. 
2x  3

x 
3  3x
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Linear programming is a modeling technique that is used to determine the optimal 
allocation of resources in business, the military, and other areas of human endeavor. 
For example, a manufacturer who makes several different products from the same raw 
materials can use linear programming to determine how much of each product should 
be produced to maximize the profit. This modeling technique is probably the most 
important practical application of systems of linear inequalities. In 1975 Leonid 
Kantorovich and T. C. Koopmans won the Nobel Prize in economics for their work 
in the development of this technique.

Although linear programming can be applied to very complex problems with hun-
dreds or even thousands of variables, we consider only a few simple examples to 
which the graphical methods of Section 10.5 can be applied. (For large numbers of 
variables a linear programming method based on matrices is used.) Let’s examine a 
typical problem.

ExaMPLE 1 ■ Manufacturing for Maximum Profit
A small shoe manufacturer makes two styles of shoes: oxfords and loafers. Two ma-
chines are used in the process: a cutting machine and a sewing machine. Each type of 
shoe requires 15 min per pair on the cutting machine. Oxfords require 10 min of sew-
ing per pair, and loafers require 20 min of sewing per pair. Because the manufacturer 
can hire only one operator for each machine, each process is available for just 8 h per 
day. If the profit is $15 on each pair of oxfords and $20 on each pair of loafers, how 
many pairs of each type should be produced per day for maximum profit?

SoLuTIoN  First we organize the given information into a table. To be consistent, let’s 
convert all times to hours.

Oxfords Loafers Time available

Time on cutting machine (h)
Time on sewing machine (h)

1
4
1
6

1
4
1
3

8
8

Profit $15 $20

We describe the model and solve the problem in four steps.

■  choose the Variables
To make a mathematical model, we first give names to the variable quantities. For  
this problem we let

x  number of pairs of oxfords made daily

y  number of pairs of loafers made daily

■  Find the objective Function
Our goal is to determine which values for x and y give maximum profit. Since each 
pair of oxfords provides $15 profit and each pair of loafers provides $20, the total 
profit is given by

P  15x  20y

This function is called the objective function.

Because loafers produce more profit, it 
would seem best to manufacture only 
loafers. Surprisingly, this does not turn 
out to be the most profitable solution.

Linear ProgrammingFocuS oN ModELINg
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■  graph the Feasible region
The larger x and y are, the greater is the profit. But we cannot choose arbitrarily large 
values for these variables because of the restrictions, or constraints, in the problem. 
Each restriction is an inequality in the variables.

In this problem the total number of cutting hours needed is 1
4 x  1

4 y. Since only  
8 h are available on the cutting machine, we have

1
4 x  1

4 y  8

Similarly, by considering the amount of time needed and available on the sewing  
machine, we get

1
6 x  1

3 y  8

We cannot produce a negative number of shoes, so we also have

x  0  and   y  0

Thus x and y must satisfy the constraints

c  

1
4 x  1

4 y  8
1
6 x  1

3 y  8

x  0, y  0

If we multiply the first inequality by 4 and the second by 6, we obtain the simplified 
system

c  

x  2y  32

x  2y  48

x  0, y  0

The solution of this system (with vertices labeled) is sketched in Figure 1. The only val-
ues that satisfy the restrictions of the problem are the ones that correspond to points of 
the shaded region in Figure 1. This is called the feasible region for the problem.

■  Find the Maximum Profit
As x or y increases, profit increases as well. Thus it seems reasonable that the maxi-
mum profit will occur at a point on one of the outside edges of the feasible region, 
where it is impossible to increase x or y without going outside the region. In fact, it 
can be shown that the maximum value occurs at a vertex. This means that we need  
to check the profit only at the vertices. The largest value of P occurs at the point  
116, 162, where P  $560. Thus the manufacturer should make 16 pairs of oxfords 
and 16 pairs of loafers, for a maximum daily profit of $560.

Vertex P  15x  20y

10, 0 2 0
10, 24 2 1510 2  20124 2  $480
116, 16 2 15116 2  20116 2  $560
132, 0 2 15132 2  2010 2  $480

Maximum profit

 ■

The linear programming problems that we consider all follow the pattern of Ex-
ample 1. Each problem involves two variables. The problem describes restrictions, 
called constraints, that lead to a system of linear inequalities whose solution is called 
the feasible region. The function that we wish to maximize or minimize is called the 
objective function. This function always attains its largest and smallest values at the 
vertices of the feasible region. This modeling technique involves four steps, sum-
marized in the following box.

y

x10

10

x+y=32

x+2y=48

(0, 24)

(0, 0) (32, 0)

(16, 16)

FIgurE 1

Linear Programming helps the tele-
phone industry to determine the most 
efficient way to route telephone calls. The 
computerized routing decisions must be 
made very rapidly so that callers are not 
kept waiting for connections. Since the 
database of customers and routes is 
huge, an extremely fast method for solv-
ing linear programming problems is 
essential. In 1984 the 28-year-old mathe-
matician narendra Karmarkar, working 
at Bell Labs in Murray Hill, New Jersey, 
discovered just such a method. His idea is 
so ingenious and his method so fast that 
the discovery caused a sensation in the 
mathematical world. Although mathe-
matical discoveries rarely make the news, 
this one was reported in Time, on Decem-
ber 3, 1984. Today airlines routinely use 
Karmarkar’s technique to minimize costs 
in scheduling passengers, flight person-
nel, fuel, baggage, and maintenance 
workers.
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guIdELINES For LINEar PrograMMINg

1. choose the Variables.  Decide what variable quantities in the problem should 
be named x and y.

2. Find the objective Function.  Write an expression for the function we want to 
maximize or minimize.

3. graph the Feasible region.  Express the constraints as a system of inequali-
ties, and graph the solution of this system (the feasible region).

4. Find the Maximum or Minimum.  Evaluate the objective function at the verti-
ces of the feasible region to determine its maximum or minimum value.

ExaMPLE 2 ■ a Shipping Problem
A car dealer has warehouses in Millville and Trenton and dealerships in Camden and 
Atlantic City. Every car that is sold at the dealerships must be delivered from one of 
the warehouses. On a certain day the Camden dealers sell 10 cars, and the Atlantic 
City dealers sell 12. The Millville warehouse has 15 cars available, and the Trenton 
warehouse has 10. The cost of shipping one car is $50 from Millville to Camden, $40 
from Millville to Atlantic City, $60 from Trenton to Camden, and $55 from Trenton 
to Atlantic City. How many cars should be moved from each warehouse to each deal-
ership to fill the orders at minimum cost?

SoLuTIoN  Our first step is to organize the given information. Rather than construct a 
table, we draw a diagram to show the flow of cars from the warehouses to the dealerships 
(see Figure 2 below). The diagram shows the number of cars available at each warehouse 
or required at each dealership and the cost of shipping between these locations.

■  choose the Variables
The arrows in Figure 2 indicate four possible routes, so the problem seems to involve 
four variables. But we let

x  number of cars to be shipped from Millville to Camden

y  number of cars to be shipped from Millville to Atlantic City

To fill the orders, we must have

10  x  number of cars shipped from Trenton to Camden

12  y  number of cars shipped from Trenton to Atlantic City

So the only variables in the problem are x and y.

Camden
Sell 10

Millville
15 cars

Atlantic City
Sell 12

Trenton
10 cars

$50

$40

$60

$55

Ship
x cars

Ship
10-x

cars

Ship
y cars

Ship
12-y

cars

FIgurE 2
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  Linear Programming 763

■  Find the objective Function
The objective of this problem is to  minimize cost. From Figure 2 we see that the total 
cost C of shipping the cars is

C  50x  40y  60110  x 2  55112  y 2
 50x  40y  600  60x  660  55y

 1260  10x  15y

This is the objective function.

■  graph the Feasible region
Now we derive the constraint inequalities that define the feasible region. First, the 
number of cars shipped on each route can’t be negative, so we have

x  0   y  0

10  x  0   12  y  0

Second, the total number of cars shipped from each warehouse can’t exceed the num-
ber of cars available there, so

x  y  15

110  x 2  112  y 2  10

Simplifying the latter inequality, we get

22  x  y  10

x  y  12

x  y  12

The inequalities 10  x  0 and 12  y  0 can be rewritten as x  10 and y  12. 
Thus the feasible region is described by the constraints

d

x  y  15

x  y  12

0  x  10

0  y  12

The feasible region is graphed in Figure 3.

■  Find the Minimum cost
We check the value of the objective function at each vertex of the feasible region.

Vertex C  1260 2 10x 2 15y

10, 12 2 1260  1010 2  15112 2  $1080
13, 12 2 1260  1013 2  15112 2  $1050
110, 5 2 1260  10110 2  1515 2  $1085
110, 2 2 1260  10110 2  1512 2  $1130

Minimum cost

The lowest cost is incurred at the point Ó3, 12Ô. Thus the dealer should ship

 3 cars from Millville to Camden
12 cars from Millville to Atlantic City
 7 cars from Trenton to Camden
 0 cars from Trenton to Atlantic City ■

In the 1940s mathematicians developed matrix methods for solving linear program-
ming problems that involve more than two variables. These methods were first used by 
the Allies in World War II to solve supply problems similar to (but, of course, much 
more complicated than) Example 2. Improving such matrix methods is an active and 
exciting area of current mathematical research.

y

x

x+y=12

y=12
(0, 12)

(3, 12)

x+y=15

x=10

(10, 2)

(10, 5)

FIgurE 3
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764 Focus on Modeling

ProbLEMS
1–4 ■ Find the maximum and minimum values of the given objective function on the  indicated 
feasible region.

 1. M  200  x  y  2. N  1
2 x  1

4 y  40

y

x0 4

2

5

 
y

x1

1

4

4

y=x

 3. P  140  x  3y  4. Q  70x  82y

  
c

x  0, y  0

2x  y  10

2x  4y  28
  d

x  0, y  0

x  10, y  20

x  y  5

x  2y  18

 5. Making Furniture  A furniture manufacturer makes wooden tables and chairs. The pro-
duction process involves two basic types of labor: carpentry and finishing. A table requires  
2 h of carpentry and 1 h of finishing, and a chair requires 3 h of carpentry and 1

2 h of finish-
ing. The profit is $35 per table and $20 per chair. The manufacturer’s employees can supply 
a maximum of 108 h of carpentry work and 20 h of  finishing work per day. How many tables 
and chairs should be made each day to  maximize profit?

 6.  a housing development  A housing contractor has subdivided a farm into 100 build-
ing lots. She has designed two types of homes for these lots: colonial and ranch style. A 
colonial requires $30,000 of capital and produces a profit of $4000 when sold. A ranch-
style house requires $40,000 of capital and provides an $8000 profit. If the contractor has 
$3.6 million of capital on hand, how many houses of each type should she build for maxi-
mum profit? Will any of the lots be left vacant?

 7. hauling Fruit  A trucker hauls citrus fruit from Florida to Montreal. Each crate of  
oranges is 4 ft3 in volume and weighs 80 lb. Each crate of grapefruit has a volume of 6 ft3 
and weighs 100 lb. His truck has a maximum capacity of 300 ft3 and can carry no more 
than 5600 lb. Moreover, he is not permitted to carry more crates of grapefruit than crates of 
oranges. If his profit is $2.50 on each crate of oranges and $4 on each crate of grapefruit, 
how many crates of each fruit should he carry for maximum profit?

 8. Manufacturing calculators  A manufacturer of calculators produces two models: stan-
dard and scientific. Long-term demand for the two models mandates that the company 
manufacture at least 100 standard and 80 scientific calculators each day. However, because 
of limitations on production capacity, no more than 200 standard and 170 scientific calcula-
tors can be made daily. To satisfy a shipping contract, a total of at least 200 calculators 
must be shipped every day.

(a)  If the production cost is $5 for a standard calculator and $7 for a scientific one, how 
many of each model should be produced daily to minimize this cost?

(b)  If each standard calculator results in a $2 loss but each scientific one produces a  
$5 profit, how many of each model should be made daily to maximize profit?

 9. Shipping Televisions  An electronics discount chain has a sale on a certain brand of 
60-in. high-definition television set. The chain has stores in Santa Monica and El Toro and 
warehouses in Long Beach and Pasadena. To satisfy rush orders, 15 sets must be shipped 
from the warehouses to the Santa Monica store, and 19 must be shipped to the El Toro 
store. The cost of shipping a set is $5 from Long Beach to Santa Monica, $6 from Long 
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Beach to El Toro, $4 from Pasadena to Santa Monica, and $5.50 from Pasadena to El Toro. 
If the Long Beach warehouse has 24 sets and the Pasadena warehouse has 18 sets in stock, 
how many sets should be shipped from each warehouse to each store to fill the orders at a 
minimum shipping cost?

 10. delivering Plywood  A man owns two building supply stores, one on the east side and 
one on the west side of a city. Two customers order some 1

2-inch plywood. Customer A 
needs 50 sheets, and customer B needs 70 sheets. The east-side store has 80 sheets, and the 
west-side store has 45 sheets of this plywood in stock. The east-side store’s delivery costs 
per sheet are $0.50 to customer A and $0.60 to customer B. The west-side store’s delivery 
costs per sheet are $0.40 to customer A and $0.55 to customer B. How many sheets should 
be shipped from each store to each customer to minimize delivery costs?

 11.  Packaging Nuts  A confectioner sells two types of nut mixtures. The standard-mixture 
package contains 100 g of cashews and 200 g of peanuts and sells for $1.95. The deluxe-
mixture package contains 150 g of cashews and 50 g of peanuts and sells for $2.25. The 
confectioner has 15 kg of cashews and 20 kg of peanuts available. On the basis of past 
sales, the confectioner needs to have at least as many standard as deluxe packages avail-
able. How many bags of each mixture should he package to maximize his revenue?

 12. Feeding Lab rabbits  A biologist wishes to feed laboratory rabbits a mixture of two 
types of foods. Type I contains 8 g of fat, 12 g of carbohydrate, and 2 g of protein per 
ounce. Type II contains 12 g of fat, 12 g of carbohydrate, and 1 g of protein per ounce. 
Type I costs $0.20 per ounce and type II costs $0.30 per ounce. Each rabbit receives a daily 
 minimum of 24 g of fat, 36 g of carbohydrate, and 4 g of protein, but get no more than  
5 oz of food per day. How many ounces of each food type should be fed to each rabbit 
daily to satisfy the dietary requirements at minimum cost?

 13. Investing in bonds  A woman wishes to invest $12,000 in three types of bonds: munici-
pal bonds paying 7% interest per year, bank certificates paying 8%, and high-risk bonds 
paying 12%. For tax reasons she wants the amount invested in municipal bonds to be at 
least three times the amount invested in bank certificates. To keep her level of risk manage-
able, she will invest no more than $2000 in high-risk bonds. How much should she invest 
in each type of bond to maximize her annual interest yield?  [Hint: Let x  amount in 
municipal bonds and y  amount in bank certificates. Then the amount in high-risk bonds 
will be 12,000  x  y.]

 14. annual Interest yield  Refer to Problem 13. Suppose the investor decides to increase 
the maximum invested in high-risk bonds to $3000 but leaves the other conditions 
unchanged. By how much will her maximum possible interest yield increase?

 15. business Strategy  A small software company publishes computer games, educational 
software, and utility software. Their business strategy is to market a total of 36 new pro-
grams each year, at least four of these being games. The number of utility programs pub-
lished is never more than twice the number of educational programs. On average, the com-
pany makes an annual profit of $5000 on each computer game, $8000 on each educational 
program, and $6000 on each utility program. How many of each type of software should 
the company publish annually for maximum profit?

 16. Feasible region  All parts of this problem refer to the following feasible region and 
objective function.

d  

x  0 

x  y 

x  2y  12

x  0y  10

P  x  4y

(a) Graph the feasible region.

(b)  On your graph from part (a), sketch the graphs of the linear equations obtained by set-
ting P equal to 40, 36, 32, and 28.

(c) If you continue to decrease the value of P, at which vertex of the feasible region will 
these lines first touch the feasible region?

(d) Verify that the maximum value of P on the feasible region occurs at the vertex you 
chose in part (c).
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A rectangular array (or table) of numbers  is called a matrix. In this 
chapter we’ll learn how a system of linear equations can be expressed as a 
matrix. We’ll also learn how to perform operations on matrices (such as 
addition, multiplication, and inversion) and how these operations can be 
used to solve a system of linear equations.

Matrices have numerous applications to real-world situations. We’ll see 
how matrix operations help scientists determine the likelihood of the 
survival of an animal species. (See Discovery Project: Will the Species 
Survive? referenced on page 788.) In the Focus on Modeling at the end of 
the chapter we represent a figure in the plane as a matrix and then perform 
operations on the matrix that transform the image—stretch, squeeze, tilt, 
or rotate. This is how video games create such fantastic images. Each 
image is stored in the computer memory as a matrix of numbers, and then 
matrix operations are used to manipulate the image.

767

Matrices and Determinants11
11.1 Matrices and Systems of  

Linear Equations
11.2 The Algebra of Matrices
11.3 Inverses of Matrices and 

Matrix Equations
11.4 Determinants and 

Cramer’s Rule

foCuS on MoDELIng
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© Stefano Tinti/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



768 CHAPTER 11 ■ Matrices and Determinants

11.1 MATRICES AnD SySTEMS of LInEAR EquATIonS
■ Matrices ■ The Augmented Matrix of a Linear System ■ Elementary Row 
operations ■ gaussian Elimination ■ gauss-Jordan Elimination ■ Inconsistent and 
Dependent Systems ■ Modeling with Linear Systems

A matrix is simply a rectangular array of numbers. Matrices* are used to organize infor-
mation into categories that correspond to the rows and columns of the matrix. For 
 example, a scientist might organize information on a population of endangered whales as 
follows:

  Immature Juvenile Adult

 Male
 

Female  
B12     52     18

15     42     11
R

This is a compact way of saying that there are 12 immature males, 15 immature females, 
18 adult males, and so on.

In this section we represent a linear system by a matrix, called the augmented matrix 
of the system.

 Linear system Augmented matrix

b2x    y  5

  x  4y  7
                B

2 1 5

1 4 7
R

The augmented matrix contains the same information as the system but in a simpler 
form. The operations we learned for solving systems of equations can now be per-
formed on the augmented matrix.

■ Matrices
We begin by defining the various elements that make up a matrix.

DEfInITIon of MATRIx

An m  n matrix is a rectangular array of numbers with m rows and n columns.

E

a11 a12 a13
p a1n

a21 a22 a23
p a2n

a31 a32 a33
p a3n

( ( ( f (
am1 am2 am3

p amn

U

d

d

d t m rows

d

 c c c c

 n columns

We say that the matrix has dimension m  n. The numbers aij are the entries 
of the matrix. The subscript on the entry aij indicates that it is in the ith row and 
the jth column.

w

Equation 2

Equation 1

x y

*The plural of matrix is matrices.
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SECTION 11.1 ■ Matrices and Systems of Linear Equations 769

Here are some examples of matrices.

 Matrix Dimension

 B1 3 0

2 4 1
R  2  3  2 rows by 3 columns

 36 5 0 1 4  1  4  1 row by 4 columns

■ The Augmented Matrix of a Linear System
We can write a system of linear equations as a matrix, called the augmented matrix of 
the system, by writing only the coefficients and constants that appear in the equations. 
Here is an example.

 Linear system Augmented matrix

c
3x  2y  z  5

x  3y  z  0

x  4z  11

 C
3 2 1 5

1 3 1 0

1 0 4 11

S

Notice that a missing variable in an equation corresponds to a 0 entry in the augmented 
 matrix.

ExAMpLE 1 ■ finding the Augmented Matrix of a Linear System
Write the augmented matrix of the following system of equations:

c
6x  2y   z  4

x  3z  1

7y  z  5

SoLuTIon  First we write the linear system with the variables lined up in columns.

c
6x  2y     z  4

  x           3z  1

          7y    z  5

The augmented matrix is the matrix whose entries are the coefficients and the con-
stants in this system.

C
6 2 1 4

1 0 3 1

0 7 1 5

S

now Try Exercise 11 ■

■ Elementary Row operations
The operations that we used in Section 10.2 to solve linear systems correspond to opera-
tions on the rows of the augmented matrix of the system. For example, adding a multiple 
of one equation to another corresponds to adding a multiple of one row to another.

ELEMEnTARy Row opERATIonS

1. Add a multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.
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770 CHAPTER 11 ■ Matrices and Determinants

Note that performing any of these operations on the augmented matrix of a system does 
not change its solution. We use the following notation to describe the elementary row  
operations:

Symbol Description

Ri  kRj S Ri  Change the ith row by adding k times row j to it, and  
then put the result back in row i.

kRi Multiply the ith row by k.

Ri 4 Rj Interchange the ith and jth rows.

In the next example we compare the two ways of writing systems of linear  equations.

ExAMpLE 2 ■  using Elementary Row operations  
to Solve a Linear System

Solve the following system of linear equations:

c
x  y  3z  4

x  2y  2z  10

3x  y  5z  14

SoLuTIon  Our goal is to eliminate the x-term from the second equation and the  
x- and y-terms from the third equation. For comparison we write both the system of 
equations and its augmented matrix.

 System Augmented matrix

c
x  y  3z  4

x  2y  2z  10

3x  y  5z  14 

C
1 1 3 4

1 2 2 10

3 1 5 14

S

c
x   y  3z   4

3y  5z   6

2y  4z   2 

C
1 1 3 4

0 3 5 6

0 2 4 2

S

c
x   y  3z   4

3y  5z   6

y  2z   1 

C
1 1 3 4

0 3 5 6

0 1 2 1

S

c
x   y  3z   4

z   3

y  2z   1 

C
1 1 3 4

0 0 1 3

0 1 2 1

S

c
x   y  3z   4

y  2z   1

z   3 

C
1 1 3 4

0 1 2 1

0 0 1 3

S

Now we use back-substitution to find that x  2, y  7, and z  3. The solution is  
12, 7, 32.

now Try Exercise 29 ■

■ gaussian Elimination
In general, to solve a system of linear equations using its augmented matrix, we use 
elementary row operations to arrive at a matrix in a certain form. This form is described 
in the following box.

Add 112  Equation 1 to Equation 2.
Add 132  Equation 1 to Equation 3.

  R2  R1 S R2  >
R3  3R1 S R3

1
2 R3>

R2  3R3 S R2>

R2 4 R3>Interchange Equations 2 and 3.

Multiply Equation 3 by 1
2.

Add 132  Equation 3 to Equation 2 
(to eliminate y from Equation 2).
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SECTION 11.1 ■ Matrices and Systems of Linear Equations 771

Row-EChELon foRM AnD REDuCED Row-EChELon foRM of A MATRIx

A matrix is in row-echelon form if it satisfies the following conditions.

1. The first nonzero number in each row (reading from left to right) is 1. This is 
called the leading entry.

2. The leading entry in each row is to the right of the leading entry in the row  
immediately above it.

3. All rows consisting entirely of zeros are at the bottom of the matrix.

A matrix is in reduced row-echelon form if it is in row-echelon form and also 
 satisfies the following condition.

4. Every number above and below each leading entry is a 0.

In the following matrices the first one is not in row-echelon form. The second one is 
in row-echelon form, and the third one is in reduced row-echelon form. The entries in 
red are the leading entries.

Not in row-echelon form Row-echelon form Reduced row-echelon form

D

0 1  
1
2 0 6

1 0 3 4 5

0 0 0 1 0.4

0 1 1 0 0

T  D

1 3 6 10 0

0 0 1 4 3

0 0 0 1 1
2

0 0 0 0 0

T  D

1 3 0 0 0

0 0 1 0 3

0 0 0 1 1
2

0 0 0 0 0

T

Here is a systematic way to put a matrix in row-echelon form using elementary row 
 operations:

■ Start by obtaining 1 in the top left corner. Then obtain zeros below that 1 by add-
ing  appropriate multiples of the first row to the rows below it.

■ Next, obtain a leading 1 in the next row, and then obtain zeros below that 1.
■ At each stage make sure that every leading entry is to the right of the leading 

entry in the row above it—rearrange the rows if necessary.
■ Continue this process until you arrive at a matrix in row-echelon form.

This is how the process might work for a 3  4 matrix:

C
1 j j j

0 j j j

0 j j j

S    C
1 j j j

0 1 j j

0 0 j j

S    C
1 j j j

0 1 j j

0 0 1 j

S

Once an augmented matrix is in row-echelon form, we can solve the corresponding 
linear system using back-substitution. This technique is called Gaussian elimination, 
in honor of its inventor, the German mathematician C. F. Gauss (see page 326).

SoLvIng A SySTEM uSIng gAuSSIAn ELIMInATIon

1. Augmented Matrix.  Write the augmented matrix of the system.

2. Row-Echelon form.  Use elementary row operations to change the augmented 
matrix to row-echelon form.

3. Back-Substitution.  Write the new system of equations that corresponds to 
the row-echelon form of the augmented matrix and solve by  back- 
substitution.

Leading 1’s  
have 0’s above  
and below them

Leading 1’s shift to 
the right in  
successive rows

Leading 1’s do not 
shift to the right  
in successive rows
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772 CHAPTER 11 ■ Matrices and Determinants

Augmented matrix:

Row-echelon form:

Need a 1 here

Need 0’s here

Need a 1 here

Need a 0 here

Need a 1 here

ExAMpLE 3 ■ Solving a System using Row-Echelon form
Solve the following system of linear equations using Gaussian elimination:

c
4x  8y  14z  14

3x  8y  15z  11

2x  8y  12z  17

SoLuTIon  We first write the augmented matrix of the system, and then we use ele-
men tary row operations to put it in row-echelon form.

C
4 8 4 4

3 8 5 11

2 1 12 17

S

1
4 R1>  C

1 2 1 1

3 8 5 11

2 1 12 17

S

  R2  3R1 S R2  >
R3  2R1 S R3

  C
1 2 1 1

0 2 8 14

0 5 10 15

S

1
2 R2>  C

1 2 1 1

0 1 4 7

0 5 10 15

S

R3  5R2 S R3>  C
1 2 1 1

0 1 4 7

0 0 10 20

S

 
1

10 R3>  C
1 2 1 1

0 1 4 7

0 0 1 2

S

We now have an equivalent matrix in row-echelon form, and the corresponding 
system of equations is

c
x  2y  z  1

x  2y  4z  7

x  2y  4z  2

Back-substitute:  We use back-substitution to solve the system.

 y  412 2  7  Back-substitute z  2 into Equation 2

 y  1   Solve for y

 x  211 2  12 2  1   Back-substitute y  1 and z  2 into Equation 1

 x  3  Solve for x

So the solution of the system is 13, 1, 22.
now Try Exercise 31 ■

Graphing calculators have a “row-echelon form” command that puts a matrix in  
row-echelon form. (On the TI-83/84 this command is ref.) For the augmented matrix 
in Example 3 the ref command gives the output shown in  Figure 1. Notice that the  

ref([A])
   [[1 2 -1 1 ]
    [0 1 2  -3]
    [0 0 1  -2]]

fIguRE 1
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Need a 0 here

Need 0’s here

row-echelon form that is obtained by the calculator differs from the one we got in Ex-
ample 3. This is because the calculator used different row operations than we did. You 
should check that your calculator’s row-echelon form leads to the same solution as ours.

■ gauss-Jordan Elimination
If we put the augmented matrix of a linear system in reduced row-echelon form, then 
we don’t need to back-substitute to solve the system. To put a matrix in reduced row-
echelon form, we use the following steps.

■ Use the elementary row operations to put the matrix in row-echelon form.
■ Obtain zeros above each leading entry by adding multiples of the row containing 

that entry to the rows above it. Begin with the last leading entry and work up.

Here is how the process works for a 3  4 matrix:

C
1 j j j

0 1 j j

0 0 1 j

S    S   C
1 j 0 j

0 1 0 j

0 0 1 j

S    S   C
1 0 0 j

0 1 0 j

0 0 1 j

S

Using the reduced row-echelon form to solve a system is called Gauss-Jordan elimi-
nation. The process is illustrated in the next example.

ExAMpLE 4 ■ Solving a System using Reduced Row-Echelon form
Solve the following system of linear equations, using Gauss-Jordan elimination:

c
4x  8y   4z  14

3x  8y   5z  11

2x   y  12z  17

SoLuTIon  In Example 3 we used Gaussian elimination on the augmented matrix of 
this system to arrive at an equivalent matrix in row-echelon form. We continue using 
elementary row operations on the last matrix in Example 3 to arrive at an equivalent 
matrix in reduced row-echelon form.

 C
1 2 1 1

0 1 4 7

0 0 1 2

S

 
 R2  4R3 S R2 >

R1  R3 S R1

 C
1 2 0 1

0 1 0 1

0 0 1 2

S

 
 R1  2R2 S R1 > C

1 0 0 3

0 1 0 1

0 0 1 2

S

We now have an equivalent matrix in reduced row-echelon form, and the correspond-
ing system of equations is

c  

x  3

y  1

z  2

Hence we immediately arrive at the solution 13, 1, 2 2 .
now Try Exercise 33 ■

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions on working with matrices. 

Since the system is in reduced row- 
echelon form, back-substitution is not 
required to get the solution.
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Graphing calculators also have a command that puts a matrix in reduced row-
echelon form. (On the TI-83/84 this command is rref.) For the augmented matrix in 
Example 4 the rref command gives the output shown in Figure 2. The calculator gives 
the same reduced row-echelon form as the one we got in Example 4. This is because 
every matrix has a unique reduced row-echelon form.

■ Inconsistent and Dependent Systems
The systems of linear equations that we considered in Examples 1–4 had exactly one 
 solution. But as we know from Section 10.2, a linear system may have one solution, no 
 solution, or infinitely many solutions. Fortunately, the row-echelon form of a system 
 allows us to determine which of these cases applies, as described in the following box.

First we need some terminology. A leading variable in a linear system is one that 
 corresponds to a leading entry in the row-echelon form of the augmented matrix of the 
 system.

ThE SoLuTIonS of A LInEAR SySTEM In Row-EChELon foRM

Suppose the augmented matrix of a system of linear equations has been trans-
formed by Gaussian elimination into row-echelon form. Then exactly one of the 
following is true.

1. no solution. If the row-echelon form contains a row that represents the equa-
tion 0  c, where c is not zero, then the system has no solution. A system 
with no solution is called inconsistent.

2. one solution. If each variable in the row-echelon form is a leading  
variable, then the system has exactly one solution, which we find using 
back-substitution or Gauss-Jordan elimination.

3. Infinitely many solutions. If the variables in the row-echelon form are not all 
leading variables and if the system is not inconsistent, then it has infinitely 
many solutions. In this case the system is called dependent. We solve the 
system by putting the matrix in reduced row-echelon form and then express-
ing the leading variables in terms of the nonleading variables. The nonlead-
ing variables may take on any real numbers as their values.

The matrices below, all in row-echelon form, illustrate the three cases described 
above.

 No solution One solution Infinitely many solutions

C
1 2 5 7

0 1 3 4

0 0 0 1

S       C
1 6 1 3

0 1 2 2

0 0 1 8

S       C
1 2 3 1

0 1 5 2

0 0 0 0

S

ExAMpLE 5 ■  A System with no Solution
Solve the following system:

c
x  3y  2z  12

2x  5y  5z  14

x  2y  3z  20

Each variable is a 
leading variable

z is not a leading 
variable

Last equation 
says 0 = 1

rref([A])
    [[1 0 0 -3]
     [0 1 0 1 ]
     [0 0 1 -2]]

fIguRE 2
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SoLuTIon  We transform the system into row-echelon form.

C
1 3 2 12

2 5 5 14

1 2 3 20

S  
 R2  2R1 S R2 >

R3  R1 S R3

 C
1 3 2 12

0 1 1 10

0 1 1 8

S

 R3  R2 S R3 > C
1 3 2 12

0 1 1 10

0 0 0 18

S  
1

18 R3> C
1 3 2 12

0 1 1 10

0 0 0 1

S

This last matrix is in row-echelon form, so we can stop the Gaussian elimination process. 
Now if we translate the last row back into equation form, we get 0x  0y  0z  1,  
or 0  1, which is false. No matter what values we pick for x, y, and z, the last equation 
will never be a true statement. This means that the  system has no solution.

now Try Exercise 39 ■

Figure 3 shows the row-echelon form produced by a TI-83/84 calculator for the 
augmented matrix in Example 5. You should check that this gives the same result.

ExAMpLE 6 ■ A System with Infinitely Many Solutions
Find the complete solution of the following system:

c
3x  5y  36z    10

x  7z  5

x  y  10z  4

SoLuTIon  We transform the system into reduced row-echelon form. (The rref 
command on a TI-83 calculator gives the same result, as shown in Figure 4.)

C
3 5 36 10

1 0 7 5

1 1 10 4

S  
 R1 4 R3 > C

1 1 10 4

1 0 7 5

3 5 36 10

S

 R2  R1 S R2 >
R3  3R1 S R3

 C
1 1 10 4

0 1 3 1

0 2 6 2

S  
 R3  2R2 S R3 > C

1 1 10 4

0 1 3 1

0 0 0 0

S

 R1  R2 S R1 > C
1 0 7 5

0 1 3 1

0 0 0 0

S

The third row corresponds to the equation 0  0. This equation is always true, no 
matter what values are used for x, y, and z. Since the equation adds no new informa-
tion about the variables, we can drop it from the system. So the last matrix corre-
sponds to the system

e x  7z  5

y  3z  1
    

Equation 1

Equation 2

Now we solve for the leading variables x and y in terms of the nonleading variable z.

 x  7z  5    Solve for x in Equation 1

 y  3z  1    Solve for y in Equation 2

Leading variables

ref([A])
[[1 -2.5 2.5 7  ]
 [0 1    1   -10]
 [0 0    0   1  ]]

fIguRE 3

Reduced row-echelon form on the  
TI-83 calculator:

rref([A])
   [[1 0 -7 -5]
    [0 1 -3 1 ]
    [0 0 0  0 ]]

fIguRE 4
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776 CHAPTER 11 ■ Matrices and Determinants

To obtain the complete solution, we let z be any real number t, and we express x, y, 
and z in terms of t.

x  7t  5

y  3t  1

z  t

We can also write the solution as the ordered triple 17t  5, 3t  1, t 2 , where t is any 
real number.

now Try Exercise 41 ■

In Example 6, to get specific solutions, we give a specific value to t. For example, if  
t  1, then

x  711 2  5  2

y  311 2  1  4

z  1

Here are some other solutions of the system obtained by substituting other values for 
the parameter t.

Parameter t Solution x7t 2 5, 3t 1 1, tc

1 112, 2, 12
0 15, 1, 02
2 19, 7, 22
5 130, 16, 52

ExAMpLE 7 ■  A System with Infinitely Many Solutions
Find the complete solution of the following system:

c
x  2y  3z  4„  10

x  3y  3z  4„  15

2x  2y  6z  8„  10

SoLuTIon  We transform the system into reduced row-echelon form.

C
1 2 3 4 10

1 3 3 4 15

2 2 6 8 10

S  
 R2  R1 S R2 >
R3  2R1 S R3

 C
1 2 3 4 10

0 1 0 0 5

0 2 0 0 10

S

 R3  2R2 S R3 > C
1 2 3 4 10

0 1 0 0 5

0 0 0 0 0

S  
 R1  2R2 S R1 > C

1 0 3 4 0

0 1 0 0 5

0 0 0 0 0

S

This is in reduced row-echelon form. Since the last row represents the equation 0  0, 
we may discard it. So the last matrix corresponds to the system

e x 3z  4„  0

y  5

Leading variables
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To obtain the complete solution, we solve for the leading variables x and y in terms  
of the nonleading variables z and „, and we let z and „ be any real numbers s and t, 
respectively. Thus the complete solution is

x   3s  4t

y  5

z  s

„  t

where s and t are any real numbers.

now Try Exercise 61 ■

Note that s and t do not have to be the same real number in the solution for Example 7. 
We can choose arbitrary values for each if we wish to construct a specific solution to the 
system. For example, if we let s  1 and t  2, then we get the solution 111, 5, 1, 22. You 
should check that this does indeed satisfy all three of the original equations in Example 7.

Examples 6 and 7 illustrate this general fact: If a system in row-echelon form has n 
nonzero equations in m variables 1m  n2, then the complete solution will have m  n 
nonleading variables. For instance, in Example 6 we arrived at two nonzero equations 
in the three variables x, y, and z, which gave us 3  2  1 nonleading  variable.

■ Modeling with Linear Systems
Linear equations, often containing hundreds or even thousands of variables, occur fre-
quently in the applications of algebra to the sciences and to other fields. For now, let’s 
consider an example that involves only three variables.

ExAMpLE 8 ■ nutritional Analysis using a System of Linear Equations
A nutritionist is performing an experiment on student volunteers. He wishes to feed 
one of his subjects a daily diet that consists of a combination of three commercial diet 
foods: MiniCal, LiquiFast, and SlimQuick. For the experiment it is important that the 
subject consume exactly 500 mg of potassium, 75 g of protein, and 1150 units of vita-
min D every day. The amounts of these nutrients in 1 oz of each food are given in the 
table. How many ounces of each food should the subject eat every day to satisfy the 
nutrient requirements exactly?

MiniCal LiquiFast SlimQuick

Potassium (mg) 50  75 10
Protein (g)  5  10  3
Vitamin D (units) 90 100 50

SoLuTIon  Let x, y, and z represent the number of ounces of MiniCal, LiquiFast, and 
SlimQuick, respectively, that the subject should eat every day. This means that he will 
get 50x mg of potassium from MiniCal, 75y mg from LiquiFast, and 10z mg from 
Slim Quick, for a total of 50x  75y  10z mg potassium in all. Since the potassium 
re quire ment is 500 mg, we get the first equation below. Similar reasoning for the pro-
tein and vitamin D requirements leads to the system

c
50x    75y  10z    500

  5x    10y    3z      75

90x  100y  50z  1150

    

Potassium

Protein

Vitamin D
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Dividing the first equation by 5 and the third one by 10 gives the system

c
10x  15y  2z  100

5x  10y  3z  75

9x  10y  5z  115

 

We can solve this system using Gaussian elimination, or we can use a graphing calcu-
lator to find the reduced row-echelon form of the augmented matrix of the system. 
Using the rref command on the TI-83/84, we get the output in Figure 5. From the 
reduced row-echelon form we see that x  5, y  2, z  10. The subject should be 
fed 5 oz of MiniCal, 2 oz of LiquiFast, and 10 oz of SlimQuick every day.

now Try Exercise 69 ■

A more practical application might involve dozens of foods and nutrients rather than 
just three. Such problems lead to systems with large numbers of variables and equa-
tions. Computers or graphing calculators are essential for solving such large systems.

rref([A])
   [[1 0 0 5 ]
    [0 1 0 2 ]
    [0 0 1 10]]

fIguRE 5

ChECk youR AnSwER

x  5, y  2, z  10:

c
1015 2  1512 2  2110 2  100

515 2  1012 2  3110 2  75

  915 2  1012 2  5110 2  115 ✓

ConCEpTS
 1. If a system of linear equations has infinitely many solutions, 

  then the system is called    . If a system of linear 
  equations has no solution, then the system is called 

   .

 2. Write the augmented matrix of the following system of  
equations.

 System Augmented matrix

c
x  y  z  1

x  2z  3

2y  z  3

      C
j j j j

j j j j

j j j j

S

 3. The following matrix is the augmented matrix of a system of 
linear equations in the variables x, y, and z. (It is given in  
reduced row-echelon form.)

C
1 0 1 3

0 1 2 5

0 0 0 0

S

(a) The leading variables are    .

(b) Is the system inconsistent or dependent?  

(c) The solution of the system is:

x  _____  , y  _____  , z  _____

 4. The augmented matrix of a system of linear equations is given 
in reduced row-echelon form. Find the solution of the system.

(a) C
1 0 0 2

0 1 0 1

0 0 1 3

S   (b) C
1 0 1 2

0 1 1 1

0 0 0 0

S   (c) C
1 0 0 2

0 1 0 1

0 0 0 3

S

  x  _____ x  _____ x  _____

  y  _____ y  _____ y  _____

  z  _____ z  _____ z  _____

SkILLS
5–10 ■ Dimension of a Matrix  State the dimension of the 
matrix.

 5. C
2 7

0 1

5 3

S   6. c1 5 4 0

0 2 11 3
d  

 7. c 12

35
d    8. C

3

0

1

S  

 9. 31 4 7 4  10. c 1 0

0 1
d

11–12 ■ The Augmented Matrix  Write the augmented matrix 
for the system of linear equations.

11. c
3x  y  z  2

2x  y  1

x  z  3

 12. c
x  z  1

3y  2z  7

x  y  3z  3

13–20 ■ form of a Matrix  A matrix is given. (a) Determine 
whether the matrix is in row-echelon form. (b) Determine 
whether the matrix is in reduced  row-echelon form. (c) Write the 
system of equations for which the given matrix is the augmented 
matrix.

13. c 1 0 3

0 1 5
d  14. c 1 3 3

0 1 5
d

15. C
1 2 8 0

0 1 3 2

0 0 0 0

S  16. C
1 0 7 0

0 1 3 0

0 0 0 1

S

17. C
1 0 0 0

0 0 0 0

0 1 5 1

S  18. C
1 0 0 1

0 1 0 2

0 0 1 3

S

11.1 ExERCISES

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.1 ■ Matrices and Systems of Linear Equations 779

19. D

1 3 0 1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

T  20. D

1 3 0 1 0 0

0 1 0 4 0 0

0 0 0 1 1 2

0 0 0 1 0 0

T

21–24 ■ Elementary Row operations  Perform the indicated 
elementary row operation.

21. C
1 1 2 0

3 1 1 4

1 2 1 1

S  22. C
5 2 3 3

10 3 1 20

1 3 1 8

S

  Add 3 times Row 1 to   Add 2 times Row 1 to  
Row 2.  Row 2. 

23. C
2 1 3 5

2 3 1 13

6 5 1 7

S  24. C
1 3 2 1

0 1 1 1

0 2 1 1

S

  Add 3 times Row 1 to   Add 2 times Row 2 to  
Row 3.  Row 3.

25–28 ■ Back-Substitution  A matrix is given in row-echelon 
form. (a) Write the system of equations for which the given 
matrix is the augmented matrix. (b) Use back-substitution to 
solve the system.

25. C
1 2 4 3

0 1 2 7

0 0 1 2

S  26. C
1 1 3 8

0 1 3 5

0 0 1 1

S

27. D

1 2 3 1 7

0 1 2 0 5

0 0 1 2 5

0 0 0 1 3

T

 28. D

1 0 2 2 5

0 1 3 0 1

0 0 1 1 0

0 0 0 1 1

T

29–38 ■ Linear Systems with one Solution  The system of lin-
ear equations has a unique solution. Find the solution using 
Gaussian elimination or Gauss-Jordan elimination.

29. c
x  2y   z  1

  y  2z  5

x   y  3z  8

 30. c
x  y  6z  3

x  y  3z  3

x  2y  4z  7

31. c
x  y  z  2

2x  3y  2z  4

4x  y  3z  1

 32. c
x  y  z  4

x  2y  3z  17

2x  y  3z  7

33. c
 x  2y  z  2

x  2y  z  0

2x  y  z  3

 34. c
2y  z  4

x  y  z  4

3x  3y  z  10

35. c
x1  2x2  x3   9

2x1  x3  2

3x1  5x2  2x3   22

 36. c
2x1  2x2  4x3  17

2x1  2x2  4x3  16

3x1  2x2  4x3  11

37. c
2x  3y  z  13

x  2y  5z  6

5x  y  z  49

 38. c
10x  10y  20z  60

15x  20y  30z  25

5x  30y  10z  45

39–48 ■ Dependent or Inconsistent Linear Systems  Determine 
whether the system of linear equations is inconsistent or depen-
dent. If it is dependent, find the complete solution.

39. c
x  y  z  2

y  3z  1

2x  y  5z  0

 40. c
x  y  3z  3

2x  y  2z  5

y  8z  8

41. c
2x  3y  9z  5

x  3z  2

3x  y  4z  3

 42. c
x  2y  5z  3

2x  6y  11z  1

3x  16y  20z  26

43. c
  x    y    3z    3

4x  8y  32z  24

2x  3y  11z    4

 44. c
2x  6y  2z  12

      x  3y  2z     10

  x  3y  2z       6

45. c
  x  4y    2z  3

2x    y    5z   12

8x  5y  11z   30

 46. c
3r  2s  3t   10

  r    s    t  5

  r  4s    t   20

47. c
2x  y  2z  12

x  1
2 y  z  6

3x  3
2 y  3z   18

 48. c 

           y  5z  7

3x  2y  12

3x  10z  80

49–64 ■ Solving a Linear System  Solve the system of linear 
equations.

49. c 

4x  3y  3z  8

2x  3y  3z  4

2x  3y  2z  3

 50. c 

 2x  3y  5z  14

 4x  3y  2z  17

x  3y  5z  13

51. c
2x  y  3z  9

x  7z  10

3x  2y  z  4

 52. c
4x    y  36z  24

x        2y    9z  3

2x    y    6z  6

53. c 

2x  2y  3z  15

2x  4y  6z  1 10

 3x  7y  2z  13

 54. c 

3x  3y  z  2

4x  3y  z  4

2x  5y  z  0

55. c 

x    y  6z  8

x  z  5

x  3y  14z  4

 56. c
  3x    y  2z  1

  4x  2y    z  7

x  3y  2z  1

57. d  

x  2y  z  3„  3

3x  4y  z  „  9

x  y  z  „  0

2x  y  4z  2„  3

 58. d  

x  y  z  „  6

2x  z  3„  8

x  y  4„  10

3x  5y  z  „  20

59. d

    x    y  2z  2„  2

            3y    z  2„  2

      x  y           3„  2

3x         z  2„  5

60. d  

3x  3y  2z  2„  12

3x  2y  2z  2„  10

3x  3y  2z  5„  15

3x  3y  2z  5„  13
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61. c
x  y  „  0

3x  z  2„  0

x  4y  z  2„  0

 62. c
  2x    y  2z  „  5

 x    y  4z  „  3

  3x  2y  4z         0

 

63. d

x  z  „  4

y  z  4

x  2y  3z  „   12

2x  2z  5„  1

 

64. d  

2x  2y  2z  2„  10

3x  2y  2z  2„  10

2x  2y  2z  4„  12

2x  2y  2z  5„  16

65–68 ■ Solving a Linear System using a graphing Calculator   
Solve the system of linear equations by using the rref com-
mand on a graphing calculator. State your answer rounded to two 
decimal places.

65. c
0.75x  3.75y  2.95z  4.0875

0.95x  8.75y  3.375

1.25x  0.15y  2.75z  3.6625

 

66. c
1.31x  2.72y  3.71z  13.9534

0.21x  3.73z  13.4322

2.34y  4.56z  21.3984

67. d

42x  31y  42„  0.4

6x  9„  4.5

35x  67z  32„  348.8

31y  48z  52„  76.6

 68. d

49x  27y  52z  145.0

27y  43„  118.7

31y  42z  72.1

73x  54y  132.7

AppLICATIonS
69.  nutrition  A doctor recommends that a patient take 50 mg 

each of niacin, riboflavin, and thiamin daily to alleviate a vita-
min deficiency. In his medicine chest at home the patient finds 
three brands of vitamin pills. The amounts of the relevant vita-
mins per pill are given in the table. How many pills of each 
type should he take every day to get 50 mg of each vitamin?

VitaMax Vitron VitaPlus

Niacin (mg)  5 10 15
Riboflavin (mg) 15 20  0
Thiamin (mg) 10 10 10

70.  Mixtures  A chemist has three acid solutions at various con-
centrations. The first is 10% acid, the second is 20%, and the 
third is 40%. How many milliliters of each should she use to  
make 100 mL of 18% solution, if she has to use four times as 
much of the 10% solution as the 40% solution?

71.  Distance, Speed, and Time  Amanda, Bryce, and Corey  
enter a race in which they have to run, swim, and cycle over 

a marked course. Their average speeds are given in the table. 
Corey finishes first with a total time of 1 h 45 min. Amanda 
comes in second with a time of 2 h 30 min. Bryce finishes 
last with a time of 3 h. Find the distance (in mi) for each part 
of the race.

Average speed (mi/h)

Running Swimming Cycling

Amanda 10 4 20
Bryce  7 

1
2 6 15

Corey 15 3 40

72.  Classroom use  A small school has 100 students who occupy 
three  class rooms: A, B, and C. After the first period of the 
school day, half the students in room A move to room B, one-
fifth of the students in room B move to room C, and one-third 
of the students in room C move to room A.  Nevertheless, the 
total number of students in each room is the same for both 
periods. How many students occupy each room?

73.  Manufacturing furniture  A furniture factory makes wooden 
tables, chairs, and armoires. Each piece of furniture requires 
three operations: cutting the wood, assembling, and finishing. 
Each operation requires the number of hours given in the table. 
The workers in the factory can provide 300 h of cutting, 400 h 
of assembling, and 590 h of finishing each work week. How 
many tables, chairs, and armoires should be produced so that 
all available labor-hours are used? Or is this impossible?

Table Chair Armoire

Cutting (h) 1
2 1 1

Assembling (h) 1
2 1 

1
2 1

Finishing (h) 1 1 
1
2 2

74.  Traffic flow  A section of a city’s street network is shown in 
the figure. The arrows indicate one-way streets, and the num-
bers show how many cars enter or leave this section of the 
city via the indicated street in a certain one-hour period. The 
variables x, y, z, and „ represent the number of cars that 
travel along the portions of First, Second, Avocado, and Birch 
Streets during this period. Find x, y, z, and „, assuming that 
none of the cars stop or park on any of the streets shown.

180 70

20

200

30200

400

200
FIRST STREET

SECOND STREET

AVOCADO
STREET

BIRCH
STREET

x

y

z „

11.2 ThE ALgEBRA of MATRICES
■ Equality of Matrices ■ Addition, Subtraction, and Scalar Multiplication  
of Matrices ■ Multiplication of Matrices ■ properties of Matrix Multiplication  
■ Applications of Matrix  Multiplication ■ Computer graphics

Thus far, we have used matrices simply for notational convenience when solving linear 
systems. Matrices have many other uses in mathematics and the sciences, and for most 
of these applications a knowledge of matrix algebra is essential. Like numbers, matrices 
can be added, subtracted, multiplied, and divided. In this section we learn how to per-
form these algebraic operations on matrices.

■ Equality of Matrices
Two matrices are equal if they have the same entries in the same positions.

EquALITy of MATRICES

The matrices A  ”aij’ and B  ”bij’ are equal if and only if they have the same 
dimension m  n, and corresponding entries are equal, that is,

aij  bij

for i  1, 2, . . . , m and j  1, 2, . . . , n.

ExAMpLE 1 ■ Equal Matrices
Find a, b, c, and d, if

ca b

c d
d  c1 3

5 2
d

SoLuTIon  Since the two matrices are equal, corresponding entries must be the same. 
So we must have a  1, b  3, c  5, and d  2.

now Try Exercises 5 and 7 ■

Equal matrices

c!4 22 e0

0.5 1 1  1
d  c 2 4 1

1
2

2
2 0

d

unequal matrices

C
1 2

3 4

5 6

S ? c 1 3 5

2 4 6
d
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SECTION 11.2 ■ The Algebra of Matrices 781

DISCuSS ■ DISCovER ■ pRovE ■ wRITE
75.  DISCuSS: polynomials Determined by a Set of points  We all 

know that two points uniquely determine a line y  ax  b 
in the coordinate plane. Similarly, three points uniquely 
determine a quadratic (second-degree) polynomial

y  ax2  bx  c

   four points uniquely determine a cubic (third-degree) 
 polynomial 

y  ax3  bx2  cx  d

   and so on. (Some exceptions to this rule are if the three points 
actually lie on a line, or the four points lie on a quadratic or 
line, and so on.) For the following set of five points, find the 
line that contains the first two points, the quadratic that con-
tains the first three points, the cubic that contains the first 
four points, and the fourth-degree polynomial that contains 
all five points.

10, 0 2 , 11, 12 2 , 12, 40 2 , 13, 6 2 , 11, 14 2  
   Graph the points and functions in the same viewing  rectangle 

using a graphing device.

11.2 ThE ALgEBRA of MATRICES
■ Equality of Matrices ■ Addition, Subtraction, and Scalar Multiplication  
of Matrices ■ Multiplication of Matrices ■ properties of Matrix Multiplication  
■ Applications of Matrix  Multiplication ■ Computer graphics

Thus far, we have used matrices simply for notational convenience when solving linear 
systems. Matrices have many other uses in mathematics and the sciences, and for most 
of these applications a knowledge of matrix algebra is essential. Like numbers, matrices 
can be added, subtracted, multiplied, and divided. In this section we learn how to per-
form these algebraic operations on matrices.

■ Equality of Matrices
Two matrices are equal if they have the same entries in the same positions.

EquALITy of MATRICES

The matrices A  ”aij’ and B  ”bij’ are equal if and only if they have the same 
dimension m  n, and corresponding entries are equal, that is,

aij  bij

for i  1, 2, . . . , m and j  1, 2, . . . , n.

ExAMpLE 1 ■ Equal Matrices
Find a, b, c, and d, if

c a b

c d
d  c 1 3

5 2
d

SoLuTIon  Since the two matrices are equal, corresponding entries must be the same. 
So we must have a  1, b  3, c  5, and d  2.

now Try Exercises 5 and 7 ■

Equal matrices

c!4 22 e0

0.5 1 1  1
d  c 2 4 1

1
2

2
2 0

d

unequal matrices

C
1 2

3 4

5 6

S ? c 1 3 5

2 4 6
d
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782 CHAPTER 11 ■ Matrices and Determinants

■ Addition, Subtraction, and Scalar Multiplication  
of Matrices

Two matrices can be added or subtracted if they have the same dimension. (Otherwise, 
their sum or difference is undefined.) We add or subtract the matrices by adding or 
subtracting corresponding entries. To multiply a matrix by a number, we multiply every 
element of the matrix by that number. This is called the scalar product.

SuM, DIffEREnCE, AnD SCALAR pRoDuCT of MATRICES

Let A  ”aij’ and B  ”bij’ be matrices of the same dimension m  n, and let c  
be any real number.

1. The sum A  B is the m  n matrix obtained by adding corresponding 
entries of A and B. 

A  B  3aij  bij 4
2. The difference A  B is the m  n matrix obtained by subtracting corre-

sponding entries of A and B. 

A  B  3aij  bij 4
3. The scalar product cA is the m  n matrix obtained by multiplying each 

entry of A by c. 

cA  3caij 4

ExAMpLE 2 ■ performing Algebraic operations on Matrices

Let A  C
2 3

0 5

7  
1
2

S  B  C
1 0

3 1

2 2

S

C  c 7 3 0

0 1 5
d  D  c 6 0 6

8 1 9
d

Carry out each indicated operation, or explain why it cannot be performed.

(a) A  B      (b) C  D      (c) C  A      (d) 5A

SoLuTIon  

(a) A  B  C
2 3

0 5

7  
1
2

S  C
1 0

3 1

2 2

S  C
3 3

3 6

9 3
2

S

(b)  C  D  c 7 3 0

0 1 5
d  c 6 0 6

8 1 9
d

    c 1 3 6

8 0 4
d

(c) C  A is undefined because we can’t add matrices of different dimensions.

(d) 5A  5 C
2 3

0 5

7  
1
2

S  C
10 15

0 25

35  
5
2

S

now Try Exercises 23 and 25 ■
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Julia Robinson (1919–1985) was 
born in St. Louis, Missouri, and grew up 
at Point Loma, California. Because of an 
illness, Robinson missed two years of 
school, but later, with the aid of a tutor, 
she completed fifth, sixth, seventh, and 
eighth grades, all in one year. Later, at 
San Diego State University, reading biog-
raphies of mathematicians in E. T. Bell’s 
Men of Mathematics awakened in her 
what became a lifelong passion for math-
ematics. She said, “I cannot overempha-
size the importance of such books . . . in 
the intellectual life of a student.” 
Robinson is famous for her work on 
Hilbert’s tenth problem (page 804), 
which asks for a general procedure for 
determining whether an equation has 
integer solutions. Her ideas led to a com-
plete answer to the problem. Interest-
ingly, the answer involved certain proper-
ties of the Fibonacci numbers (page 890) 
discovered by the then 22-year-old Rus-
sian mathematician Yuri Matijasevič. As a 
result of her brilliant work on Hilbert’s 
tenth problem, Robinson was offered a 
professorship at the University of Califor-
nia, Berkeley, and became the first 
woman mathematician elected to the 
National Academy of Sciences. She also 
served as president of the American 
Mathematical Society.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.2 ■ The Algebra of Matrices 783

The properties in the box follow from the definitions of matrix addition and scalar 
multiplication and the corresponding properties of real numbers.

pRopERTIES of ADDITIon AnD SCALAR MuLTIpLICATIon of MATRICES

Let A, B, and C be m  n matrices and let c and d be scalars.

A  B  B  A Commutative Property of Matrix Addition

1A  B 2  C  A  1B  C 2  Associative Property of Matrix Addition

c1dA 2  cdA Associative Property of Scalar Multiplication

1c  d 2A  cA  dA 
Distributive Properties of Scalar Multiplication

c1A  B 2  cA  cB

ExAMpLE 3 ■ Solving a Matrix Equation
Solve the matrix equation

2X  A  B

for the unknown matrix X, where

A  c 2 3

5 1
d  B  c 4 1

1 3
d

SoLuTIon  We use the properties of matrices to solve for X.

 2X  A  B     Given equation

 2X  B  A     Add the matrix A to each side

 X  1
2 
1B  A 2     Multiply each side by the scalar 1

2

So  X 
1

2
 a c4 1

1 3
d  c 2 3

5 1
d b     Substitute the matrices A and B

  
1

2
 c 6 2

4 4
d     Add matrices

   c 3 1

2 2
d     Multiply by the scalar 1

2

now Try Exercise 17 ■

■ Multiplication of Matrices
Multiplying two matrices is more difficult to describe than other matrix operations. In 
later examples we will see why multiplying matrices involves a rather complex proce-
dure, which we now describe.

First, the product AB 1or A # B2 of two matrices A and B is defined only when the 
number of columns in A is equal to the number of rows in B. This means that if we write 
their dimensions side by side, the two inner numbers must match:

Matrices A B

Dimensions      m  n      n  k

Columns in A Rows in B
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784 CHAPTER 11 ■ Matrices and Determinants

If the dimensions of A and B match in this fashion, then the product AB is a matrix of 
dimension m  k. Before describing the procedure for obtaining the elements of AB, 
we define the inner product of a row of A and a column of B.

If ”a1  a2 . . . an’ is a row of A, and if D

b1

b2

(
bn

T  is a column of B, then their inner product 

is the number a1b1  a2b2  . . .  anbn. For example, taking the inner product of 

[2  1  0  4] and D

5

4

3
1
2

 T  gives 

2 # 5  11 2 # 4  0 # 13 2  4 # 1
2  8

We now define the product AB of two matrices.

MATRIx MuLTIpLICATIon

If A  ”aij’ is an m  n matrix and B  ”bij’ an n  k matrix, then their product 
is the m  k matrix

C  ”cij’

where cij is the inner product of the ith row of A and the jth column of B. We 
write the product as

C  AB

This definition of matrix product says that each entry in the matrix AB is obtained 
from a row of A and a column of B as follows: The entry cij in the ith row and jth column 
of the matrix AB is obtained by multiplying the entries in the ith row of A with the cor-
responding entries in the jth column of B and adding the results.

Cj j jS # C
j

j

j

S  C cij S

ExAMpLE 4 ■ Multiplying Matrices
Let

A  c 1 3

1 0
d    and   B  c1 5 2

0 4 7
d

Calculate, if possible, the products AB and BA.

SoLuTIon  Since A has dimension 2  2 and B has dimension 2  3, the product AB 
is defined and has dimension 2  3. We can therefore write

AB  c 1 3

1 0
d  c1 5 2

0 4 7
d  c ? ? ?

? ? ?
d

Entry in ith row and 
jth column of AB

ith row of A

jth column of B

Inner numbers match, 
so product is defined

Outer numbers give dimension 
of product: 2  3

2  2 2  3
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SECTION 11.2 ■ The Algebra of Matrices 785

where the question marks must be filled in using the rule defining the product of two 
matrices. If we define C  AB  ”cij’, then the entry c11 is the inner product of the 
first row of A and the first column of B:

c 1 3

1 0
d  c1 5 2

0 4 7
d  1 # 11 2  3 # 0  1

Similarly, we calculate the remaining entries of the product as follows.

Entry Inner product of: Value Product matrix

c12     c 1 3

1 0
d  c1 5 2

0 4 7
d  1 # 5  3 # 4  17    c1 17   

 d

c13     c 1 3

1 0
d  c1 5 2

0 4 7
d  1 # 2  3 # 7  23    c1 17 23 d

c21     c 1 3

1 0
d  c1 5 2

0 4 7
d  11 2 # 11 2  0 # 0  1  c1 17 23

1
d

c22     c 1 3

1 0
d  c1 5 2

0 4 7
d  11 2 # 5  0 # 4  5  c1 17 23

1 5
d

c23     c 1 3

1 0
d  c1 5 2

0 4 7
d  11 2 # 2  0 # 7  2  c1 17 23

1 5 2
d

Thus we have AB  c1 17 23

1 5 2
d

The product BA is not defined, however, because the dimensions of B and A are

2  3  and  2  2

The inner two numbers are not the same, so the rows and columns won’t match up when 
we try to calculate the product.

now Try Exercise 27 ■

Graphing calculators and computers are capable of performing matrix algebra. For 
instance, if we enter the matrices in Example 4 into the matrix variables [A] and [B] 
on a TI-83 calculator, then the calculator finds their product as shown in Figure 1.

■ properties of Matrix Multiplication
Although matrix multiplication is not commutative, it does obey the Associative and  
Distributive Properties.

pRopERTIES of MATRIx MuLTIpLICATIon

Let A, B, and C be matrices for which the following products are defined. Then

 A1BC 2  1AB 2C Associative Property

 A1B  C 2  AB  AC
 1B  C 2A  BA  CA 

Distributive Property

The next example shows that even when both AB and BA are defined, they aren’t  
necessarily equal. This proves that matrix multiplication is not commutative.

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions on working with matrices. 

Not equal, so product 
is not defined

2  3 2  2

[A]*[B]
    [[-1 17 23]
     [1  -5 -2]]

fIguRE 1
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786 CHAPTER 11 ■ Matrices and Determinants

ExAMpLE 5 ■ Matrix Multiplication Is not Commutative

Let A  c 5 7

3 0
d  and  B  c 1 2

9 1
d

Calculate the products AB and BA.

SoLuTIon  Since both matrices A and B have dimension 2  2, both products AB and 
BA are defined, and each product is also a 2  2 matrix.

 AB  c 5 7

3 0
d c 1 2

9 1
d  c 5 # 1  7 # 9 5 # 2  7 # 11 2

13 2 # 1  0 # 9 13 2 # 2  0 # 11 2  d

  c 68 3

3 6
d

 BA  c 1 2

9 1
d c 5 7

3 0
d  c 1 # 5  2 # 13 2 1 # 7  2 # 0

9 # 5  11 2 # 13 2 9 # 7  11 2 # 0
d

  c1 7

48 63
d

This shows that, in general, AB ? BA. In fact, in this example AB and BA don’t even 
have an entry in common.

now Try Exercise 29 ■

■ Applications of Matrix Multiplication
We now consider some applied examples that give some indication of why mathemati-
cians chose to define the matrix product in such an apparently bizarre fashion. Exam- 
ple 6 shows how our definition of matrix product allows us to express a system of linear 
equations as a single matrix equation.

ExAMpLE 6 ■ writing a Linear System as a Matrix Equation
Show that the following matrix equation is equivalent to the system of equations in 
Example 2 of Section 11.1.

C
1 1 3

1 2 2

3 1 5

S C
x

y

z
S  C

4

10

14

S

SoLuTIon  If we perform matrix multiplication on the left-hand side of the equation, 
we get

C
 x  y  3z
 x  2y  2z
3x  y  5z

S  C
4

10

14

S

Because two matrices are equal only if their corresponding entries are equal, we 
equate entries to get

c
x  y  3z  4

x  2y  2z  10

3x  y  5z  14

This is exactly the system of equations in Example 2 of Section 11.1.

now Try Exercise 47 ■

Matrix equations like this one are 
described in more detail on page 797.
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ExAMpLE 7 ■ Representing Demographic Data by Matrices
In a certain city the proportions of voters in each age group who are registered as 
Democrats, Republicans, or Independents are given by the following matrix.

 Age
 18–30 31–50 Over 50

Democrat

Republican

Independent

C
0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

S  A

The next matrix gives the distribution, by age and sex, of the voting population of  
this city.

 Male Female

18–30

Age      31–50

Over 50

C
5,000 6,000

10,000 12,000

12,000 15,000

S  B

For this problem, let’s make the (highly unrealistic) assumption that within each age 
group, political preference is not related to gender. That is, the percentage of Demo-
crat males in the 18–30 group, for example, is the same as the percentage of Demo-
crat females in this group.

(a) Calculate the product AB.

(b) How many males are registered as Democrats in this city?

(c) How many females are registered as Republicans?

SoLuTIon  

(a)

 

AB  C
0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

S   C
5,000 6,000

10,000 12,000

12,000 15,000

S  C
13,500 16,500

9,000 10,950

4,500 5,550

S

(b)  When we take the inner product of a row in A with a column in B, we are adding 
the number of people in each age group who belong to the category in question. 
For example, the entry c21 of AB 1the 90002 is obtained by taking the inner prod-
uct of the Republican row in A with the Male column in B. This number is there-
fore the total number of male Republicans in this city. We can label the rows and 
columns of AB as follows.

 Male Female

Democrat

Republican

Independent

C
13,500 16,500

9,000 10,950

4,500 5,550

S  AB

  Thus 13,500 males are registered as Democrats in this city.

(c) There are 10,950 females registered as Republicans.

now Try Exercise 53 ■

In Example 7 the entries in each column of A add up to 1. (Can you see why this has 
to be true, given what the matrix describes?) A matrix with this property is called sto-
chastic. Stochastic matrices are used extensively in statistics, where they arise fre-
quently in situations like the one described here.

Co
ur

te
sy

 o
f t

he
 A

rc
hi

ve
s,

  
Ca

lif
or

ni
a 

In
st

itu
te

 o
f T

ec
hn

ol
og

y

olga Taussky-Todd (1906–1995) was 
instrumental in developing applications 
of matrix theory. Described as “in love 
with anything matrices can do,” she suc-
cessfully applied matrices to aerodynam-
ics, a field used in the design of airplanes 
and rockets. Taussky-Todd was also 
famous for her work in number theory, 
which deals with prime numbers and 
divisibility. Although number  theory has 
often been called the least applicable 
branch of mathematics, it is now used in 
significant ways throughout the com-
puter industry.

Taussky-Todd studied mathematics at 
a time when young women rarely aspired 
to be mathematicians. She said, “When I 
entered university I had no idea what it 
meant to study mathematics.” One of the 
most respected mathematicians of her 
day, she was for many years a professor of 
mathematics at Caltech in Pasadena.
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788 CHAPTER 11 ■ Matrices and Determinants

■ Computer graphics
One important use of matrices is in the digital representation of images. A digital 
camera or a scanner converts an image into a matrix by dividing the image into a 
rectangular array of elements called pixels. Each pixel is assigned a value that rep-
resents the color, brightness, or some other feature of that location. For example,  
in a 256-level gray-scale image each pixel is assigned a value between 0 and  
255, where 0 represents white, 255 represents black, and the numbers in between 
represent increasing gradations of gray. The gradations of a much simpler eight-level 
gray scale are shown in  Figure 2. We use this eight-level gray scale to illustrate the 
process.

To digitize the black and white image in Figure 3(a), we place a grid over the pic-
ture as shown in Figure 3(b). Each cell in the grid is compared to the gray scale and 
then assigned a value between 0 and 7 depending on which gray square in the scale 
most closely matches the “darkness” of the cell. (If the cell is not uniformly gray, an 
average value is assigned.) The values are stored in the matrix shown in Figure 3(c). 
The digital image corresponding to this matrix is shown in Figure 3(d). Obviously, the 
grid that we have used is far too coarse to provide good image resolution. In practice, 
currently available high-resolution digital cameras use matrices with dimension as 
large as 2048  2048.
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(a) Original image (b) 10  10 grid (d) Digital image(c) Matrix representation

1 1 1 1 1 1 1 2 2 1
1 1 1 1 1 1 4 6 5 2
1 1 1 1 2 3 3 5 5 3
1 1 1 1 3 5 4 6 3 2
1 1 1 1 1 2 3 2 2 1
1 1 1 1 1 3 3 2 1 1
1 1 1 1 1 1 4 1 1 1
1 1 1 1 2 2  4 2 2 2
2 2 3 5 5 2 2 3 4 4
3 3 3 4 3 2 3 3 3 4

fIguRE 3

Once the image is stored as a matrix, it can be manipulated by using matrix op-
erations. For example, to darken the image, we add a constant to each entry in the 
matrix; to lighten the image, we subtract a constant. To increase the contrast, we 
darken the darker areas and lighten the lighter areas, so we could add 1 to each entry 
that is 4, 5, or 6 and subtract 1 from each entry that is 1, 2, or 3. (Note that we can-

DISCovERy pRoJECT

will the Species Survive?

To study how a species survives, scientists observe the stages in the life cycle of 
the species—for example, young, juvenile, adult. The proportion of the popula-
tion at each stage and the proportion that survives to the next stage in each sea-
son are modeled by matrices. In this project we explore how matrix multiplica-
tion is used to predict the population proportions for the next season, the season 
after that, and so on, ultimately predicting the long-term prospects for the sur-
vival of the species. You can find the project at www.stewartmath.com.
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SECTION 11.2 ■ The Algebra of Matrices 789

not darken an entry of 7 or lighten a 0.) Applying this process to the matrix in Figure 
3(c) produces the new matrix in Figure 4(a). This generates the high-contrast image 
shown in Figure 4(b).

(b) High contrast image(a) Matrix modified to
increase contrast

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 5 7 6 1

0 0 0 0 1 2 2 6 6 2

0 0 0 0 2 6 5 7 2 1

0 0 0 0 0 1 2 1 1 0

0 0 0 0 0 2 2 1 0 0

0 0 0 0 0 0 5 0 0 0

0 0 0 0 1 1  5 1 1 1

1 1 2 6 6 1 1 2 5 5

2 2 2 5 2 1 2 2 2 5

fIguRE 4

Other ways of representing and manipulating images using matrices are discussed in 
the Focus on Modeling on pages 820–823 and in the Discovery Project, Computer 
Graphics II, at the book companion website: www.stewartmath.com.

ConCEpTS
 1. We can add (or subtract) two matrices only if they have the 

  same    .

 2. (a) We can multiply two matrices only if the number of 

     in the first matrix is the same as the number of 

     in the second matrix.

(b) If A is a 3  3 matrix and B is a 4  3 matrix, which of 
the following matrix multiplications are possible?  

   (i) AB    (ii) BA    (iii) AA    (iv) BB

 3. Which of the following operations can we perform for a  
matrix A of any dimension?

(i) A  A    (ii) 2A    (iii) A # A

 4. Fill in the missing entries in the product matrix.

C
3 1 2

1 2 0

1 3 2

S   C
1 3 2

3 2 1

2 1 0

S  C
4 j 7

7 7 j

j 5 5

S

SkILLS
5–6 ■ Equality of Matrices  Determine whether the matrices A 
and B are equal.

 5. A  c  

1 2 0
1
2 6 0

d  B  c 1 2
1
2 6

d

 6. A  c
1
4 ln  1

2 3
d  B  c 0.25 0

!4 6
2

d

7–8 ■ Equality of Matrices  Find the values of a and b that make 
the matrices A and B equal.

 7. A  c 3 4

1 a
d     B  c b 4

1 5
d  

 8. A  c 3 5 7

4 a 2
d     B  c 3 5 b

4 5 2
d

9–16 ■ Matrix operations  Perform the matrix operation, or if it 
is impossible, explain why.

 9. c 2 6

5 3
d  c1 3

6 2
d

 10. c 0 1 1

1 1 0
d  c 2 1 1

1 3 2
d

11. 3C
1 2

4 1

1 0

S  12. 2C
1 1 0

1 0 1

0 1 1

S 

1 1

C2 1

3 1

S

13. C
2 6

1 3

2 4

S   C
1 2

3 6

2 0

S  14. c 2 1 2

6 3 4
d   C

1 2

3 6

2 0

S

15. c 1 2

1 4
d c 1 2 3

2 2 1
d

 16. C
2 3

0 1

1 2

S   c 5
1
d

11.2 ExERCISES
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790 CHAPTER 11 ■ Matrices and Determinants

17–22 ■ Matrix Equations  Solve the matrix equation for the 
unknown matrix X, or explain why no solution exists.

A  c 4 6

1 3
d  B  c 2 5

3 7
d

C  C
2 3

1 0

0 2

S  D  C
10 20

30 20

10 0

S

17. 2X  A  B 18. 3X  B  C

19. 21B  X 2  D 20. 51X  C 2  D

21. 1
5 1X  D 2  C 22. 2A  B  3X

23–36 ■ Matrix operations  The matrices A, B, C, D, E, F, G 
and H are defined as follows.

A  c 2 5

0 7
d    B  c 3

1
2 5

1 1 3
d    C  c 2  

5
2 0

0 2 3
d

D  37 3 4  E  C
1

2

0

S  F  C
1 0 0

0 1 0

0 0 1

S

G  C
5 3 10

6 1 0

5 2 2

S         H  c 3 1

2 1
d

Carry out the indicated algebraic operation, or explain why it  
cannot be performed.

23. (a) B  C  (b) B  F

24. (a) C  B (b) 2C  6B

25. (a) 5A (b) C  5A

26. (a) 3B  2C  (b) 2H  D

27. (a) AD (b) DA

28. (a) DH  (b) HD

29. (a) AH  (b) HA

30. (a) BC  (b) BF

31. (a) GF  (b) GE

32. (a) B2 (b) F2

33. (a) A2 (b) A3

34. (a) 1DA 2B (b) D1AB 2
35. (a) ABE  (b) AHE

36. (a) DB  DC  (b) BF  FE

37–42 ■ Matrix operations  The matrices A, B, and C are 
defined as follows. 

A  C
0.3 1.1 2.4

0.9 0.1 0.4

0.7 0.3 0.5

S     B  C
1.2 0.1

0 0.5

0.5 2.1

S

C  c0.2 0.2 0.1

1.1 2.1 2.1
d

Use a graphing calculator to carry out the indicated algebraic 
operation, or explain why it cannot be performed. 

 37. AB 38. BA 39. BC

 40. CB 41. B  C 42. A2

43–46 ■ Equality of Matrices  Solve for x and y.

43. c x 2y

4 6
d  c 2 2

2x 6y
d

 44. 3 c x y

y x
d  c 6 9

9 6
d

45. 2 c x y

x  y x  y
d  c 2 4

2 6
d

46. c x y

y x
d  c y x

x y
d  c 4 4

6 6
d

47–50 ■ Linear Systems as Matrix Equations  Write the system 
of equations as a matrix equation (see Example 6).

47. e2x  5y  7

3x  2y  4
 48. c

 6x  y  z  12

 2x  z  7

 y  2z  4

49. c
3x1  2x2  x3  x4  0

x1  x3  5

3x2  x3  x4  4

50. d

x  y  z  2

4x  2y  z  2

x  y  5z  2

x  y  z  2

SkILLS plus
51. products of Matrices  The matrices A, B, and C are defined 

as follows.

A  c 1 0 6 1

2 1
2 4 0

d

B  31 7 9 2 4     C  D

1

0

1

2

T

   Determine which of the following products are defined, and 
calculate the ones that are.

ABC

BCA
  

ACB

CAB
  

BAC

CBA

52. Expanding Matrix Bionomials  

(a) Prove that if A and B are 2  2 matrices, then

1A  B 2 2  A2  AB  BA  B2

(b) If A and B are 2  2 matrices, is it necessarily true  
that

1A  B 2 2 0 A2  2AB  B2
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AppLICATIonS
 53. Education and Income  A women’s group takes a survey to 

determine the education and income of its members. Matrix A 
summarizes the proportions of members in various categories 
of years of postsecondary education and income. Matrix B 
shows the total number of members in each income category. 

(a) Calculate the product matrix AB.

(b) Interpret the entries of the matrix AB.

 Income level

 Less than $50,000 $100,000 
 $50,000 to 100,000 or more

None
1 to 4

More than 4
  C

0.75    0.10   0

0.25   0.70    0.70

0  0.20 0.30

S  A

 Total

Less than $50,000
$50,000 to 100,000
$100,000 or more

  C
4

20

10

S  B

 54. Exam Scores  A large physics class takes a survey of the 
number of hours the students slept before an exam and their 
exam scores. Matrix A summarizes the proportions of stu-
dents in different categories of exam scores and hours of 
sleep. Matrix B shows the total number of students in three 
exam score categories. 

(a) Calculate the product matrix AB.

(b) Interpret the entries of the matrix AB.

 Exam Score

 Below 60 60 to 80 Above 80

Less than 4
4 to 7

More than 7
  C

0.75    0.20   0.05

0.60   0.30    0.10

0.40  0.30 0.30

S  A

 Total

Below 60
60 to 80

Above 80
  C

80

170

40

S  B

55. frozen-food Revenue  Some of the frozen foods that Joe’s 
Specialty Foods sells are pesto pizza, spinach ravioli, and 
macaroni and cheese. The sales distribution for these prod-
ucts is tabulated in matrix A. The retail price (in dollars) for 
each item is tabulated in matrix B.

(a) Calculate the product matrix AB.

(b) What is the total revenue for Monday?

(c) What is the total revenue from all three days?

 Specialty Food

 Pizza Ravioli Mac & Cheese

Monday
Tuesday

Wednesday
  C

50    20   15

40   75    20

35  60 100

S  A

 Price ($)

Pizza
Ravioli

Mac & Cheese
  C

3.50

5.75

4.25

S  B

56.  fast-food Sales  A small fast-food chain with restaurants in 
Santa Monica, Long Beach, and Anaheim sells only ham-
burgers, hot dogs, and milk shakes. On a certain day, sales 
were distributed according to the following matrix.

 Number of items sold

 Santa  Long  
 Monica Beach Anaheim

Hamburgers
Hot dogs

Milk shakes
  C

4000   1000   3500

400 300 200

700 500 9000

S  A

 The price of each item is given by the following matrix.

 Hamburger Hot dog Milk shake

”$0.90      $0.80      $1.10’  B

 (a)  Calculate the product BA.
 (b)  Interpret the entries in the product matrix BA.

57.  Car-Manufacturing profits  A specialty-car manufacturer has 
plants in Auburn, Biloxi, and Chattanooga. Three models are 
produced, with daily production given in the following matrix.

 Cars produced each day

 Model K Model R Model W

Auburn
Biloxi

Chattanooga
  C

12    10   0

4   4    20

8  9 12

S  A

  Because of a wage increase, February profits are lower than 
January profits. The profit per car is tabulated by model in 
the following matrix.

 January February

Model K
Model R

Model W
  C

$1000 $500

$2000 $1200

$1500 $1000

S  B

(a) Calculate AB.

(b) Assuming that all cars produced were sold, what was the 
daily profit in January from the Biloxi plant?

(c) What was the total daily profit (from all three plants) in 
February?

58.  Canning Tomato products  Jaeger Foods produces tomato 
sauce and tomato paste, canned in small, medium, large, and 
giant-sized cans. The matrix A gives the size (in ounces) of 
each container.

 Small Medium Large Giant
Ounces 3 6 10 14 28 4  A

   The matrix B tabulates one day’s production of tomato sauce 
and tomato paste.

 Cans of Cans of 
 sauce paste

  

Small
Medium

Large
Giant

 D

2000   2500

3000 1500

2500 1000

1000 500

T  B

(a) Calculate the product AB.

(b) Interpret the entries in the product matrix AB.
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59.  produce Sales  A farmer’s three children, Amy, Beth, and 
Chad, run three roadside produce stands during the summer 
months. One weekend they all sell watermelons, yellow 
squash, and tomatoes. The matrices A and B tabulate the  
number of pounds of each product sold by each sibling on 
Saturday and Sunday.

 Saturday

 Melons Squash Tomatoes

Amy
Beth

Chad
  C

120   50   60

40 25 30

60 30 20

S  A

 Sunday

 Melons Squash Tomatoes

Amy
Beth

Chad
  C

100   60   30

35 20 20

60 25 30

S  B

   The matrix C gives the price per pound (in dollars) for each 
type of produce that they sell.

 Price per pound

Melons
Squash

Tomatoes
  C

0.10

0.50

1.00

S  C

  Perform each of the following matrix operations, and inter-
pret the entries in each result.

(a) AC    (b) BC    (c) A  B    (d) ÓA  BÔC

60.  Digital Images  A four-level gray scale is shown below.

0 1 2 3

(a) Use the gray scale to find a 6  6 matrix that digitally 
represents the image in the figure.

(b) Find a matrix that represents a darker version of the 
image in the figure.

(c ) The negative of an image is obtained by reversing light 
and dark, as in the negative of a photograph. Find the 
matrix that represents the negative of the image in the 
figure. How do you change the elements of the matrix to 
create the negative?

(d) Increase the contrast of the image by changing each 1 to 
a 0 and each 2 to a 3 in the matrix you found in part (a). 
Draw the image represented by the resulting matrix. 
Does this clarify the image?

(e) Draw the image represented by the matrix I. Can you 
recognize what this is? If you don’t, try increasing the 
contrast.

I  F

1 2 3 3 2 0

0 3 0 1 0 1

1 3 2 3 0 0

0 3 0 1 0 1

1 3 3 2 3 0

0 1 0 1 0 1

V

DISCuSS ■ DISCovER ■ pRovE ■ wRITE
61. DISCuSS: when Are Both products Defined?  What must be 

true about the dimensions of the matrices A and B if both 
products AB and BA are defined?

62. DISCovER: powers of a Matrix  Let

A  c 1 1

0 1
d

  Calculate A2, A3, A4, . . . until you detect a pattern. Write a 
general formula for An.

63.  DISCovER: powers of a Matrix  Let 

A  c 1 1

1 1
d

  Calculate A2, A3, A4, . . . until you detect a pattern. Write a 
general  formula for An.

64. DISCuSS: Square Roots of Matrices  A square root of a 
matrix B is a matrix A with the property that A2  B. (This is 
the same definition as for a square root of a number.) Find as 
many square roots as you can of each matrix:

c 4 0

0 9
d  c 1 5

0 9
d

  [Hint: If A  c a b

c d
d , write the equations that a, b, c, and

  d would have to satisfy if A is the square root of the given 
matrix.]

11.3 InvERSES of MATRICES AnD MATRIx EquATIonS
■ The Inverse of a Matrix ■ finding the Inverse of a 2  2 Matrix ■ finding the Inverse  
of an n  n Matrix ■ Matrix Equations ■ Modeling with Matrix Equations

In Section 11.2 we saw that when the dimensions are appropriate, matrices can be 
added, subtracted, and multiplied. In this section we investigate division of matrices. 
With this operation we can solve equations that involve matrices.

■ The Inverse of a Matrix
First, we define identity matrices, which play the same role for matrix multiplication as 
the number 1 does for ordinary multiplication of numbers; that is, 1 # a  a # 1  a for 
all numbers a. A square matrix is one that has the same number of rows as columns. 
The main diagonal of a square matrix consists of the entries whose row and column 
numbers are the same. These entries stretch diagonally down the matrix, from top left 
to  bottom right.

IDEnTITy MATRIx

The identity matrix In is the n  n matrix for which each main diagonal entry 
is a 1 and for which all other entries are 0.

Thus the 2  2, 3  3, and 4  4 identity matrices are

I2  B1 0

0 1
R      I3  C

1 0 0

0 1 0

0 0 1

S     I4  D

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

T

Identity matrices behave like the number 1 in the sense that

A # In  A    and    In
# B  B

whenever these products are defined. 

ExAMpLE 1 ■ Identity Matrices
The following matrix products show how multiplying a matrix by an identity matrix 
of the appropriate dimension leaves the matrix unchanged.

c1 0

0 1
d  c 3 5 6

1 2 7
d    c 3 5 6

1 2 7
d

C
1 7 1

2

12 1 3

2 0 7

S  C
1 0 0

0 1 0

0 0 1

S    C
1 7 1

2

12 1 3

2 0 7

S

now Try Exercise 1(a), (b) ■

If A and B are n  n matrices, and if AB  BA  In, then we say that B is the inverse 
of A, and we write B  A1. The concept of the inverse of a matrix is analogous to that 
of the reciprocal of a real number.
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11.3 InvERSES of MATRICES AnD MATRIx EquATIonS
■ The Inverse of a Matrix ■ finding the Inverse of a 2  2 Matrix ■ finding the Inverse  
of an n  n Matrix ■ Matrix Equations ■ Modeling with Matrix Equations

In Section 11.2 we saw that when the dimensions are appropriate, matrices can be 
added, subtracted, and multiplied. In this section we investigate division of matrices. 
With this operation we can solve equations that involve matrices.

■ The Inverse of a Matrix
First, we define identity matrices, which play the same role for matrix multiplication as 
the number 1 does for ordinary multiplication of numbers; that is, 1 # a  a # 1  a for 
all numbers a. A square matrix is one that has the same number of rows as columns. 
The main diagonal of a square matrix consists of the entries whose row and column 
numbers are the same. These entries stretch diagonally down the matrix, from top left 
to  bottom right.

IDEnTITy MATRIx

The identity matrix In is the n  n matrix for which each main diagonal entry 
is a 1 and for which all other entries are 0.

Thus the 2  2, 3  3, and 4  4 identity matrices are

I2  B1 0

0 1
R      I3  C

1 0 0

0 1 0

0 0 1

S     I4  D

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

T

Identity matrices behave like the number 1 in the sense that

A # In  A    and    In
# B  B

whenever these products are defined. 

ExAMpLE 1 ■ Identity Matrices
The following matrix products show how multiplying a matrix by an identity matrix 
of the appropriate dimension leaves the matrix unchanged.

c 1 0

0 1
d  c 3 5 6

1 2 7
d    c 3 5 6

1 2 7
d

C
1 7 1

2

12 1 3

2 0 7

S  C
1 0 0

0 1 0

0 0 1

S    C
1 7 1

2

12 1 3

2 0 7

S

now Try Exercise 1(a), (b) ■

If A and B are n  n matrices, and if AB  BA  In, then we say that B is the inverse 
of A, and we write B  A1. The concept of the inverse of a matrix is analogous to that 
of the reciprocal of a real number.
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InvERSE of A MATRIx

Let A be a square n  n matrix. If there exists an n  n matrix A1 with the 
property that

AA1  A1A  In

then we say that A1 is the inverse of A.

ExAMpLE 2 ■ verifying That a Matrix Is an Inverse
Verify that B is the inverse of A, where

A  c 2 1

5 3
d  and     B  c 3 1

5 2
d

SoLuTIon  We perform the matrix multiplications to show that AB  I and BA  I.

c 2 1

5 3
d  c 3 1

5 2
d    c 2 #  3  115 2 211 2  1 #  2

5 #  3  315 2 511 2  3 #  2
d    c 1 0

0 1
d

c 3 1

5 2
d  c 2 1

5 3
d    c 3 #  2  11 25 3 #  1  11 23

15 22  2 #  5 15 21  2 #  3
d    c 1 0

0 1
d

now Try Exercise 3 ■

■ finding the Inverse of a 2  2 Matrix
The following rule provides a simple way for finding the inverse of a 2  2 matrix, 
when it exists. For larger matrices there is a more general procedure for finding in-
verses, which we consider later in this section.

InvERSE of A 2  2 MATRIx

If A  c a b

c d
d , then

A1 
1

ad   bc
 c d b

c a
d

If ad  bc  0, then A has no inverse.

aRThuR Cayley (1821–1895) was an 
English mathematician who was instru-
mental in developing the theory of matri-
ces. He was the first to use a single symbol 
such as A to represent a matrix, thereby 
introducing the idea that a matrix is a sin-
gle entity rather than just a collection of 
numbers. Cayley practiced law until the 
age of 42, but his primary interest from 
adolescence was mathematics, and he By

go
ne

 C
ol

le
ct

io
n/

Al
am

y

published almost 200 articles on the subject in his spare time. In 1863 he 
accepted a professorship in mathematics at Cambridge, where he taught 
until his death. Cayley’s work on matrices was of purely theoretical inter-
est in his day, but in the 20th century many of his results found applica-
tion in physics, the social sciences, business, and other fields. One of the 
most common uses of matrices today is in computers, where matrices 
are employed for data storage, error correction, image manipulation, and 
many other purposes. These applications have made matrix algebra 
more useful than ever.
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ExAMpLE 3 ■ finding the Inverse of a 2  2 Matrix
Let

A  c 4 5

2 3
d

Find A1, and verify that AA1  A1A  I2.

SoLuTIon  Using the rule for the inverse of a 2  2 matrix, we get

A1 
1

4 #  3  5 #  2
 c 3 5

2 4
d 

1

2
 c 3 5

2 4
d  c

3
2  

5
2

1 2
d

To verify that this is indeed the inverse of A, we calculate AA1 and A1A:

 AA1  c 4 5

2 3
d c

3
2  

5
2

1 2
d  c 4 #  32  511 2 4A 

5
2B  5 #  2

2 #  32  311 2 2A 
5
2B  3 #  2

d  c 1 0

0 1
d

 A1A  c
3
2  

5
2

1 2
d  c 4 5

2 3
d  c

3
2 #  4  A 

5
2B2 3

2 #  5  A 
5
2B3

11 24  2 #  2 11 25  2 #  3
d  c 1 0

0 1
d

now Try Exercise 7 ■

The quantity ad  bc that appears in the rule for calculating the inverse of a  
2  2 matrix is called the determinant of the matrix. If the determinant is 0, then the 
matrix does not have an inverse (since we cannot divide by 0).

■ finding the Inverse of an n  n Matrix
For 3  3 and larger square matrices the following technique provides the most  efficient 
way to calculate their inverses. If A is an n  n matrix, we first construct the n  2n 
matrix that has the entries of A on the left and of the identity matrix In on the right:

D

a11 a12 c a1n @ 1 0 c 0

a21 a22 c a2n @ 0 1 c 0

( ( f ( @ ( ( f (
an1 an2 c ann @ 0 0 c 1

T

We then use the elementary row operations on this new large matrix to change the left 
side into the identity matrix. (This means that we are changing the large matrix to 
 reduced row-echelon form.) The right side is transformed automatically into A1. 
(We omit the proof of this fact.)

ExAMpLE 4 ■  finding the Inverse of a 3  3 Matrix
Let A be the matrix

A  C
1 2 4

2 3 6

3 6 15

S

(a) Find  A1.

(b) Verify that AA1  A1A  I3.

SoLuTIon

(a) We begin with the 3  6 matrix whose left half is A and whose right half is the 
identity matrix.

C
1 2 4 @ 1 0 0

2 3 6 @ 0 1 0

3 6 15 @ 0 0 1

S
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796 CHAPTER 11 ■ Matrices and Determinants

   We then transform the left half of this new matrix into the identity matrix by per-
forming the following sequence of elementary row operations on the entire new 
matrix.

 
  R2  2R1 S R2  >
R3  3R1 S R3

  C
1 2 4 k 1 0 0

0 1 2 k 2 1 0

0 0 3 k 3 0 1

S

 
1
3 R3>   C

1 2 4 k 1 0 0

0 1 2 k 2 1 0

0 0 1 k 1 0 1
3

S

 
R1  2R2 S R1>   C

1 0 0 k 3 2 0

0 1 2 k 2 1 0

0 0 1 k 1 0 1
3

S

 
R2  2R3 S R2>   C

1 0 0 k 3 2 0

0 1 0 k 4 1  
2
3

0 0 1 k 1 0 1
3

S

  We have now transformed the left half of this matrix into an identity matrix. (This 
means that we have put the entire matrix in reduced row-echelon form.) Note that 
to do this in as systematic a fashion as possible, we first changed the elements 
below the main diagonal to zeros, just as we would if we were using Gaussian 
elimination. We then changed each main diagonal element to a 1 by multiplying 
by the  appropriate constant(s). Finally, we completed the process by changing the 
 remaining entries on the left side to zeros. 

  The right half is now A1.

A1  C
3 2 0

4 1  
2
3

1 0 1
3

S

(b) We calculate AA1 and A1A and verify that both products give the identity 
matrix I3.

 AA1  C
1 2 4

2 3 6

3 6 15

S  C
3 2 0

4 1  
2
3

1 0 1
3

S  C
1 0 0

0 1 0

0 0 1

S

 A1A  C
3 2 0

4 1  
2
3

1 0 1
3

S  C
1 2 4

2 3 6

3 6 15

S  C
1 0 0

0 1 0

0 0 1

S

now Try Exercises 9 and 19 ■

Graphing calculators are also able to calculate matrix inverses. On the TI-83 and TI-84 
calculators, matrices are stored in memory using names such as [A], [B], [C], . . . . To 
find the inverse of [A], we key in

[A]  x1   enter

For the matrix of Example 4 this results in the output shown in Figure 1 (where we have 
also used the  Frac command to display the output in fraction form rather than in 
decimal form).

The next example shows that not every square matrix has an inverse.

[A]-1 Frac
   [[-3 2 0   ]
    [-4 1 -2/3]
    [1  0 1/3 ]]

fIguRE 1

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions on working with matrices. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.3 ■ Inverses of Matrices and Matrix Equations 797

ExAMpLE 5 ■ A Matrix That Does not have an Inverse
Find the inverse of the matrix

C
2 3 7

1 2 7

1 1 4

S

SoLuTIon  We proceed as follows.

C
2 3 7 k 1 0 0

1 2 7 k 0 1 0

1 1 4 k 0 0 1

S  
 R1 4 R2 > C

1 2 7 k 0 1 0

2 3 7 k 1 0 0

1 1 4 k 0 0 1

S

  R2  2R1 S R2  >
R3  R1 S R3

  C
1 2 7 k 0 1 0

0 7 21 k 1 2 0

0 1 3 k 0 1 1

S

 
1
7 R2>   C

1 2 7 k 0 1 0

0 1 3 k  
1
7

2
7 0

0 1 3 k 0 1 1

S

  R3  R2 S R3  >
R1  2R2 S R1

  C
1 0 1 k 2

7
3
7 0

0 1 3 k  
1
7

2
7 0

0 0 0 k  
1
7  

5
7 1

S

At this point we would like to change the 0 in the 13, 32 position of this matrix to a 1 
without changing the zeros in the 13, 12 and 13, 22 positions. But there is no way to 
accomplish this, because no matter what multiple of rows 1 and/or 2 we add to row 3, 
we can’t change the third zero in row 3 without changing the first or second zero as 
well. Thus we cannot change the left half to the identity matrix, so the original matrix 
doesn’t have an inverse. 

now Try Exercise 21 ■

If we encounter a row of zeros on the left when trying to find an inverse, as in Ex-
ample 5, then the original matrix does not have an inverse. If we try to calculate the 
inverse of the matrix from Example 5 on a TI-83 calculator, we get the error message 
shown in Figure 2. (A matrix that has no inverse is called singular.)

■ Matrix Equations
We saw in Example 6 in Section 11.2 that a system of linear equations can be written 
as a single matrix equation. For example, the system

c
     x  2y  4z  7

   2x  3y  6z  5

3x  6y  15z  0

is equivalent to the matrix equation

C
1 2 4

2 3 6

3 6 15

S  C
x

y

z
S    C

7

5

0

S

A X B

ERR:SINGULAR MAT
1:Quit
2:Goto

fIguRE 2
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798 CHAPTER 11 ■ Matrices and Determinants

If we let

A  C
1 2 4

2 3 6

3 6 15

S    X  C
x

y

z
S    B  C

7

5

0

S

then this matrix equation can be written as

AX  B

The matrix A is called the coefficient matrix.
We solve this matrix equation by multiplying each side by the inverse of A (provided 

that this inverse exists).

 AX  B

 A11AX 2  A1B  Multiply on left by A1

 1A1A 2X  A1B  Associative Property

 I3X  A1B  Property of inverses

 X  A1B  Property of identity matrix

In Example 4 we showed that

A1  C
3 2 0

4 1  
2
3

1 0 1
3

S

So from X  A1B we have

C
x

y

z
S   C

3 2 0

4 1  
2
3

1 0 1
3

S  C
7

5

0

S  C
11

23

7

S

Thus x  11, y  23, z  7 is the solution of the original system.
We have proved that the matrix equation AX  B can be solved by the following 

method.

SoLvIng A MATRIx EquATIon

If A is a square n  n matrix that has an inverse A1 and if X is a variable matrix 
and B a known matrix, both with n rows, then the solution of the matrix equation 

AX  B

is given by

X  A1B

ExAMpLE 6 ■ Solving a System using a Matrix Inverse
A system of equations is given.

(a) Write the system of equations as a matrix equation.

(b) Solve the system by solving the matrix equation.

b2x  5y  15

3x  6y  36

Solving the matrix equation AX  B  
is very similar to solving the simple 
real-number equation

3x  12

which we do by multiplying each side 
by the reciprocal (or inverse) of 3.

 13 13x 2  1
3 112 2

 x  4

X  A1 B
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SoLuTIon

(a) We write the system as a matrix equation of the form AX  B.

B2 5

3 6
R  B  

x

y
R  B15

36
R

(b) Using the rule for finding the inverse of a 2  2 matrix, we get

A1  c 2 5

3 6
d

1


1

216 2  15 23 c6 15 2
3 2

d 
1

3
c6 5

3 2
d
 

  Multiplying each side of the matrix equation by this inverse matrix, we get

c x
y
d 

1

3
c6 5

3 2
d c 15

36
d  c 30

9
d

  So x  30 and y  9.

now Try Exercise 39 ■

■ Modeling with Matrix Equations
Suppose we need to solve several systems of equations with the same coefficient ma-
trix. Then converting the systems to matrix equations provides an efficient way to ob-
tain the  solutions, because we need to find the inverse of the coefficient matrix only 
once. This procedure is particularly convenient if we use a graphing calculator to per-
form the matrix  operations, as in the next example.

ExAMpLE 7 ■  Modeling nutritional Requirements  
using Matrix Equations

A pet-store owner feeds his hamsters and gerbils different mixtures of three types of 
rodent food: KayDee Food, Pet Pellets, and Rodent Chow. He wishes to feed his 
 animals the correct amount of each brand to satisfy their daily requirements for pro-
tein, fat, and carbohydrates exactly. Suppose that hamsters require 340 mg of protein, 
280 mg of fat, and 440 mg of carbohydrates, and gerbils need 480 mg of protein, 
360 mg of fat, and 680 mg of carbohydrates each day. The amount of each nutrient 
(in mg) in 1 g of each brand is given in the following table. How many grams of each 
food should the storekeeper feed his hamsters and gerbils daily to satisfy their nutri-
ent requirements?

KayDee Food Pet Pellets Rodent Chow

Protein (mg) 10  0 20
Fat (mg) 10 20 10
Carbohydrates (mg)  5 10 30

SoLuTIon  We let x 1, x 2, and x 3 be the respective amounts (in grams) of KayDee 
Food, Pet Pellets, and Rodent Chow that the hamsters should eat, and we let y 1, y 2, 

 A X  B

 X  A1 B

Mathematical ecology
In the 1970s humpback whales  became a 
center of controversy.  Environmentalists 
believed that whaling threatened the 
whales with imminent extinction; whal-
ers saw their livelihood threatened by 
any attempt to stop whaling. Are whales 
really threatened to  ex tinc tion by whal-
ing? What level of whaling is safe to guar-
antee  survival of the whales? These 
 questions motivated mathematicians to 
study population patterns of whales and 
other species more closely.

As early as the 1920s Lotka and 
Volterra had founded the field of mathe-
matical biology by creating predator-prey 
models. Their models, which draw on a 
branch of mathematics called differential 
equations, take into account the rates at 
which predator eats prey and the rates of 
growth of each population. Note that as 
predator eats prey, the prey population 
decreases; this means less food supply for 
the predators, so their population begins 
to decrease; with fewer predators the prey 
population begins to increase, and so on. 
 Normally, a state of equilibrium develops, 
and the two populations alternate 
between a minimum and a maximum. 
Notice that if the  predators eat the prey 
too fast, they will be left without food and 
will thus ensure their own extinction.

Since Lotka and Volterra’s time, more 
detailed mathematical models of animal 
populations have been developed. For 
many species the population is divided  
into several stages: immature, juvenile, 
adult, and so on. The proportion of each 
stage that survives or reproduces in a  
given time period is entered into a matrix 
(called a transition matrix); matrix multipli-
cation is then used to predict the popula-
tion in succeeding time periods. (See  
Discovery Project: Will the Species  
Survive? at the book companion website:  
www.stewartmath.com.) 

As you can see, the power of mathe-
matics to model and predict is an invalu-
able tool in the ongoing debate over the 
 environment.

Mathematics in the Modern World
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800 CHAPTER 11 ■ Matrices and Determinants

and y3 be the corresponding amounts for the gerbils. Then we want to solve the matrix 
equations

C
10 0 20

10 20 10

5 10 30

S  C
x1

x2

x3

S  C
340

280

440

S     Hamster equation

C
10 0 20

10 20 10

5 10 30

S  C
y1

y2

y3

S  C
480

360

680

S     Gerbil equation

Let

A  C
10 0 20

10 20 10

5 10 30

S   B  C
340

280

440

S   C  C
480

360

680

S   X  C
x1

x2

x3

S   Y  C
y1

y2

y3

S

Then we can write these matrix equations as

 AX  B     Hamster equation

 AY  C    Gerbil equation

We want to solve for X and Y, so we multiply both sides of each equation by A1, the 
inverse of the coefficient matrix. We could find A1 by hand, but it is more convenient 
to use a graphing calculator as shown in Figure 3.

[A]-1*[B]
             [[10]
              [3 ]
              [12]]

(a)

[A]-1*[C]
             [[8 ]
              [4 ]
              [20]]

(b)fIguRE 3

So

X  A1B  C
10

3

12

S    Y  A1C  C
8

4

20

S

Thus each hamster should be fed 10 g of KayDee Food, 3 g of Pet Pellets, and 12 g 
of  Rodent Chow; and each gerbil should be fed 8 g of KayDee Food, 4 g of Pet  
Pellets, and 20 g of Rodent Chow daily. 

now Try Exercise 61 ■

ConCEpTS

 1. (a) The matrix I  c 1 0

0 1
d  is called an   matrix.

(b) If A is a 2  2 matrix, then A  I    and 

  I  A     .

(c) If A and B are 2  2 matrices with AB  I, then B is the 

    of A.

 2. (a) Write the following system as a matrix equation AX  B.

 System Matrix equation

 A # X  B

5x  3y  4

3x  2y  3
        Bj j

j j
R  Bj

j
R  Bj

j
R

(b) The inverse of A is A1  cj j

j j
d .

11.3 ExERCISES
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SECTION 11.3 ■ Inverses of Matrices and Matrix Equations 801

(c) The solution of the matrix equation is X  A1B.

 X  A1 B

c xy d  Bj j

j j
R  Bj

j
R  Bj

j
R

(d) The solution of the system is x     ,  

y    .

SkILLS
3–6 ■ verifying the Inverse of a Matrix  Calculate the products 
AB and BA to verify that B is the inverse of A.

 3. A  c 4 1

7 2
d   B  c 2 1

7 4
d

 4. A  c 2 3

4 7
d   B  c

7
2  

3
2

2 1
d

 5. A  C
1 3 1

1 4 0

1 3 2

S   B  C
8 3 4

2 1 1

1 0 1

S

 6. A  C
3 2 4

1 1 6

2 1 12

S   B  C
9 10 8

12 14 11

 
1
2

1
2

1
2

S

7–8 ■ The Inverse of a 2  2 Matrix  Find the inverse of  
the matrix and verify that A1A  AA1  I2 and  
B1B  BB1  I3.

 7. A  c 7 4

3 2
d
  

8. B  C
1 3 2

0 2 2

2 1 0

S

9–10 ■ The Inverse of a 2  2 Matrix  Use a graphing calculator  
to find the inverse of the matrix and to verify that A1A  AA1  I2 
and B1B  BB1  I3. (On a TI-83, use the ▶Frac command to 
obtain the answer in fractions.)

 9. A  c 1.2 0.3

1.2 0.2
d  10. B  C

5 1 3

6 1 3

7 1 2

S  

11–26 ■ finding the Inverse of a Matrix  Find the inverse of the 
matrix if it exists.

11. c3 5

2 3
d  12. c 3 4

7 9
d

13. c 2 5

5 13
d  14. c7 4

8 5
d

15. c 6 3

8 4
d  16. c

1
2

1
3

5 4
d

17. c 0.4 1.2

0.3 0.6
d  18. C

4 2 3

3 3 2

1 0 1

S

19. C
2 4 1

1 1 1

1 4 0

S  20. C
5 7 4

3 1 3

6 7 5

S

21. C
1 2 3

4 5 1

1 1 10

S  22. C
2 1 0

1 1 4

2 1 2

S

23. C
0 2 2

3 1 3

1 2 3

S  24. C
3 2 0

5 1 1

2 2 0

S

25. D

1 2 0 3

0 1 1 1

0 1 0 1

1 2 0 2

T  26. D

1 0 1 0

0 1 0 1

1 1 1 0

1 1 1 1

T

27–34 ■ finding the Inverse of a Matrix  Use a graphing calcu-
lator to find the inverse of the matrix, if it exists. (On a TI-83, use 
the ▶Frac command to obtain the answer in fractions.)

27. C
3 2 3

0 1 3

1 0 2

S  28. C
5 2 1

5 1 0

0 1 2

S

29. D

1 4 0 1

1 0 1 0

0 4 1 2

2 2 2 0

T  30. D

3 0 1 1

3 1 1 1

1 3 0 1

2 3 1 0

T

31. C
1 7 3

0 2 1

0 0 3

S  32. D

1 0 0 0

2 5 0 0

4 2 3 0

5 1 2 1

T

33. D

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 7

T  34. C
1 0 0

0 2 0

0 0 3

S

35–38 ■ products Involving Matrices and Inverses  The matrices 
A and B are defined as follows. 

A  C
1 0 2

0 2 1

4 2 1

S     B  C
2 1 2

0 3 1

1 0 2

S

Use a graphing calculator to carry out the indicated algebraic 
operations, or explain why they cannot be performed. State the 
answer using fractions. (On a TI-83, use the ▶Frac command to 
obtain the answer in fractions.)

35. A1B      36. AB1 37. BAB1      38. B1AB

39–46 ■ Solving a Linear System as a Matrix Equation  Solve the 
system of equations by converting to a matrix equation and using 
the inverse of the coefficient matrix, as in Example 6. Use the 
inverses from Exercises 11–14, 19, 20, 23, and 25.

39. b
3x  5y  4

2x  3y  0
 40. b

3x  4y  10

7x  9y  20

41. b     2x  5y  2

5x  13y  20
 42. b7x  4y  0

    8x  5y  100

43. c
2x  4y  z  7

x  y  z  0

x  4y  2

 44. c
5x  7y  4z  1

3x  1y  3z  1

6x  7y  5z  1
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45. c
1x2y  2z  12

3x  1y  3z 2

1x  2y  3z  08

 46. d

x  2y  z  3„  0

11y  z  1„  1

1y  z  1„  2

x  2y  z  2„  3

47–52 ■ Solving a Linear System  Solve the system of equations 
by converting to a matrix equation. Use a graphing calculator to 
perform the necessary matrix operations, as in Example 7.

47. c
x  1y  2z  03

2x  1y  5z  11

2x  3y  1z  12

 48. c
3x  4y  2z 2

2x  3y  5z 5

5x  2y  2z 3

49. c
12x  1

2 y  7z  21

11x  2y  3z  43

13x  y  4z  29

 50. c
x  1

2 
y  1

3 z  4

x  1
4 y  1

6 z  7

x  y  z  6

51. d

x  y  3„  0

x  2z  8

2y  z  „  5

2x  3y  2„  13

52. d

1x  1y  1z  1„  15

1x  1y  1z  1„  15

1x  2y  3z  4„  26

1x  2y  3z  4„  12

SkILLS plus
53–54 ■ Solving a Matrix Equation  Solve the matrix equation 
by multiplying each side by the appropriate inverse matrix.

53. c 3 2

4 3
d  c x y z

u √ „
d  c 1 0 1

2 1 3
d

54. C
0 2 2

3 1 3

1 2 3

S  £
x u

y √
z „

§  £
3 6

6 12

0 0

§

55–56 ■ Inverses of Special Matrices  Find the inverse of the 
matrix.

55. c a a

a a
d  56. D

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

T

  

1a ? 0 2
 1abcd ? 0 2

57–60 ■ when Do Matrices have Inverses?  Find the inverse of 
the matrix. For what value(s) of x, if any, does the matrix have no 
inverse?

57. c 2 x

x x2 d  58. c e
x e2x

e2x e3x d

59. C
1 ex 0

ex e2x 0

0 0 2

S  60. £
x 1

x
1

x  1

§

AppLICATIonS
61.  nutrition  A nutritionist is studying the effects of the 

 nutrients folic acid, choline, and inositol. He has three 

types of food available, and each type contains the follow-
ing amounts of these nutrients per ounce.

Type A Type B Type C

Folic acid (mg) 3 1 3
Choline (mg) 4 2 4
Inositol (mg) 3 2 4

(a) Find the inverse of the matrix

C
3 1 3

4 2 4

3 2 4

S

 and use it to solve the remaining parts of this problem.

(b) How many ounces of each food should the nutritionist 
feed his laboratory rats if he wants their daily diet to 
contain 10 mg of folic acid, 14 mg of choline, and 13 mg 
of inositol?

(c) How much of each food is needed to supply 9 mg of 
folic acid, 12 mg of choline, and 10 mg of inositol?

(d) Will any combination of these foods supply 2 mg of folic 
acid, 4 mg of choline, and 11 mg of inositol?

62. nutrition  Refer to Exercise 61. Suppose food type C has 
been improperly labeled, and it actually contains 4 mg of 
folic acid, 6 mg of choline, and 5 mg of inositol per ounce. 
Would it still be possible to use matrix inversion to solve 
parts (b), (c), and (d) of Exercise 61? Why or why not?

63. Sales Commissions  A saleswoman works at a kiosk that 
offers three different models of cell phones: standard with 
16 GB capacity, deluxe with 32 GB capacity, and super-
deluxe with 64 GB capacity. For each phone that she sells, 
she earns a commission based on the cell phone model. One 
week she sells 9 standard, 11 deluxe, and 8 super-deluxe and 
makes $740 in commission. The next week she sells 13 stan-
dard, 15 deluxe, and 16 super-deluxe for a $1204 commis-
sion. The third week she sells 8 standard, 7 deluxe, and 
14 super-deluxe, earning $828 in commission.

(a) Let x, y, and z represent the commission she earns on stan-
dard, deluxe, and super-deluxe, respectively. Translate the 
given information into a system of equations in x, y, and z.

(b) Express the system of equations you found in part (a) as 
a matrix equation of the form AX  B.

(c) Find the inverse of the coefficient matrix A and use it to 
solve the matrix equation in part (b). How much com-
mission does the saleswoman earn on each model of cell 
phone?

DISCuSS ■ DISCovER ■ pRovE ■ wRITE
64.  DISCuSS: no Zero-product property for Matrices  We have 

used the Zero-Product Property to solve algebraic equations. 
Matrices do not have this property. Let O represent the 2  2 
zero matrix

O  c 0 0

0 0
d

   Find 2  2 matrices A ? O and B ? O such that AB  O.  
Can you find a matrix A ? O such that A2  O?

11.4 DETERMInAnTS AnD CRAMER’S RuLE
■ Determinant of a 2  2 Matrix ■ Determinant of an n  n Matrix ■ Row and Column 
Transformations ■ Cramer’s Rule ■ Areas of Triangles using Determinants

If a matrix is square (that is, if it has the same number of rows as columns), then we 
can assign to it a number called its determinant. Determinants can be used to solve 
systems of linear equations, as we will see later in this section. They are also useful in 
determining whether a matrix has an inverse.

■ Determinant of a 2  2 Matrix
We denote the determinant of a square matrix A by the symbol det1A 2  or 0  A 0 . We first 
define det1A 2  for the simplest cases. If A  3a 4  is a 1  1 matrix, then det1A 2  a. 
The following box gives the definition of a 2  2 determinant.

DETERMInAnT of A 2  2 MATRIx

The determinant of the 2  2 matrix A  c a b

c d
d  is

det1A 2  k  A k  ` a b

c d
`  ad  bc

ExAMpLE 1 ■ Determinant of a 2  2 Matrix

Evaluate 0  A 0  for A  c6 3

2 3
d .

SoLuTIon

` 6 3

2    3
`  6 # 3  13 22  18  16 2  24

now Try Exercise 5 ■

■ Determinant of an n  n Matrix
To define the concept of determinant for an arbitrary n  n matrix, we need the follow-
ing terminology.

MInoRS AnD CofACToRS

Let A be an n  n matrix.

1. The minor Mij of the element aij is the determinant of the matrix obtained by 
deleting the ith row and jth column of A.

2. The cofactor Aij of the element aij is

Aij  11 2 i jMij

For example, if A is the matrix

£
2    3   1

0 2 4

2 5 6

§

We will use both notations, det1A 2  and 
0  A 0 , for the determinant of A. Although 

the symbol 0  A 0  looks like the absolute 
value symbol, it will be clear from the 
context which meaning is intended.

To evaluate a 2  2 determinant, we 
take the product of the diagonal from 
top left to bottom right and subtract the 
product from top right to bottom left, 
as indicated by the arrows.

→←

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 11.4 ■ Determinants and Cramer’s Rule 803

11.4 DETERMInAnTS AnD CRAMER’S RuLE
■ Determinant of a 2  2 Matrix ■ Determinant of an n  n Matrix ■ Row and Column 
Transformations ■ Cramer’s Rule ■ Areas of Triangles using Determinants

If a matrix is square (that is, if it has the same number of rows as columns), then we 
can assign to it a number called its determinant. Determinants can be used to solve 
systems of linear equations, as we will see later in this section. They are also useful in 
determining whether a matrix has an inverse.

■ Determinant of a 2  2 Matrix
We denote the determinant of a square matrix A by the symbol det1A 2  or 0  A 0 . We first 
define det1A 2  for the simplest cases. If A  3a 4  is a 1  1 matrix, then det1A 2  a. 
The following box gives the definition of a 2  2 determinant.

DETERMInAnT of A 2  2 MATRIx

The determinant of the 2  2 matrix A  c a b

c d
d  is

det1A 2  k  A k  ` a b

c d
`  ad  bc

ExAMpLE 1 ■ Determinant of a 2  2 Matrix

Evaluate 0  A 0  for A  c 6 3

2 3
d .

SoLuTIon

` 6 3

2    3
`  6 # 3  13 22  18  16 2  24

now Try Exercise 5 ■

■ Determinant of an n  n Matrix
To define the concept of determinant for an arbitrary n  n matrix, we need the follow-
ing terminology.

MInoRS AnD CofACToRS

Let A be an n  n matrix.

1. The minor Mij of the element aij is the determinant of the matrix obtained by 
deleting the ith row and jth column of A.

2. The cofactor Aij of the element aij is

Aij  11 2 i jMij

For example, if A is the matrix

£
2    3   1

0 2 4

2 5 6

§

We will use both notations, det1A 2  and 
0  A 0 , for the determinant of A. Although 

the symbol 0  A 0  looks like the absolute 
value symbol, it will be clear from the 
context which meaning is intended.

To evaluate a 2  2 determinant, we 
take the product of the diagonal from 
top left to bottom right and subtract the 
product from top right to bottom left, 
as indicated by the arrows.

→←
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then the minor M12 is the determinant of the matrix obtained by deleting the first row 
and second column from A. Thus

M12  3
2 3 1

0 2 4

2 5 6

3  ` 0 4

2 6
`  016 2  412 2  8

So the cofactor A12  11 2 12M12  8. Similarly,

M33  3
2 3 1

0 2 4

2 5 6

3  ` 2 3

0 2
`  2 # 2  3 # 0  4

So A33  11 2 33M33  4.
Note that the cofactor of aij is simply the minor of aij multiplied by either 1 or 1,  

depending on whether i  j is even or odd. Thus in a 3  3 matrix we obtain the cofac-
tor of any element by prefixing its minor with the sign obtained from the following 
checkerboard pattern.

£
  

  

  

§

We are now ready to define the determinant of any square matrix.

ThE DETERMInAnT of A SquARE MATRIx

If A is an n  n matrix, then the determinant of A is obtained by multiplying 
each element of the first row by its cofactor and then adding the results. In  
symbols,

det1A 2  0  A 0   4  

a11 a12 c a1n

a21 a22 c a2n

( ( f (
an1 an2 p ann

4  a11 A11  a12   
A12  . . .  a1n   

A1n

ExAMpLE 2 ■ Determinant of a 3  3 Matrix
Evaluate the determinant of the matrix

A  C
2 3 1

0 2 4

2 5 6

S

SoLuTIon

 det1A 2  3
2 3 1

0 2 4

2 5 6

3  2 ` 2 4

5 6
`  3 ` 0 4

2 6
`  11 2 ` 0 2

2 5
`

  212 # 6  4 # 5 2  3 30 # 6  412 2 4  30 # 5  212 2 4
  16  24  4

  44

now Try Exercises 21 and 29 ■

Ba
ld

w
in

 H
. W

ar
d 

&
 K

at
hr

yn
 C

. W
ar

d/
Co

rb
is

david hilbeRT (1862–1943) was born in 
Königsberg, Germany, and became a pro-
fessor at Göttingen University. He is con-
sidered by many to be the greatest math-
ematician of the 20th century. At the 
International Congress of Mathematicians 
held in Paris in 1900, Hilbert set the direc-
tion of mathematics for the about-to-
dawn 20th century by posing 23 problems 
that he believed to be of crucial impor-
tance. He said that “these are problems 
whose solutions we expect from the 
future.” Most of Hilbert’s problems have 
now been solved (see Julia Robinson, 
page 782, and Alan Turing, page 155), and 
their solutions have led to important new 
areas of mathematical research. Yet as we 
proceed into the new millennium, some of 
Hilbert’s problems remain unsolved. In his 
work, Hilbert emphasized structure, logic, 
and the foundations of mathematics. Part 
of his genius lay in his ability to see the 
most general possible statement of a 
problem. For instance, Euler proved that 
every whole number is the sum of four 
squares; Hilbert proved a similar state-
ment for all powers of positive integers.
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In our definition of the determinant we used the cofactors of elements in the first 
row only. This is called expanding the determinant by the first row. In fact, we can 
expand the determinant by any row or column in the same way and obtain the same 
result in each case (although we won’t prove this). The next example illustrates this 
principle.

ExAMpLE 3 ■  Expanding a Determinant About a Row  
and a Column

Let A be the matrix of Example 2. Evaluate the determinant of A by expanding

(a) by the second row

(b) by the third column

Verify that each expansion gives the same value.

SoLuTIon

(a) Expanding by the second row, we get

 det1A 2  3
2 3 1

0 2 4

2 5 6

3

  0 ` 3 1

5 6
`  2 ` 2 1

2 6
`  4 ` 2 3

2 5
`

  0  2 32 # 6  11 2 12 2 4  4 32 # 5  312 2 4
  0  20  64

  44

(b)  Expanding by the third column gives

 det1A 2  3
2 3 1

0 2 4

2 5 6

3

  1 ` 0 2

2 5
`  4 ` 2 3

2 5
`  6 ` 2 3

0 2
`

   30 # 5  212 2 4  4 32 # 5  312 2 4  612 # 2  3 # 0 2
  4  64  24

  44

In both cases we obtain the same value for the determinant as when we expanded by 
the first row in Example 2.

We can also use a graphing calculator to compute determinants, as shown in  
Figure 1.

now Try Exercise 39 ■

The following criterion allows us to determine whether a square matrix has an in-
verse without actually calculating the inverse. This is one of the most important uses of 
the determinant in matrix algebra, and it is the reason for the name determinant.

InvERTIBILITy CRITERIon

If A is a square matrix, then A has an inverse if and only if det1A2 ? 0.

See Appendix D, Using the TI-83/84 
Graphing Calculator, for specific 
instructions on calculating determi-
nants. 

Here is the output when the TI-83 is 
used to calculate the determinant in 
Example 3:

[A]
        [[2  3 -1]
         [0  2 4 ]
         [-2 5 6 ]]
det([A])
                       -44

fIguRE 1
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806 CHAPTER 11 ■ Matrices and Determinants

We will not prove this fact, but from the formula for the inverse of a 2  2 matrix  
(page 794) you can see why it is true in the 2  2 case.

ExAMpLE 4 ■  using the Determinant to Show That a Matrix Is  
not Invertible

Show that the matrix A has no inverse.

A  D

1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

T

SoLuTIon  We begin by calculating the determinant of A. Since all but one of the  
elements of the second row is zero, we expand the determinant by the second row. If 
we do this, we see from the following equation that only the cofactor A24 will have to 
be calculated.

 det1A 2  4

1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

4

  0 # A21  0 # A22  0 # A23  3 # A24

  3A24

  3 3
1 2 0

5 6 2

2 4 0

3    Expand this by column 3

  312 2 ` 1 2

2 4
`

  312 2 11 # 4  2 # 2 2
  0

Since the determinant of A is zero, A cannot have an inverse, by the Invertibility Criterion.

now Try Exercise 25 ■

■ Row and Column Transformations
The preceding example shows that if we expand a determinant about a row or column  
that contains many zeros, our work is reduced considerably because we don’t have to 
evaluate the cofactors of the elements that are zero. The following principle often sim-
plifies the process of finding a determinant by introducing zeros into the matrix without 
changing the value of the determinant.

Row AnD CoLuMn TRAnSfoRMATIonS of A DETERMInAnT

If A is a square matrix and if the matrix B is obtained from A by adding a  
multiple of one row to another or a multiple of one column to another, then  
det1A 2  det1B 2 .
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eMMy noeTheR (1882–1935) was one 
of the foremost mathematicians of the 
early 20th century. Her groundbreaking 
work in abstract algebra provided much 
of the foundation for this field, and her 
work in invariant theory was essential in 
the development of Einstein’s theory of 
general relativity. Although women 
weren’t allowed to study at German uni-
versities at that time, she audited courses 
unofficially and went on to receive a doc-
torate at Erlangen summa cum laude, 
despite the opposition of the academic 
senate, which declared that women stu-
dents would “overthrow all academic 
order.” She subsequently taught mathe-
matics at  Göttingen, Moscow, and 
Frankfurt. In 1933 she left Germany to 
escape Nazi persecution, accepting a 
position at Bryn Mawr College in subur-
ban Philadelphia. She lectured there and 
at the Institute for Advanced Study in 
Princeton, New Jersey, until her untimely 
death in 1935.
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ExAMpLE 5 ■  using Row and Column Transformations  
to Calculate a Determinant

Find the determinant of the matrix A. Does it have an inverse?

A  D

8 2 1 4

3 5 3 11

24 6 1 12

2 2 7 1

T

SoLuTIon  If we add 3 times row 1 to row 3, we change all but one element of  
row 3 to zeros.

D

8 2 1 4

3 5 3 11

0 0 4 0

2 2 7 1

T

This new matrix has the same determinant as A, and if we expand its determinant by 
the third row, we get

det1A 2  4 3
8 2 4

3 5 11

2 2 1

3

Now, adding 2 times column 3 to column 1 in this determinant gives us

 det1A 2  4 3
0 2 4

25 5 11

0 2 1

3    Expand this by column 1

  4125 2 ` 2 4

2 1
`

  4125 2 3211 2  14 22 4  600

Since the determinant of A is not zero, A does have an inverse.

now Try Exercise 35 ■

■ Cramer’s Rule
The solutions of linear equations can sometimes be expressed by using determinants. 
To illustrate, let’s solve the following pair of linear equations for the variable x.

eax  by  r

cx  dy  s

To eliminate the variable y, we multiply the first equation by d and the second by b and 
subtract.

adx  bdy  rd

bcx  bdy  bs          

adx  bcx  rd  bs
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808 CHAPTER 11 ■ Matrices and Determinants

Factoring the left-hand side, we get 1ad  bc 2x  rd  bs. Assuming that ad  bc ? 0, 
we can now solve this equation for x:

x 
rd  bs

ad  bc

Similarly, we find

y 
as  cr

ad  bc

The numerator and denominator of the fractions for x and y are determinants of  
2  2 matrices. So we can express the solution of the system using determinants as 
follows.

CRAMER’S RuLE foR SySTEMS In Two vARIABLES

The linear system

eax  by  r

cx  dy  s
has the solution

x 

` r b

s d
`

` a b

c d
`
  y 

` a r

c s
`

` a b

c d
`

provided that  ` a b

c d
` ? 0.

Using the notation

D  c a b

c d
d      Dx  c r b

s d
d     Dy  c a r

c s
d

we can write the solution of the system as

x 
0  Dx 0
0  D 0   and  y 

0  Dy 0
0  D 0

ExAMpLE 6 ■  using Cramer’s Rule to Solve a System  
with Two variables

Use Cramer’s Rule to solve the system.

e2x  6y  1

  x  8y   2

Coefficient 
matrix

Replace first  
column of D by  
r and s

Replace second 
column of D by 
r and s
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SoLuTIon  For this system we have

 0  D 0  ` 2 6

1 8
`  2 # 8  6 # 1  10

 0  Dx 0  ` 1 6

2 8
`  11 28  6 # 2  20

 0  Dy 0  ` 2 1

1 2
`  2 # 2  11 21  5

The solution is

 x 
0  Dx 0
0  D 0 

20

10
 2

 y 
0  Dy 0
0  D 0 

5

10


1

2

now Try Exercise 41 ■

Cramer’s Rule can be extended to apply to any system of n linear equations in  
n variables in which the determinant of the coefficient matrix is not zero. As we saw in 
the preceding section, any such system can be written in matrix form as

≥  

a11 a12 c a1n

a21 a22 c a2n

( ( f (
an1 an2 p ann

¥  ≥
x1

x2

(
xn

¥   ≥
b1

b2

(
bn

¥

By analogy with our derivation of Cramer’s Rule in the case of two equations in two 
unknowns, we let D be the coefficient matrix in this system, and Dxi

 be the matrix 
obtained by replacing the ith column of D by the numbers b1, b2, . . . , bn that appear 
to the right of the equal sign. The solution of the system is then given by the follow-
ing rule.

CRAMER’S RuLE

If a system of n linear equations in the n variables x 1, x 2, . . . , xn is equivalent 
to the matrix equation DX  B, and if 0  D 0 ? 0, then its solutions are

x1 
0  Dx1

 0
0  D 0    x2 

0  Dx2
 0

0  D 0    
p   xn 

0  Dxn
 0

0  D 0
where Dxi

 is the matrix obtained by replacing the ith column of D by the n  1 
matrix B.

ExAMpLE 7 ■  using Cramer’s Rule to Solve a System  
with Three variables

Use Cramer’s Rule to solve the system.

c
2x  3y  4z  1

x           6z  0

3x  2y          5
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810 CHAPTER 11 ■ Matrices and Determinants

SoLuTIon  First, we evaluate the determinants that appear in Cramer’s Rule. Note 
that D is the coefficient matrix and that Dx, Dy, and Dz are obtained by replacing the 
first, second, and third columns of D by the constant terms.

 0  D 0  3
2 3 4

1 0 6

3 2 0

3  38  0  Dx 0  3
1 3 4

0 0 6

5 2 0

3  78

 0  Dy 0  3
2 1 4

1 0 6

3 5 0

3  22  0  Dz 0  3
2 3 1

1 0 0

3 2 5

3  13

Now we use Cramer’s Rule to get the solution:

x 
0  Dx 0
0  D 0 

78

38


39

19
        y 

0  Dy 0
0  D 0 

22

38


11

19

z 
0  Dz 0
0  D 0    

13

38
  

13

38

now Try Exercise 47 ■

Solving the system in Example 7 using Gaussian elimination would involve matri-
ces whose elements are fractions with fairly large denominators. Thus in cases like 
Examples 6 and 7, Cramer’s Rule gives us an efficient way to solve systems of linear 
equations. But in systems with more than three equations, evaluating the various de-
terminants that are involved is usually a long and tedious task (unless you are using a 
graphing calculator). Moreover, the rule doesn’t apply if 0  D 0  0 or if D is not a 
square matrix. So Cramer’s Rule is a useful alternative to Gaussian elimination, but 
only in some  situations.

■ Areas of Triangles using Determinants
Determinants provide a simple way to calculate the area of a triangle in the coordinate 
plane.

AREA of A TRIAngLE
If a triangle in the coordinate plane has vertices 1a1, b12, 1a2, b22, and 1a3, b32, 
then its area is

!   
1
2  3

a1 b1 1

a2 b2 1

a3 b3 1

3    

y

x

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

where the sign is chosen to make the area positive.

You are asked to prove this formula in Exercise 74.
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ExAMpLE 8 ■  Area of a Triangle
 Find the area of the triangle shown in Figure 2.

y

x0 1

2

4

6

3

fIguRE 2

SoLuTIon  The vertices are 11, 22, 13, 62, and 11, 42. Using the formula in the preced-
ing box, we get

!   
1
2 3

1 4 1

3 6 1

1 2 1

3   
1
2 112 2

To make the area positive, we choose the negative sign in the formula. Thus the area 
of the triangle is

!   
1
2 112 2  6

now Try Exercise 57 ■

[A]
         [[-1 4 1]
          [3  6 1]

         
 [1  2 1]]

det([A])
                       -12

We can calculate the determinant by 
hand or by using a graphing calculator.

ConCEpTS
 1. True or false?  det1A2 is defined only for a square matrix A.

 2. True or false?  det1A2 is a number, not a matrix.

 3. True or false?  If det1A2  0, then A is not invertible.

 4. Fill in the blanks with appropriate numbers to calculate the  
determinant. Where there is “”, choose the appropriate sign 
1 or 2.

(a) 2
2 1

3 4
2  jj  jj   

(b)

 

3
1 0 2

3 2 1

0 3 4

3  j1jj  jj 2  j1jj  jj 2

 j1jj  jj 2   

SkILLS
5–14 ■ finding Determinants  Find the determinant of the 
matrix, if it exists.

 5. c 2 0

0 3
d   6. c 0 1

2 0
d

 7. c
3
2 1

1  
2
3

d   8. c 0.2 0.4

0.4 0.8
d

 9. c 4 5

0 1
d   10. c2 1

3 2
d

11. 32 5 4  12. c 3
0
d

13. c
1
2

1
8

1 1
2

d  14. c 2.2 1.4

0.5 1.0
d

15–20 ■ Minors and Cofactors  Evaluate the minor and cofactor 
using the matrix A.

A  C
1 0 1

2

3 5 2

0 0 4

S

15. M11, A11 16. M33, A33

 17. M12, A12 18. M13, A13

 19. M23, A23 20. M32, A32

11.4 ExERCISES
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21–28 ■ finding Determinants  Find the determinant of the 
matrix. Determine whether the matrix has an inverse, but don’t 
calculate the inverse.

21. C
2 1 0

0 2 4

0 1 3

S  22. C
1 2 5

2 3 2

3 5 3

S

23. C
30 0 20

0 10 20

40 0 10

S  24. C
2  

3
2

1
2

2 4 0
1
2 2 1

S

25. C
1 3 7

2 0 8

0 2 2

S  26. C
0 1 0

2 6 4

1 0 3

S

27. D

1 3 3 0

0 2 0 1

1 0 0 2

1 6 4 1

T  28. D

1 2 0 2

3 4 0 4

0 1 6 0

1 0 2 0

T

29–34 ■ finding Determinants  Use a graphing calculator to 
find the determinant of the matrix. Determine whether the matrix 
has an inverse, but don’t calculate the inverse.

29. C
1 2 1

2 2 1

1 2 2

S

 30. C
10 20 31

10 11 45

20 40 50

S

31. D

1 10 2 7

2 18 18 13

3 30 4 24

1 10 2 10

T

 32. D

1 3 2 5

3 9 11 5

2 6 0 31

5 15 10 39

T

33. D

4 3 2 10

8 6 24 1

20 15 3 27

12 9 6 1

T

 34. D

2 3 5 10

2 2 26 3

6 9 16 45

8 12 20 36

T

35–38 ■ Determinants using Row and Column operations   
Evaluate the determinant, using row or column operations when-
ever possible to simplify your work.

35. 4

0 0 4 6

2 1 1 3

2 1 2 3

3 0 1 7

4 36. 4

2 3 1 7

4 6 2 3

7 7 0 5

3 12 4 0

4

37. 5

1 2 3 4 5

0 2 4 6 8

0 0 3 6 9

0 0 0 4 8

0 0 0 0 5

5 38. 4

2 1 6 4

7 2 2 5

4 2 10 8

6 1 1 4

4

39. Calculating a Determinant in Different ways  Consider the 
matrix

B  C
4 1 0

2 1 1

4 0 3

S

(a) Evaluate det1B 2 by expanding by the second row.

(b) Evaluate det1B 2 by expanding by the third column.

(c) Do your results in parts (a) and (b) agree?

40. Determinant of a Special Matrix  Find the determinant of a 
10  10 matrix which has a 2 in each main diagonal entry 
and zeros everywhere else.

41–56 ■ Cramer’s Rule  Use Cramer’s Rule to solve the  
system.

41. e2x  y  9

x  2y  8
 42. e 6x  12y  33

 4x  17y  20

43. e x  6y  3

 3x  2y  1
 44. e

1
2 x  1

3 y  1
1
4 x  1

6 y   
3
2

45. e0.4x  1.2y  0.4

1.2x  1.6y  3.2
 46. e10x  17y  21

20x  31y  39

47. •
x  2y  2z  10

3x  2y  2z  11

x  2y  2z  10

 48. •
5x  3y  z  6

4y  6z  22

7x  10y  13

49. •
2x1  3x2  5x3  1

x1  x2  x3  2

2x2  x3  8

 50. •
2a  2b  2c  02

a  2b  2c  09

3a  5b  2c  22

51. •
 
1
3 x  1

5 y  1
2 z  7

10

 
2
3 x  2

5 y  3
2 z  11

10

x  4
5 y  z  9

5

 52. •
2x  y           5

5x  3z  19

4y  7z  17

53. •
2x  3y  5z  04

2x  7y  5z  10

4x  7y  5z  00

 54. •
2x  5y  5z  4

x  5y  0z  8

3x  5y  5z  0

55. µ
2x  y  2z  „  0

2x  y  2z  „  0

2x  y  2z  „  0

2x  y  2z  „  1

 56. µ
x  y  1

y  z  2

z  „  3

„  x  4

57–60 ■ Area of a Triangle  Sketch the triangle with the given 
vertices, and use a determinant to find its area.

57. 10, 0 2 , 16, 2 2 , 13, 8 2  58. 11, 0 2 , 13, 5 2 , 12, 2 2
59. 11, 3 2 , 12, 9 2 , 15, 6 2  60. 12, 5 2 , 17, 2 2 , 13, 4 2
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SkILLS plus
61–62 ■ Determinants of Special Matrices  Evaluate the 
determinants.

61. 5

a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 d 0

0 0 0 0 e

5 62. 5

a a a a a

0 a a a a

0 0 a a a

0 0 0 a a

0 0 0 0 a

5

63–66 ■ Determinant Equations  Solve for x.

63. 3
x 12 13

0 x  1 23

0 0 x  2

3  0 64. 3
x 1 1

1 1 x

x 1 x

3  0

65. 3
1 0 x

x2 1 0

x 0 1

3  0 66. 3
a b x  a

x x  b x

0 1 1

3  0

67.  using Determinants  Show that  

 3
1 x x2

1 y y2

1 z z2

3  1x  y 2 1y  z 2 1z  x 2

68. number of Solutions of a Linear System  Consider the 
system

c
x  2y  6z  5

3x  6y  5z  8

2x  6y  9z  7

(a) Verify that x  1, y  0, z  1 is a solution of the 
system.

(b) Find the determinant of the coefficient matrix.

(c) Without solving the system, determine whether there are 
any other solutions.

(d) Can Cramer’s Rule be used to solve this system? Why or 
why not?

69. Collinear points and Determinants
(a) If three points lie on a line, what is the area of the  

“triangle” that they determine? Use the answer to  
this question, together with the determinant formula  
for the area of a triangle, to explain why the points 
1a1, b12, 1a2, b22, and 1a3, b32 are collinear if and  
only if

3
a1 b1 1

a2 b2 1

a3 b3 1

3  0

(b) Use a determinant to check whether each set of points is 
collinear. Graph them to verify your answer.

 (i) 16, 4 2 , 12, 10 2 , 16, 13 2
 (ii) 15, 10 2 , 12, 6 2 , 115, 2 2

70. Determinant form for the Equation of a Line
(a) Use the result of Exercise 69(a) to show that the  equation 

of the line containing the points 1x1, y12 and 1x2, y22 is

3
x y 1

x1 y1 1

x2 y2 1

3  0

(b) Use the result of part (a) to find an equation for the line 
containing the points 120, 502 and 110, 252.

AppLICATIonS
71.  Buying fruit  A roadside fruit stand sells apples at 75¢ a 

pound, peaches at 90¢ a pound, and pears at 60¢ a pound. 
Muriel buys 18 lb of fruit at a total cost of $13.80. Her 
peaches and pears together cost $1.80 more than her apples.

(a) Set up a linear system for the number of pounds of 
apples, peaches, and pears that she bought.

(b) Solve the system using Cramer’s Rule.

72. The Arch of a Bridge  The opening of a railway bridge over a 
roadway is in the shape of a parabola. A surveyor measures 
the heights of three points on the bridge, as shown in the fig-
ure. He wishes to find an equation of the form

y  ax2  bx  c

  to model the shape of the arch.

(a) Use the surveyed points to set up a system of linear 
equations for the unknown coefficients a, b, and c.

(b) Solve the system using Cramer’s Rule.

x10

25 ft
40 ft33   ft

4015

y (ft)

3
4

0

73. A Triangular plot of Land  An outdoors club is purchasing 
land to set up a conservation area. The last remaining piece 
they need to buy is the triangular plot shown in the figure. 
Use the determinant formula for the area of a triangle to find 
the area of the plot.

2000

4000

6000

2000 4000 6000
E-W baseline (ft)

N
-S

 b
as

el
in

e 
(f

t)

0
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DISCuSS ■ DISCovER ■ pRovE ■ wRITE
74. DISCovER ■ pRovE: Determinant formula for the Area of a 

Triangle  The figure shows a triangle in the plane with verti-
ces 1a1, b12, 1a2, b22, and 1a3, b32.
(a) Find the coordinates of the vertices of the surrounding 

rectangle, and find its area.

(b) Find the area of the red triangle by subtracting the  
areas of the three blue triangles from the area of the 
rectangle.

(c) Use your answer to part (b) to show that the area ! of 
the red triangle is given by

!   
1
2 3

a1 b1 1

a2 b2 1

a3 b3 1

3

y

x

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

75.  DISCuSS: Matrices with Determinant Zero  Use the defini-
tion of determinant and the elementary row and column oper-
ations to explain why matrices of the following types have 
determinant 0.

(a) A matrix with a row or column consisting entirely  
of zeros

(b) A matrix with two rows the same or two columns  
the same

(c) A matrix in which one row is a multiple of another row,  
or one column is a multiple of another column

76.  DISCuSS ■ wRITE: Solving Linear Systems  Suppose you 
have to solve a linear system with five equations and five 
variables without the assistance of a calculator or computer. 
Which method would you prefer: Cramer’s Rule or Gaussian 
elimination? Write a short paragraph explaining the reasons 
for your answer.

Matrices (p. 768)
A matrix A of dimension m  n  is a rectangular array of num-
bers with m rows and n columns:

A  D

a11 a12
c a1n

a21 a22
c a2n

( ( f (
am1 am2 c amn

T

Augmented Matrix of a System (p. 769)
The augmented matrix of a system of linear equations is the  
matrix consisting of the coefficients and the constant terms.  
For example, for the two-variable system

 a11x  a12 x  b1

 a21x  a22 x  b2

the augmented matrix is

c a11 a12 b1

a21 a22 b2
d

Elementary Row operations (p. 769)
To solve a system of linear equations using the augmented matrix 
of the system, the following operations can be used to transform 
the rows of the matrix:

1. Add a nonzero multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.

Row-Echelon form of a Matrix (p. 771)
A matrix is in row-echelon form if its entries satisfy the follow-
ing conditions:

1. The first nonzero entry in each row (the leading entry) is the 
number 1.

2. The leading entry of each row is to the right of the leading 
entry in the row above it.

3. All rows consisting entirely of zeros are at the bottom of the  
matrix.

If the matrix also satisfies the following condition, it is in 
reduced row-echelon form:

4. If a column contains a leading entry, then every other entry in 
that column is a 0.

■ pRopERTIES AnD foRMuLAS

ChApTER 11 ■ REvIEw
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Inverse of a Matrix (p. 794)
If A is an n  n matrix, then the inverse of A is the n  n matrix  
A1 with the following properties:

 A1A  In    and     AA1  In

To find the inverse of a matrix, we use a procedure involving  
elementary row operations (explained on page 795). (Note that 
some square matrices do not have an inverse.)

Inverse of a 2  2 Matrix (p. 794)
For 2  2 matrices the following special rule provides a shortcut 
for finding the inverse:

A  B
a b

c d
R 1 A1 

1

ad  bc
  B    d b

c    a
R

writing a Linear System as a Matrix Equation (p. 797)
A system of n linear equations in n variables can be written as a 
single matrix equation

AX  B

where A is the n  n matrix of coefficients, X is the n  1 matrix 
of the variables, and B is the n  1 matrix of the constants. For 
example, the linear system of two equations in two variables

 a11x  a12 
x  b1

 a21x  a22 
x  b2

can be expressed as

Ba11 a12

a21 a22
R  Bx

 y
R  Bb1

b2
R

Solving Matrix Equations (p. 798)
If A is an invertible n  n matrix, X is an n  1 variable matrix, 
and B is an n  1 constant matrix, then the matrix equation

AX  B

has the unique solution

X  A1B

Determinant of a 2  2 Matrix (p. 803)
The determinant of the matrix

A  Ba b

c d
R

is the number

det1A 2  0  A 0  ad  bc

Minors and Cofactors (p. 803)
If A  0  aij 0  is an n  n matrix, then the minor Mij of the entry 
aij is the determinant of the matrix obtained by deleting the ith 
row and the jth column of A.

The cofactor Aij of the entry aij is

Aij  11 2 i jMij

(Thus, the minor and the cofactor of each entry either are the 
same or are negatives of each other.)

number of Solutions of a Linear System (p. 774)
If the augmented matrix of a system of linear equations has been 
reduced to row-echelon form using elementary row operations, 
then the system has:

 1. No solution if the row-echelon form contains a row that repre-
sents the equation 0  1. In this case the system is inconsistent.

 2. One solution if each variable in the row-echelon form is a  
leading variable.

 3. Infinitely many solutions if the system is not inconsistent but 
not every variable is a leading variable. In this case the system 
is dependent.

operations on Matrices (p. 782)
If A and B are m  n matrices and c is a scalar (real number), 
then:

1. The sum A  B is the m  n matrix that is obtained by add-
ing corresponding entries of A and B.

2. The difference A  B is the m  n matrix that is obtained by 
subtracting corresponding entries of A and B.

3. The scalar product cA is the m  n matrix that is obtained 
by multiplying each entry of A by c.

Multiplication of Matrices (p. 784)
If A is an m  n matrix and B is an n  k matrix (so the number 
of columns of A is the same as the number of rows of B), then the 
matrix product AB is the m  k matrix whose ij-entry is the 
inner product of the ith row of A and the jth column of B.

properties of Matrix operations (pp. 783, 785)
If A, B, and C are matrices of compatible dimensions then the  
following properties hold:

1. Commutativity of addition:

A  B  B  A

2. Associativity:

 1A  B 2  C  A  1B  C 2
 1AB 2C  A1BC 2

3. Distributivity:

 A1B  C 2  AB  AC

 1B  C 2A  BA  CA

(Note that matrix multiplication is not commutative.)

Identity Matrix (p. 793)
The identity matrix In is the n  n matrix whose main diagonal 
entries are all 1 and whose other entries are all 0:

In  D

1 0 c 0

0 1 c 0

( ( f (
0 0 c 1

T

If A is an m  n matrix, then

AIn  A  and  Im A  A
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Determinant of an n  n Matrix (p. 804)
To find the determinant of the n  n matrix

A  D

a11 a12
c a1n

a21 a22
c a2n

( ( f (
an1 an2 c ann

T

we choose a row or column to expand, and then we calculate the 
number that is obtained by multiplying each element of that row 
or column by its cofactor and then adding the resulting products. 
For example, if we choose to expand about the first row, we get

det1A 2  0  A 0  a11A11  a12 
A12  . . .  a1n 

A1n

Invertibility Criterion (p. 805)
A square matrix has an inverse if and only if its determinant is not 0.

Row and Column Transformations (p. 806)
If we add a nonzero multiple of one row to another row in a 
square matrix or a nonzero multiple of one column to another 
column, then the determinant of the matrix is unchanged.

Cramer’s Rule (pp. 807–809)
If a system of n linear equations in the n variables x1, x2, c, xn 
is equivalent to the matrix equation DX  B and if 0  D 0 ? 0, 
then the solutions of the system are

x1 
0  Dx1

 0
0  D 0   x2 

0  Dx2
 0

0  D 0   
. . .  xn 

0  Dxn
 0

0  D 0
where Dxi

 is the matrix that is obtained from D by replacing its 
ith column by the constant matrix B.

Area of a Triangle using Determinants (p. 810)
If a triangle in the coordinate plane has vertices 1a1, b1 2 , 1a2, b2 2 ,  
and 1a3, b3 2 , then the area of the triangle is given by

!   
1
2 3

a1 b1 1

a2 b2 1

a3 b3 1

3

where the sign is chosen to make the area positive.

 1. What does it mean to say that A is a matrix with dimension 
m  n? 

 2. What is the row-echelon form of a matrix? What is a leading 
entry?

 3. (a)  What is the augmented matrix of a system? What are 
leading variables?

(b) What are the elementary row operations on an aug-
mented matrix? 

(c) How do we solve a system using the augmented matrix? 

(d) Write the augmented matrix of the following system of 
linear equations. 

•
x  y  2z  3

x  2y  z  5

3x  y  5z  1

(e) Solve the system in part (d). 

 4. Suppose you have used Gaussian elimination to transform the 
augmented matrix of a linear system into row-echelon form. 
How can you tell whether the system has exactly one solu-
tion? no solution? infinitely many solutions?

 5. What is the reduced row echelon form of a matrix?

 6. (a)  How do Gaussian elimination and Gauss-Jordan elimina-
tion differ?

(b) Use Gauss-Jordan elimination to solve the linear system 
in part 3(d). 

 7. If A and B are matrices with the same dimension and k is a 
real number, how do you find A  B and kA?

 8. (a)  What must be true of the dimensions of A and B for the 
product AB to be defined? 

(b) If A has dimension 2  3 and if B has dimension 3  2, 
is the product AB defined? If so, what is the dimension 
of AB?

(c) Find the matrix product.

c 2 1

4 0
d c 3 4 1

5 1 2
d

 9. (a)  What is an identity matrix In? If A is an n  n matrix, 
what are the products AIn and In 

A?

(b) If A is an n  n matrix, what is its inverse matrix?

(c) Complete the formula for the inverse of a 2  2 matrix

A  c a b

c d
d

(d) Find the inverse of the following matrix. 

A  c 1 1

3 1
d

 10. Consider the following linear system.

e x  y  3

3x  y  1

(a) Express the system as a matrix equation AX  B.

(b) If a linear system is expressed as a matrix equation 
AX  B, how do we solve the system? Solve the system 
in part (a).

 11. (a)  Is it true that the determinant det A of a matrix A is 
defined only if A is a square matrix? 

(b) Find the determinant of the matrix A that you found in 
10(a).

(c) Use Cramer’s Rule to solve the system in 10. 

■ ConCEpT ChECk

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 11 ■ Review 817

■ ExERCISES

1–6 ■ Matrices  A matrix is given.
(a) State the dimension of the matrix.
(b) Is the matrix in row-echelon form?
(c) Is the matrix in reduced row-echelon form?
(d)  Write the system of equations for which the given  

matrix is the augmented matrix.

 1. c 1 2 5

0 1 3
d   2. c 1 0 6

0 1 0
d

 3. £
1 0 8 0

0 1 5 1

0 0 0 0

§   4. £
1 3 6 2

2 1 0 5

0 0 1 0

§

 5. £
0 1 3 4

1 1 0 7

1 2 1 2

§   6. ≥
1 8 6 4

0 1 3 5

0 0 2 7

1 1 1 0

¥

7–12 ■ gaussian Elimination  Use Gaussian elimination to find 
the complete solution of the system, or show that no solution exists.

 7. •
x  2y  2z  6

x  y  1

2x  y  3z  7

  8. •
x  y  z  2

x  y  3z  6

2y  3z  5

 9. •
x  2y  3z  2

2x  y  z  2

2x  7y  11z  9

 10. •
x  y  z  2

x  y  3z  6

3x  y  5z  10

 11. d

x  y  z  „  0

x  y  4z  „  1

x  2y  4„  7

2x  2y  3z  4„  3

 12. d

x  3z  1

y  4„  5

2y  z  „  0

2x  y  5z  4„  4

13–20 ■ gauss-Jordan Elimination  Use Gauss-Jordan elimina-
tion to find the complete solution of the system, or show that no 
solution exists.

13. •
x  y  3z  2

2x  y  z  2

3x  4z  4

 14. •
x  y  1

x  y  2z  3

x  3y  2z  1

15. e x  y  z  „  0

3x  y  z  „  2
 16. •

x  y  3

2x  y  6

x  2y  9

17. •
x  y  z  0

3x  2y  z  6

x  4y  3z  3

 18. •
x  2y  3z  2

2x  y  5z  1

4x  3y  z  6

19. d

x  y  z  „  2

x  y  z  „  0

2x  2„  2

2x  4y  4z  2„  6

 20. c
x  y  2z  3„  0

y  z  „  1

3x  2y  7z  10„  2

21–22 ■ Matrix Equality  Determine whether the matrices A and 
B are equal.

21. A  C
1 2 3

0 4 6

0 0 0

S  B  c 1 2 3

0 4 6
d

22. A  c!25 1

0 21 d  B  c 5 e0

log 1 1
2

d

23–34 ■ Matrix operations  Let

A  32 0 1 4   B  c 1 2 4

2 1 0
d

C  £
1
2 3

2 3
2

2 1

§   D  £
1 4

0 1

2 0

§

E  c 2 1

 
1
2 1

d   F  £
4 0 2

1 1 0

7 5 0

§   G  35 4

Carry out the indicated operation, or explain why it cannot be  
performed.

23. A  B 24. C  D

 25. 2C  3D 26. 5B  2C

 27. GA  28. AG

29. BC  30. CB

 31. BF  32. FC

 33. 1C  D 2E  34. F12C  D 2

35–44 ■ Matrix operations  The matrices A and B are defined 
as follows. 

A  C
3 0 3

2 1 2

1 6 0

S     B  C
1 4 1

1 1 0

2 0 2

S

Use a graphing calculator to carry out the indicated algebraic 
operation. State your answer using fractions.

 35. AB2 36. A2B 37. A1BA

38. BAB1 39. 0  AB 0  40. 0  BA 0

41. 0  A1 0  42. 
1

0  A 0  43. 0  A1BA 0

44. 0  A1 0 0  B 0 0  A 0

45–46 ■ Inverse Matrices  Verify that the matrices A and B are 
inverses of each other by calculating the products AB and BA.

45. A  c 2 5

2 6
d , B  c 3

5
2

1 1
d
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818 CHAPTER 11 ■ Matrices and Determinants

ChApTER 11
(a) Let

A  c 25 16 30

14 12 16
d  and  B  C

1.50

1.00

0.50

S

 Compare these matrices to the data given in the problem, 
and describe what their entries represent.

(b) Only one of the products AB or BA is defined. Calculate 
the product that is defined, and describe what its entries 
represent.

66. Distribution of Cash  An ATM at a bank in Qualicum Beach, 
British Columbia, dispenses $20 and $50 bills. Brodie with-
draws $600 from this machine and receives a total of 18 bills. 
Let x be the number of $20 bills and y the number of $50 
bills that he receives.

(a) Find a system of two linear equations in x and y that  
express the information given in the problem.

(b) Write your linear system as a matrix equation of the 
form AX  B.

(c) Find A1, and use it to solve your matrix equation in  
part (b). How many bills of each type did Brodie 
receive?

67–70 ■ using Cramer’s Rule to Solve a System  Solve the sys-
tem using Cramer’s Rule.

67. e 2x  7y  13

6x  16y  30
 68. e 12x  11y  140

7x  9y  20

69. •
2x  y  5z  0

x  7y  9

5x  4y  3z  9

 70. •
3x  4y  z  10

x  4z  20

2x  y  5z  30

71–72 ■ Area of a Triangle  Use the determinant formula for the 
area of a triangle to find the area of the triangle in the figure.

 71.   72.

0

y

x
1 1

 

y

x
0

2

3

73. Investments  Clarisse invests $60,000 in money-market 
accounts at three different banks. Bank A pays 2% interest 
per year, bank B pays 2.5%, and bank C pays 3%. She 
decides to invest twice as much in bank B as in the other two 
banks. After 1 year, Clarisse has earned $1575 in interest. 
How much did she invest in each bank?

74. number of fish Caught  A commercial fisherman fishes for 
haddock, sea bass, and red snapper. He is paid $1.25/lb for 
haddock, $0.75/lb for sea bass, and $2.00/lb for red snapper. 
Yesterday he caught 560 lb of fish worth $575. The haddock 
and red snapper together are worth $320. How many pounds 
of each fish did he catch?

46. A  £
2 1 3

2 2 1

0 1 1

§ , B  £
 

3
2 2 5

2

 1 1 2

1 1 1

§

47–52 ■ Matrix Equations  Solve the matrix equation for the 
unknown matrix X, or show that no solution exists, where

A  c 2 1

3 2
d  B  c 1 2

2 4
d  C  c 0 1 3

2 4 0
d

47. A  3X  B 48. 1
2 1X  2B 2  A

49. 21X  A 2  3B 50. 2X  C  5A

51. AX  C 52. AX  B

53–60 ■ Determinants and Inverse Matrices  Find the determi-
nant and, if possible, the inverse of the matrix.

53. c 1 4

2 9
d  54. c 2 2

1 3
d

55. c 4 12

2 6
d  56. £

2 4 0

1 1 2

0 3 2

§

57. £
3 0 1

2 3 0

4 2 1

§  58. £
1 2 3

2 4 5

2 5 6

§

59. ≥
1 0 0 1

0 2 0 2

0 0 3 3

0 0 0 4

¥  60. ≥
1 0 1 0

0 1 0 1

1 1 1 2

1 2 1 2

¥

61–64 ■ using Inverse Matrices to Solve a System  Express the 
system of linear equations as a matrix equation. Then solve the 
matrix equation by multiplying each side by the inverse of the 
coefficient matrix.

61. e 12x  5y  10

5x  2y  17
 62. e 6x  5y  1

8x  7y  1

63. •
2x  y  5z  1

3

x  2y  2z  1
4

x  3z  1
6

 64. •
2x  3z  5

x  y  6z  0

3x  y  z  5

65. Buying vegetables   Magda and Ivan grow tomatoes, onions, 
and zucchini in their backyard and sell them at a roadside 
stand on Saturdays and Sundays. They price tomatoes at 
$1.50 per pound, onions at $1.00 per pound, and zucchini at 
50 cents per pound. The following table shows the number of 
pounds of each type of produce that they sold during the last 
weekend in July.

Tomatoes Onions Zucchini

Saturday 25 16 30
Sunday 14 12 16
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819

1–4 ■ Determine whether the matrix is in reduced row-echelon form, row-echelon form, or  
neither.

 1. C
1 8 0   0

0 1 7 10

0 0 0   0

S   2. D

0 0 0 4

0 0 2 5

0 1 2 7

1 0 3 0

T

 3. c 1 0 0

0 0 1
d   4.  C

1 0 0 3

0 1 0 2

0 0 1 3
2

S

5–6 ■ Use Gaussian elimination to find the complete solution of the system, or show that  
no solution exists.

 5. •
x  y  2z  0

2x  4y  5z  5

2y  3z  5

  6. •
2x  3y  z  3

x  2y  2z  1

4x  y  5z  4

7–8 ■ Use Gauss-Jordan elimination to find the complete solution of the system.

 7. •
x  2y  3

      3y  z  2

x  2y  z  2

  8. •
x  3y  z  0

3x  4y  2z  1

x  2y  1

9–16 ■ Let

A  c 2 3

2 4
d   B  £

2 4

1 1

3 0

§   C  £
1 0 4

1 1 2

0 1 3

§

Carry out the indicated operation, or explain why it cannot be performed.

 9. A  B 10. AB 11. BA  3B 12. CBA

 13. A1 14. B1 15. det(B) 16. det(C)

 17. (a) Write a matrix equation equivalent to the following system.

e 4x  3y  10

3x  2y  30

(b) Find the inverse of the coefficient matrix, and use it to solve the system.

 18. Only one of the following matrices has an inverse. Find the determinant of each matrix, 
and use the determinants to identify the one that has an inverse. Then find the inverse.

A  £
1 4 1

0 2 0

1 0 1

§   B  £
1 4 0

0 2 0

3 0 1

§

 19. Solve using Cramer’s Rule:

•
2x  z  14

3x  y  5z  0

4x  2y  3z  2

 20. A shopper buys a mixture of nuts; the almonds cost $4.75 a pound, and the walnuts cost 
$3.45 a pound. Her total purchase weighs 3 lb and costs $11.91. Use Cramer’s Rule to 
determine how much of each nut she bought.

ChApTER 11 TEST
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820

Matrix algebra is the basic tool used in computer graphics to manipulate images on a  
computer screen. We will see how matrix multiplication can be used to “move” a point 
in the plane to a prescribed location. Combining such moves enables us to stretch, 
compress, rotate, and otherwise transform a figure, as we see in the images below.

Image Compressed Rotated Sheared

■ Moving points in the plane
Let’s represent the point 1x, y 2  in the plane by a 2  1 matrix:

1x, y 2     4    c x
y
d

For example, the point 13, 2 2  in the figure is represented by the matrix

P  c 3
2
d

        

1

10

y

x

(3, 2)

Multiplying by a 2  2 matrix moves the point in the plane. For example, if

T  c 1 0

0 1
d

then multiplying P by T, we get

TP  c 1 0

0 1
d  c 3

2
d  c 3

2
d
      

(3, _2)

T1

10

y

x

We see that the point 13, 2 2  has been moved to the point 13, 2 2 . In general, multiplica-
tion by this matrix T reflects points in the x-axis. If every point in an image is multiplied 
by this matrix, then the entire image will be flipped upside down about the x-axis. Matrix 
multiplication “transforms” a point to a new point in the plane. For this reason a matrix 
used in this way is called a transformation.

Table 1 gives some standard transformations and their effects on the gray square in 
the first quadrant.

Computer graphics foCuS on MoDELIng
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  Computer Graphics 821

TABLE 1

Transformation matrix Effect

T  c1 0

0 1
d
 

Reflection in x-axis

T  c c 0

0 1
d

 Expansion (or contraction) 
in the x-direction

T  c 1 c

0 1
d

Shear in x-direction

x

y

x

1

10

y

x

1

10

y

x

1

10

y

x

1

10

y

1

c

1

10

y

xc c+1

T

T

T

■ Moving Images in the plane
Simple line drawings such as the house in Figure 1 consist of a collection of vertex 
points and connecting line segments. The house in Figure 1 can be represented in a 
computer by the 2  11 data matrix

D  c 2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

The columns of D represent the vertex points of the image. To draw the house, we con-
nect successive points (columns) in D by line segments. Now we can transform the whole 
house by multiplying D by an appropriate transformation matrix. For example, if we

apply the shear transformation T  c 1 0.5

0 1 
d , we get the following matrix.

 TD  c 1 0.5

0 1
d  c 2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

  c 2 0 1.5 4.5 5.5 4 3 4 3 2 3

0 0 3 5 3 0 0 2 2 0 0
d

To draw the image represented by TD, we start with the point c 2
0
d , connect it by a line 

segment to the point c 0
0
d , then follow that by a line segment to c 1.5

3
d , and so on. The 

resulting tilted house is shown in Figure 2.

1

10

y

x

fIguRE 1

1

10

y

x

fIguRE 2
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822 Focus on Modeling

A convenient way to draw an image corresponding to a given data matrix is to use a 
graphing calculator. The TI-83 program in the margin converts a data matrix stored in 
[A] into the corresponding image, as shown in Figure 3. (To use this program for a data 
matrix with m columns, store the matrix in [A] and change the “10” in the For com-
mand to m  1.)

6

_1

_1 7

(a)

6

_1

_1 7

(b)House with data
matrix D

Tilted house with data
matrix TD

fIguRE 3

pRoBLEMS
 1. The gray square in Table 1 has the following vertices:

c 0
0
d , c 1

0
d , c 1

1
d , c 0

1
d

  Apply each of the three transformations given in Table 1 to these vertices and sketch the 
result to verify that each transformation has the indicated effect. Use c  2 in the expan-
sion matrix and c  1 in the shear matrix.

 2. Verify that multiplication by the given matrix has the indicated effect when applied to the 
gray square in the table. Use c  3 in the expansion matrix and c  1 in the shear matrix.

T1  c1 0

0 1
d      T2  c 1 0

0 c
d      T3  c 1 0

c 1
d

 Reflection in y-axis Expansion (or contraction) Shear in y-direction 
  in y-direction

 3. Let T  c 1 1.5

0 1
d .

(a) What effect does T have on the gray square in the Table 1?

(b) Find T1.

(c) What effect does T1 have on the gray square?

(d) What happens to the square if we first apply T, then T1?

 4. (a) Let T  c 3 0

0 1
d . What effect does T have on the gray square in Table 1?

(b) Let S  c 1 0

0 2
d . What effect does S have on the gray square in Table 1?

(c) Apply S to the vertices of the square, and then apply T to the result. What is the effect 
of the combined transformation?

(d) Find the product matrix W  TS.

(e) Apply the transformation W to the square. Compare to your final result in part (c). 
What do you notice?

PrOGrAM:IMAGe
:For(n,1,10)

:�Line([A](1,n),

�[A](2,n),[A](1,n+1),

�[A](2,n+1))

:end
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  Computer Graphics 823

 5. The figure shows three outline versions of the letter F. The second one is obtained from the 
first by shrinking horizontally by a factor of 0.75, and the third is obtained from the first by 
shearing horizontally by a factor of 0.25.

(a) Find a data matrix D for the first letter F.

(b) Find the transformation matrix T that transforms the first F into the second.  
Calculate TD, and verify that this is a data matrix for the second F.

(c) Find the transformation matrix S that transforms the first F into the third. Calculate SD, 
and verify that this is a data matrix for the third F.

1
10

8

4 6
1

10

8

82
1
0

8

31

y y y

x x x

 6. Here is a data matrix for a line drawing:

D  c 0 1 2 1 0 0

0 0 2 4 4 0
d

(a) Draw the image represented by D.

(b) Let T  c 1 1

0 1
d . Calculate the matrix product TD, and draw the image 

 represented by this product. What is the effect of the transformation T?

(c) Express T as a product of a shear matrix and a reflection matrix. (See  
Problem 2.)
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Conic sections are the curves that are formed when a plane cuts a cone, as 
shown in the figure. For example, if a cone is cut horizontally, the cross 
section is a circle. So a circle is a conic section. Other ways of cutting a 
cone produce ellipses, parabolas, and hyperbolas.

Ellipse Parabola HyperbolaCircle

Our goal in this chapter is to find equations whose graphs are conic 
sections. We will find such equations by analyzing the geometric 
properties of conic sections. These properties make conic sections useful 
for many real-world applications. For instance, a reflecting surface with 
parabolic cross sections concentrates light at a single point. This property 
of a parabola is used in the construction of solar power plants, like the one 
in California pictured above. In the Focus on Modeling at the end of the 
chapter we explore how these curves are used in architecture. 825

Conic Sections12
12.1 Parabolas
12.2 Ellipses
12.3 Hyperbolas
12.4 Shifted Conics
12.5 Rotation of Axes
12.6 Polar Equations of Conics

FoCuS on ModEling
 Conics in Architecture

Harald Sund/The Image Bank/Getty Images
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826 CHAPTER 12 ■ Conic Sections

12.1 PARAbolAS
■ geometric definition of a Parabola ■ Equations and graphs of Parabolas  
■ Applications

■ geometric definition of a Parabola
We saw in Section 3.1 that the graph of the equation

y  ax2  bx  c

is a U-shaped curve called a parabola that opens either upward or downward, depend-
ing on whether the number a is positive or negative.

In this section we study parabolas from a geometric, rather than an algebraic, point 
of view. We begin with the geometric definition of a parabola and show how this leads 
to the algebraic formula that we are already familiar with.

gEoMEtRiC dEFinition oF A PARAbolA

A parabola is the set of all points in the plane that are equidistant from a fixed 
point F (called the focus) and a fixed line l (called the directrix).

This definition is illustrated in Figure 1. The vertex V of the parabola lies halfway 
between the focus and the directrix, and the axis of symmetry is the line that runs 
through the focus perpendicular to the directrix.

Parabola

l

Axis

Focus

Vertex Directrix

F

V

FiguRE 1

In this section we restrict our attention to parabolas that are situated with the vertex  
at the origin and that have a vertical or horizontal axis of symmetry. (Parabolas in more 
general positions will be considered in Section 12.4.) If the focus of such a parabola is 
the point F10, p 2 , then the axis of symmetry must be vertical, and the directrix has the 
equation y  p. Figure 2 illustrates the case p  0.

deriving the Equation of a Parabola  If P1x, y 2  is any point on the parabola, then the 
distance from P to the focus F (using the Distance Formula) is

"x2  1 y  p 2 2
The distance from P to the directrix is

0  y  1p 2  0  0  y  p 0

y=_p

F(0, p)

P(x, y)

y

x

y

0 p

p

FiguRE 2
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SECTION 12.1 ■ Parabolas 827

By the definition of a parabola these two distances must be equal.

 "x2  1 y  p 2 2  0  y  p 0
 x2  1 y  p 2 2  0  y  p 0 2  1 y  p 2 2    Square both sides

 x2  y2  2py  p2  y2  2py  p2     Expand

 x2  2py  2py     Simplify

 x2  4py

If p  0, then the parabola opens upward; but if p  0, it opens downward. When x is 
replaced by x, the equation remains unchanged, so the graph is symmetric about the 
y-axis.

■ Equations and graphs of Parabolas
The following box summarizes what we have just proved about the equation and fea-
tures of a parabola with a vertical axis.

PARAbolA witH VERtiCAl AxiS

The graph of the equation

x2  4py

is a parabola with the following properties.

vertex V10, 0 2
focus F10, p 2
directrix y  p

The parabola opens upward if p  0 or downward if p  0.

y=_p

F(0, p)

x

y

0

≈=4py with p>0 ≈=4py with p<0

y=_p

F(0, p)

x

y

0

ExAMPlE 1 ■ Finding the Equation of a Parabola
Find an equation for the parabola with vertex V10, 0 2  and focus F10, 2 2 , and sketch 
its graph.

Solution  Since the focus is F10, 2 2 , we conclude that p  2 (so the directrix is 
y  2). Thus the equation of the parabola is

 x2  412 2y    x2  4py with p  2

 x2  8y

Since p  2  0, the parabola opens upward. See Figure 3.

now try Exercises 31 and 49 ■

y=_2

F(0, 2)

≈=8y

x

y

3_3

_3

3

0

FiguRE 3
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828 CHAPTER 12 ■ Conic Sections

ExAMPlE 2 ■  Finding the Focus and directrix of a Parabola  
from its Equation

Find the focus and directrix of the parabola y  x2, and sketch the graph.

Solution  To find the focus and directrix, we put the given equation in the standard 
form x2  y. Comparing this to the general equation x 

2  4py, we see that 
4p  1, so p   

1
4. Thus the focus is F A0,  

1
4B , and the directrix is y  1

4. The 
graph of the parabola, together with the focus and the directrix, is shown in Figure 
4(a). We can also draw the graph using a graphing calculator as shown in Figure 4(b).

FiguRE 4

x

y

2_2

1

_2
y=_≈

F!0, _   @1
4

1
4y=

(a) (b)

1

2_2

_4

now try Exercise 11 ■

Reflecting the graph in Figure 2 about the diagonal line y  x has the effect of inter-
changing the roles of x and y. This results in a parabola with horizontal axis. By the 
same method as before, we can prove the following properties.

PARAbolA witH HoRizontAl AxiS

The graph of the equation

y2  4px

is a parabola with the following properties.

vertex V10, 0 2
focus F1  p, 0 2
directrix x  p

The parabola opens to the right if p  0 or to the left if p  0.

x=_p

F( p, 0)
x

y

0

x=_p

F( p, 0)
x

y

0

¥=4px with p>0 ¥=4px with p<0

Looking Inside Your Head
Would you like to look inside your head? 
The idea isn’t particularly appealing to 
most of us, but doctors often need to do 
just that. If they can look without invasive 
surgery, all the better. An X-ray doesn’t 
really give a look inside, it simply gives a 
“graph” of the density of tissue the X-rays 
must pass through. So an X-ray is a 
“flattened” view in one direction. Suppose 
you get an X-ray view from many different 
directions. Can these “graphs” be used to 
 reconstruct the three-dimensional inside 
view? This is a purely mathematical prob-
lem and was solved by mathematicians a 
long time ago. However, reconstructing 
the inside view requires  thousands of 
tedious computations. Today, mathemat-
ics and high-speed computers make it 
possible to “look inside” by a process 
called computer-aided tomography (CAT 
scan). Mathematicians continue to search 
for better ways of using mathematics to 
reconstruct images. One of the  latest 
techniques, called magnetic resonance 
imaging (MRI), combines molecular biol-
ogy and mathematics for a clear “look 
inside.”

Mathematics in the Modern World

M
ira

/A
la

m
y
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SECTION 12.1 ■ Parabolas 829

ExAMPlE 3 ■ A Parabola with Horizontal Axis
A parabola has the equation 6x  y2  0.

(a) Find the focus and directrix of the parabola, and sketch the graph.

(b) Use a graphing calculator to draw the graph.

Solution

(a)  To find the focus and directrix, we put the given equation in the standard form 
y2  6x. Comparing this to the general equation y2  4px, we see that 
4p  6, so p   

3
2. Thus the focus is F A 

3
2, 0B , and the directrix is x  3

2. 
Since p  0, the parabola opens to the left. The graph of the parabola, together 
with the focus and the directrix, is shown in Figure 5(a).

(b) To draw the graph using a graphing calculator, we need to solve for y.

 6x  y2  0

 y2  6x   Subtract 6x

 y  !6x  Take square roots

  To obtain the graph of the parabola, we graph both functions

y  !6x  and  y  !6x

  as shown in Figure 5(b).

(a)

3
2x=

3
2_F !      , 0@ 1

1

6x+¥=0

x

y

0 2_6

_6

6

y = – –6x

(b)

y = –6x

FiguRE 5

now try Exercises 13 and 25 ■

graphing Calculator note  The equation y2  4px does not define y as a function of x  
(see page 200). So to use a graphing calculator to graph a parabola with a horizontal axis, 
we must first solve for y. This leads to two functions: y  !4px and y  !4px. We 
need to graph both functions to get the complete graph of the parabola. For example, in 
Figure 5(b) we had to graph both y  !6x and y  !6x to graph the parabola 
y2  6x.

We can use the coordinates of the focus to estimate the “width” of a parabola when 
sketching its graph. The line segment that runs through the focus perpendicular to the 
axis, with endpoints on the parabola, is called the latus rectum, and its length is the 
focal  diameter of the parabola. From Figure 6 we can see that the distance from an 
endpoint Q of the latus rectum to the directrix is 0  2p 0 . Thus the distance from Q to the 
focus must be 0  2p 0  as well (by the definition of a parabola), so the focal diameter is 
0  4p 0 . In the next example we use the focal diameter to determine the “width” of a 
parabola when graphing it.

Latus
rectum

x=_p

F( p, 0)

2p

pp
Q

x

y

0

FiguRE 6
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830 CHAPTER 12 ■ Conic Sections

ExAMPlE 4 ■ the Focal diameter of a Parabola
Find the focus, directrix, and focal diameter of the parabola y  1

2 x2, and sketch its 
graph.

Solution  We first put the equation in the form x2  4py.

 y  1
2 x2

 x2  2y     Multiply by 2, switch sides

From this equation we see that 4p  2, so the focal diameter is 2. Solving for p gives  
p  1

2, so the focus is A0, 12B , and the directrix is y   
1
2. Since the focal diameter is 

2, the latus rectum extends 1 unit to the left and 1 unit to the right of the focus. The 
graph is sketched in Figure 7.

now try Exercise 15 ■

In the next example we graph a family of parabolas to show how changing the dis-
tance between the focus and the vertex affects the “width” of a parabola.

ExAMPlE 5 ■ A Family of Parabolas
(a)  Find equations for the parabolas with vertex at the origin and foci 

F1A0, 18B, F2A0, 12B, F3A0, 1B , and F410, 4 2 .
(b) Draw the graphs of the parabolas in part (a). What do you conclude?

Solution

(a)  Since the foci are on the positive y-axis, the parabolas open upward and have 
equations of the form x2  4py. This leads to the following equations.

Focus p Equation x2 5 4py
Form of the equation  

for graphing calculator

F1A0, 18 B p  1
8 x2  1

2 y y  2x2

F2A0, 12 B p  1
2 x2  2y y  0.5x2

F310, 1 2 p  1 x2  4y y  0.25x2

F410, 4 2 p  4 x2  16y y  0.0625x2

(b)  The graphs are drawn in Figure 8. We see that the closer the focus is to the ver-
tex, the narrower the parabola.

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

y=2≈ y=0.5≈ y=0.25≈ y=0.0625≈
FiguRE 8 A family of parabolas

now try Exercise 59 ■

x

y

2

1 1

1
2y=_

1
2y= x™

1
2F !0,   @

1
2!_1,   @ 1

2!1,   @

FiguRE 7
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SECTION 12.1 ■ Parabolas 831

■ Applications
Parabolas have an important property that makes them useful as reflectors for lamps and 
telescopes. Light from a source placed at the focus of a surface with parabolic cross 
section will be reflected in such a way that it travels parallel to the axis of the parabola 
(see Figure 9). Thus a parabolic mirror reflects the light into a beam of parallel rays. 
Conversely, light approaching the reflector in rays parallel to its axis of symmetry is 
concentrated to the focus. This reflection property, which can be proved by using cal-
culus, is used in the construction of reflecting telescopes.

F

FiguRE 9 Parabolic reflector

ExAMPlE 6 ■ Finding the Focal Point of a Searchlight Reflector
 A searchlight has a parabolic reflector that forms a “bowl,” which is 12 in. wide from 
rim to rim and 8 in. deep, as shown in Figure 10. If the filament of the light bulb is 
located at the focus, how far from the vertex of the reflector is it?

8 in.

12 in.

FiguRE 10 A parabolic reflector

ArcHIMedes (287–212 b.c.) 
was the greatest mathemati-
cian of the ancient world. He 
was born in Syracuse, a Greek 
colony on Sicily, a generation 
after Euclid (see page 57).  
One of his many discoveries  
is the Law of the Lever (see 
page 73). He famously said, 
“Give me a place to stand and 
a fulcrum for my lever, and I 
can lift the earth.”

Renowned as a mechani-
cal  genius for his many engineering  inventions, he designed pulleys for lift-
ing heavy ships and the spiral screw for transporting water to higher levels. 
He is said to have used parabolic mirrors to concentrate the rays of the sun 
to set fire to Roman ships attacking Syracuse. 

King Hieron II of Syracuse once suspected a goldsmith of keeping 
part of the gold intended for the king’s crown and  replacing it with an 
equal amount of silver. The king asked Archimedes for advice. While in 
deep thought at a public bath, Archimedes discovered the solution to 
the king’s problem when he noticed that his body’s volume was the 
same as the volume of water it displaced from the tub. Using this 
insight, he was able to measure the volume of each crown and so deter-
mine which was the denser, all-gold crown. As the story is told, he ran 
home naked, shouting, “Eureka, eureka!” (“I have found it, I have found 
it!”) This incident attests to his enormous powers of  concentration.

In spite of his engineering prow ess, Archimedes was most proud of his 
mathematical discoveries. These include the formulas for the volume of a 
sphere, AV  4

3 pr 3B  and the surface area of a sphere AS  4pr 2B  and a 
careful analysis of the properties of parabolas and other conics.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



832 CHAPTER 12 ■ Conic Sections

Solution  We introduce a coordinate system and place a parabolic cross section of 
the reflector so that its vertex is at the origin and its axis is vertical (see Figure 11). 
Then the equation of this parabola has the form x2  4py. From Figure 11 we see that 
the point 16, 8 2  lies on the parabola. We use this to find p.

 62  4p18 2     The point (6, 8) satisfies the equation x2  4py

 36  32p

 p  9
8

The focus is F A0, 98B , so the distance between the vertex and the focus is 9
8  1 

1
8 in. 

Because the filament is positioned at the focus, it is located 1 
1
8 in. from the vertex of 

the reflector.

now try Exercise 61 ■

(6, 8)

8

12

1 1
8

x

y

0_6 6

FiguRE 11

ConCEPtS
 1. A parabola is the set of all points in the plane that are  

  equidistant from a fixed point called the   and a

  fixed line called the   of the parabola.

 2. The graph of the equation x2  4py is a parabola with focus 

  F1   ,  2 and directrix y     . So the graph of 

  x2  12y is a parabola with focus F1   ,  2 and directrix 

  y     .

 3. The graph of the equation y2  4px is a parabola with focus 

  F1   ,  2 and directrix x     . So the graph of 

  y2  12x is a parabola with focus F1   ,  2 and directrix 

  x     .

 4. Label the focus, directrix, and vertex on the graphs given for 
the parabolas in Exercises 2 and 3.

(a) x2  12y (b) y2  12x

y

x0 1

1

y

x0 1

3

SkillS
5–10 ■ graphs of Parabolas  Match the equation with the 
graphs labeled I–VI. Give  reasons for your answers.

 5. y2  2x  6. y2   
1
4 x

 7. x2  6y  8. 2x2  y

 9. y2  8x  0 10. 12y  x2  0

I II

x10
1

y

III IV

x
11

y

x10

1

y

x
2

2

y

V VI

x10

1

y

x1

1

y

0

11–24 ■ graphing Parabolas  An equation of a parabola is 
given. (a) Find the focus, directrix, and focal diameter of the 
parabola. (b) Sketch a graph of the parabola and its directrix.

11. x2  8y 12. x2  4y

13. y2  24x 14. y2  16x

15. y   
1
8 x2 16. x  2y2

17. x  2y2 18. y  1
4 x2

19. 5y  x2 20. 9x  y2

21. x2  12y  0 22. x  1
5 y2  0

 23. 5x  3y2  0 24. 8x2  12y  0

12.1 ExERCiSES
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SECTION 12.1 ■ Parabolas 833

25–30 ■ graphing Parabolas  Use a graphing device to graph 
the parabola.

25. x2  16y 26. x2  8y

27. y2   
1
3 x 28. 8y2  x

29. 4x  y2  0 30. x  2y2  0

31–48 ■ Finding the Equation of a Parabola  Find an equation 
for the parabola that has its vertex at the origin and satisfies the 
given condition(s).

31. Focus: F10, 6 2  32. Focus: F A0,  
1
4 B

33. Focus: F18, 0 2  34. Focus: F15, 0 2
35. Focus: FA0,  

3
4 B  36. Focus: FA 

1
12, 0B

37. Directrix: x  4 38. Directrix: y  1
2

39. Directrix: y  1
10 40. Directrix: x   

1
8

41. Directrix: x  1
20 42. Directrix: y  5

43. Focus on the positive x-axis, 2 units away from the directrix

44. Focus on the negative y-axis, 6 units away from the directrix

45. Opens downward with focus 10 units away from the vertex

46. Opens upward with focus 5 units away from the vertex

47. Directrix has y-intercept 6

48. Focal diameter 8 and focus on the negative y-axis

49–58 ■ Finding the Equation of a Parabola  Find an equation 
of the parabola whose graph is shown.

49.   50. 

0

y

x

2

Focus

 x=_2

0

y

x

Directrix

51.   52. 

x=4

0

y

x

Directrix

 

0

y

x
_3

Focus

53.   54.

3
2
3
2

0

y

x

Focus

 

Focus

y

0 x5

55.   56. 

(4, _2)

0

y

x

 Directrix

Square has
area 16

y

0 x

57. 

Focus Shaded
region
has area 8

0

y

x

58. 

Focus

y

0 x2

1
2Slope=

59–60 ■ Families of Parabolas  (a) Find equations for the family 
of parabolas with the given description. (b) Draw the graphs. 
What do you conclude?

 59.  The family of parabolas with vertex at the origin and with 
directrixes y  1

2, y  1, y  4, and y  8

60.  The family of parabolas with vertex at the origin, focus on 
the positive y-axis, and with focal  diameters 1, 2, 4, and 8

APPliCAtionS
 61. Parabolic Reflector  A lamp with a parabolic reflector is 

shown in the figure. The bulb is placed at the focus, and the 
 focal diameter is 12 cm.

(a) Find an equation of the parabola.

(b)  Find the diameter d1C, D 2  of the opening, 20 cm from 
the vertex.

A

B

6 cm

6 cm

20 cmO

D

C

F
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834 CHAPTER 12 ■ Conic Sections

 62. Satellite dish  A reflector for a satellite dish is parabolic in 
cross section, with the receiver at the  focus F. The reflector is 
1 ft deep and 20 ft wide from rim to rim (see the figure). 
How far is the receiver from the vertex of the parabolic 
reflector?

F

1 ft
20 ft

?

63. Suspension bridge  In a suspension bridge the shape of the 
suspension cables is parabolic. The bridge shown in the 
figure has towers that are 600 m apart, and the lowest point 
of the suspension cables is 150 m below the top of the tow-
ers. Find the equation of the parabolic part of the cables, 
placing the origin of the coordinate system at the vertex.   
[Note: This equation is used to find the length of cable 
needed in the construction of the bridge.]

600 m

150 m

 64. Reflecting telescope  The Hale telescope at the Mount Palo-
mar Observatory has a 200-in. mirror, as shown in the figure. 
The mirror is constructed in a parabolic shape that collects 
light from the stars and focuses it at the prime focus, that is, 
the focus of the parabola. The mirror is 3.79 in. deep at its 

center. Find the focal length of this parabolic mirror, that is, 
the distance from the vertex to the focus.

Prime
focus

200 in.

3.79 in.

diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
 65. diSCuSS ■ wRitE: Parabolas in the Real world  Several 

examples of the uses of parabolas are given in the text. Find 
other situations in real life in which parabolas occur. Consult 
a scientific encyclopedia in the reference section of your 
library, or search the Internet.

 66. diSCuSS: light Cone from a Flashlight  A flashlight is held to 
form a lighted area on the ground, as shown in the figure. Is it 
possible to angle the flashlight in such a way that the boundary 
of the lighted area is a parabola? Explain your answer.

12.2 ElliPSES
■ geometric definition of an Ellipse ■ Equations and graphs of Ellipses  
■ Eccentricity of an Ellipse

■ geometric definition of an Ellipse
An ellipse is an oval curve that looks like an elongated circle. More precisely, we have 
the following definition.

gEoMEtRiC dEFinition oF An ElliPSE

An ellipse is the set of all points in the plane the sum of whose distances from 
two fixed points F1 and F2 is a constant. (See Figure 1.) These two fixed points 
are the foci (plural of focus) of the ellipse.

F⁄

P

F¤

FiguRE 1
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SECTION 12.2 ■ Ellipses 835

The geometric definition suggests a simple method for drawing an ellipse. Place a 
sheet of paper on a drawing board, and insert thumbtacks at the two points that are to 
be the foci of the ellipse. Attach the ends of a string to the tacks, as shown in Figure 
2(a). With the point of a pencil, hold the string taut. Then carefully move the pencil 
around the foci, keeping the string taut at all times. The pencil will trace out an ellipse, 
because the sum of the distances from the point of the pencil to the foci will always 
equal the length of the string, which is constant.

If the string is only slightly longer than the distance between the foci, then the ellipse that 
is traced out will be elongated in shape, as in Figure 2(a), but if the foci are close together 
relative to the length of the string, the ellipse will be almost circular, as shown in Figure 2(b).

(b)(a)FiguRE 2

deriving the Equation of an Ellipse  To obtain the simplest equation for an ellipse, we 
place the foci on the x-axis at F11c, 0 2  and F21c, 0 2  so that the origin is halfway be-
tween them (see Figure 3).

For later convenience we let the sum of the distances from a point on the ellipse to 
the foci be 2a. Then if P1x, y 2  is any point on the ellipse, we have

d1P, F1 2  d1P, F2 2  2a

So from the Distance Formula we have

"1x  c 2 2  y2  "1x  c 2 2  y2  2a

or "1x  c 2 2  y2  2a  "1x  c 2 2  y2

Squaring each side and expanding, we get

x2  2cx  c2  y2  4a2  4a"1x  c 2 2  y2  1x2  2cx  c2  y2 2
which simplifies to

4a"1x  c 2 2  y2  4a2  4cx

Dividing each side by 4 and squaring again, we get

 a2 3 1x  c 2 2  y2 4  1a2  cx 2 2
 a2x2  2a2cx  a2c2  a2y2  a 

4  2a2cx  c2x2

 1a2  c2 2x2  a2y2  a21a2  c2 2
Since the sum of the distances from P to the foci must be larger than the distance be-
tween the foci, we have that 2a  2c, or a  c. Thus a2  c2  0, and we can divide 
each side of the preceding equation by a21a2  c2 2  to get

x2

a2 
y2

a2  c2  1

For convenience let b2  a2  c2 1with b  02. Since b2  a2, it follows that b  a. 
The preceding equation then becomes

x2

a2 
y2

b2  1  a  b

P(x, y)

F¤(c, 0)F⁄(_c, 0) 0

y

x

FiguRE 3
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836 CHAPTER 12 ■ Conic Sections

This is the equation of the ellipse. To graph it, we need to know the x- and y-intercepts. 
Setting y  0, we get

x2

a2  1

so x2  a2, or x  a. Thus the ellipse crosses the x-axis at 1a, 0 2  and 1a, 0 2 , as in 
Figure 4. These points are called the vertices of the ellipse, and the segment that joins 
them is called the major axis. Its length is 2a.

(0, b)

(a, 0)

(_a, 0)

(0, _b)

(_c, 0) (c, 0)

b

c

a

0

y

x
FiguRE 4  

x2

a2 
y2

b2  1 with a  b

Similarly, if we set x  0, we get y  b, so the ellipse crosses the y-axis at 10, b 2  
and 10, b 2 . The segment that joins these points is called the minor axis, and it has 
length 2b. Note that 2a  2b, so the major axis is longer than the minor axis. The origin 
is the  center of the ellipse.

If the foci of the ellipse are placed on the y-axis at 10, c 2  rather than on the x-axis, 
then the roles of x and y are reversed in the preceding discussion, and we get a vertical 
ellipse.

■ Equations and graphs of Ellipses
The following box summarizes what we have just proved about ellipses centered at the 
origin.

ElliPSE witH CEntER At tHE oRigin

The graph of each of the following equations is an ellipse with center at the ori-
gin and having the given properties.

equation 
x2

a2 
y2

b2  1 
x2

b2 
y2

a2  1

 a  b  0 a  b  0

vertices 1a, 0 2  10, a 2
major axis Horizontal, length 2a Vertical, length 2a

minor axis Vertical, length 2b Horizontal, length 2b

foci 1c, 0 2 , c2  a2  b2 10, c 2 , c2  a2  b2

graph 

b

a

_a

_b

F⁄(0, _c)

F¤(0, c)
y

x0

b

a_a

_b

F⁄(_c, 0) F¤(c, 0)

y

x0

If a  b in the equation of an ellipse, 
then 

x2

a2 
y2

a2  1

so x2  y2  a2. This shows that in 
this case the “ellipse” is a circle with 
radius a.

In the standard equation for an ellipse, 
a2 is the larger denominator, and b2 is 
the smaller. To find c2, we subtract: 
larger denominator minus smaller  
denominator.
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SECTION 12.2 ■ Ellipses 837

The orbits of the planets are ellipses, 
with the sun at one focus.

ExAMPlE 1 ■ Sketching an Ellipse
An ellipse has the equation

x2

9


y2

4
 1

(a)  Find the foci, the vertices, and the lengths of the major and minor axes, and 
sketch the graph.

(b) Draw the graph using a graphing calculator.

Solution

(a)  Since the denominator of x2 is larger, the ellipse has a horizontal major axis. This 
gives a2  9 and b2  4, so c2  a2  b2  9  4  5. Thus a  3, b  2, 
and c  !5.

foci 1!5, 0 2
vertices 13, 0 2
length of major axis 6

length of minor axis 4

  The graph is shown in Figure 5(a).

(b) To draw the graph using a graphing calculator, we need to solve for y.

 
x2

9


y2

4
 1

 
y2

4
 1 

x2

9
  Subtract 

x2

9

 y2  4 a 1 
x2

9
b   Multiply by 4

 y  2 Å1 
x2

9
  Take square roots

  To obtain the graph of the ellipse, we graph both functions

y  2"1  x2/9  and  y  2"1  x2/9

 as shown in Figure 5(b).

(b)(a)

3

40 x

y

F⁄!_ 5, 0@

F ! 5, 0@

4.7_4.7

_3.1

3.1

y = –2 1 – x2/9

y = 2 1 – x2/9

FiguRE 5 

x2

9


y2

4
 1

now try Exercises 9 and 35 ■

Note that the equation of an ellipse 
does not define y as a function of x  
(see page 200). That’s why we need to 
graph two functions to graph an ellipse.
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838 CHAPTER 12 ■ Conic Sections

ExAMPlE 2 ■ Finding the Foci of an Ellipse
Find the foci of the ellipse 16x2  9y2  144, and sketch its graph.

Solution  First we put the equation in standard form. Dividing by 144, we get

x2

9


y2

16
 1

Since 16  9, this is an ellipse with its foci on the y-axis and with a  4 and b  3.  
We have

 c2  a2  b2  16  9  7

 c  !7

Thus the foci are 10, !7 2 . The graph is shown in Figure 6(a).
We can also draw the graph using a graphing calculator as shown in Figure 6(b).

0 x

y

4

F¤!0, 7@5

F⁄!0, _ 7@

9_9

_5

5

5

y = 4 1 – x2/9

y = �4 1 – x2/9

(a) (b)

FiguRE 6 
16x2  9y2  144

now try Exercise 15 ■

ExAMPlE 3 ■ Finding the Equation of an Ellipse
The vertices of an ellipse are 14, 0 2 , and the foci are 12, 0 2 . Find its equation,  
and sketch the graph.

Solution  Since the vertices are 14, 0 2 , we have a  4, and the major axis is hori-
zontal. The foci are 12, 0 2 , so c  2. To write the equation, we need to find b. Since 
c2  a2  b2, we have

 22  42  b2

 b2  16  4  12

Thus the equation of the ellipse is

x2

16


y2

12
 1

The graph is shown in Figure 7.

now try Exercises 31 and 39 ■

■ Eccentricity of an Ellipse
We saw earlier in this section (Figure 2) that if 2a is only slightly greater than 2c, the 
ellipse is long and thin, whereas if 2a is much greater than 2c, the ellipse is almost cir-
cular. We measure the deviation of an ellipse from being circular by the ratio of a and c.

4

0 x

y

5

F⁄(_2, 0)

F¤(2, 0)

FiguRE 7  
x2

16


y2

12
 1
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SECTION 12.2 ■ Ellipses 839

dEFinition oF ECCEntRiCity

For the ellipse 
x2

a2 
y2

b2  1 or 
x2

b2 
y2

a2  1 1with a  b  0 2 , the 

eccentricity e is the number

e 
c
a

where c  "a2  b2. The eccentricity of every ellipse satisfies 0  e  1.

Thus if e is close to 1, then c is almost equal to a, and the ellipse is elongated in shape, 
but if e is close to 0, then the ellipse is close to a circle in shape. The eccentricity is a 
measure of how “stretched” the ellipse is.

In Figure 8 we show a number of ellipses to demonstrate the effect of varying the 
eccentricity e.

e=0.86e=0.1 e=0.5 e=0.68
FiguRE 8 Ellipses with various eccentricities

ExAMPlE 4 ■  Finding the Equation of an Ellipse from its  
Eccentricity and Foci

Find the equation of the ellipse with foci 10, 8 2  and eccentricity e  4
5, and sketch 

its graph.

Solution  We are given e  4
5 and c  8. Thus

 
4

5


8
a

  Eccentricity e 
c

a

 4a  40  Cross-multiply

 a  10

To find b, we use the fact that c2  a2  b2.

 82  102  b 
2

 b 
2  102  82  36

 b  6

Thus the equation of the ellipse is

x 
2

36


y 
2

100
 1

Because the foci are on the y-axis, the ellipse is oriented vertically. To sketch the 
ellipse, we find the intercepts. The x-intercepts are 6, and the y-intercepts are 10. 
The graph is sketched in Figure 9.

now try Exercise 53 ■

0 x

y

6

10

_6

_10

F⁄(0, 8)

F¤(0, _8)

FiguRE 9  
x2

36


y2

100
 1
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840 CHAPTER 12 ■ Conic Sections

Gravitational attraction causes the planets to move in elliptical orbits around the sun 
with the sun at one focus. This remarkable property was first observed by Johannes  
Kepler and was later deduced by Isaac Newton from his inverse square Law of Gravity, 
using calculus. The orbits of the planets have different eccentricities, but most are 
nearly circular (see the margin).

Ellipses, like parabolas, have an interesting reflection property that leads to a number 
of practical applications. If a light source is placed at one focus of a reflecting surface 
with elliptical cross sections, then all the light will be reflected off the surface to the 
other  focus, as shown in Figure 10. This principle, which works for sound waves as well 
as for light, is used in lithotripsy, a treatment for kidney stones. The patient is placed in 
a tub of water with elliptical cross sections in such a way that the kidney stone is ac-
curately located at one focus. High-intensity sound waves generated at the other focus 
are reflected to the stone and destroy it with minimal damage to surrounding tissue. The 
patient is spared the trauma of surgery and recovers within days instead of weeks.

The reflection property of ellipses is also used in the construction of whispering gal-
leries. Sound coming from one focus bounces off the walls and ceiling of an elliptical 
room and passes through the other focus. In these rooms even quiet whispers spoken at 
one focus can be heard clearly at the other. Famous whispering galleries include the 
National Statuary Hall of the U.S. Capitol in Washington, D.C. (see page 880), and the 
Mormon Tabernacle in Salt Lake City, Utah.

F⁄ F¤

FiguRE 10

Eccentricities of the orbits  
of the Planets
The orbits of the planets are ellipses with 
the sun at one focus. For most planets 
these ellipses have very small eccentric-
ity, so they are nearly circular. However, 
Mercury and Pluto, the innermost and 
outermost known planets, respectively, 
have visibly elliptical orbits.

Planet Eccentricity

Mercury  0.206
Venus  0.007
Earth  0.017
Mars  0.093
Jupiter  0.048
Saturn  0.056
Uranus  0.046
Neptune  0.010
Pluto*  0.248

*Pluto is a “dwarf planet.”

ConCEPtS
 1. An ellipse is the set of all points in the plane for which the 

    of the distances from two fixed points F1 and F2 is 

  constant. The points F1 and F2 are called the   of 
the ellipse.

 2. The graph of the equation 
x2

a2 
y2

b2  1 with a  b  0 is 

  an ellipse with vertices 1   ,  2 and 1   ,  2 and foci 

  1c, 0 2 , where c     . So the graph of 
x2

52 
y2

42  1 

  is an ellipse with vertices 1   ,  2 and 1   ,  2 and foci  

1   ,  2 and 1   ,  2.
 3. The graph of the equation 

x2

b2 
y2

a2  1 with a  b  0 

  is an ellipse with vertices 1   ,  2 and 1   ,  2 and foci 

  10, c 2 , where c     . So the graph of 
x2

42 
y2

52  1 

  is an  ellipse with vertices 1 ,  2 and 1 ,  2 and foci  

1   ,  2 and 1   ,  2.

 4. Label the vertices and foci on the graphs given for the 
ellipses in Exercises 2 and 3.

(a) 
x2

52 
y2

42  1  (b) 
x2

42 
y2

52  1

y

x0 1

1

y

x0 1
1

SkillS
5–8 ■ graphs of Ellipses  Match the equation with the graphs 
labeled I–IV. Give reasons for your answers.

 5. 
x2

16


y2

4
 1  6. x2 

y2

9
 1

12.2 ExERCiSES
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SECTION 12.2 ■ Ellipses 841

 7. 4x2  y2  4  8. 16x2  25y2  400

I II

III IV

y

x0
1

1

y

x0

1

1

x0

1

2

yy

x0
1

1

9–28 ■ graphing Ellipses  An equation of an ellipse is  
given. (a) Find the vertices, foci, and eccentricity of the ellipse. 
(b) Determine the lengths of the major and minor axes. (c) Sketch 
a graph of the ellipse.

 9. 
x2

25


y2

9
 1 10. 

x2

16


y2

25
 1

11. 
x2

36


y2

81
 1 12. 

x2

4
 y2  1

13. 
x2

49


y2

25
 1 14. 

x2

9


y2

64
 1

15. 9x2  4y2  36 16. 4x2  25y2  100

 17. x2  4y2  16 18. 4x2  y2  16

19. 16x2  25y2  1600 20. 2x2  49y2  98

21. 3x2  y2  9 22. x2  3y2  9

23. 2x2  y2  4 24. 3x2  4y2  12

25. x2  4y2  1 26. 9x2  4y2  1

 27. x2  4  2y2
 28. y2  1  2x2

29–34 ■ Finding the Equation of an Ellipse  Find an equation 
for the ellipse whose graph is shown.

 29.   30. y

x0

4

5

  

0

5
y

x2

31.      32. 
F(0, 2)

0

y

x2

 

0

4 F(0, 3)
y

x

 33.      34. 

0

y

x16

(8, 6)

 

(_1, 2)

y

x20

35–38 ■ graphing Ellipses  Use a graphing device to graph the 
ellipse.

 35. 
x2

25


y2

20
 1 36. x2 

y2

12
 1

 37. 6x2  y2  36 38. x2  2y2  8

39–56 ■ Finding the Equation of an Ellipse  Find an equation 
for the ellipse that satisfies the given conditions.

 39. Foci: 14, 0 2 , vertices: 15, 0 2
 40. Foci: 10, 3 2 , vertices: 10, 5 2
41. Foci: F11, 0 2 , vertices: 12, 0 2
42. Foci: F10, 2 2 , vertices: 10, 3 2
43. Foci: F10, !10 2 , vertices: 10, 7 2
44. Foci: F1!15, 0 2 , vertices: 16, 0 2
 45. Length of major axis: 4, length of minor axis: 2, foci on  

y-axis

46. Length of major axis: 6, length of minor axis: 4, foci on  
x-axis

 47. Foci: 10, 2 2 , length of minor axis: 6

 48. Foci: 15, 0 2 , length of major axis: 12

 49. Endpoints of major axis: 110, 0 2 , distance between  
foci: 6

 50. Endpoints of minor axis: 10, 3 2 , distance between foci: 8

 51. Length of major axis: 10, foci on x-axis, ellipse passes 
through the point 1!5, 2 2

52. Length of minor axis: 10, foci on y-axis, ellipse passes 
through the point 1!5, !40 2

53. Eccentricity: 1
3 , foci: 10, 2 2

54. Eccentricity: 0.75, foci: 11.5, 0 2
55. Eccentricity: !3/2, foci on y-axis, length of major axis: 4

56. Eccentricity:!5/3, foci on x-axis, length of major axis: 12
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842 CHAPTER 12 ■ Conic Sections

SkillS Plus
57–60 ■ intersecting Ellipses  Find the intersection points of the 
pair of ellipses. Sketch the graphs of each pair of equations on the 
same coordinate axes, and label the points of intersection.

 57. e4x2  y2  4

4x2  9y2  36
 58. µ

x2

16


y2

9
 1

x2

9


y2

16
 1

 59. c
100x2  25y2  100

x2 
y2

9
 1

 60. b
25x2  144y2  3600

144x2  25y2  3600

 61. Ancillary Circle  The ancillary circle of an ellipse is the cir-
cle with radius equal to half the length of the minor axis and 
center the same as the ellipse (see the figure). The ancillary 
circle is thus the largest circle that can fit within an ellipse.

(a)  Find an equation for the ancillary circle of the ellipse  
x2  4y2  16.

(b)  For the ellipse and ancillary circle of part (a), show that 
if 1s, t 2  is a point on the ancillary circle, then 12s, t 2  is a 
point on the ellipse.

Ancillary
circle

Ellipse

 62. Family of Ellipses  
(a) Use a graphing device to sketch the top half (the portion 

in the first and second quadrants) of the family of 
ellipses x2  ky2  100 for k  4, 10, 25, and 50.

(b)  What do the members of this family of ellipses have in 
common? How do they differ?

 63. Family of Ellipses  If k  0, the following equation repre-
sents an ellipse:

x2

k


y2

4  k
 1

  Show that all the ellipses represented by this equation have 
the same foci, no matter what the value of k.

 64. How wide is an Ellipse at a Focus?  A latus rectum for an 
ellipse is a line segment perpendicular to the major axis at a 
focus, with endpoints on the ellipse, as shown in the figure. 
Show that the length of a latus rectum is 2b2/a for the ellipse

x2

a2 
y2

b2  1  a  b

b

a

_b

_a

Foci

Latus rectum

y

x

APPliCAtionS
65. Perihelion and Aphelion  The planets move around the sun 

in elliptical orbits with the sun at one focus. The point in  
the orbit at which the planet is closest to the sun is called 
perihelion, and the point at which it is farthest is called  
aphelion. These points are the vertices of the orbit. The 
earth’s distance from the sun is 147,000,000 km at perihelion 
and 153,000,000 km at aphelion. Find an equation for the 
earth’s orbit. (Place the origin at the center of the orbit with 
the sun on the x-axis.)

Aphelion Perihelion

 66. the orbit of Pluto  With an eccentricity of 0.25, Pluto’s orbit 
is the most eccentric in the solar system. The length of the 
minor axis of its orbit is approximately 10,000,000,000 km. 
Find the distance between Pluto and the sun at perihelion and 
at aphelion. (See Exercise 65.)

 67. lunar orbit  For an object in an elliptical orbit around the 
moon, the points in the orbit that are closest to and farthest from 
the center of the moon are called perilune and apolune, respec-
tively. These are the vertices of the orbit. The center of the 
moon is at one focus of the orbit. The Apollo 11 spacecraft was 
placed in a lunar orbit with perilune at 68 mi and apolune at  
195 mi above the surface of the moon. Assuming that the moon 
is a sphere of radius 1075 mi, find an equation for the orbit of 
Apollo 11. (Place the coordinate axes so that the origin is at the 
center of the orbit and the foci are located on the x-axis.)

68 mi

195 mi
PeriluneApolune

 68. Plywood Ellipse  A carpenter wishes to construct an elliptical 
table top from a 4 ft by 8 ft sheet of plywood. He will trace out 
the ellipse using the 
“thumbtack and string” 
method illustrated in Fig-
ures 2 and 3. What length of 
string should he use, and 
how far apart should the 
tacks be located, if the 
ellipse is to be the largest 
possible that can be cut out 
of the plywood sheet?

12.3 HyPERbolAS
■ geometric definition of a Hyperbola ■ Equations and graphs of Hyperbolas

■ geometric definition of a Hyperbola
Although ellipses and hyperbolas have completely different shapes, their definitions 
and equations are similar. Instead of using the sum of distances from two fixed foci, as 
in the case of an ellipse, we use the difference to define a hyperbola.

gEoMEtRiC dEFinition oF A HyPERbolA

A hyperbola is the set of all points in the plane, the difference of whose dis-
tances from two fixed points F1 and F2 is a constant. (See Figure 1.) These two 
fixed points are the foci of the hyperbola.

deriving the Equation of a Hyperbola  As in the case of the ellipse, we get the simplest 
equation for the hyperbola by placing the foci on the x-axis at 1c, 0 2 , as shown in 
Figure 1. By definition, if P1x, y 2  lies on the hyperbola, then either d1P, F1 2  d1P, F2 2  
or d1P, F2 2  d1P, F1 2  must equal some positive constant, which we call 2a. Thus we 
have

 d1P, F1 2  d1P, F2 2  2a

or  "1x  c 2 2  y2  "1x  c 2 2  y2  2a
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SECTION 12.3 ■ Hyperbolas 843

 69. Sunbur st window  A “sunburst” window above a doorway is 
constructed in the shape of the top half of an ellipse, as 
shown in the figure. The window is 20 in. tall at its highest 
point and 80 in. wide at the bottom. Find the height of the 
window 25 in. from the center of the base.

80 in.

25 in.

20 in.
h

diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
 70. diSCuSS: drawing an Ellipse on a blackboard  Try draw-

ing an  ellipse as accurately as possible on a blackboard. 
How would a piece of string and two friends help this 
process?

 71. diSCuSS: light Cone from a Flashlight  A flashlight  
shines on a wall, as shown in the figure. What is the  

shape of the boundary of the lighted area? Explain your 
answer.

 72. diSCuSS: is it an Ellipse?  A piece of paper is wrapped around 
a cylindrical bottle, and then a compass is used to draw a circle 
on the paper, as 
shown in the figure. 
When the paper is 
laid flat, is the shape 
drawn on the paper 
an ellipse? (You 
don’t need to prove 
your answer, but you 
might want to do the 
experiment and see 
what you get.)

12.3 HyPERbolAS
■ geometric definition of a Hyperbola ■ Equations and graphs of Hyperbolas

■ geometric definition of a Hyperbola
Although ellipses and hyperbolas have completely different shapes, their definitions 
and equations are similar. Instead of using the sum of distances from two fixed foci, as 
in the case of an ellipse, we use the difference to define a hyperbola.

gEoMEtRiC dEFinition oF A HyPERbolA

A hyperbola is the set of all points in the plane, the difference of whose dis-
tances from two fixed points F1 and F2 is a constant. (See Figure 1.) These two 
fixed points are the foci of the hyperbola.

deriving the Equation of a Hyperbola  As in the case of the ellipse, we get the simplest 
equation for the hyperbola by placing the foci on the x-axis at 1c, 0 2 , as shown in 
Figure 1. By definition, if P1x, y 2  lies on the hyperbola, then either d1P, F1 2  d1P, F2 2  
or d1P, F2 2  d1P, F1 2  must equal some positive constant, which we call 2a. Thus we 
have

 d1P, F1 2  d1P, F2 2  2a

or  "1x  c 2 2  y2  "1x  c 2 2  y2  2a

x

y

0 F¤(c, 0)

P(x, y)

F⁄(_c, 0)

FiguRE 1 P is on the hyperbola if 
0  d1P, F1 2  d1P, F2 2  0  2a.
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844 CHAPTER 12 ■ Conic Sections

Proceeding as we did in the case of the ellipse (Section 12.2), we simplify this to

1c2  a2 2x2  a2y2  a21c2  a2 2
From triangle PF1F2 in Figure 1 we see that 0  d1P, F1 2  d1P, F2 2  0  2c. It follows 
that 2a  2c, or a  c. Thus c2  a2  0, so we can set b2  c2  a2. We then sim-
plify the last displayed equation to get

x2

a2 
y2

b2  1

This is the equation of the hyperbola. If we replace x by x or y by y in this equation, 
it remains unchanged, so the hyperbola is symmetric about both the x- and y-axes and 
about the origin. The x-intercepts are a, and the points 1a, 0 2  and 1a, 0 2  are the 
vertices of the hyperbola. There is no y-intercept, because setting x  0 in the equation 
of the hyperbola leads to y2  b2, which has no real solution. Furthermore, the equa-
tion of the hyperbola implies that

x2

a2 
y2

b2  1  1

so x2/a2  1; thus x2  a2, and hence x  a or x  a. This means that the hyperbola 
consists of two parts, called its branches. The segment joining the two vertices on the 
separate branches is the transverse axis of the hyperbola, and the origin is called its center.

If we place the foci of the hyperbola on the y-axis rather than on the x-axis, this has 
the effect of reversing the roles of x and y in the derivation of the equation of the hyper-
bola. This leads to a hyperbola with a vertical transverse axis.

■ Equations and graphs of Hyperbolas
The main properties of hyperbolas are listed in the following box.

HyPERbolA witH CEntER At tHE oRigin

The graph of each of the following equations is a hyperbola with center at the origin and having the given properties.

equation 
x2

a2 
y2

b2  1  a  0, b  0 
y2

a2 
x2

b2  1  a  0, b  0

vertices 1a, 0 2  10, a 2
transverse axis Horizontal, length 2a Vertical, length 2a

asymptotes y   

b
a

 x y   

a

b
 x

foci 1c, 0 2 , c2  a2  b2 10, c 2 , c2  a2  b2

graph 

x

y
y=_    xb

a y=   xb
a

F¤(c, 0)

b

F⁄(_c, 0)

_b

a_a x

y

b

F⁄(0, c)

_b

F¤(0, _c)

a

_a

y=_    xa
b y=   xa

b

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 12.3 ■ Hyperbolas 845

The asymptotes mentioned in this box are lines that the hyperbola approaches for 
large values of x and y. To find the asymptotes in the first case in the box, we solve the 
equation for y to get

 y   

b
a

 "x2  a2

   

b
a

 x Å1 
a2

x2

As x gets large, a2/x2 gets closer to zero. In other words, as x → q, we have a2/x2 → 0. 
So for large x the value of y can be approximated as y  1b/a 2x. This shows that 
these lines are asymptotes of the hyperbola.

Asymptotes are an essential aid for graphing a hyperbola; they help us to determine 
its shape. A convenient way to find the asymptotes, for a hyperbola with horizontal 
transverse axis, is to first plot the points 1a, 0 2 , 1a, 0 2 , 10, b 2 , and 10, b 2 . Then 
sketch horizontal and vertical segments through these points to construct a rectangle, as 
shown in Figure 2(a). We call this rectangle the central box of the hyperbola. The 
slopes of the diagonals of the central box are b/a, so by extending them, we obtain 
the asymptotes y  1b/a 2x, as sketched in Figure 2(b). Finally, we plot the vertices 
and use the asymptotes as a guide in sketching the hyperbola shown in Figure 2(c). (A 
similar procedure applies to graphing a hyperbola that has a vertical transverse axis.)

(a) Central box (b) Asymptotes (c) Hyperbola

x

y

b

_b

a_a x

y

b

_b

a_a0 x

y

b

_b

a_a

FiguRE 2 Steps in graphing the hyperbola 
x2

a2 
y2

b2  1

How to SkEtCH A HyPERbolA

1. Sketch the Central box.  This is the rectangle centered at the origin, with sides 
parallel to the axes, that crosses one axis at a and the other at b.

2. Sketch the Asymptotes.  These are the lines obtained by extending the diag-
onals of the central box.

3. Plot the Vertices.  These are the two x-intercepts or the two y-intercepts.

4. Sketch the Hyperbola.  Start at a vertex, and sketch a branch of the hyperbola, 
approaching the asymptotes. Sketch the other branch in the same way.

ExAMPlE 1 ■ A Hyperbola with Horizontal transverse Axis
A hyperbola has the equation

9x 
2  16y 

2  144

(a)  Find the vertices, foci, length of the transverse axis, and asymptotes, and sketch 
the graph.

(b) Draw the graph using a graphing calculator.

Asymptotes of rational functions are 
discussed in Section 3.6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



846 CHAPTER 12 ■ Conic Sections

Solution

(a) First we divide both sides of the equation by 144 to put it into standard form:

x2

16


y2

9
 1

   Because the x2-term is positive, the hyperbola has a horizontal transverse axis;  
its vertices and foci are on the x-axis. Since a2  16 and b2  9, we get a  4,  
b  3, and c  !16  9  5. Thus we have

vertices 14, 02
foci 15, 02
asymptotes y   

3
4 x

   The length of the transverse axis is 2a  8. After sketching the central box  
and asymptotes, we complete the sketch of the  hyperbola as in Figure 3(a).

(b) To draw the graph using a graphing calculator, we need to solve for y.

 9x2  16y2  144

 16y2  9x2  144   Subtract 9x2

 y2  9 a x2

16
 1 b   Divide by 16 and factor 9

 y  3 Å
x2

16
 1  Take square roots

  To obtain the graph of the hyperbola, we graph the functions

y  3"1x2/16 2  1  and  y  3"1x2/16 2  1

  as shown in Figure 3(b).

x

yy = – 3
4

(5, 0)

3

(_5, 0)

_3

4_4

(a) (b)

10_10

x y = 3
4

x

_

6

_6
y = –3 (x2/16) – 1

(x2/16) – 1y = 3

FiguRE 3 
9x2  16y2  144

now try Exercises 9 and 33 ■

ExAMPlE 2 ■ A Hyperbola with Vertical transverse Axis
Find the vertices, foci, length of the transverse axis, and asymptotes of the hyperbola, 
and sketch its graph.

x2  9y2  9  0

Note that the equation of a hyperbola 
does not define y as a function of x (see 
page 200). That’s why we need to graph 
two functions to graph a hyperbola.
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SECTION 12.3 ■ Hyperbolas 847

Solution  We begin by writing the equation in the standard form for a hyperbola:

 x2  9y2  9

 y2 
x2

9
 1     Divide by 9

Because the y2-term is positive, the hyperbola has a vertical transverse axis; its foci  
and vertices are on the y-axis. Since a2  1 and b2  9, we get a  1, b  3, and 
c  !1  9  !10. Thus we have

vertices 10, 12
foci 10, !10 2
asymptotes y   

1
3 x

The length of the transverse axis is 2a  2. We sketch the central box and asymptotes, 
then complete the graph, as shown in Figure 4(a). We can also draw the graph using a 
graphing calculator, as shown in Figure 4(b).

(a) (b)

5_5
x

y

3

1

F⁄Ó0,    10Ô

F¤Ó0, _   10Ô

2

_2
y = – 1 + x2/9

y = 1 + x2/9

FiguRE 4 
x2  9y2  9  0

now try Exercises 21 and 35 ■

ExAMPlE 3 ■  Finding the Equation of a Hyperbola from its  
Vertices and Foci

Find the equation of the hyperbola with vertices 13, 0 2  and foci 14, 0 2 . Sketch the 
graph.

Solution  Since the vertices are on the x-axis, the hyperbola has a horizontal trans-
verse axis. Its equation is of the form

x2

32 
y2

b2  1

We have a  3 and c  4. To find b, we use the relation a2  b2  c2.

 32  b2  42

 b2  42  32  7

 b  !7

Thus the equation of the hyperbola is

x2

9


y2

7
 1

The graph is shown in Figure 5.

now try Exercises 27 and 37 ■

Paths of Comets
The path of a comet is an ellipse, a parab-
ola, or a hyperbola with the sun at a 
focus. This fact can be proved by using 
calculus and Newton’s Laws of Motion.* If 
the path is a parabola or a hyperbola, the 
comet will never return. If the path is an 
ellipse, it can be determined precisely 
when and where the comet can be seen 
again. Halley’s comet has an elliptical 
path and returns every 75 years; it was 
last seen in 1987. The brightest comet of 
the 20th century was comet Hale-Bopp, 
seen in 1997. Its orbit is a very eccentric 
ellipse; it is expected to return to the 
inner solar system around the year 4377.

*James Stewart, Calculus, 7th ed. (Belmont, CA: 
Brooks/Cole, 2012), pages 892 and 896.

0 x

y

3

_3

_3 3

7

_ 7

FiguRE 5  
x2

9


y2

7
 1
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848 CHAPTER 12 ■ Conic Sections

ExAMPlE 4 ■   Finding the Equation of a Hyperbola from its  
Vertices and Asymptotes

Find the equation and the foci of the hyperbola with vertices 10, 2 2  and asymptotes  
y  2x. Sketch the graph.

Solution  Since the vertices are on the y-axis, the hyperbola has a vertical transverse 
axis with a  2. From the asymptote equation we see that a/b  2. Since a  2, we 
get 2/b  2, so b  1. Thus the equation of the hyperbola is

y2

4
 x2  1

To find the foci, we calculate c2  a2  b2  2 
2  12  5, so c  !5. Thus the 

foci are 10, !5 2 . The graph is shown in Figure 6.

now try Exercises 31 and 41 ■

Like parabolas and ellipses, hyperbolas have an interesting reflection property. 
Light aimed at one focus of a hyperbolic mirror is reflected toward the other focus, as 
shown in Figure 7. This property is used in the construction of Cassegrain-type tele-
scopes. A hyperbolic mirror is placed in the telescope tube so that light reflected 
from the primary parabolic reflector is aimed at one focus of the hyperbolic mirror. 
The light is then refocused at a more accessible point below the primary reflector 
(Figure 8).

F⁄F¤

FiguRE 7 Reflection property of  
hyperbolas

F⁄

F¤

Hyperbolic
reflector

Parabolic reflector

FiguRE 8 Cassegrain-type telescope

The LORAN (LOng RAnge Navigation) system was used until the early 1990s; 
it has now been superseded by the GPS system (see page 742). In the LORAN sys-
tem,  hyper bolas are used onboard a ship to determine its location. In Figure 9 radio 
stations at A and B transmit signals simultaneously for reception by the ship at P. 
The onboard computer converts the time difference in reception of these signals into  
a distance difference d1P, A 2  d1P, B 2 . From the definition of a hyperbola this  
locates the ship on one branch of a hyperbola with foci at A and B (sketched in  
black in the figure). The same procedure is carried out with two other radio stations 
at C and D, and this locates the ship on a second hyperbola (shown in red in the 
figure). (In practice, only three stations are needed because one station can be used 
as a focus for both hyperbolas.) The coordinates of the intersection point of these 
two hyperbolas, which can be calculated precisely by the computer, give the loca-
tion of P.

x

y

1

F⁄

F¤

FiguRE 6  
y2

4
 x2  1

B

A
D

C

P

FiguRE 9 LORAN system for 
finding the location of a ship
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SECTION 12.3 ■ Hyperbolas 849

ConCEPtS
 1. A hyperbola is the set of all points in the plane for which the 

    of the distances from two fixed points F1 and F2 is 

  constant. The points F1 and F2 are called the   of 
the hyperbola.

 2. The graph of the equation 
x2

a2 
y2

b2  1 with a  0, b  0 

  is a hyperbola with   (horizontal/vertical) transverse 

axis, vertices 1   ,  2 and 1   ,  2 and foci 1c, 0 2 , where 

  c     . So the graph of 
x2

42 
y2

32  1 is a hyperbola 

  with vertices 1   ,  2 and 1   ,  2 and foci 1   ,  2 and 

1   ,  2.

 3. The graph of the equation 
y2

a2 
x2

b2  1 with a  0, b  0 

  is a hyperbola with   (horizontal/vertical) transverse 

  axis, vertices 1   ,  2 and 1   ,  2 and foci 10, c 2 , 

  where c     . So the graph of  
y2

42 
x2

32  1 

  is a hyperbola with vertices 1   ,  2 and 1   ,  2 and 

  foci 1   ,  2 and 1   ,  2.
 4. Label the vertices, foci, and asymptotes on the graphs given 

for the hyperbolas in Exercises 2 and 3.

  (a) 
x2

42 
y2

32  1 (b) 
y2

42 
x2

32  1

y

x0 1
1

y

x0 1
1

SkillS
5–8 ■ graphs of Hyperbolas  Match the equation with the 
graphs labeled I–IV. Give reasons for your answers.

 5. 
x2

4
 y2  1  6. y2 

x2

9
 1

 7. 16y2  x2  144  8. 9x2  25y2  225

I II

III IV

x

y

2

1
4

1
x

y

x

y

1

1

y

x2

2

9–26 ■ graphing Hyperbolas  An equation of a hyperbola is 
given. (a) Find the vertices, foci, and asymptotes of the hyper-
bola. (b) Determine the length of the transverse axis. (c) Sketch a 
graph of the hyperbola.

 9. 
x2

4


y2

16
 1 10. 

y2

9


x2

16
 1

11. 
y2

36


x2

4
 1 12. 

x2

9


y2

64
 1

 13. y2 
x2

25
 1 14. 

x2

2
 y2  1

 15. x2  y2  1 16. 
x2

16


y2

12
 1

17. 9x2  4y2  36 18. 25y2  9x2  225

19. 4y2  9x2  144 20. y2  25x2  100

21. x2  4y2  8  0 22. 3y2  x2  9  0

23. x2  y2  4  0 24. x2  3y2  12  0 

25. 4y2  x2  1 26. 9x2  16y2  1

27–32 ■ Finding an Equation of a Hyperbola  Find the equation 
for the hyperbola whose graph is shown.

 27.  

0 x

y

1

F¤(4, 0)F⁄(_4, 0)
1

 28. 

0 x

y

_12

12 F⁄(0, 13)

F¤(0, _13)

1

12.3 ExERCiSES
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850 CHAPTER 12 ■ Conic Sections

 29. 

0 x

y

_4

4

(3, _5)
2

 30. 

(4, 4)

2 3

2
x

y

 31. 
y=3x

y=_3x

0 x

y

3

1

 32. 

y=_   x1
2 y=   x1

2

x

y

_5 5

33–36 ■ graphing Hyperbolas  Use a graphing device to graph 
the hyperbola.

 33. x2  2y2  8 34. 3y2  4x2  24

 35. 
y2

2


x2

6
 1 36. 

x2

100


y2

64
 1

37–50 ■ Finding the Equation of a Hyperbola  Find an equation 
for the hyperbola that satisfies the given conditions.

 37. Foci: 15, 0 2 , vertices: 13, 0 2
 38. Foci: 10, 10 2 , vertices: 10, 8 2
 39. Foci: 10, 2 2 , vertices: 10, 1 2
 40. Foci: 16, 0 2 , vertices: 12, 0 2
 41. Vertices: 11, 0 2 , asymptotes: y  5x

 42. Vertices: 10, 6 2 , asymptotes: y   
1
3 x

43. Vertices: 10, 6 2 , hyperbola passes through 15, 9 2
44. Vertices: 12, 0 2 , hyperbola passes through A3, !30 B
 45. Asymptotes: y  x, hyperbola passes through 15, 3 2
 46. Asymptotes: y  x, hyperbola passes through 11, 2 2
 47. Foci: 10, 3 2 , hyperbola passes through 11, 4 2
 48. Foci: A!10, 0B , hyperbola passes through A4, !18 B
 49. Foci: 15, 0 2 , length of transverse axis: 6

 50. Foci: 10, 1 2 , length of transverse axis: 1

SkillS Plus
 51. Perpendicular Asymptotes

(a) Show that the asymptotes of the hyperbola x2  y2  5 
are perpendicular to each other.

(b)  Find an equation for the hyperbola with foci 1c, 0 2  and 
with asymptotes perpendicular to each other.

 52. Conjugate Hyperbolas  The hyperbolas

x2

a2 
y2

b2  1  and  
x2

a2 
y2

b2  1

  are said to be conjugate to each other.

(a) Show that the hyperbolas

x2  4y2  16  0  and  4y2  x2  16  0

   are conjugate to each other, and sketch their graphs on 
the same coordinate axes.

(b) What do the hyperbolas of part (a) have in common?

(c)  Show that any pair of conjugate hyperbolas have the  
relationship you discovered in part (b).

 53. Equation of a Hyperbola  In the derivation of the equation of 
the hyperbola at the beginning of this section we said that the 
equation

"1x  c 2 2  y2  "1x  c 2 2  y2  2a

  simplifies to

1c2  a2 2x2  a2y2  a21c2  a2 2
  Supply the steps needed to show this.

 54. Verifying a geometric Property of a Hyperbola  
(a) For the hyperbola

x2

9


y2

16
 1

  determine the values of a, b, and c, and find the coordi-
nates of the foci F1 and F2.

(b) Show that the point P15,  
16
3 2  lies on this hyperbola.

(c) Find d1P, F1 2  and d1P, F2 2 .
(d)  Verify that the difference between d1P, F1 2  and d1P, F2 2   

is 2a.

 55. Confocal Hyperbolas  Hyperbolas are called confocal if they 
have the same foci.

(a) Show that the hyperbolas

y 
2

k


x 
2

16  k
 1  0  k  16

  are confocal.

(b)  Use a graphing device to draw the top branches of  
the family of hyperbolas in part (a) for k  1, 4, 8,  
and 12. How does the shape of the graph change as  
k increases?

APPliCAtionS
 56. navigation  In the figure on the next page, the LORAN sta-

tions at A and B are 500 mi apart, and the ship at P receives 
station A’s signal 2640 microseconds (ms) before it receives 
the signal from station B.

(a)  Assuming that radio signals travel at 980 ft/ms, find 
d1P, A 2  d1P, B 2 .

(b)  Find an equation for the branch of the hyperbola indi-
cated in red in the figure. (Use miles as the unit of 
distance.)

12.4 SHiFtEd ConiCS
■ Shifting graphs of Equations ■ Shifted Ellipses ■ Shifted Parabolas  
■ Shifted Hyperbolas ■ the general Equation of a Shifted Conic

In the preceding sections we studied parabolas with vertices at the origin and ellipses and 
hyperbolas with centers at the origin. We restricted ourselves to these cases because these 
equations have the simplest form. In this section we consider conics whose vertices and 
centers are not necessarily at the origin, and we determine how this affects their  equations.

■ Shifting graphs of Equations
In Section 2.6 we studied transformations of functions that have the effect of shifting 
their graphs. In general, for any equation in x and y, if we replace x by x  h or by  
x  h, the graph of the new equation is simply the old graph shifted horizontally; if y is 
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SECTION 12.4 ■ Shifted Conics 851

(c)  If A is due north of B and if P is due east of A, how far is 
P from A?

x (mi)

y (mi)

P
A

B

0

250

_250

 57. Comet trajectories  Some comets, such as Halley’s comet, 
are a permanent part of the solar system, traveling in ellipti-
cal orbits around the sun. Other comets pass through the solar 
system only once, following a hyperbolic path with the sun at 
a focus. The figure below shows the path of such a comet. 
Find an equation for the path, assuming that the closest the 
comet comes to the sun is 2  109 mi and that the path the 
comet was taking  before it neared the solar system is at a 
right angle to the path it continues on after leaving the solar 
system.

x

y

2 � 10ª mi  

 58. Ripples in Pool  Two stones are dropped simultaneously into 
a calm pool of water. The crests of the resulting waves form 
equally spaced concentric circles, as shown in the figures. 

The waves interact with each other to create certain interfer-
ence patterns.

(a) Explain why the red dots lie on an ellipse.

(b) Explain why the blue dots lie on a hyperbola.

diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
 59. diSCuSS ■ wRitE: Hyperbolas in the Real world  Several 

examples of the uses of hyperbolas are given in the text. Find 
other situations in real life in which hyperbolas occur. Consult 
a scientific encyclopedia in the reference section of your 
library, or search the Internet.

 60. diSCuSS: light from a lamp  The light from a lamp forms a 
lighted area on a wall, as shown in the figure. Why is the 
boundary of this lighted area a hyperbola? How can one hold a 
flashlight so that its beam forms a hyperbola on the ground?

12.4 SHiFtEd ConiCS
■ Shifting graphs of Equations ■ Shifted Ellipses ■ Shifted Parabolas  
■ Shifted Hyperbolas ■ the general Equation of a Shifted Conic

In the preceding sections we studied parabolas with vertices at the origin and ellipses and 
hyperbolas with centers at the origin. We restricted ourselves to these cases because these 
equations have the simplest form. In this section we consider conics whose vertices and 
centers are not necessarily at the origin, and we determine how this affects their  equations.

■ Shifting graphs of Equations
In Section 2.6 we studied transformations of functions that have the effect of shifting 
their graphs. In general, for any equation in x and y, if we replace x by x  h or by  
x  h, the graph of the new equation is simply the old graph shifted horizontally; if y is 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



852 CHAPTER 12 ■ Conic Sections

re placed by y  k or by y  k, the graph is shifted vertically. The following box gives 
the details.

SHiFting gRAPHS oF EquAtionS

If h and k are positive real numbers, then replacing x by x  h or by x  h and  
replacing y by y  k or by y  k has the following effect(s) on the graph of any 
equation in x and y.

 replacement How the graph is shifted

1. x replaced by x  h Right h units

2. x replaced by x  h Left h units

3. y replaced by y  k Upward k units

4. y replaced by y  k Downward k units

■ Shifted Ellipses
Let’s apply horizontal and vertical shifting to the ellipse with equation

x2

a2 
y2

b2  1

whose graph is shown in Figure 1. If we shift it so that its center is at the point 1h, k 2  
instead of at the origin, then its equation becomes

1x  h 2 2
a2 

1 y  k 2 2
b2  1

y

x

b

a(0, 0)

+     =1y™
b™

x™
™a™

b

a

(h, k)

h

k

(x-h, y-k)

(x, y)

=1(y-k)™
b™

(x-h)™
a™ +

FiguRE 1 Shifted ellipse

ExAMPlE 1 ■ Sketching the graph of a Shifted Ellipse
Sketch a graph of the ellipse

1x  1 2 2
4


1 y  2 2 2

9
 1

and determine the coordinates of the foci.

Solution  The ellipse

1x  1 2 2
4


1 y  2 2 2

9
 1    Shifted ellipse

is shifted so that its center is at 11,  2 2 . It is obtained from the ellipse

x 
2

4


y 
2

9
 1    Ellipse with center at origin

N
or

th
 W

in
d/

N
or

th
 W

in
d 

Pi
ct

ur
e 

Ar
ch

iv
es

JoHAnnes KepLer (1571–1630) was 
the first to give a correct description of 
the motion of the planets. The cosmol-
ogy of his time postulated complicated 
systems of circles moving on circles to 
describe these motions. Kepler sought a 
simpler and more harmonious descrip-
tion. As the official astronomer at the 
imperial court in Prague, he studied the 
astronomical observations of the Danish 
astronomer Tycho Brahe, whose data 
were the most accurate available at the 
time. After numerous attempts to find a 
theory, Kepler made the momentous dis-
covery that the orbits of the planets are 
elliptical. His three great laws of plane-
tary motion are

1.  The orbit of each planet is an ellipse 
with the sun at one focus.

2. The line segment that joins the sun to 
a planet sweeps out equal areas in 
equal time (see the figure).

3. The square of the period of revolution 
of a planet is proportional to the cube 
of the length of the major axis of its 
orbit.

Kepler’s formulation of these laws is per-
haps the most impressive deduction from 
empirical data in the history of science.
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SECTION 12.4 ■ Shifted Conics 853

by shifting it left 1 unit and upward 2 units. The endpoints of the minor and major axes 
of the ellipse with center at the origin are 12, 0 2 , 12, 0 2 , 10, 3 2 , 10, 3 2 . We apply the 
required shifts to these points to obtain the corresponding points on the shifted ellipse.

 12, 0 2  S  12  1, 0  2 2  11, 2 2
 12, 0 2  S  12  1, 0  2 2  13, 2 2

 10, 3 2  S  10  1, 3  2 2  11, 5 2
 10, 3 2  S  10  1, 3  2 2  11, 1 2

This helps us sketch the graph in Figure 2.
To find the foci of the shifted ellipse, we first find the foci of the ellipse with cen-

ter at the origin. Since a2  9 and b2  4, we have c2  9  4  5, so c  !5. So 
the foci are A0, !5 B . Shifting left 1 unit and upward 2 units, we get

 A0, !5 B S  A0  1, !5  2B  A1, 2  !5 B
 A0, !5 B S  A0  1, !5  2B  A1, 2  !5 B

Thus the foci of the shifted ellipse are

A1, 2  !5B  and  A1, 2  !5B
now try Exercise 7 ■

ExAMPlE 2 ■ Finding the Equation of a Shifted Ellipse
The vertices of an ellipse are 17, 3 2  and 13, 3 2 , and the foci are 16, 3 2  and 12, 3 2 . 
Find the equation for the ellipse, and sketch its graph.

Solution  The center of the ellipse is the midpoint of the line segment between the 
vertices. By the Midpoint Formula the center is 

a7  3

2
, 

3  3

2
b  12, 3 2     Center

Since the vertices lie on a horizontal line, the major axis is horizontal. The length of 
the major axis is 3  17 2  10, so a  5. The distance between the foci is 
2  16 2  8, so c  4. Since c2  a2  b2, we have

 42  52  b2     c  4, a  5

 b2  25  16  9    Solve for b2

Thus the equation of the ellipse is

1x  2 2 2
25


1y  3 2 2

9
 1    Equation of shifted ellipse

The graph is shown in Figure 3.

0 x

y
F¤(2, 3)F⁄(_6, 3)

(3, 3)(_7, 3)
4

1

1

(_2, 3)

FiguRE 3 Graph of 
1x  2 2 2

25

1y  3 2 2

9
 1

now try Exercise 35 ■

The Midpoint Formula is given on 
page 90.

0 x

y

(_1, 5)

(1, 2)(_3, 2)

(_1, _1)

3

2

(_1, 2)

FiguRE 2 
1x  1 2 2

4

1 y  2 2 2

9
 1
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854 CHAPTER 12 ■ Conic Sections

■ Shifted Parabolas
Applying shifts to parabolas leads to the equations and graphs shown in Figure 4.

(a) (x-h)™=4p(y-k)
p>0

(b) (x-h)™=4p(y-k)
p<0

(c) (y-k)™=4p(x-h)
p>0

(d) (y-k)™=4p(x-h)
p<0

x

y

0
(h, k) x

y

0

(h, k)

x

y

0

(h, k)

x

y

0

(h, k)

FiguRE 4 Shifted parabolas

ExAMPlE 3 ■ graphing a Shifted Parabola
Determine the vertex, focus, and directrix, and sketch a graph of the parabola.

x2  4x  8y  28

Solution  We complete the square in x to put this equation into one of the forms in 
Figure 4.

 x2  4x  4  8y  28  4  Add 4 to complete the square

 1x  2 2 2  8y  24   Perfect square

 1x  2 2 2  81y  3 2   Shifted parabola

This parabola opens upward with vertex at 12, 3 2 . It is obtained from the parabola

x2  8y    Parabola with vertex at origin

by shifting right 2 units and upward 3 units. Since 4p  8, we have p  2, so the 
focus is 2 units above the vertex and the directrix is 2 units below the vertex. Thus 
the focus is 12, 5 2 , and the directrix is y  1. The graph is shown in Figure 5.

now try Exercises 13 and 19 ■

■ Shifted Hyperbolas
Applying shifts to hyperbolas leads to the equations and graphs shown in Figure 6.

x

y

0

(h, k)

x

y

0

(h, k)

=1(x-h)™
a™

(y-k)™
b™-(a) =1(x-h)™

b™
(y-k)™

a™+-(b)FiguRE 6 Shifted hyperbolas

ExAMPlE 4 ■ graphing a Shifted Hyperbola
A shifted conic has the equation

9x2  72x  16y2  32y  16

(a) Complete the square in x and y to show that the equation represents a hyperbola.

0 x

y

(2, 3)

F(2, 5)

y=1

FiguRE 5 
x2  4x  8y  28
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SECTION 12.4 ■ Shifted Conics 855

(b)  Find the center, vertices, foci, and asymptotes of the hyperbola, and sketch its 
graph.

(c) Draw the graph using a graphing calculator.

Solution

(a) We complete the squares in both x and y.

 91x2  8x 2  161 y2  2y 2  16   Group terms and factor

 91x2  8x  16 2  161 y2  2y  1 2  16  9 # 16  16 # 1  Complete the squares

 91x  4 2 2  161 y  1 2 2  144   Divide this by 144

 
1x  4 2 2

16

1 y  1 2 2

9
 1   Shifted hyperbola

   Comparing this to Figure 6(a), we see that this is the equation of a shifted 
hyperbola.

(b)  The shifted hyperbola has center 14, 1 2  and a horizontal transverse axis.

center  14, 1 2
  Its graph will have the same shape as the unshifted hyperbola

x2

16


y2

9
 1    Hyperbola with center at origin

   Since a2  16 and b2  9, we have a  4, b  3, and c  "a2  b2 
!16  9  5. Thus the foci lie 5 units to the left and to the right of the center, 
and the vertices lie 4 units to either side of the center.

foci 11,  1 2 and 19,  1 2
vertices 10,  1 2 and 18,  1 2

   The asymptotes of the unshifted hyperbola are y   
3
4 x, so the asymptotes of 

the shifted hyperbola are found as follows.

asymptotes  y  1   
3
4 1x  4 2

  y  1   
3
4 x 7 3

y  3
4 x  4  and  y   

3
4 x  2

   To help us sketch the hyperbola, we draw the central box; it extends 4 units left 
and right from the center and 3 units upward and downward from the center. We 
then draw the asymptotes and complete the graph of the shifted hyperbola as 
shown in Figure 7(a).

(a) (b)

13_5

_7

5

0

y

(4, 2)

(4, _4)

(4, _1)
F (9, _1)F⁄(_1, _1)

(0, _1) (8, _1)

y=_   x+23
4y=   x-43

4

y = –1 + 0.75 x2 – 8x

y = –1 – 0.75 x2 – 8x

x

FiguRE 7 9x2  72x  16y2  32y  16
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856 CHAPTER 12 ■ Conic Sections

(c)  To draw the graph using a graphing calculator, we need to solve for y. The given 
equation is a quadratic equation in y, so we use the Quadratic Formula to solve  
for y. Writing the equation in the form

16y2  32y  9x2  72x  16  0

  we get

 y 
32  "322  4116 2 19x2  72x  16 2

2116 2   Quadratic Formula

  
32  "576x2  4608x

32
  Expand

 
32  24 "x2  8x

32
  

Factor 576 from under 
the radical

  1  3
4 "x2  8x   Simplify

  To obtain the graph of the hyperbola, we graph the functions

y  1  0.75 "x2  8x

and y  1  0.75 "x2  8x

  as shown in Figure 7(b).

now try Exercises 21, 27 and 61 ■

■ the general Equation of a Shifted Conic
If we expand and simplify the equations of any of the shifted conics illustrated in  
Figures 1, 4, and 6, then we will always obtain an equation of the form

Ax2  Cy2  Dx  Ey  F  0

where A and C are not both 0. Conversely, if we begin with an equation of this form, 
then we can complete the square in x and y to see which type of conic section the equa-
tion represents. In some cases the graph of the equation turns out to be just a pair of 
lines or a single point, or there might be no graph at all. These cases are called degen-
erate conics. If the equation is not degenerate, then we can tell whether it represents a 
parabola, an  ellipse, or a hyperbola simply by examining the signs of A and C, as de-
scribed in the following box.

gEnERAl EquAtion oF A SHiFtEd ConiC

The graph of the equation

Ax2  Cy2  Dx  Ey  F  0

where A and C are not both 0, is a conic or a degenerate conic. In the nonde-
generate cases the graph is

1. a parabola if A or C is 0,

2. an ellipse if A and C have the same sign (or a circle if A  C),

3. a hyperbola if A and C have opposite signs.

ExAMPlE 5 ■  An Equation that leads to a degenerate Conic
Sketch the graph of the equation

9x2  y2  18x  6y  0

Note that the equation of a hyperbola 
does not define y as a function of x (see 
page 200). That’s why we need to graph 
two functions to graph a hyperbola.
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SECTION 12.4 ■ Shifted Conics 857

Solution  Because the coefficients of x2 and y2 are of opposite sign, this equation 
looks as if it should represent a hyperbola (like the equation of Example 4). To see 
whether this is in fact the case, we complete the squares.

 91x2  2x 2  1 y2  6y 2  0   Group terms and factor 9

 91x2  2x  1 2  1 y2  6y  9 2  0  9 # 1  9  Complete the squares

 91x  1 2 2  1 y  3 2 2  0   Factor

 1x  1 2 2 
1 y  3 2 2

9
 0   Divide by 9

For this to fit the form of the equation of a hyperbola, we would need a nonzero con-
stant to the right of the equal sign. In fact, further analysis shows that this is the equa-
tion of a pair of intersecting lines.

 1 y  3 2 2  91x  1 2 2
 y  3   31x  1 2   Take square roots

 y  31x  1 2  3  or   y  31x  1 2  3

 y  3x  6    y  3x

These lines are graphed in Figure 8.

now try Exercise 55 ■

Because the equation in Example 5 looked at first glance like the equation of a 
 hyperbola but, in fact, turned out to represent simply a pair of lines, we refer to its graph 
as a degenerate hyperbola. Degenerate ellipses and parabolas can also arise when we 
complete the square(s) in an equation that seems to represent a conic. For example, the 
equation

4x2  y2  8x  2y  6  0

looks as if it should represent an ellipse, because the coefficients of x2 and y2 have the 
same sign. But completing the squares leads to

1x  1 2 2 
1 y  1 2 2

4
  

1

4

which has no solution at all (since the sum of two squares cannot be negative). This 
 equation is therefore degenerate.

ConCEPtS
 1. Suppose we want to graph an equation in x and y.

  (a)  If we replace x by x  3, the graph of the equation is 

   shifted to the   by 3 units. If we replace x by 
    x  3, the graph of the equation is shifted to the 

     by 3 units.

  (b)  If we replace y by y  1, the graph of the equation is 

   shifted   by 1 unit. If we replace y by y  1, 

    the graph of the equation is shifted   by  
1 unit.

 2. The graphs of x2  12y and 1x  3 2 2  121 y  1 2  are 
given. Label the focus, directrix, and vertex on each parabola.

y

x0 1
1

y

x0 1

1

12.4 ExERCiSES

FiguRE 8 
9x2  y2  18x  6y  0

0 x

y

6

_2
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858 CHAPTER 12 ■ Conic Sections

 3. The graphs of 
x2

52 
y2

42  1 and 
1x  3 2 2

52 
1 y  1 2 2

42  1 

  are given. Label the vertices and foci on each ellipse.

y

x0 1
1

y

x0 1
1

 4. The graphs of 
x2

42 
y2

32  1 and 
1x  3 2 2

42 
1y  1 2 2

32  1 

  are given. Label the vertices, foci, and asymptotes on each  
hyperbola.

y

x0 1
1

y

x0 1
1

SkillS
5–12 ■ graphing Shifted Ellipses  An equation of an ellipse  
is given. (a) Find the center, vertices, and foci of the ellipse.  
(b) Determine the lengths of the major and minor axes. (c) Sketch 
a graph of the ellipse.

 5. 
1x  2 2 2

9

1 y  1 2 2

4
 1  6. 

1x  3 2 2
16

 1 y  3 2 2  1

 7. 
x2

9

1 y  5 2 2

25
 1  8. x2 

1y  2 2 2
4

 1

 9. 
1x  5 2 2

16

1y  1 2 2

4
 1

 10. 
1x  1 2 2

36

1y  1 2 2

64
 1

 11. 4x2  25y2  50y  75 

12. 9x2  54x  y2  2y  46  0

13–20 ■ graphing Shifted Parabolas  An equation of a parabola 
is given. (a) Find the vertex, focus, and directrix of the parabola. 
(b) Sketch a graph showing the parabola and its directrix.

 13. 1x  3 2 2  81 y  1 2  14. 1y  1 2 2  161x  3 2
 15. 1 y  5 2 2  6x  12 16. y2  16x  8

 17. 21x  1 2 2  y 18. 4Ax  1
2 B2  y 

19. y2  6y  12x  33  0

 20. x2  2x  20y  41  0

21–28 ■ graphing Shifted Hyperbolas  An equation of a hyper-
bola is given. (a) Find the center, vertices, foci, and asymptotes of 
the hyperbola. (b) Sketch a graph showing the hyperbola and its 
asymptotes.

 21. 
1x  1 2 2

9

1 y  3 2 2

16
 1 22. 1x  8 2 2  1 y  6 2 2  1

 23. y2 
1x  1 2 2

4
 1

 24. 
1 y  1 2 2

25
 1x  3 2 2  1

 25. 
1x  1 2 2

9

1y  1 2 2

4
 1 26. 

1y  2 2 2
36


x2

64
 1

27. 36x2  72x  4y2  32y  116  0 

28. 25x2  9y2  54y  306

29–34 ■ Finding the Equation of a Shifted Conic  Find an equa-
tion for the conic whose graph is shown.

 29.   30.

  

_2 20 x

y

4

 

0 x

y

_6

Directrix
y=_12

5

 31.   32.

  

F(8, 0)

4

0 x

y

10

 

0 x

y

_3

2
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SECTION 12.4 ■ Shifted Conics 859

 33. 

0 x

y

1

Asymptote
y=x+1

34. 

0 x

y

4

2
_4

6

35–46 ■ Finding the Equation of a Shifted Conic  Find an equa-
tion for the conic section with the given properties.

35. The ellipse with center C12, 3 2 , vertices V118, 3 2  and 
V2112, 3 2 , and foci F114, 3 2  and F218, 3 2

36. The ellipse with vertices V111, 4 2  and V211, 6 2  and foci 
F111, 3 2  and F211, 5 2

37. The hyperbola with center C11, 4 2 , vertices V111, 3 2  
and V211, 11 2 , and foci F111, 5 2  and F211, 13 2

38. The hyperbola with vertices V111, 1 2  and V215, 1 2  and 
foci F114, 1 2  and F218, 1 2

39. The parabola with vertex V13, 5 2  and directrix y  2

40. The parabola with focus F11, 3 2  and directrix x  3

41. The hyperbola with foci F111, 5 2  and F211, 5 2  that passes 
through the point 11, 4 2

42. The hyperbola with foci F112, 2 2  and F214, 2 2  that passes 
through the point 13, 2 2 .

43. The ellipse with foci F111, 4 2  and F215, 4 2  that passes 
through the point 13, 1 2

44. The ellipse with foci F113, 4 2  and F213, 4 2 , and  
x-intercepts 0 and 6

45. The parabola that passes through the point 16, 1 2 , with vertex 
V11, 2 2  and horizontal axis of symmetry 

46. The parabola that passes through the point 16, 2 2 , with  
vertex V14, 1 2  and vertical axis of symmetry

47–58 ■ graphing Shifted Conics  Complete the square to deter-
mine whether the graph of the equation is an ellipse, a parabola, a 
hyperbola, or a degenerate conic. If the graph is an ellipse, find the 
center, foci, vertices, and lengths of the major and minor axes. If it 
is a parabola, find the vertex, focus, and directrix. If it is a hyper-
bola, find the center, foci, vertices, and asymptotes. Then sketch the 
graph of the equation. If the equation has no graph, explain why.

 47. y2  41x  2y 2
 48. 9x2  36x  4y2  0

 49. x2  5y2  2x  20y  44

 50. x2  6x  12y  9  0

 51. 4x2  25y2  24x  250y  561  0

 52. 2x2  y2  2y  1

53. 16x2  9y2  96x  288  0

 54. 4x2  4x  8y  9  0

 55. x2  16  41 y2  2x 2

56. x2  y2  101x  y 2  1

 57. 3x2  4y2  6x  24y  39  0

 58. x2  4y2  20x  40y  300  0

59–62 ■ graphing Shifted Conics  Use a graphing device to 
graph the conic.

 59. 2x2  4x  y  5  0

 60. 4x2  9y2  36y  0

 61. 9x2  36  y2  36x  6y

 62. x2  4y2  4x  8y  0

SkillS Plus
 63. degenerate Conic  Determine what the value of F must be if 

the graph of the equation

4x2  y2  41x  2y 2  F  0

  is (a) an ellipse, (b) a single point, or (c) the empty set.

 64. Common Focus and Vertex  Find an equation for the  
ellipse that shares a vertex and a focus with the parabola  
x2  y  100 and has its other focus at the origin.

 65. Confocal Parabolas  This exercise deals with confocal 
parabolas, that is, families of parabolas that have the same 
focus.

(a) Draw graphs of the family of parabolas

x2  4p1 y  p 2
  for p  2,  

3
2, 1,  

1
2, 12, 1, 32, 2.

(b)  Show that each parabola in this family has its focus at 
the origin.

(c)  Describe the effect on the graph of moving the vertex 
closer to the origin.

APPliCAtionS
 66. Path of a Cannonball  A cannon fires a cannonball as shown 

in the figure. The path of the cannonball is a parabola with 
 vertex at the highest point of the path. If the cannonball lands 
1600 ft from the cannon and the highest point it reaches is 
3200 ft above the ground, find an equation for the path of the 
cannonball. Place the origin at the location of the  cannon.

y (ft)

3200

1600 x (ft)
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860 CHAPTER 12 ■ Conic Sections

 67. orbit of a Satellite  A satellite is in an elliptical orbit 
around the earth with the center of the earth at one focus,  
as shown in the figure. The height of the satellite above the 
earth varies between 140 mi and 440 mi. Assume that the 
earth is a sphere with radius 3960 mi. Find an equation for 
the path of the satellite with the origin at the center of the 
earth.

440 mi 140 mi

diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
68. diSCuSS: A Family of Confocal Conics  Conics that share a 

focus are called confocal. Consider the family of conics that 

have a focus at 10, 1 2  and a vertex at the origin, as shown in 
the figure.

(a)  Find equations of two different ellipses that have these 
properties.

(b)  Find equations of two different hyperbolas that have 
these properties.

(c)  Explain why only one parabola satisfies these properties. 
Find its equation.

(d)  Sketch the conics you found in parts (a), (b), and (c) on 
the same coordinate axes (for the hyperbolas, sketch the 
top branches only).

(e)  How are the ellipses and hyperbolas related to the 
parabola?

0 x

y

1

 

12.5 RotAtion oF AxES
■ Rotation of Axes ■ general Equation of a Conic ■ the discriminant

In Section 12.4 we studied conics with equations of the form

Ax2  Cy2  Dx  Ey  F  0

We saw that the graph is always an ellipse, parabola, or hyperbola with horizontal or 
vertical axes (except in the degenerate cases). In this section we study the most general  
second-degree equation

Ax2  Bxy  Cy2  Dx  Ey  F  0

We will see that the graph of an equation of this form is also a conic. In fact, by rotating 
the coordinate axes through an appropriate angle, we can eliminate the term Bxy and 
then use our knowledge of conic sections to analyze the graph.

■ Rotation of Axes
In Figure 1 the x- and y-axes have been rotated through an acute angle f about the ori-
gin to produce a new pair of axes, which we call the X- and Y-axes. A point P that has 
coordinates 1x, y 2  in the old system has coordinates 1X, Y 2  in the new system. If we let 
r denote the distance of P from the origin and let u be the angle that the segment OP 

0

P(x, y)
P(X, Y)

y

x

Y

X

ƒ

FiguRE 1
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SECTION 12.5 ■ Rotation of Axes 861

makes with the new X-axis, then we can see from Figure 2 (by considering the two right 
triangles in the figure) that

 X  r cos u     Y  r sin u

 x  r cos1u  f 2     y  r sin1u  f 2
Using the Addition Formula for Cosine, we see that

 x  r cos1u  f 2
  r 1cos u cos f  sin u sin f 2
  1r cos u 2  cos f  1r sin u 2  sin f

  X cos f  Y sin f

Similarly, we can apply the Addition Formula for Sine to the expression for y to obtain  
y  X sin f  Y cos f. By treating these equations for x and y as a system of linear 
equations in the variables X and Y (see Exercise 35), we obtain expressions for X and Y 
in terms of x and y, as detailed in the following box.

RotAtion oF AxES FoRMulAS

Suppose the x- and y-axes in a coordinate plane are rotated through the acute 
angle f to produce the X- and Y-axes, as shown in Figure 1. Then the coordi-
nates 1x, y 2  and 1X, Y 2  of a point in the xy- and the XY-planes are related as 
follows.

 x  X cos f  Y sin f     X  x cos f  y sin f

 y  X sin f  Y cos f     Y  x sin f  y cos f

ExAMPlE 1 ■ Rotation of Axes
If the coordinate axes are rotated through 30, find the XY-coordinates of the point 
with xy-coordinates 12,  4 2 .
Solution  Using the Rotation of Axes Formulas with x  2, y  4, and f  30, 
we get

 X  2 cos 30  14 2  sin 30  2 a !3

2
b  4 a 1

2
b  !3  2

 Y  2 sin 30  14 2  cos 30  2 a 1

2
b  4 a !3

2
b  1  2!3

The XY-coordinates are 12  !3,  1  2!3 2 .
now try Exercise 3 ■

ExAMPlE 2 ■ Rotating a Hyperbola
Rotate the coordinate axes through 45 to show that the graph of the equation xy  2 
is a hyperbola.

Solution  We use the Rotation of Axes Formulas with f  45 to obtain

 x  X cos 45  Y sin 45 
X

!2


Y

!2

 y  X sin 45  Y cos 45 
X

!2


Y

!2

y

0

P

x

Y

X

ƒ
¨

y
r

X

Y

x

FiguRE 2
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862 CHAPTER 12 ■ Conic Sections

Substituting these expressions into the original equation gives

 a X

!2


Y

!2
b a X

!2


Y

!2
b  2

 
X 2

2


Y 2

2
 2

 
X 2

4


Y 2

4
 1

We recognize this as a hyperbola with vertices 12,  0 2  in the XY-coordinate system. 
Its asymptotes are Y  X, which correspond to the coordinate axes in the xy-system 
(see Figure 3).

y

x0

X
Y

45*

FiguRE 3 
xy  2

now try Exercise 11 ■

■ general Equation of a Conic
The method of Example 2 can be used to transform any equation of the form

Ax2  Bxy  Cy2  Dx  Ey  F  0

into an equation in X and Y that doesn’t contain an XY-term by choosing an appropriate 
angle of rotation. To find the angle that works, we rotate the axes through an angle f 
and substitute for x and y using the Rotation of Axes Formulas.

 A1X cos f  Y sin f 2 2  B1X cos f  Y sin f 2 1X sin f  Y cos f 2
  C1X sin f  Y cos f 2 2  D1X cos f  Y sin f 2
  E1X sin f  Y cos f 2  F  0

If we expand this and collect like terms, we obtain an equation of the form

A rX 2  B rXY  C rY 2  D rX  E rY  F r  0

where

 A r  A cos2
 f  B sin f cos f  C sin2

 f

 B r  21C  A 2  sin f cos f  B1cos2
 f  sin2

 f 2
 C r  A sin2

 f  B sin f cos f  C cos2
 f

 D r  D cos f  E sin f

 E r  D sin f  E cos f

 F r  F
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SECTION 12.5 ■ Rotation of Axes 863

To eliminate the XY-term, we would like to choose f so that B  0, that is,

 21C  A 2  sin f cos f  B1cos2
 f  sin2

 f 2  0

 1C  A 2  sin 2f  B cos 2f  0  
Double-Angle Formulas  
for Sine and Cosine

 B cos 2f  1A  C 2  sin 2f    

 cot 2f 
A  C

B
 Divide by B sin 2f

The preceding calculation proves the following theorem.

SiMPliFying tHE gEnERAl ConiC EquAtion

To eliminate the xy-term in the general conic equation

Ax2  Bxy  Cy2  Dx  Ey  F  0

rotate the axes through the acute angle f that satisfies

cot 2f 
A  C

B

ExAMPlE 3 ■ Eliminating the xy-term
Use a rotation of axes to eliminate the xy-term in the equation

6!3x2  6xy  4!3y2  21!3

Identify and sketch the curve.

Solution  To eliminate the xy-term, we rotate the axes through an angle f that 
satisfies

cot 2f 
A  C

B


6!3  4!3

6


!3

3

Thus 2f  60, and hence f  30. With this value of f we get

 x  Xa !3

2
b  Y a 1

2
b   Rotation of Axes Formulas

 y  Xa 1

2
b  Y a !3

2
b   cos f 

!3

2
, sin f 

1

2

Substituting these values for x and y into the given equation leads to

6!3 a X!3

2


Y

2
b

2

 6 a X!3

2


Y

2
b a X

2


Y!3

2
b  4!3 a X

2


Y!3

2
b

2

 21!3

Expanding and collecting like terms, we get

 7!3X 2  3!3Y 2  21!3

 
X 2

3


Y 2

7
 1     Divide by 21!3

This is the equation of an ellipse in the XY-coordinate system. The foci lie on the 
Y-axis. Because a2  7 and b2  3, the length of the major axis is 2!7, and the 
length of the minor axis is 2!3. The ellipse is sketched in Figure 4.

now try Exercise 17 ■

double-Angle Formulas

sin 2f  2 sin f cos f

cos 2f  cos2
 f  sin2

 f

y

x

X

Y

30*

FiguRE 4 
6!3x2  6xy  4!3y2  21!3
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864 CHAPTER 12 ■ Conic Sections

In the preceding example we were able to determine f without difficulty, since we  
remembered that cot 60  !3/3. In general, finding f is not quite so easy. The next  
example illustrates how the following Half-Angle Formulas, which are valid for  
0  f  p/2, are useful in determining f (see Section 7.3).

cos f  Å
1  cos 2f

2
   sin f  Å

1  cos 2f

2

ExAMPlE 4 ■ graphing a Rotated Conic
A conic has the equation

64x2  96xy  36y2  15x  20y  25  0

(a) Use a rotation of axes to eliminate the xy-term.

(b) Identify and sketch the graph.

(c) Draw the graph using a graphing calculator.

Solution
(a) To eliminate the xy-term, we rotate the axes through an angle f that satisfies

cot 2f 
A  C

B


64  36

96


7

24

  In Figure 5 we sketch a triangle with cot 2f  7
24. We see that

cos 2f  7
25

  so, using the Half-Angle Formulas, we get

cos f  Å
1  7

25

2
 Å

16

25


4

5

sin f  Å
1  7

25

2
 Å

9

25


3

5

  The Rotation of Axes Formulas then give

x  4
5 X  3

5 Y  and  y  3
5 X  4

5 Y

  Substituting into the given equation, we have

 64A45 X  3
5 YB2  96A45 X  3

5 YB A35 X  4
5 YB

 36A35 X  4
5YB2  15A45 X  3

5YB  20A35 X  4
5YB  25  0

7

2425

2ƒ

FiguRE 5

diSCoVERy PRojECt

Computer graphics ii

An image on a computer screen is stored in the computer memory as a large 
matrix. Each matrix entry contain information about one pixel in the image. In 
Discovery Project: Computer Graphics I we experimented with using matrix 
operations to transform an image—stretch, shrink, reflect, or shear. But rotating 
an image requires knowledge of the rotation formulas we study in this section. 
In this project we experiment with using rotation matrices to rotate an image. 
You can find the project at www.stewartmath.com.
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SECTION 12.5 ■ Rotation of Axes 865

  Expanding and collecting like terms, we get

 100X 2  25Y  25  0

 4X 2  Y  1   Simplify

 X 2   
1
4 
1Y  1 2     Divide by 4

(b)  We recognize this as the equation of a parabola that opens along the negative  
Y-axis and has vertex 10,  1 2  in XY-coordinates. Since 4p   

1
4, we have 

p   
1

16, so the focus is A0,  
15
16B  and the directrix is Y  17

16. Using

f  cos1 
 
4
5 < 37

  we sketch the graph in Figure 6(a).

y

x

X

Y

ƒÅ37*

(0, 1)

(a)

2_2

(b)

_2

2

15x + 10)/18

15x + 10)/18y = (–24x – 5 – 5

y = (–24x – 5 + 5

FiguRE 6 
64x2  96xy  36y2  15x  20y  25  0

(c)  To draw the graph using a graphing calculator, we need to solve for y. The given 
equation is a quadratic equation in y, so we can use the Quadratic Formula to 
solve for y. Writing the equation in the form

36y2  196x  20 2y  164x2  15x  25 2  0

  we get

 y 
196x  20 2  "196x  20 2 2  4136 2 164x2  15x  25 2

2136 2     
Quadratic 
Formula

  
196x  20 2  "6000x  4000

72
    Expand

  
96x  20  20"15x  10

72
    Simplify

  
24x  5  5"15x  10

18
    Simplify

  To obtain the graph of the parabola, we graph the functions

y  124x  5  5!15x  10 2 /18  and  y  124x  5  5!15x  10 2 /18

  as shown in Figure 6(b).

now try Exercise 23 ■

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



866 CHAPTER 12 ■ Conic Sections

■ the discriminant
In Examples 3 and 4 we were able to identify the type of conic by rotating the axes. The 
next theorem gives rules for identifying the type of conic directly from the equation, 
without rotating axes.

idEntiFying ConiCS by tHE diSCRiMinAnt

The graph of the equation

Ax2  Bxy  Cy2  Dx  Ey  F  0

is either a conic or a degenerate conic. In the nondegenerate cases the graph is

1. a parabola if B2  4AC  0,

2. an ellipse if B2  4AC  0,

3. a hyperbola if B2  4AC  0.

The quantity B2  4AC is called the discriminant of the equation.

Proof  If we rotate the axes through an angle f, we get an equation of the form

A rX 2  B rXY  C rY 2  D rX  E rY  F r  0

where A, B, C, . . . are given by the formulas on page 862. A straightforward calcu-
lation shows that

1B r 2 2  4A rC r  B2  4AC

Thus the expression B2  4AC remains unchanged for any rotation. In particular,  
if we choose a rotation that eliminates the xy-term 1B r  0 2 , we get

A rX 
2  C rY 

2  D rX  E rY  F r  0

In this case B2  4AC  4AC. So B2  4AC  0 if either A or C is zero;  
B2  4AC  0 if A and C have the same sign; and B2  4AC  0 if A and C have 
opposite signs. According to the box on page 856, these cases correspond to the graph of 
the last displayed equation being a parabola, an ellipse, or a hyperbola, respectively. ■

In the proof we indicated that the discriminant is unchanged by any rotation; for this 
reason the discriminant is said to be invariant under rotation.

ExAMPlE 5 ■ identifying a Conic by the discriminant 
A conic has the equation

3x2  5xy  2y2  x  y  4  0

(a) Use the discriminant to identify the conic.

(b)  Confirm your answer to part (a) by graphing the conic with a graphing calculator.

Solution
(a) Since A  3, B  5, and C  2, the discriminant is

B2  4AC  52  413 2 12 2  49  0

  So the conic is a hyperbola.

(b) Using the Quadratic Formula, we solve for y to get

y 
5x  1  "49x2  2x  33

4

  We graph these functions in Figure 7. The graph confirms that this is a  hyperbola.

now try Exercise 29 ■

3_3

_5

55
y = (5x – 1 +

y = (5x – 1 – 

49x2 – 2x + 33)/4

49x2 – 2x + 33)/4

FiguRE 7
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SECTION 12.5 ■ Rotation of Axes 867

ConCEPtS
 1. Suppose the x- and y-axes are rotated through an acute angle f 

to produce the new X- and Y-axes. A point P in the plane can 
be described by its xy-coordinates 1x, y 2  or its XY-coordinates 
1X, Y 2 . These coordinates are related by the following  
formulas.

  x       X   

  y       Y   

 2. Consider the equation 

Ax2  Bxy  Cy2  Dx  Ey  F  0

(a) In general, the graph of this equation is a    . 

(b) To eliminate the xy-term from this equation, we rotate  
the axes through an angle f that satisfies 

 cot 2f     .

(c) The discriminant of this equation is    .

 If the discriminant is 0, the graph is a    ; 

 if it is negative, the graph is    ; and 

 if it is positive, the graph is    .

SkillS
3–8 ■ Rotation of Axes  Determine the XY-coordinates of the 
given point if the coordinate axes are rotated through the indi-
cated angle.

 3. 11,  1 2 , f  45  4. 12,  1 2 , f  30

 5. A3,  !3B, f  60  6. 12,  0 2 , f  15

 7. 10,  2 2 , f  55  8. A!2,  4 !2B, f  45

9–14 ■ Finding the Equation for a Rotated Conic  Determine the 
equation of the given conic in XY-coordinates when the coordi-
nate axes are rotated through the indicated angle.

 9. x2  3y2 4,  f  60

 10. y  1x  1 2 2, f  45

 11. x2  y2  2y, f  cos1 
 
3
5

12. x2  2y2  16, f  sin1 
 
3
5

13. x2  2 !3 xy  y2  4, f  30

14. xy  x  y,  f  p/4

15–28 ■ graphing a Rotated Conic  (a) Use the discriminant to 
determine whether the graph of the equation is a parabola, an 
ellipse, or a hyperbola. (b) Use a rotation of axes to eliminate the 
xy-term. (c) Sketch the graph.

15. xy  8

16. xy  4  0

17. x2  2 !3 xy  y2  2  0

18. 13x2  6 !3 xy  7y2  16

19. 11x2  24xy  4y2  20  0

20. 21x2  10 !3 xy  31y2  144

21. !3 x2  3xy  3

22. 153x2  192xy  97y2  225

23. x2  2xy  y2  x  y  0

24. 25x2  120xy  144y2  156x  65y  0

25. 2 !3 x2  6xy  !3 x  3y  0

26. 9x2  24xy  16y2  1001x  y  1 2
27. 52x2  72xy  73y2  40x  30y  75

28. 17x  24y 2 2  600x  175y  25

29–32 ■ identifying a Conic from its discriminant  (a) Use the 
discriminant to identify the conic. (b) Confirm your answer by 
graphing the conic using a graphing device.

29. 2x2  4xy  2y2  5x  5  0

30. x2  2xy  3y2  8

31. 6x2  10xy  3y2  6y  36

32. 9x2  6xy  y2  6x  2y  0

SkillS Plus
33. identifying a Hyperbola using Rotation of Axes  

(a) Use rotation of axes to show that the following equation 
represents a hyperbola.

7x2  48xy  7y2  200x  150y  600  0

(b) Find the XY- and xy-coordinates of the center, vertices, 
and foci.

(c) Find the equations of the asymptotes in XY- and  
xy-coordinates.

34. identifying a Parabola using Rotation of Axes  
(a) Use rotation of axes to show that the following equation 

represents a parabola.

2 !21x  y 2 2  7x  9y

(b) Find the XY- and xy-coordinates of the vertex and focus.

(c) Find the equation of the directrix in XY- and 
xy-coordinates.

35. Rotation of Axes Formulas  Solve the equations

x  X cos f  Y sin f

y  X sin f  Y cos f

  for X and Y in terms of x and y.  [Hint: To begin, multiply 
the first equation by cos f and the second by sin f, and then 
add the two equations to solve for X.]

36. graphing an Equation using Rotation of Axes  Show that the 
graph of the equation

!x  !y  1

  is part of a parabola by rotating the axes through an angle of 
45.  [Hint: First convert the equation to one that does not  
involve radicals.]

12.5 ExERCiSES
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868 CHAPTER 12 ■ Conic Sections

diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
37. PRoVE: Matrix Form of Rotation of Axes Formulas  Let Z, 

Z, and R be the matrices

Z  c x
y
d   Z r  cX

Y
d

R  c cos f sin f

sin f cos f
d

(a) Show that the Rotation of Axes Formulas can be written as

Z  RZ r  and  Z r  R1Z

(b) Let R1 and R2 be matrices that represent rotations 
through the angles f1 and f2, respectively. Show that 
the product matrix R1R2 represents a rotation through an 
angle f1  f2. [Hint: Use the Addition Formulas for 
Sine and Cosine to simplify the entries of the matrix 
R1R2.]

38. PRoVE: Algebraic invariants  A quantity is invariant under 
rotation if it does not change when the axes are rotated. It 
was stated in the text that for the general equation of a conic 
the quantity B 2  4AC is invariant under rotation.

(a) Use the formulas for A, B, and C on page 862 to prove 
that the quantity B 2  4AC is invariant under rotation; 
that is, show that

B2  4AC  B r2  4A rC r

(b) Prove that A  C is invariant under rotation.

(c) Is the quantity F invariant under rotation?

39. diSCoVER ■ PRoVE: geometric invariants  Do you expect 
that the distance between two points is invariant under rota-
tion? Prove your answer by comparing the distance d1P, Q 2  
and d1P r, Q r 2  where P and Q are the images of P and Q 
under a rotation of axes.

12.6 PolAR EquAtionS oF ConiCS
■ A unified geometric description of Conics ■ Polar Equations of Conics

■ A unified geometric description of Conics
Earlier in this chapter, we defined a parabola in terms of a focus and directrix, but we 
defined the ellipse and hyperbola in terms of two foci. In this section we give a more 
unified treatment of all three types of conics in terms of a focus and directrix. If we 
place one focus at the origin, then a conic section has a simple polar equation. More-
over, in polar form, rotation of conics becomes a simple matter. Polar equations of el-
lipses are crucial in the derivation of Kepler’s Laws (see page 852).

EquiVAlEnt dESCRiPtion oF ConiCS

Let F be a fixed point (the focus), / a fixed line (the directrix), and let e be a 
fixed positive number (the eccentricity). The set of all points P such that the 
ratio of the distance from P to F to the distance from P to / is the constant e is 
a conic. That is, the set of all points P such that

d1P, F 2
d1P, , 2  e

is a conic. The conic is a parabola if e  1, an ellipse if e  1, or a hyperbola if 
e  1.

Proof  If e  1, then d1P, F 2  d1P, , 2 , and so the given condition becomes the 
definition of a parabola as given in Section 12.1.

Now, suppose e ? 1. Let’s place the focus F at the origin and the directrix parallel 
to the y-axis and d units to the right. In this case the directrix has equation x  d and 
is perpendicular to the polar axis. If the point P has polar coordinates 1r,  u 2 , we see 
from Figure 1 that d1P, F 2  r and d1P, , 2  d  r cos u. Thus the condition 
d1P, F 2 /d1P, , 2  e, or d1P, F 2  e # d1P, , 2 , becomes

r  e1d  r cos u 2

r ç ¨

y

x
F

� (Directrix)

x=d

P

¨

r

d

FiguRE 1
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SECTION 12.6 ■ Polar Equations of Conics 869

If we square both sides of this polar equation and convert to rectangular coordi-
nates, we get

 x2  y2  e21d  x 2 2
 11  e2 2x2  2de2x  y2  e2d2   Expand and simplify

 a x 
e2d

1  e2 b
2


y2

1  e2 
e2d2

11  e2 2 2    
Divide by 1  e2 and complete  
the square

If e  1, then dividing both sides of this equation by e2d2/ 11  e2 2 2 gives an equation 
of the form

1x  h 2 2
a2 

y2

b2  1

where

h 
e2d

1  e2   a2 
e2d2

11  e2 2 2   b2 
e2d2

1  e2

This is the equation of an ellipse with center 1h,  0 2 . In Section 12.2 we found that the 
foci of an ellipse are a distance c from the center, where c2  a2  b2. In our case

c2  a2  b2 
e4d2

11  e2 2 2
Thus c  e2d/ 11  e2 2  h, which confirms that the focus defined in the theorem 
(namely the origin) is the same as the focus defined in Section 12.2. It also follows that

e 
c
a

If e  1, a similar proof shows that the conic is a hyperbola with e  c/a, where  
c2  a2  b2. ■

■ Polar Equations of Conics
In the proof we saw that the polar equation of the conic in Figure 1 is r  e1d  r cos u 2 . 
Solving for r, we get

r 
ed

1  e cos u

If the directrix is chosen to be to the left of the focus 1x  d 2 , then we get the equa-
tion r  ed/ 11  e cos u 2 . If the directrix is parallel to the polar axis 1y  d or y  d 2 , 
then we get sin u instead of cos u in the equation. These observations are summarized 
in the following box and in Figure 2.

PolAR EquAtionS oF ConiCS

A polar equation of the form

r 
ed

1  e cos u
  or  r 

ed

1  e sin u

represents a conic with one focus at the origin and with eccentricity e. The conic is

1. a parabola if e  1,

2. an ellipse if 0  e  1,

3. a hyperbola if e  1.
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870 CHAPTER 12 ■ Conic Sections

(a)  r= ed
1+e ç ¨ (b)  r= ed

1-e ç ¨ (c)  r= ed
1+e ß ¨ (d)  r= ed

1-e ß ¨

y

xF

x=d
Directrix

Axis
F

x=_d
Directrix

y

xAxis F

y=d             Directrix
y

x

Axis y=_d           Directrix

F

y

x

Axis

FiguRE 2 The form of the polar equation of a conic indicates the location of the directrix.

To graph the polar equation of a conic, we first determine the location of the directrix 
from the form of the equation. The four cases that arise are shown in Figure 2. (The 
figure shows only the parts of the graphs that are close to the focus at the origin. The 
shape of the rest of the graph depends on whether the equation represents a parabola, 
an ellipse, or a hyperbola.) The axis of a conic is perpendicular to the directrix—
specifically we have the following:

1. For a parabola the axis of symmetry is perpendicular to the directrix.

2. For an ellipse the major axis is perpendicular to the directrix.

3. For a hyperbola the transverse axis is perpendicular to the directrix.

ExAMPlE 1 ■  Finding a Polar Equation for a Conic
Find a polar equation for the parabola that has its focus at the origin and whose direc-
trix is the line y  6.

Solution  Using e  1 and d  6 and using part (d) of Figure 2, we see that the 
polar equation of the parabola is

r 
6

1  sin u

now try Exercise 3 ■

To graph a polar conic, it is helpful to plot the points for which u  0, p/2, p, and 
3p/2. Using these points and a knowledge of the type of conic (which we obtain from 
the eccentricity), we can easily get a rough idea of the shape and location of the 
graph.

ExAMPlE 2 ■ identifying and Sketching a Conic
A conic is given by the polar equation

r 
10

3  2 cos u

(a) Show that the conic is an ellipse, and sketch its graph.

(b) Find the center of the ellipse and the lengths of the major and minor axes.

Solution

(a) Dividing the numerator and denominator by 3, we have

r 
10
3

1  2
3 cos u
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SECTION 12.6 ■ Polar Equations of Conics 871

   Since e  2
3  1, the equation represents an ellipse. For a rough graph we plot 

the points for which u  0, p/2, p, 3p/2 (see Figure 3).

u r

0 10
p
2

10
3

p 2
3p
2

10
3 0

V⁄ (10, 0V¤ (2, π) )Focus

2œ∑5Å4.47

!   ,    @π
2

10
3

!   ,      @3π
2

10
3

π
4

3π
4

5π
4

7π
4

FiguRE 3 r 
10

3  2 cos u

(b)  Comparing the equation to those in Figure 2, we see that the major axis is  
horizontal. Thus the endpoints of the major axis are V1110,  0 2  and V212,  p 2 .  
So the center of the ellipse is at C14,  0 2 , the midpoint of V1V2.

    The distance between the vertices V1 and V2 is 12; thus the length of the major 
axis is 2a  12, so a  6. To determine the length of the minor axis, we need to 
find b. From page 869 we have c  ae  6A23B  4, so

b2  a2  c2  62  42  20

   Thus b  !20  2 !5 < 4.47, and the length of the minor axis is 
2b  4 !5 < 8.94.

now try Exercises 17 and 21 ■

ExAMPlE 3 ■ identifying and Sketching a Conic
A conic is given by the polar equation

r 
12

2  4 sin u

(a) Show that the conic is a hyperbola, and sketch its graph.

(b) Find the center of the hyperbola, and sketch the asymptotes.

Solution

(a) Dividing the numerator and denominator by 2, we have

r 
6

1  2 sin u

   Since e  2  1, the equation represents a hyperbola. For a rough graph we plot 
the points for which u  0, p/2, p, 3p/2 (see Figure 4).

(b)  Comparing the equation to those in Figure 2, we see that the transverse axis is 
vertical. Thus the endpoints of the transverse axis (the vertices of the hyperbola) 
are V112,  p/2 2  and V216,  3p/2 2  V216,  p/2 2 . So the center of the hyperbola is 
C14,  p/2 2 , the midpoint of V1V2.

    To sketch the asymptotes, we need to find a and b. The distance between V1 
and V2 is 4; thus the length of the transverse axis is 2a  4, so a  2. To find b, 
we first find c. From page 869 we have c  ae  2  2  4, so

b2  c2  a2  42  22  12
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872 CHAPTER 12 ■ Conic Sections

   Thus b  !12  2 !3 < 3.46. Knowing a and b allows us to sketch the central 
box, from which we obtain the asymptotes shown in Figure 4.

u r

0 6
p
2 2
p 6
3p
2 6

(6, 0)
Focus

0(6, π)

V¤ !_ 6,      @3π
2

V⁄ !2,    @π
2

π
6

5π
6

5π
4

7π
4

FiguRE 4 r 
12

2  4 sin u

now try Exercise 25 ■

When we rotate conic sections, it is much more convenient to use polar equations 
than Cartesian equations. We use the fact that the graph of r  f1u  a 2  is the graph 
of r  f1u 2  rotated counterclockwise about the origin through an angle a (see Exer-
cise 65 in Section 8.2).

ExAMPlE 4 ■ Rotating an Ellipse 
Suppose the ellipse of Example 2 is rotated through an angle p/4 about the origin. 
Find a polar equation for the resulting ellipse, and draw its graph.

Solution  We get the equation of the rotated ellipse by replacing u with u  p/4 in 
the equation given in Example 2. So the new equation is

r 
10

3  2 cos1u  p/4 2
We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse 
has been rotated about the focus at the origin.

now try Exercise 37 ■

In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect 
of varying the eccentricity e. Notice that when e is close to 0, the ellipse is nearly cir-
cular, and it becomes more elongated as e increases. When e  1, of course, the conic 
is a parabola. As e increases beyond 1, the conic is an ever steeper hyperbola.

e=0.86e=0.5 e=1 e=1.4 e=4

FiguRE 6

11

_6

_5 15

r= 10
3-2 ç ¨

r= 10
3-2 ç(¨ _ π/4)

FiguRE 5
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SECTION 12.6 ■ Polar Equations of Conics 873

ConCEPtS
 1. All conics can be described geometrically by using a fixed 

  point F called the   and a fixed line , called 

  the    . For a fixed positive number e the set of 
all points P satisfying

               
           e

  is a    . If e  1, the conic is a(n) 

     ; if e  1, the conic is a(n)    ; 

  and if e  1, the conic is a(n)    . The number e 

  is called the   of the conic.

 2. The polar equation of a conic with eccentricity e has one of 
the following forms: 

r       or    r   

SkillS
3–10 ■ Finding a Polar Equation for a Conic  Write a polar equa-
tion of a conic that has its focus at the origin and satisfies the 
given conditions.

 3. Ellipse, eccentricity 2
3, directrix x  3

 4. Hyperbola, eccentricity 4
3, directrix x  3

 5. Parabola, directrix y  2

 6. Ellipse, eccentricity 1
2, directrix y  4

 7. Hyperbola, eccentricity 4, directrix r  5 sec u

 8. Ellipse, eccentricity 0.6, directrix r  2 csc u

 9. Parabola, vertex at 15,  p/2 2
 10. Ellipse, eccentricity 0.4, vertex at 12,  0 2

12.6 ExERCiSES

11–16 ■ graphs of Polar Equations of Conics  Match the polar 
equations with the graphs labeled I–VI. Give reasons for your 
answer.

 11. r 
6

1  cos u
 12. r 

2

2  cos u

13. r 
3

1  2 sin u
 14. r 

5

3  3 sin u

15. r 
12

3  2 sin u
 16. r 

12

2  3 cos u

π
2

3π
2

π
1

I

IV

II

V

III

VI

1

π
2

3π
2

π

π
2

3π
2

π
1

π
2

3π
2

π
5 10

π
2

π

3π
2

7 15

π
2

3π
2

π
1

r
r

r r

r

r
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17–20 ■ Polar Equation for a Parabola  A polar equation of a 
conic is given. (a) Show that the conic is a parabola, and sketch 
its graph. (b) Find the vertex and directrix, and indicate them on 
the graph.

17. r 
4

1  sin u
 18. r 

3

2  2 sin u

19. r 
5

3  3 cos u
 20. r 

2

5  5 cos u

21–24 ■ Polar Equation for an Ellipse  A polar equation of a 
conic is given. (a) Show that the conic is an ellipse, and sketch its 
graph. (b) Find the vertices and directrix, and indicate them on 
the graph. (c) Find the center of the ellipse and the lengths of the 
major and minor axes.

21. r 
4

2  cos u
 22. r 

6

3  2 sin u

23. r 
12

4  3 sin u
 24. r 

18

4  3 cos u

25–28 ■ Polar Equation for a Hyperbola  A polar equation of a 
conic is given. (a) Show that the conic is a hyperbola, and sketch 
its graph. (b) Find the vertices and directrix, and indicate them on 
the graph. (c) Find the center of the hyperbola, and sketch the 
asymptotes.

25. r 
8

1  2 cos u
 26. r 

10

1  4 sin u

27. r 
20

2  3 sin u
 28. r 

6

2  7 cos u

29–36 ■ identifying and graphing a Conic  (a) Find the eccen-
tricity, and identify the conic. (b) Sketch the conic, and label the 
vertices.

29. r 
4

1  3 cos u
 30. r 

8

3  3 cos u

31. r 
2

1  cos u
 32. r 

10

3  2 sin u

33. r 
6

2  sin u
 34. r 

5

2  3 sin u

35. r 
7

2  5 sin u
 36. r 

8

3  cos u

37–40 ■ Rotating a Conic  A polar equation of a conic is given. 
(a) Find the eccentricity and the directrix of the conic. (b) If this 
conic is rotated about the origin through the given angle u, write 
the resulting equation. (c) Draw graphs of the original conic and 
the rotated conic on the same screen.

37. r 
1

4  3 cos u
;  u 

p

3
 38. r 

2

5  3 sin u
;  u 

2p

3

39. r 
2

1  sin u
;  u   

p

4

 40. r 
9

2  2 cos u
;  u   

5p

6

SkillS Plus
41. Families of Conics  Graph the conics r  e/ 11  e cos u 2  

with e  0.4, 0.6, 0.8, and 1.0 on a common screen. How 
does the value of e affect the shape of the curve?

42. Families of Conics  
(a) Graph the conics 

r 
ed

11  e sin u 2  

 for e  1 and various values of d. How does the value of 
d affect the shape of the conic?

(b) Graph these conics for d  1 and various values of e. 
How does the value of e affect the shape of the conic?

APPliCAtionS
43. orbit of the Earth  The polar equation of an ellipse can be 

expressed in terms of its eccentricity e and the length a of its 
major axis.

(a) Show that the polar equation of an ellipse with directrix  
x  d can be written in the form

r 
a11  e2 2

1  e cos u

 [Hint: Use the relation a2  e2d2/ 11  e2 2 2 given in the 
proof on page 869.]

(b) Find an approximate polar equation for the elliptical  
orbit of the earth around the sun (at one focus) given that 
the eccentricity is about 0.017 and the length of the 
major axis is about 2.99  108 km.

44. Perihelion and Aphelion  The planets move around the sun 
in elliptical orbits with the sun at one focus. The positions of 
a planet that are closest to, and farthest from, the sun are 
called its perihelion and aphelion, respectively.

AphelionPerihelion
Sun

Planet

¨

r

(a) Use Exercise 43(a) to show that the perihelion distance 
from a planet to the sun is a11  e 2  and the aphelion 
distance is a11  e 2 .

(b) Use the data of Exercise 43(b) to find the distances from 
the earth to the sun at perihelion and at aphelion.

45. orbit of Pluto  The distance from Pluto to the sun is  
4.43  109 km at perihelion and 7.37  109 km at aphelion. 
Use Exercise 44 to find the eccentricity of Pluto’s orbit.
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diSCuSS ■ diSCoVER ■ PRoVE ■ wRitE
46. diSCuSS: distance to a Focus  When we found polar equa-

tions for the conics, we placed one focus at the pole. It’s easy 
to find the distance from that focus to any point on the conic. 
Explain how the polar equation gives us this distance.

47. diSCuSS: Polar Equations of orbits  When a satellite orbits 
the earth, its path is an ellipse with one focus at the center of 
the earth. Why do scientists use polar (rather than rectangu-
lar) coordinates to track the position of satellites?   
[Hint: Your answer to Exercise 46 is relevant here.]

geometric definition of a Parabola (p. 826)
A parabola is the set of points in the plane that are equidistant 
from a fixed point F (the focus) and a fixed line l (the directrix).

graphs of Parabolas with Vertex at the origin (pp. 827, 828)
A parabola with vertex at the origin has an equation of the form  
x2  4py if its axis is vertical and an equation of the form  
y2  4px if its axis is horizontal.

 x2  4py y2  4px

 

y

x

p>0

p<0

p

 

y

x

p>0p<0

p

Focus 10, p2, directrix y  p Focus 1p, 02, directrix x  p

geometric definition of an Ellipse (p. 834)
An ellipse is the set of all points in the plane for which the sum 
of the distances to each of two given points F1 and F2 (the foci) is 
a fixed constant.

graphs of Ellipses with Center at the origin (p. 836)
An ellipse with center at the origin has an equation of the form 

x2

a2 
y2

b2  1 if its axis is horizontal and an equation of the form 

x2

b2 
y2

a2  1 if its axis is vertical (where in each case a  b  0).

 
x2

a2 
y2

b2  1
 

x2

b2 
y2

a2  1

 

a>b

a

b

_a

_b

c_c x

y

 

a>b

b

a

_b

_a

c

_c
x

y

 Foci 1c, 02, c2  a2  b2  Foci 10, c2, c2  a2  b2 

Eccentricity of an Ellipse (p. 839)

The eccentricity of an ellipse with equation 
x2

a2 
y2

b2  1 or 

x2

b2 
y2

a2  1 (where a  b  0) is the number

e 
c

a

where c  "a2  b2. The eccentricity e of any ellipse is a num-
ber between 0 and 1. If e is close to 0, then the ellipse is nearly 
circular; the closer e gets to 1, the more elongated it becomes.

geometric definition of a Hyperbola (p. 843)
A hyperbola is the set of all points in the plane for which the 
absolute value of the difference of the distances to each of two 
given points F1 and F2 (the foci) is a fixed constant.

graphs of Hyperbolas with Center at the origin (p. 844)
A hyperbola with center at the origin has an equation of the form

x2

a2 
y2

b2  1 if its axis is horizontal and an equation of the form

 

x2

b2 
y2

a2  1 if its axis is vertical.

 
x2

a2 
y2

b2  1
 

 

x2

b2 
y2

a2  1

 

a

b

_a

_b

_c c
x

y

 

a

b
_a

_b

_c

c

x

y

 Foci 1c, 02, c2  a2  b2  Foci 10, c2, c2  a2  b2 

 Asymptotes: y   

b

a
 x

 
Asymptotes: y   

a

b
 x

Shifted Conics (p. 852)
If the vertex of a parabola or the center of an ellipse or a hyper-
bola does not lie at the origin but rather at the point (h, k), then 
we refer to the curve as a shifted conic. To find the equation of 
the shifted conic, we use the “unshifted” form for the appropriate 
curve and  replace x by x  h and y by y  k.

■ PRoPERtiES And FoRMulAS

CHAPtER 12 ■ REViEw
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general Equation of a Shifted Conic (p. 856)
The graph of the equation

Ax2  Cy2  Dx  Ey  F  0

(where A and C are not both 0) is either a conic or a degenerate 
conic. In the nondegenerate cases the graph is

1. a parabola if A  0 or C  0,

2. an ellipse if A and C have the same sign (or a circle if A  C),

3. a hyperbola if A and C have opposite sign.

To graph a conic whose equation is given in general form, com-
plete the squares in x and y to put the equation in standard form 
for a parabola, an ellipse, or a hyperbola.

Rotation of Axes (p. 861)
Suppose the x- and y-axes in a coordinate plane are rotated 
through the acute angle f to produce the X- and Y-axes, as shown 
in the figure below. Then the coordinates of a point in the xy- and 
the XY-planes are related as follows:

 x  X cos f  Y sin f   X  x cos f  y sin f

 y  X sin f  Y cos f   Y  x sin f  y cos f

 
0

P(x, y)
P(X, Y)

y

x

Y

X

ƒ

the general Conic Equation (pp. 863, 866)
The general equation of a conic is of the form 

Ax2  Bxy  Cy2  Dx  Ey  F  0

The quantity B2  4AC is called the discriminant of the equa-
tion. The graph is 

1. a parabola if B2  4AC  0,

2. an ellipse if B2  4AC  0,

3. a hyperbola if B2  4AC  0.

To eliminate the xy-term in the general equation of a conic, rotate 
the axes through an angle f that satisfies 

cot 2f 
A  C

B

Polar Equations of Conics (p. 869)
A polar equation of the form 

r 
ed

1  e cos u
  or  r 

ed

1  e sin u

represents a conic with one focus at the origin and with eccentric-
ity e. The conic is 

1. a parabola if e  1,

2. an ellipse if 0  e  1,

3. a hyperbola if e  1.

 1. (a) Give the geometric definition of a parabola.

(b) Give the equation of a parabola with vertex at the origin 
and with vertical axis. Where is the focus? What is the 
directrix?

(c) Graph the equation x2  8y. Indicate the focus on the 
graph.

 2. (a) Give the geometric definition of an ellipse.

(b) Give the equation of an ellipse with center at the origin 
and with major axis along the x-axis. How long is the 
major axis? How long is the minor axis? Where are the 
foci? What is the eccentricity of the ellipse?

(c) Graph the equation 
x2

16


y2

9
 1. What are the lengths 

 of the major and minor axes? Where are the foci?

 3. (a) Give the geometric definition of a hyperbola.

(b) Give the equation of a hyperbola with center at the origin 
and with transverse axis along the x-axis. How long is 
the transverse axis? Where are the vertices? What are the 
asymptotes? Where are the foci? 

(c) What is a good first step in graphing the hyperbola that is 
described in part (b)? 

(d) Graph the equation 
x2

16


y2

9
 1. What are the 

 asymptotes? Where are the vertices? Where are the foci? 
What is the length of the transverse axis? 

 4. (a)  Suppose we are given an equation in x and y. Let h and k 
be positive numbers. What is the effect on the graph of 
the equation if x is replaced by x  h or x  h and if  
y is replaced by y  k or y  k?

(b) Sketch a graph of 
1x  2 2 2

16

1y  4 2 2

9
 1

 5. (a)  How can you tell whether the following nondegenerate 
conic is a parabola, an ellipse, or a hyperbola?

Ax2  Cy2  Dx  Ey  F  0

(b) What conic does 3x2  5y2  4x  5y  8  0 
represent?

■ ConCEPt CHECk
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 6. (a)  Suppose that the x- and y-axes are rotated through an 
acute angle f to produce the X- and Y-axes. What are the 
equations that relate the coordinates 1x, y 2  and 1X, Y 2  of 
a point in the xy-plane and XY-plane, respectively?

(b) In the equation below, how do you eliminate the xy-term?

Ax2  Bxy  Cy2  Dx  Ey  F  0

(c) Use a rotation of axes to eliminate the xy-term in the 
equation

25x2  14xy  25y2  288

 Graph the equation.

 7. (a)  What is the discriminant of the equation in 6(b)? How 
can you use the discriminant to determine the type of 
conic that the equation represents? 

(b) Use the discriminant to identify the equation in 6(c).

 8. (a)  Write polar equations that represent a conic with eccen-
tricity e. For what values of e is the conic an ellipse? a 
hyperbola? a parabola?

(b) What conic does the polar equation r  2/ 11  cos u 2  
represent? Graph the conic.

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.

■ EXERCISES

1–12 ■ Graphing Parabolas  An equation of a parabola is  
given. (a) Find the vertex, focus, and directrix of the parabola.  
(b) Sketch a graph of the parabola and its directrix.

 1. y2  4x  2. x  1
12 y2

 3. 1
8 x2  y  4. x2  8y

 5. x2  8y  0  6. 2x  y2  0

 7. 1y  2 2 2  41x  2 2   8. 1x  3 2 2  201y  2 2
 9. 1

2 1y  3 2 2  x  0 10. 21x  1 2 2  y

 11. 1
2 x2  2x  2y  4 12. x2  31x  y 2

13–24 ■ Graphing Ellipses  An equation of an ellipse is given. 
(a) Find the center, vertices, and foci of the ellipse. (b) Determine 
the lengths of the major and minor axes. (c) Sketch a graph of the 
ellipse.

 13. 
x2

9


y2

25
 1 14. 

x2

49


y2

9
 1

15. 
x2

49


y2

4
 1 16. 

x2

4


y2

36
 1

17. x2  4y2  16 18. 9x2  4y2  1

19. 
1x  3 2 2

9


y2

16
 1 20. 

1x  2 2 2
25


1y  3 2 2

16
 1

21. 
1x  2 2 2

9

1y  3 2 2

36
 1 22. 

x2

3

1y  5 2 2

25
 1

23. 4x2  9y2  36y 24. 2x2  y2  2  41x  y 2

25–36 ■ Graphing Hyperbolas  An equation of a hyperbola is 
given. (a) Find the center, vertices, foci, and asymptotes of the 
hyperbola. (b) Sketch a graph of the hyperbola.

25.  

x2

9


y2

16
 1 26. 

x2

49


y2

32
 1

27. 
x2

4


y2

49
 1 28. 

y2

25


x2

4
 1

29. x2  2y2  16 30. x2  4y2  16  0

31. 
1x  4 2 2

16


y2

16
 1 32. 

1x  2 2 2
8


1y  2 2 2

8
 1

33. 
1y  3 2 2

4

1x  1 2 2

36
 1 34. 

1y  3 2 2
3


x2

16
 1

35. 9y2  18y  x2  6x  18 

36. y2  x2  6y

37–42 ■ Finding the Equation of a Conic  Find an equation for 
the conic whose graph is shown.

37.   38.

  

0 x

y

2 F(2, 0)

 

0 x

y

5

_12
_5

12

39.   40.

  

0 x

y

F(0, 5)4

_4

  

0 x

y

V(4, 4)

4

8

41.   42.

  

0 x

y

2

4

  

0 x

y

1

1 2
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CHAPtER 12
43–54 ■ identifying and graphing a Conic  Determine whether 
the equation represents an ellipse, a parabola, a hyperbola, or a 
degenerate conic. If the graph is an ellipse, find the center, foci, 
and vertices. If it is a parabola, find the vertex, focus, and direc-
trix. If it is a hyperbola, find the center, foci, vertices, and asymp-
totes. Then sketch the graph of the equation. If the equation has 
no graph, explain why.

43. 
x2

12
 y  1 44. 

x2

12


y2

144


y

12

45. x2  y2  144  0 46. x2  6x  9y2

47. 4x2  y2  81x  y 2  48. 3x2  61x  y 2  10

49. x  y2  16y 50. 2x2  4  4x  y2

51. 2x2  12x  y2  6y  26  0

52. 36x2  4y2  36x  8y  31

53. 9x2  8y2  15x  8y  27  0

54. x2  4y2  4x  8

55–64 ■ Finding the Equation of a Conic  Find an equation for 
the conic section with the given properties.

55. The parabola with focus F10, 1 2  and directrix y  1

56. The parabola with vertex at the origin and focus F15, 0 2
57. The ellipse with center at the origin and with x-intercepts 2 

and y-intercepts 5

58. The hyperbola with vertices V10, 2 2  and asymptotes 
y   

1
2 x

59. The ellipse with center C10, 4 2 , foci F110, 0 2  and F210, 8 2 , 
and major axis of length 10

60. The hyperbola with center C12, 4 2 , foci F112, 1 2  and 
F212, 7 2 , and vertices V112, 6 2  and V212, 2 2

61. The ellipse with foci F111, 1 2  and F211, 3 2  and with one  
vertex on the x-axis

62. The parabola with vertex V15, 5 2  and directrix the y-axis

63. The ellipse with vertices V117, 12 2  and V217, 8 2  and  
passing through the point P11, 8 2

64. The parabola with vertex V11, 0 2  and horizontal axis of 
symmetry and crossing the y-axis at y  2

65. Path of the Earth  The path of the earth around the sun is an 
ellipse with the sun at one focus. The ellipse has major axis 
of length 186,000,000 mi and eccentricity 0.017. Find the 
distance between the earth and the sun when the earth is  
(a) closest to the sun and (b) farthest from the sun.

186,000,000 mi

66. loRAn  A ship is located 40 mi from a straight shoreline. 
LORAN stations are located at points A and B on the shoreline, 

300 mi apart. From the LORAN signals, the captain determines 
that the ship is 80 mi closer to A than to B. Find the location of 
the ship. (Place A and B on the y-axis with the x-axis halfway 
between them. Find the x- and y-coordinates of the ship.)

40 mi

A

B

300 mi

67. Families of Ellipses  
(a) Draw graphs of the following family of ellipses for  

k  1, 2, 4, and 8.

x2

16  k 2 
y2

k 2  1

(b) Prove that all the ellipses in part (a) have the same foci.

68. Families of Parabolas  
(a) Draw graphs of the following family of parabolas for 

k  1
2, 1, 2, and 4.

y  kx2

(b) Find the foci of the parabolas in part (a).

(c) How does the location of the focus change as k 
increases?

69–72 ■ identifying a Conic  An equation of a conic is given. 
(a) Use the discriminant to determine whether the graph of the 
equation is a parabola, an ellipse, or a hyperbola. (b) Use a rota-
tion of axes to eliminate the xy-term. (c) Sketch the graph.

69. x2  4xy  y2  1

70. 5x2  6xy  5y2  8!2x  8!2y  4  0

71. 7x2  6 !3 xy  13y2  4 !3 x  4y  0

72. 9x2  24xy  16y2  25

73–76 ■ identify a Conic from its graph  Use a graphing device 
to graph the conic. Identify the type of conic from the graph.

73. 5x2  3y2  60 74. 9x2  12y2  36  0

75. 6x  y2  12y  30 76. 52x2  72xy  73y2  100

77–80 ■ Polar Equations of Conics  A polar equation of a  
conic is given. (a) Find the eccentricity, and identify the conic. 
(b) Sketch the conic, and label the vertices.

77. r 
1

1  cos u
 78. r 

2

3  2 sin u

79. r 
4

1  2 sin u
 80. r 

12

1  4 cos u
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 1. Find the focus and directrix of the parabola x2  12y, and sketch its graph.

 2. Find the vertices, foci, and the lengths of the major and minor axes for the ellipse 

  
x2

16


y2

4
 1. Then sketch its graph.

 3. Find the vertices, foci, and asymptotes of the hyperbola 
y2

9


x2

16
 1. Then sketch its 

graph.

 4. Find an equation for the parabola with vertex 10, 0 2  and focus 14, 0 2 .
 5. Find an equation for the ellipse with foci 13, 0 2  and vertices 14, 0 2 .
 6. Find an equation for the hyperbola with foci 10, 5 2  and with asymptotes y   

3
4 x.

7–9 ■ Find an equation for the conic whose graph is shown.

 7. 
(_4, 2)

1

_1 0 x

y  8. 

2

2

(4, 3)

0 x

y  9. 

0 x

y

1

1 F(4, 0)

10–12 ■ Determine whether the equation represents an ellipse, a parabola, or a hyperbola. If 
the graph is an ellipse, find the center, foci, and vertices. If it is a parabola, find the vertex, 
focus, and directrix. If it is a hyperbola, find the center, foci, vertices, and asymptotes. Then 
sketch the graph of the equation. 

 10. 16x2  36y2  96x  36y  9  0

 11. 9x2  8y2  36x  64y  164

 12. 2x  y2  8y  8  0

 13. Find an equation for the ellipse with center 12, 0 2 , foci 12, 3 2  and major axis of length 8.

 14. Find an equation for the parabola with focus 12, 4 2  and directrix the x-axis.

 15. A parabolic reflector for a car headlight forms a bowl shape that is 6 in. wide at its  
opening and 3 in. deep, as shown in the figure at the left. How far from the vertex should 
the filament of the bulb be placed if it is to be located at the focus?

16. (a)  Use the discriminant to determine whether the graph of the following equation is a 
parabola, an ellipse, or a hyperbola:

5x2  4xy  2y2  18

(b) Use rotation of axes to eliminate the xy-term in the equation.

(c) Sketch a graph of the equation.

(d) Find the coordinates of the vertices of this conic (in the xy-coordinate system).

17. (a)  Find the polar equation of the conic that has a focus at the origin, eccentricity e  1
2, 

and directrix x  2. Sketch a graph of the conic.

(b) What type of conic is represented by the following equation? Sketch its graph.

r 
3

2  sin u

CHAPtER 12 tESt

6 in.

3 in.

A CUMULATIVE REVIEW TEST FOR CHAPTERS 10, 11, AND 12 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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Many buildings employ conic sections in their design. Architects have various reasons 
for using these curves, ranging from structural stability to simple beauty. But how can 
a huge parabola, ellipse, or hyperbola be accurately constructed in concrete and steel? 
In this  Focus on Modeling, we will see how the geometric properties of the conics can 
be used to construct these shapes.

■ Conics in buildings
In ancient times architecture was part of mathematics, so architects had to be mathema-
ticians. Many of the structures they built—pyramids, temples, amphitheaters, and irri-
gation projects—still stand. In modern times architects employ even more sophisticated 
mathematical principles. The photographs below show some structures that employ 
conic sections in their design.

Roman Amphitheater in  
Alexandria, Egypt (circle)

Ceiling of Statuary Hall in the 
U.S. Capitol (ellipse)

Roof of the Skydome in  
Toronto, Canada (parabola)

Nik Wheeler/Encyclopedia/Corbis Architect of the Capitol Walter Schmid/The Image Bank/Getty Images

Roof of Washington Dulles Airport 
(hyperbola and parabola)

McDonnell Planetarium,  
St. Louis, MO (hyperbola)

Attic in La Pedrera,  
Barcelona, Spain (parabola)

Andrew Holt/Photographer’s Choice/Getty Images Joe Sohm/VisionsofAmerica/Photodisc/Getty Images O. Alamany & E. Vicens/Terra/Corbis

Architects have different reasons for using conics in their designs. For example, the 
Spanish architect Antoni Gaudí used parabolas in the attic of La Pedrera (see photo 
above). He reasoned that since a rope suspended between two points with an equally 
distributed load (as in a suspension bridge) has the shape of a parabola, an inverted 
parabola would provide the best support for a flat roof.

■ Constructing Conics
The equations of the conics are helpful in manufacturing small objects, because a 
 computer-controlled cutting tool can accurately trace a curve given by an equation. But 
in a building project, how can we construct a portion of a parabola, ellipse, or hyperbola 
that spans the ceiling or walls of a building? The geometric properties of the conics 
provide practical ways of constructing them. For example, if you were building a circu-
lar tower, you would choose a center point, then make sure that the walls of the tower 

Conics in ArchitectureFoCuS on ModEling
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  Conics in Architecture 881

were a fixed  distance from that point. Elliptical walls can be constructed by using a 
string anchored at two points, as shown in Figure 1.

To construct a parabola, we can use the apparatus shown in Figure 2. A piece of 
string of length a is anchored at F and A. The T-square, also of length a, slides along 
the straight bar L. A pencil at P holds the string taut against the T-square. As the  
T-square slides to the right, the pencil traces out a curve.

Parabola

L

F

a
P

A

FiguRE 2 Constructing a parabola

From the figure we see that

d1F, P 2  d1P, A 2  a    The string is of length a

d1L, P 2  d1P, A 2  a    The T-square is of length a

It follows that d1F, P 2  d1P, A 2  d1L, P 2  d1P, A 2 . Subtracting d1P, A 2  from 
each side, we get

d1F, P 2  d1L, P 2
The last equation says that the distance from F to P is equal to the distance from P to 
the line L. Thus the curve is a parabola with focus F and directrix L.

In building projects, it is easier to construct a straight line than a curve. So in some 
buildings, such as in the Kobe Tower (see Problem 4), a curved surface is produced by 
using many straight lines. We can also produce a curve using straight lines, such as the 
parabola shown in Figure 3.

FiguRE 3 Tangent lines to a parabola

Each line is tangent to the parabola; that is, the line meets the parabola at exactly 
one point and does not cross the parabola. The line tangent to the parabola y  x 

2 at 
the point 1a, a2 2  is

y  2ax  a2

You are asked to show this in Problem 6. The parabola is called the envelope of all such 
lines.

Circle

C

P

F1

P

F2

Ellipse

FiguRE 1 Constructing a circle  
and an ellipse
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882 Focus on Modeling

PRoblEMS
 1. Conics in Architecture  The photographs on page 880 show six examples of buildings 

that contain conic sections. Search the Internet to find other examples of structures that em-
ploy parabolas, ellipses, or hyperbolas in their design. Find at least one example for each 
type of conic.

 2. Constructing a Hyperbola  In this problem we construct a hyperbola. The wooden bar 
in the figure can pivot at F1. A string that is shorter than the bar is anchored at F2 and at A, 
the other end of the bar. A pencil at P holds the string taut against the bar as it moves coun-
terclockwise around F1.

(a)  Show that the curve traced out by the pencil is one branch of a hyperbola with foci at 
F1 and F2.

(b) How should the apparatus be reconfigured to draw the other branch of the hyperbola?

Pivot
point

Hyperbola

F1 F2

P

A

 3. A Parabola in a Rectangle  The following method can be used to construct a  
parabola that fits in a given rectangle. The parabola will be approximated by many short  
line segments.

   First, draw a rectangle. Divide the rectangle in half by a vertical line segment, and label 
the top endpoint V. Next, divide the length and width of each half rectangle into an equal 
number of parts to form grid lines, as shown in the figure below. Draw lines from V to the 
endpoints of horizontal grid line 1, and mark the points where these lines cross the vertical 
grid lines labeled 1. Next, draw lines from V to the endpoints of horizontal grid line 2, and 
mark the points where these lines cross the vertical grid lines labeled 2. Continue in this 
way until you have used all the horizontal grid lines. Now use line segments to connect the 
points you have marked to obtain an approximation to the desired parabola. Apply this pro-
cedure to draw a parabola that fits into a 6 ft by 10 ft rectangle on a lawn.

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

 4. Hyperbolas from Straight lines  In this problem we construct hyperbolic shapes using 
straight lines. Punch equally spaced holes into the edges of two large plastic lids. Connect 
corresponding holes with strings of equal lengths as shown in the figure on the next page. 
Holding the strings taut, twist one lid against the other. An imaginary surface passing 
through the strings has hyperbolic cross sections. (An architectural example of this is the 
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  Conics in Architecture 883

Kobe Tower in Japan, shown in the photograph.) What happens to the vertices of the hy-
perbolic cross sections as the lids are twisted more?

 5. tangent lines to a Parabola  In this problem we show that the line tangent to the pa-
rabola y  x2 at the point 1a, a2 2  has the equation y  2ax  a2.

(a)  Let m be the slope of the tangent line at 1a, a2 2 . Show that the equation of the tangent 
line is y  a 

2  m1x  a 2 .
(b)  Use the fact that the tangent line intersects the parabola at only one point to show that 
1a, a2 2  is the only solution of the system.

e y  a2  m1x  a 2
y  x2

(c)  Eliminate y from the system in part (b) to get a quadratic equation in x. Show that the 
discriminant of this quadratic is 1m  2a 2 2. Since the system in part (b) has exactly 
one solution, the discriminant must equal 0. Find m.

(d)  Substitute the value for m you found in part (c) into the equation in part (a), and  
simplify to get the equation of the tangent line.

 6. A Cut Cylinder  In this problem we prove that when a cylinder is cut by a plane, an el-
lipse is formed. An architectural example of this is the Tycho Brahe Planetarium in Copen-
hagen (see the photograph). In the figure, a cylinder is cut by a plane, resulting in the red 
curve. Two spheres with the same radius as the cylinder slide inside the cylinder so that 
they just touch the plane at F1 and F2. Choose an arbitrary point P on the curve, and let Q1 
and Q2 be the two points on the cylinder where a vertical line through P touches the “equa-
tor” of each sphere.

(a)  Show that PF1  PQ1 and PF2  PQ2.  [Hint: Use the fact that all tangents to a 
sphere from a given point outside the sphere are of the same length.]

(b)  Explain why PQ1  PQ2 is the same for all points P on the curve.

(c) Show that PF1  PF2 is the same for all points P on the curve.

(d) Conclude that the curve is an ellipse with foci F1 and F2.
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Throughout this book  we have used functions to model real-world 
situations. The functions we’ve used have always had real numbers as 
inputs. But many real-world situations occur in stages: stage 1, 2, 3, . . . . 
To model such situations, we need functions whose inputs are the natural 
numbers 1, 2, 3, . . . (representing the stages). For example, the peaks of a 
bouncing ball are represented by the natural numbers 1, 2, 3, . . . 
(representing peak 1, 2, 3, . . .). A function f that models the height of the 
ball at each peak has natural numbers 1, 2, 3, . . . as inputs and gives the 
heights as f 11 2 , f 12 2 , f 13 2 , . . . . In general a function whose inputs are 
the natural numbers is called a sequence. We can think of a sequence as 
simply a list of numbers written in a specific order.

The amount in a bank account at the end of each month, mortgage 
payments, and the amount of an annuity are sequences. The formulas that 
generate these sequences drive our economy—they allow us to borrow 
money to buy our dream home closer to graduation than to retirement.

Many patterns in nature can be modeled by sequences. For example, the 
Fibonacci sequence describes such varied natural patterns as the growth of 
a rabbit population, the arrangements of leaves on a plant, the arrangement 
of scales on a pineapple, and the intricate pattern in a nautilus (pictured 
above).
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886 CHAPTER 13 ■ Sequences and Series

13.1 SequeNceS ANd SuMMATIoN NoTATIoN
■ Sequences ■ Recursively defined Sequences ■ The Partial Sums of a Sequence  
■ Sigma Notation

Roughly speaking, a sequence is an infinite list of numbers. The numbers in the se-
quence are often written as a1, a2, a3, . . . . The dots mean that the list continues forever. 
A simple example is the sequence

5,  10,  15,  20,  25, . . .
 ↑ ↑ ↑ ↑ ↑

 a1 a2 a3 a4 a5 . . .

We can describe the pattern of the sequence displayed above by the following formula:

an  5n

You may have already thought of a different way to describe the pattern—namely, “you 
go from one number to the next by adding 5.” This natural way of describing the se-
quence is expressed by the recursive formula:

an  an1  5

starting with a1  5. Try substituting n  1, 2, 3, . . . in each of these formulas to see 
how they produce the numbers in the sequence. In this section we see how these differ-
ent ways are used to describe specific sequences.

■ Sequences
Any ordered list of numbers can be viewed as a function whose input values are 1, 2,  
3, . . . and whose output values are the numbers in the list. So we define a sequence as  
follows.

deFINITIoN oF A SequeNce

A sequence is a function a whose domain is the set of natural numbers. The 
terms of the sequence are the function values 

a11 2 , a12 2 , a13 2 , . . . , a1n 2 , . . .
We usually write an instead of the function notation a1n 2 . So the terms of the 
sequence are written as

a1, a2, a3, . . . , an, . . . 

The number a1 is called the first term, a2 is called the second term, and in 
general, an is called the nth term.

Here is a simple example of a sequence:

2, 4, 6, 8, 10, . . .

We can write a sequence in this way when it’s clear what the subsequent terms of the 
sequence are. This sequence consists of even numbers. To be more accurate, however, 
we need to specify a procedure for finding all the terms of the sequence. This can be 
done by giving a formula for the nth term an of the sequence. In this case,

an  2n

Another way to write this sequence is 
to use function notation:

 a1n 2  2n

 so a11 2  2, a12 2  4, a13 2  6, . . .
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SECTION 13.1 ■ Sequences and Summation Notation 887

and the sequence can be written as

2,     4,     6,     8,  . . . ,  2n,  . . .

Notice how the formula an  2n gives all the terms of the sequence. For instance, sub-
stituting 1, 2, 3, and 4 for n gives the first four terms:

a1  2 # 1  2  a2  2 # 2  4

a3  2 # 3  6  a4  2 # 4  8

To find the 103rd term of this sequence, we use n  103 to get

a103  2 # 103  206

exAMPle 1 ■ Finding the Terms of a Sequence
Find the first five terms and the 100th term of the sequence defined by each formula.

(a) an  2n  1 (b) cn  n2  1

(c) tn 
n

n  1
 (d) rn 

11 2 n
2n

SoluTIoN  To find the first five terms, we substitute n  1, 2, 3, 4, and 5 in the 
 formula for the nth term. To find the 100th term, we substitute n  100. This gives 
the  following.

nth term First five terms 100th term

(a) 2n  1 1, 3, 5, 7, 9 199
(b) n2  1 0, 3, 8, 15, 24 9999

(c) 
n

n  1

1

2
, 

2

3
, 

3

4
, 

4

5
, 

5

6

100

101

(d) 
11 2 n

2n  

1

2
, 

1

4
,  

1

8
, 

1

16
,  

1

32

1

2100

Now Try exercises 3, 5, 7, and 9 ■

In Example 1(d) the presence of 11 2 n in the sequence has the effect of making 
successive terms alternately negative and positive.

It is often useful to picture a sequence by sketching its graph. Since a sequence is a 
function whose domain is the natural numbers, we can draw its graph in the Cartesian 
plane. For instance, the graph of the sequence

1,  
1

2
,  

1

3
,  

1

4
,  

1

5
,  

1

6
,  . . . ,  

1
n

,  . . .

is shown in Figure 1.
Compare the graph of the sequence shown in Figure 1 to the graph of

1,   

1

2
,  

1

3
,   

1

4
,  

1

5
,   

1

6
,  . . . ,  

11 2 n1

n
,  . . .

shown in Figure 2. The graph of every sequence consists of isolated points that are not 
 connected.

1st 
term

2nd 
term

3rd 
term

4th  
term

nth 
term

an

n0

1

1 2 3 4 5 6

Terms are
decreasing

FIGuRe 1

an

n0

1

1

_1

3 5

Terms alternate
in sign

FIGuRe 2
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888 CHAPTER 13 ■ Sequences and Series

Graphing calculators are useful in analyzing sequences. To work with sequences on 
a TI-83, we put the calculator in Seq mode (“sequence” mode) as in Figure 3(a). If we 
enter the sequence u1n 2  n/ 1n  1 2  of Example 1(c), we can display the terms using 
the TABLE  command as shown in Figure 3(b). We can also graph the sequence as 
shown in Figure 3(c).

FIGURE 3

(b) (c)

1.5

0 15

   u( )
 1 .5
 2 .66667
 3 .75
 4 .8
 5 .83333
 6 .85714
 7 .875

 =1

(a)

 Plot1 Plot2 Plot3
 Min=1

 u( ) = /( +1)=

FIGuRe 3 
u1n 2  n/ 1n  1 2

Finding patterns is an important part of mathematics. Consider a sequence that begins

1, 4, 9, 16, . . .

Can you detect a pattern in these numbers? In other words, can you define a sequence 
whose first four terms are these numbers? The answer to this question seems easy; these 
numbers are the squares of the numbers 1, 2, 3, 4. Thus the sequence we are looking 
for is defined by an  n2. However, this is not the only sequence whose first four terms 
are 1, 4, 9, 16. In other words, the answer to our problem is not unique (see Exercise 
86). In the next example we are interested in finding an obvious sequence whose first 
few terms agree with the given ones.

exAMPle 2 ■ Finding the nth Term of a Sequence
Find the nth term of a sequence whose first several terms are given.

(a) 1
2, 

3
4, 

5
6, 

7
8, . . .        (b) 2, 4, 8, 16, 32, . . .

SoluTIoN

(a)  We notice that the numerators of these fractions are the odd numbers and the 
denominators are the even numbers. Even numbers are of the form 2n, and odd 
numbers are of the form 2n  1 (an odd number differs from an even number  
by 1). So a  sequence that has these numbers for its first four terms is given by

an 
2n  1

2n

(b)  These numbers are powers of 2, and they alternate in sign, so a sequence that 
agrees with these terms is given by

an  11 2 n2n

  You should check that these formulas do indeed generate the given terms.

Now Try exercises 29 and 35 ■

See Appendix D, Using the TI-83/84 
Graphing Calculator, for additional in-
structions on working with sequences. 

Not all sequences can be defined by a 
formula. For example, there is no 
known formula for the sequence of 
prime numbers:*

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

* A prime number is a whole number p whose only divisors are p and 1. (By convention the number 1 is 
not considered prime.)

EratosthEnEs (circa 276–195 b.c.) was 
a renowned Greek geographer, mathe-
matician, and astronomer. He accurately 
calculated the circumference of the earth 
by an  ingenious method. He is most 
famous, however, for his method for find-
ing primes, now called the sieve of 
Eratosthenes. The method consists of list-
ing the integers, beginning with 2 (the 
first prime), and then crossing out all the 
multiples of 2, which are not prime. The 
next number remaining on the list is 3 
(the second prime), so we again cross out 
all multiples of it. The next remaining 
number is 5 (the third prime number), 
and we cross out all multiples of it, and 
so on. In this way all numbers that are 
not prime are crossed out, and the 
remaining numbers are the primes.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 13.1 ■ Sequences and Summation Notation 889

■ Recursively defined Sequences
Some sequences do not have simple defining formulas like those of the preceding ex-
ample. The nth term of a sequence may depend on some or all of the terms preceding 
it. A sequence defined in this way is called recursive. Here are two examples.

exAMPle 3 ■ Finding the Terms of a Recursively defined Sequence
A sequence is defined recursively by a1  1 and

an  31an1  2 2
(a) Find the first five terms of the sequence.

(b) Use a graphing calculator to find the 20th term of the sequence.

SoluTIoN  

(a)  The defining formula for this sequence is recursive. It allows us to find the nth 
term an if we know the preceding term an1. Thus we can find the second term 
from the first term, the third term from the second term, the fourth term from 
the third term, and so on. Since we are given the first term a1  1, we can pro-
ceed as follows.

a2  31a1  2 2  311  2 2  9

a3  31a2  2 2  319  2 2  33

a4  31a3  2 2  3133  2 2  105

a5  31a4  2 2  31105  2 2  321

  Thus the first five terms of this sequence are

1, 9, 33, 105, 321, . . .

(b)  Note that to find the 20th term of the recursive sequence, we must first find all 19 
preceding terms. This is most easily done by using a graphing calculator. Figure 
4(a) shows how to enter this sequence on the TI-83 calculator. From Figure 4(b) 
we see that the 20th term of the sequence is 

a20  4,649,045,865

(a) (b)

u(20)
4649045865

 Plot1 Plot2 Plot3
  Min=1
 u( )=3(u( -1)+2)
 u( Min)={1}

FIGuRe 4 
u1n 2  31u1n  1 2  2 2 , u11 2  1

Now Try exercises 15 and 25 ■

exAMPle 4 ■ The Fibonacci Sequence
Find the first 11 terms of the sequence defined recursively by F1  1, F2  1 and

Fn  Fn1  Fn2

See Appendix D, Using the TI-83/84 
Graphing Calculator, for additional in-
structions on working with sequences. 

large Prime Numbers
The search for large primes fascinates 
many people. As of this writing, the larg-
est known prime number is

257,885,161  1

It was discovered by Dr. Curtis Cooper of 
the University of Central Missouri in 
January 2013. In decimal notation this 
number contains 17,425,170 digits. If it 
were written in full, it would occupy 
more than four times as many pages as 
this book contains. Cooper was working 
with a large Internet group known as 
GIMPS (the Great Internet Mersenne 
Prime Search). Numbers of the form 
2p  1, where p is prime, are called 
Mersenne numbers and are named for 
the French monk who first studied them 
in the 1600s. Such numbers are more 
easily checked for primality than others. 
That is why the largest known primes are 
of this form.
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890 CHAPTER 13 ■ Sequences and Series

SoluTIoN  To find Fn, we need to find the two preceding terms, Fn1 and Fn2.  
Since we are given F1 and F2, we proceed as follows.

F3  F2  F1  1  1  2

F4  F3  F2  2  1  3

F5  F4  F3  3  2  5

It’s clear what is happening here. Each term is simply the sum of the two terms that 
precede it, so we can easily write down as many terms as we please. Here are the first 
11 terms. (You can also find these using a graphing calculator.)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

Now Try exercise 19 ■

The sequence in Example 4 is called the Fibonacci sequence, named after the 13th 
century Italian mathematician who used it to solve a problem about the breeding of 
rabbits (see Exercise 85). The sequence also occurs in numerous other applications in 
nature. (See Figures 5 and 6.) In fact, so many phenomena behave like the Fibonacci 
sequence that one mathematical journal, the Fibonacci Quarterly, is devoted entirely to 
its properties.

1

1

2

3

5

8

FIGuRe 5 The Fibonacci  
sequence in the branching  
of a tree
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Fibonacci (1175–1250) was born in 
Pisa, Italy, and was educated in North 
Africa. He traveled widely in the 
Mediterranean area and learned the vari-
ous methods then in use for writing 
numbers. On returning to Pisa in 1202, 
Fibonacci advocated the use of the 
Hindu-Arabic decimal system, the one we 
use today, over the Roman  numeral sys-
tem that was used in Europe in his time. 
His most famous book, Liber Abaci, 
expounds on the advantages of the 
Hindu- Arabic numerals. In fact, multipli-
cation and division were so complicated 
using Roman num erals that a college 
degree was necessary to master these 
skills. Interestingly, in 1299 the city of 
Florence outlawed the use of the decimal 
system for merchants and businesses, 
requiring numbers to be written in 
Roman numerals or words. One can only 
speculate about the reasons for this law.
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■ The Partial Sums of a Sequence
In calculus we are often interested in adding the terms of a sequence. This leads to the 
following definition.

The PARTIAl SuMS oF A SequeNce

For the sequence

a1, a2, a3, a4, . . . , an, . . .

the partial sums are

 S1  a1

 S2  a1  a2

 S3  a1  a2  a3

 S4  a1  a2  a3  a4

 (

 Sn  a1  a2  a3  . . .  an

 (

S1 is called the first partial sum, S2 is the second partial sum, and so on. Sn is 
called the nth partial sum. The sequence S1, S2, S3, . . . , Sn, . . . is called the 
sequence of partial sums.

exAMPle 5 ■ Finding the Partial Sums of a Sequence
Find the first four partial sums and the nth partial sum of the sequence given by  
an  1/2n.

SoluTIoN  The terms of the sequence are

1

2
,  

1

4
,  

1

8
, . . .

The first four partial sums are

S1 
1

2
 

1

2

S2 
1

2


1

4
 

3

4

S3 
1

2


1

4


1

8
 

7

8

S4 
1

2


1

4


1

8


1

16
 

15

16

Notice that in the value of each partial sum, the denominator is a power of 2 and the  
numerator is one less than the denominator. In general, the nth partial sum is

Sn 
2n  1

2n  1 
1

2n

The first five terms of an and Sn are graphed in Figure 7.

Now Try exercise 43 ■

a⁄

n0

1

1

1
2

S⁄

S¤

a¤

S‹

a‹

S›

a›

Sfi

afi

2 3 4 5

Partial sums of
the sequence

Terms of the
sequence

FIGuRe 7 Graph of the sequence an 
and the sequence of partial sums Sn
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exAMPle 6 ■ Finding the Partial Sums of a Sequence
Find the first four partial sums and the nth partial sum of the sequence given by

an 
1
n


1

n  1

SoluTIoN  The first four partial sums are

 S1  a 1 
1

2
b   1 

1

2

 S2  a 1 
1

2
b  a 1

2


1

3
b   1 

1

3

 S3  a 1 
1

2
b  a 1

2


1

3
b  a 1

3


1

4
b   1 

1

4

 S4  a 1 
1

2
b  a 1

2


1

3
b  a 1

3


1

4
b  a 1

4


1

5
b   1 

1

5

Do you detect a pattern here? Of course. The nth partial sum is

Sn  1 
1

n  1

Now Try exercise 45 ■

■ Sigma Notation
Given a sequence

a1, a2, a3, a4, . . .

we can write the sum of the first n terms using summation notation, or sigma nota-
tion. This notation derives its name from the Greek letter  (capital sigma, correspond-
ing to our S for “sum”). Sigma notation is used as follows:

a
n

k1
ak  a1  a2  a3  a4  . . .  an

The left side of this expression is read, “The sum of ak from k  1 to k  n.” The letter 
k is called the index of summation, or the summation variable, and the idea is to re-
place k in the expression after the sigma by the integers 1, 2, 3, .  .  . , n, and add the 
resulting expressions, arriving at the right-hand side of the equation.

exAMPle 7 ■ Sigma Notation
Find each sum.

(a) a
5

k1
k 2      (b) a

5

j3

1

j
      (c) a

10

k5
k      (d) a

6

i1
2

SoluTIoN  

(a) a
5

k1
k 

2  12  22  32  42  52  55

(b) a
5

j3

1

j


1

3


1

4


1

5


47

60

               
a

n

k1
ak

This tells us to 
end with k  n

This tells us to 
start with k  1

This tells 
us to add
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(c) a
10

k5
k  5  6  7  8  9  10  45

(d) a
6

i1
2  2  2  2  2  2  2  12

Now Try exercises 47 and 49 ■

We can use a graphing calculator to evaluate sums. For instance, Figure 8 shows how 
the TI-83 can be used to evaluate the sums in parts (a) and (b) of Example 7.

exAMPle 8 ■ Writing Sums in Sigma Notation
Write each sum using sigma notation.

(a) 13  23  33  43  53  63  73

(b) !3  !4  !5  . . .  !77

SoluTIoN

(a) We can write

13  23  33  43  53  63  73  a
7

k1
k 

3

(b) A natural way to write this sum is

!3  !4  !5  . . .  !77  a
77

k3
!k

   However, there is no unique way of writing a sum in sigma notation. We could 
also write this sum as

!3  !4  !5  . . .  !77  a
74

k0
!k  3

or !3  !4  !5  . . .  !77  a
75

k1
!k  2

Now Try exercises 67 and 69 ■

The Golden Ratio
The ancient Greeks considered a line segment to be divided into the 
golden ratio if the ratio of the shorter part to the longer part is the 
same as the ratio of the longer part to the whole segment.

1 x

Thus the segment shown is divided into the golden ratio if

1
x


x

1  x

This leads to a quadratic equation whose positive solution is

x 
1  !5

2
< 1.618

This ratio occurs naturally in many places. For instance, psychology 
experiments show that the most pleasing shape of rectangle is one 
whose sides are in golden ratio. The ancient Greeks agreed with this and 
built their temples in this ratio.

The golden ratio is related to the Fibonacci sequence. In fact, it can be 
shown by using calculus* that the ratio of two successive Fibonacci 
numbers

Fn1

Fn

gets closer to the golden ratio the larger the value of n. Try finding this 
ratio for n  10.

Cl
ar

k 
Du

nb
ar

/F
la

m
e/

Co
rb

is

1

1.618

*See Principles of Problem Solving 13 at the book companion website:  
www.stewartmath.com.

sum(seq(K2 ,K,1,5,1))
55

sum(seq(1/J,J,3,5,
1)) Frac

47/60

FIGuRe 8
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894 CHAPTER 13 ■ Sequences and Series

The following properties of sums are natural consequences of properties of the real 
numbers.

PRoPeRTIeS oF SuMS

Let a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . be sequences. Then for every posi-
tive integer n and any real number c the following properties hold.

1. a
n

k1
1ak  bk 2  a

n

k1
ak  a

n

k1
bk

2. a
n

k1
1ak  bk 2  a

n

k1
ak  a

n

k1
bk

3. a
n

k1
cak  c a a

n

k1
ak b

Proof  To prove Property 1, we write out the left side of the equation to get

a
n

k1
1ak  bk 2  1a1  b1 2  1a2  b2 2  1a3  b3 2  . . .  1an  bn 2

Because addition is commutative and associative, we can rearrange the terms on the 
right-hand side to read

a
n

k1
1ak  bk 2  1a1  a2  a3  . . .  an 2  1b1  b2  b3  . . .  bn 2

Rewriting the right side using sigma notation gives Property 1. Property 2 is proved in  
a similar manner. To prove Property 3, we use the Distributive Property:

 a
n

k1
cak  ca1  ca2  ca3  . . .  can

   c1a1  a2  a3  . . .  an 2  ca a
n

k1
ak b  

■

coNcePTS
 1. A sequence is a function whose domain is    .

 2. The nth partial sum of a sequence is the sum of the first 

    terms of the sequence. So for the sequence an  n2

  the fourth partial sum is S4             

      .

SkIllS
3–14 ■ Terms of a Sequence  Find the first four terms and the 
100th term of the sequence whose nth term is given.

 3. an  n  3  4. an  2n  1

 5. an 
1

2n  1
  6. an  n2  1

 7. an  5n  8. an  a1

3
b

n

 9. an 
11 2 n

n2  10. an 
1

n2

 11. an  1  11 2 n 12. an  11 2 n1
 

n

n  1

 13. an  nn 14. an  3

15–20 ■ Recursive Sequences  A sequence is defined recursively 
by the given formulas. Find the first five terms of the sequence.

15. an  21an1  3 2 and a1  4

16. an 
an1

6
 and a1  24

17. an  2an1  1  and  a1  1

18. an 
1

1  an1
 and a1  1

19. an  an1  an2  and  a1  1, a2  2

20. an  an1  an2  an3  and  a1  a2  a3  1

13.1 exeRcISeS
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SECTION 13.1 ■ Sequences and Summation Notation 895

21–26 ■ Terms of a Sequence  Use a graphing calculator to  
do the following. (a) Find the first ten terms of the sequence.  
(b) Graph the first ten terms of the  sequence.

21. an  4n  3 22. an  n2  n

23. an 
12
n

 24. an  4  211 2 n

 25. an 
1

an1
 and a1  2

 26. an  an1  an2  and  a1  1, a2  3

27–38 ■ nth term of a Sequence  Find the nth term of a 
sequence whose first several terms are given.

27. 2, 4, 6, 8, . . . 28. 1, 3, 5, 7, . . .

 29. 2, 4, 8, 16, . . . 30.  
1
3, 19,  

1
27, 1

81, . . .

31. 2, 3, 8, 13, . . . 32. 7, 4, 1, 2, c

 33. 5, 25, 125, 625, . . . 34. 3, 0.3, 0.03, 0.003, . . .

35. 1, 34, 59, 7
16, 9

25, . . . 36. 3
4, 45, 56, 67, . . .

37. 0, 2, 0, 2, 0, 2, . . . 38. 1, 12, 3, 14, 5, 16, . . .

39–42 ■ Partial Sums  Find the first six partial sums S1, S2, S3, 
S4, S5, S6 of the  sequence whose nth term is given.

39. 1, 3, 5, 7, . . . 40. 12, 22, 32, 42, . . .

41. 
1

3
, 

1

32, 
1

33, 
1

34, . . . 42. 1, 1, 1, 1, . . .

43–46 ■ nth Partial Sum  Find the first four partial sums and 
the nth partial sum of the sequence an.

43. an 
2

3n  44. an 
1

n  1


1

n  2

45. an  !n  !n  1

46. an  log a n

n  1
b   [Hint: Use a property of logarithms to 

write the nth term as a difference.]

47–54 ■ evaluating a Sum  Find the sum.

47. a
4

k1
k 48. a

4

k1
k 

2

49. a
3

k1

1

k
 50. a

100

j1
11 2 j

51. a
8

i1
31  11 2 i 4  52. a

12

i4
10

53. a
5

k1
2 

k1 54. a
3

i1
i 2i

55–60 ■ evaluating a Sum  Use a graphing calculator to evalu-
ate the sum.

55. a
10

k1
k 

2 56. a
100

k1
13k  4 2

57. a
20

j7
 
j 

211  j 2  58. a
15

j5

1

j 
2  1

59. a
22

n0
11 2 n 2n 60. a

100

n1

11 2 n
n

61–66 ■ Sigma Notation  Write the sum without using sigma 
notation.

61. a
4

k1
k 3 62. a

4

j1 Å
j  1

j  1

63. a
6

k0
!k  4 64. a

9

k6
k1k  3 2

65. a
100

k3
x 

k 66. a
n

j1
11 2  j1x  

j

67–74 ■ Sigma Notation  Write the sum using sigma notation.

67. 2  4  6  . . .  50  

68. 2  5  8  . . .  29

 69. 12  22  32  . . .  102

70. 
1

2 ln 2


1

3 ln 3


1

4 ln 4


1

5 ln 5
 . . . 

1

100 ln 100

71. 
1

1 # 2


1

2 # 3


1

3 # 4
 . . . 

1

999 # 1000

72. 
!1

12 
!2

22 
!3

32  . . . 
!n

n2

73. 1  x  x2  x3  . . .  x100

74. 1  2x  3x2  4x3  5x4  . . .  100x99

SkIllS Plus
75. nth Term of a Sequence  Find a formula for the nth term of 

the sequence

!2, "2!2, #2"2!2, $2#2"2!2, . . .

  [Hint: Write each term as a power of 2.]

76. comparing a Sequence to the Fibonacci Sequence  Define 
the sequence

Gn 
1

!5
a 11  !5 2 n  11  !5 2 n

2n b

  Use the TABLE  command on a graphing calculator to find  
the first ten terms of this sequence. Compare to the Fibonacci 
sequence Fn.

APPlIcATIoNS
77. compound Interest  Julio deposits $2000 in a savings 

account that pays 2.4% interest per year compounded 
monthly. The amount in the account after n months is given 
by

An  2000a1 
0.024

12
b

n

(a) Find the first six terms of the sequence.

(b) Find the amount in the account after 3 years.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



896 CHAPTER 13 ■ Sequences and Series

78. compound Interest  Helen deposits $100 at the end of each 
month into an account that pays 6% interest per year com-
pounded monthly. The amount of interest she has accumu-
lated after n months is given by

In  100a 1.005n  1

0.005
 nb

(a) Find the first six terms of the sequence.

(b) Find the interest she has accumulated after 5 years.

79. Population of a city  A city was incorporated in 2004 with a 
population of 35,000. It is expected that the population will 
increase at a rate of 2% per year. The population n years after 
2004 is given by

Pn  35,00011.02 2 n

(a) Find the first five terms of the sequence.

(b) Find the population in 2014.

80. Paying off a debt  Margarita borrows $10,000 from her 
 uncle and agrees to repay it in monthly installments of 
$200. Her uncle charges 0.5% interest per month on the 
balance.

(a)  Show that her balance An in the nth month is given recur-
sively by A0  10,000 and

An  1.005An1  200

(b) Find her balance after 6 months.

81. Fish Farming  A fish farmer has 5000 catfish in his pond. 
The number of catfish increases by 8% per month, and the 
farmer harvests 300 catfish per month.

(a) Show that the catfish population Pn after n months is 
given recursively by P0  5000 and

Pn  1.08Pn1  300

(b) How many fish are in the pond after 12 months?

82. Price of a house  The median price of a house in Orange 
County increases by about 6% per year. In 2002 the median 
price was $240,000. Let Pn be the median price n years after 
2002.

(a) Find a formula for the sequence Pn.

(b) Find the expected median price in 2010.

83. Salary Increases  A newly hired salesman is promised a 
beginning salary of $30,000 a year with a $2000 raise 
every year. Let Sn be his salary in his nth year of 
employment.

(a) Find a recursive definition of Sn.

(b) Find his salary in his fifth year of employment.

84. concentration of a Solution  A biologist is trying to find the 
optimal salt concentration for the growth of a certain species 
of mollusk. She begins with a brine solution that has 4 g/L of 
salt and increases the concentration by 10% every day. Let  
C0 denote the initial concentration, and let Cn be the concen-
tration after n days.

(a) Find a recursive definition of Cn.

(b) Find the salt concentration after 8 days.

85. Fibonacci’s Rabbits  Fibonacci posed the following problem: 
Suppose that rabbits live forever and that every month each 
pair produces a new pair that becomes productive at age  
2 months. If we start with one newborn pair, how many pairs 
of rabbits will we have in the nth month? Show that the answer 
is Fn, where Fn is the nth term of the Fibonacci sequence.

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
86. dIScoVeR ■ PRoVe: different Sequences That Start the Same

(a) Show that the first four terms of the sequence defined by 
an  n2 are

1, 4, 9, 16, . . .

(b)  Show that the first four terms of the sequence defined by  
an  n2  1n  1 2 1n  2 2 1n  3 2 1n  4 2  are also

1, 4, 9, 16, . . .

(c)  Find a sequence whose first six terms are the same as 
those of an  n2 but whose succeeding terms differ from 
this  sequence.

(d) Find two different sequences that begin

2, 4, 8, 16, . . .

87. dIScuSS: A Recursively defined Sequence  Find the first  
40 terms of the sequence defined by

an1  c
an

2
if an is an even number

3an  1 if an is an odd number

  and a1  11. Do the same if a1  25. Make a conjecture 
about this type of sequence. Try several other values for a1, 
to test your conjecture.

88. dIScuSS: A different Type of Recursion  Find the first  
ten terms of the sequence defined by

an  anan1
 anan2

  with

a1  1  and  a2  1

  How is this recursive sequence different from the others in 
this section?

13.2 ARIThMeTIc SequeNceS
■ Arithmetic Sequences ■ Partial Sums of Arithmetic Sequences

In this section we study a special type of sequence, called an arithmetic sequence.

■ Arithmetic Sequences
Perhaps the simplest way to generate a sequence is to start with a number a and add to 
it a fixed constant d, over and over again.

deFINITIoN oF AN ARIThMeTIc SequeNce

An arithmetic sequence is a sequence of the form

a, a  d, a  2d, a  3d, a  4d, . . .

The number a is the first term, and d is the common difference of the 
sequence. The nth term of an arithmetic sequence is given by

an  a  1n  1 2d

The number d is called the common difference because any two consecutive terms 
of an arithmetic sequence differ by d.

exAMPle 1 ■ Arithmetic Sequences
(a) If a  2 and d  3, then we have the arithmetic sequence

2, 2  3, 2  6, 2  9, . . .

 or 2, 5, 8, 11, . . .

  Any two consecutive terms of this sequence differ by d  3. The nth term is 
an  2  31n  1 2 .

(b) Consider the arithmetic sequence

9, 4, 1, 6, 11, . . .

  Here the common difference is d  5. The terms of an arithmetic sequence 
decrease if the common difference is negative. The nth term is an  9  51n  1 2 .

(c)  The graph of the arithmetic sequence an  1  21n  1 2  is shown in Figure 1. 
 Notice that the points in the graph lie on the straight line y  2x  1, which has 
slope d  2.

Now Try exercises 5, 11, and 17 ■

An arithmetic sequence is determined completely by the first term a and the common 
difference d. Thus if we know the first two terms of an arithmetic sequence, then we 
can find a formula for the nth term, as the next example shows.

exAMPle 2 ■ Finding Terms of an Arithmetic Sequence
Find the common difference, the first six terms, the nth term, and the 300th term of 
the arithmetic sequence

13, 7, 1, 5, c
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13.2 ARIThMeTIc SequeNceS
■ Arithmetic Sequences ■ Partial Sums of Arithmetic Sequences

In this section we study a special type of sequence, called an arithmetic sequence.

■ Arithmetic Sequences
Perhaps the simplest way to generate a sequence is to start with a number a and add to 
it a fixed constant d, over and over again.

deFINITIoN oF AN ARIThMeTIc SequeNce

An arithmetic sequence is a sequence of the form

a, a  d, a  2d, a  3d, a  4d, . . .

The number a is the first term, and d is the common difference of the 
sequence. The nth term of an arithmetic sequence is given by

an  a  1n  1 2d

The number d is called the common difference because any two consecutive terms 
of an arithmetic sequence differ by d.

exAMPle 1 ■ Arithmetic Sequences
(a) If a  2 and d  3, then we have the arithmetic sequence

2, 2  3, 2  6, 2  9, . . .

 or 2, 5, 8, 11, . . .

  Any two consecutive terms of this sequence differ by d  3. The nth term is 
an  2  31n  1 2 .

(b) Consider the arithmetic sequence

9, 4, 1, 6, 11, . . .

  Here the common difference is d  5. The terms of an arithmetic sequence 
decrease if the common difference is negative. The nth term is an  9  51n  1 2 .

(c)  The graph of the arithmetic sequence an  1  21n  1 2  is shown in Figure 1. 
 Notice that the points in the graph lie on the straight line y  2x  1, which has 
slope d  2.

Now Try exercises 5, 11, and 17 ■

An arithmetic sequence is determined completely by the first term a and the common 
difference d. Thus if we know the first two terms of an arithmetic sequence, then we 
can find a formula for the nth term, as the next example shows.

exAMPle 2 ■ Finding Terms of an Arithmetic Sequence
Find the common difference, the first six terms, the nth term, and the 300th term of 
the arithmetic sequence

13, 7, 1, 5, c

See Appendix D, Using the TI-83/84 
Graphing Calculator, for instructions 
on how to graph sequences. 

20

0 10

FIGuRe 1
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898 CHAPTER 13 ■ Sequences and Series

SoluTIoN  Since the first term is 13, we have a  13. The common difference is  
d  7  13  6. Thus the nth term of this sequence is

an  13  61n  1 2
From this we find the first six terms:

13, 7, 1, 5, 11, 17, . . .

The 300th term is a 300  13  61300  1 2  1781.

Now Try exercise 33 ■

The next example shows that an arithmetic sequence is determined completely by 
any two of its terms.

exAMPle 3 ■ Finding Terms of an Arithmetic Sequence
The 11th term of an arithmetic sequence is 52, and the 19th term is 92. Find the 
1000th term.

SoluTIoN  To find the nth term of this sequence, we need to find a and d in the 
 formula

an  a  1n  1 2d
From this formula we get

 a11  a  111  1 2d  a  10d

 a19  a  119  1 2d  a  18d

Since a11  52 and a19  92, we get the following two equations:

e 52  a  10d

92  a  18d

Solving this system for a and d, we get a  2 and d  5. (Verify this.) Thus the nth 
term of this sequence is

an  2  51n  1 2
The 1000th term is a1000  2  511000  1 2  4997.

Now Try exercise 47 ■

■ Partial Sums of Arithmetic Sequences
Suppose we want to find the sum of the numbers 1, 2, 3, 4, . . . , 100, that is,

a
100

k1
k

When the famous mathematician C. F. Gauss (see page 326) was a schoolboy, his 
teacher posed this problem to the class and expected that it would keep the students busy 
for a long time. But Gauss answered the question almost immediately. His idea was this: 
Since we are adding numbers produced according to a fixed pattern, there must also be 
a pattern (or formula) for finding the sum. He started by writing the numbers from 1 to 
100 and then below them wrote the same numbers in reverse order. Writing S for the 
sum and adding corresponding terms give

S  1  2  3  . . .  98  99  100

S  100  99  98  . . .  3  2  1

2S  101  101  101  . . .  101  101  101

It follows that 2S  1001101 2  10,100, so S  5050.

Fair Division of assets
Dividing an asset fairly among a number 
of people is of great interest to mathema-
ticians. Problems of this nature include 
dividing the national budget, disputed 
land, or assets in divorce cases. In 1994 
Brams and Taylor found a mathematical 
way of dividing things fairly. Their solu-
tion has been applied to division prob-
lems in political science, legal proceed-
ings, and other areas. To understand the 
problem, consider the following example. 
Suppose persons A and B want to divide a 
property fairly between them. To divide it 
fairly means that both A and B must be 
satisfied with the outcome of the division. 
Solution: A gets to divide the property 
into two pieces, then B gets to choose the 
piece he or she wants. Since both A and B 
had a part in the division process, each 
should be satisfied. The situation 
becomes much more complicated if three 
or more people are involved (and that’s 
where mathematics comes in).

Dividing things fairly involves much 
more than simply cutting things in half; it 
must take into account the relative worth 
each person attaches to the thing being 
divided. A story from the Bible illustrates 
this clearly. Two women appear before King 
Solomon, each claiming to be the mother 
of the same newborn baby. To discover 
which of these two women is the real 
mother, King Solomon ordered his swords-
man to cut the baby in half! The real 
mother, who attaches far more worth to 
the baby than anyone else does, 
 immed iately gives up her claim to the baby 
to save the baby’s life.

Mathematical solutions to fair-division 
problems have recently been applied in an 
international treaty, the Convention on the 
Law of the Sea. If a country wants to 
develop a portion of the sea floor, it is 
required to divide the portion into two 
parts, one part to be used by itself and the 
other by a consortium that will preserve it 
for later use by a less developed country. 
The consortium gets first pick.

Mathematics in the Modern World
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SECTION 13.2 ■ Arithmetic Sequences 899

Of course, the sequence of natural numbers 1, 2, 3, .  .  . is an arithmetic sequence 
(with a  1 and d  1), and the method for summing the first 100 terms of this se-
quence can be used to find a formula for the nth partial sum of any arithmetic sequence. 
We want to find the sum of the first n terms of the arithmetic sequence whose terms are 
ak  a  1k  1 2d; that is, we want to find

 Sn  a
n

k1
3a  1k  1 2d 4

  a  1a  d 2  1a  2d 2  1a  3d 2  . . .  3a  1n  1 2d 4
Using Gauss’s method, we write

Sn  a  1a  d 2  . . .  3a  1n  2 2d 4  3a  1n  1 2d 4
Sn  3a  1n  1 2d 4  3a  1n  2 2d 4  . . .  1a  d 2  a

2Sn  32a  1n  1 2d 4  32a  1n  1 2d 4  . . .  32a  1n  1 2d 4  32a  1n  1 2d 4
There are n identical terms on the right side of this equation, so

 2Sn  n 32a  1n  1 2d 4

 Sn 
n

2
 32a  1n  1 2d 4

Notice that an  a  1n  1 2d  is the nth term of this sequence. So we can write

Sn 
n

2
 3a  a  1n  1 2d 4  n a a  an

2
b

This last formula says that the sum of the first n terms of an arithmetic sequence is the 
average of the first and nth terms multiplied by n, the number of terms in the sum. We 
now summarize this result.

PARTIAl SuMS oF AN ARIThMeTIc SequeNce

For the arithmetic sequence given by an  a  1n  1 2d , the nth partial sum

Sn  a  1a  d 2  1a  2d 2  1a  3d 2  . . .  3a  1n  1 2d 4
is given by either of the following formulas.

1. Sn 
n

2
 32a  1n  1 2d 4  2. Sn  n a a  an

2
b

exAMPle 4 ■ Finding a Partial Sum of an Arithmetic Sequence
Find the sum of the first 50 odd numbers.

SoluTIoN  The odd numbers form an arithmetic sequence with a  1 and  
d  2. The nth term is an  1  21n  1 2  2n  1, so the 50th odd number is 
a50  2150 2  1  99. Substituting in Formula 2 for the partial sum of an arithmetic 
sequence, we get

S50  50 a a  a50

2
b  50 a 1  99

2
b  50 # 50  2500

Now Try exercise 51 ■

exAMPle 5 ■ Finding a Partial Sum of an Arithmetic Sequence
Find the following partial sum of an arithmetic sequence:

3  7  11  15  . . .  159
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900 CHAPTER 13 ■ Sequences and Series

SoluTIoN  For this sequence a  3 and d  4, so an  3  41n  1 2 . To find 
which term of the sequence is the last term 159, we use the formula for the nth term 
and solve for n.

 159  3  41n  1 2   Set an  159

 39  n  1   Subtract 3; divide by 4

 n  40   Add 1

To find the partial sum of the first 40 terms, we use Formula 1 for the nth partial sum 
of an arithmetic sequence:

S40  40
2  3213 2  4140  1 2 4  3240

Now Try exercise 57 ■

exAMPle 6 ■ Finding the Seating capacity of an Amphitheater
An amphitheater has 50 rows of seats with 30 seats in the first row, 32 in the second, 
34 in the third, and so on. Find the total number of seats.

SoluTIoN  The numbers of seats in the rows form an arithmetic sequence with 
a  30 and d  2. Since there are 50 rows, the total number of seats is the sum

 S50  50
2  32130 2  4912 2 4     Sn 

n

2
 32a  1n  1 2d 4

  3950

Thus the amphitheater has 3950 seats.

Now Try exercise 75 ■

exAMPle 7 ■ Finding the Number of Terms in a Partial Sum
How many terms of the arithmetic sequence 5, 7, 9, . . . must be added to get 572?

SoluTIoN  We are asked to find n when Sn  572. Substituting a  5, d  2, and  
Sn  572 in Formula 1 for the partial sum of an arithmetic sequence, we get

 572 
n

2
 32 # 5  1n  1 22 4     Sn 

n

2
 32a  1n  1 2d 4

 572  5n  n1n  1 2     Distributive Property

 0  n2  4n  572     Expand

 0  1n  22 2 1n  26 2     Factor

This gives n  22 or n  26. But since n is the number of terms in this partial sum, 
we must have n  22.

Now Try exercise 65 ■

Stage

coNcePTS
 1. An arithmetic sequence is a sequence in which the   

between successive terms is constant.

 2. The sequence given by an  a  1n  1 2d is an arithmetic 

  sequence in which a is the first term and d is the   

     . So for the arithmetic sequence an  2  51n  1 2  

  the first term is    , and the common difference is 

   .

3–4 ■ True or False? If False, give a reason.

 3. The nth partial sum of an arithmetic sequence is the average 
of the first and last terms times n.

 4. If we know the first and second terms of an arithmetic 
sequence, then we can find any other term.

13.2 exeRcISeS
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SECTION 13.2 ■ Arithmetic Sequences 901

SkIllS
5–10 ■ Terms of an Arithmetic Sequence  The nth term of an 
arithmetic sequence is given. (a) Find the first five terms of the 
sequence. (b) What is the common difference d? (c) Graph the 
terms you found in part (a).

 5. an  7  31n  1 2   6. an  10  201n  1 2
 7. an  6  41n  1 2   8. an  10  41n  1 2
 9. an  5

2  1n  1 2  10. an  1
2 1n  1 2

11–16 ■ nth Term of an Arithmetic Sequence  Find the nth term 
of the arithmetic sequence with given first term a and common 
difference d. What is the 10th term?

 11. a  9, d  4 12. a  5, d  4

 13. a  0.7, d  0.2 14. a  14, d   
3
2

 15. a  5
2, d   

1
2  16. a  !3, d  !3

17–26 ■ Arithmetic Sequence?  The first four terms of a 
sequence are given. Can these terms be the terms of an arithmetic 
sequence? If so, find the common difference.

 17. 11, 17, 23, 29, . . . 18. 31, 19, 7, 5, . . .

 19. 16, 9, 2, 4, . . . 20. 100, 68, 36, 4, . . .

21. 2, 4, 8, 16, . . . 22. 2, 4, 6, 8, . . .

23. 3, 32, 0,  
3
2, . . . 24. ln 2, ln 4, ln 8, ln 16, . . .

25. 2.6, 4.3, 6.0, 7.7, . . . 26. 1
2, 13, 14, 15, . . .

27–32 ■ Arithmetic Sequence?  Find the first five terms of the 
sequence, and determine whether it is arithmetic. If it is arithme-
tic, find the common difference, and express the nth term of the 
sequence in the standard form an  a  1n  1 2d.

27. an  4  7n 28. an  4  2n

29. an 
1

1  2n
 30. an  1 

n

2

31. an  6n  10 32. an  3  11 2 nn

33–44 ■ Terms of an Arithmetic Sequence  Determine the com-
mon difference, the fifth term, the nth term, and the 100th term of 
the arithmetic sequence.

33. 4, 10, 16, 22, . . . 34. 1, 11, 23, 35, . . .

35. 29, 11, 7, 25 . . . 36. 64, 49, 34, 19, . . .

37. 4, 9, 14, 19, . . . 38. 11, 8, 5, 2, . . .

39. 12, 8, 4, 0, . . . 40. 7
6, 53, 13

6 , 83, . . .

41. 25, 26.5, 28, 29.5, . . . 42. 15, 12.3, 9.6, 6.9, . . .

43. 2, 2  s, 2  2s, 2  3s, . . .

44. t, t  3, t  6, t  9, . . .

45–50 ■ Finding Terms of an Arithmetic Sequence  Find the 
indicated term of the arithmetic sequence with the given description.

45. The 50th term is 1000, and the common difference is 6. Find 
the first and second terms.

46. The 100th term is 750, and the common difference is 20. 
Find the fifth term.

47. The fourteenth term is 2
3, and the ninth term is 1

4. Find the 
first term and the nth term.

48. The twelfth term is 118, and the eighth term is 146. Find the 
first term and the nth term.

49. The first term is 25, and the common difference is 18. Which 
term of the sequence is 601?

50. The first term is 3500, and the common difference is 15. 
Which term of the sequence is 2795?

51–56 ■ Partial Sums of an Arithmetic Sequence  Find the partial 
sum Sn of the arithmetic sequence that satisfies the given conditions.

51. a  3, d  5, n  20

 52. a  10, d  8, n  30

53. a  40, d  14, n  15

 54. a  2, d  23, n  25

55. a1  55, d  12, n  10

 56. a2  8, a5  9.5, n  15

57–64 ■ Partial Sums of an Arithmetic Sequence  A partial sum 
of an arithmetic sequence is given. Find the sum.

57. 1  5  9  . . .  401

58. 3  A 
3
2 B  0  3

2  3  . . .  30

59. 250  233  216  . . .  97

60. 89  85  81  . . .  13 

61. 0.7  2.7  4.7  . . .  56.7

62. 10  9.9  9.8  . . .  0.1

63. a
10

k0
13  0.25k 2  64. a

20

n0
11  2n 2

65–66 ■ Adding Terms of an Arithmetic Sequence  Find the 
number of terms of the arithmetic sequence with the given 
description that must be added to get a value of 2700.

65. The first term is 5, and the common difference is 2.

66. The first term is 12, and the common difference is 8.

SkIllS Plus
67. Special Triangle  Show that a right triangle whose sides are 

in arithmetic progression is similar to a 3–4–5 triangle.

68. Product of Numbers  Find the product of the numbers

101/10, 102/10, 103/10, 104/10, . . . , 1019/10

69. harmonic Sequence  A sequence is harmonic if the recipro-
cals of the terms of the sequence form an arithmetic sequence. 
Determine whether the following sequence is harmonic:

1, 35, 37, 13, . . .

70. harmonic Mean  The harmonic mean of two numbers is 
the reciprocal of the average of the reciprocals of the two 
numbers. Find the harmonic mean of 3 and 5.

APPlIcATIoNS
71. depreciation  The purchase value of an office computer is 

$12,500. Its annual depreciation is $1875. Find the value of 
the computer after 6 years.
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902 CHAPTER 13 ■ Sequences and Series

72. Poles in a Pile  Telephone poles are being stored in a pile with 
25 poles in the first layer, 24 in the second, and so on. If there 
are 12 layers, how many telephone poles does the pile contain?

73. Salary Increases  A man gets a job with a salary of $30,000 
a year. He is promised a $2300 raise each subsequent year. 
Find his total earnings for a 10-year period.

74. drive-In Theater  A drive-in theater has spaces for 20 cars in 
the first parking row, 22 in the second, 24 in the third, and so 
on. If there are 21 rows in the theater, find the number of cars 
that can be parked.

75. Theater Seating  An architect designs a theater with 15 seats 
in the first row, 18 in the second, 21 in the third, and so on. If 
the theater is to have a seating capacity of 870, how many 
rows must the architect use in his design?

76. Falling Ball  When an object is allowed to fall freely near the 
surface of the earth, the gravitational pull is such that the 
object falls 16 ft in the first second, 48 ft in the next second, 
80 ft in the next second, and so on.

(a) Find the total distance a ball falls in 6 s.

(b)  Find a formula for the total distance a ball falls in n 
seconds.

77. The Twelve days of christmas  In the well-known song 
“The Twelve Days of Christmas,” a person gives his sweet-
heart k gifts on the kth day for each of the 12 days of 
Christmas. The person also repeats each gift identically on 
each subsequent day. Thus on the 12th day the sweetheart 
receives a gift for the first day, 2 gifts for the second, 3 gifts 
for the third, and so on. Show that the number of gifts 
received on the 12th day is a partial sum of an arithmetic 
sequence. Find this sum.

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
78. dIScuSS: Arithmetic Means  The arithmetic mean (or 

average) of two numbers a and b is

m 
a  b

2

  Note that m is the same distance from a as from b, so a, m, b  
is an arithmetic sequence. In general, if m1, m2, . . . , mk are 
equally spaced between a and b so that

a, m1, m2, . . . , mk, b

  is an arithmetic sequence, then m1, m2, . . . , mk are called k 
arithmetic means between a and b.

(a) Insert two arithmetic means between 10 and 18.

(b) Insert three arithmetic means between 10 and 18.

(c)  Suppose a doctor needs to increase a patient’s dosage of 
a certain medicine from 100 mg to 300 mg per day in 
five equal steps. How many arithmetic means must be 
inserted between 100 and 300 to give the progression of 
daily doses, and what are these means?

13.3 GeoMeTRIc SequeNceS
■ Geometric Sequences ■ Partial Sums of Geometric Sequences ■ What Is an Infinite 
Series? ■ Infinite Geometric Series

In this section we study geometric sequences. This type of sequence occurs frequently 
in applications to finance, population growth, and other fields.

■ Geometric Sequences
Recall that an arithmetic sequence is generated when we repeatedly add a number d to 
an initial term a. A geometric sequence is generated when we start with a number a and 
repeatedly multiply by a fixed nonzero constant r.

deFINITIoN oF A GeoMeTRIc SequeNce

A geometric sequence is a sequence of the form

a, ar, ar2, ar3, ar4, . . .

The number a is the first term, and r is the common ratio of the sequence. 
The nth term of a geometric sequence is given by

an  arn1
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SECTION 13.3 ■ Geometric Sequences 903

The number r is called the common ratio because the ratio of any two consecutive 
terms of the sequence is r.

exAMPle 1 ■ Geometric Sequences
(a) If a  3 and r  2, then we have the geometric sequence

3, 3 # 2, 3 # 22, 3 # 23, 3 # 24, . . .

 or 3, 6, 12, 24, 48, . . .

  Notice that the ratio of any two consecutive terms is r  2. The nth term is 
an  312 2 n1.

(b) The sequence

2, 10, 50, 250, 1250, . . .

  is a geometric sequence with a  2 and r  5. When r is negative, the terms of 
the sequence alternate in sign. The nth term is an  215 2 n1.

(c) The sequence

1,  
1

3
,  

1

9
,  

1

27
,  

1

81
,  . . .

 is a geometric sequence with a  1 and r  1
3. The nth term is an  1A13Bn1

.

(d)  The graph of the geometric sequence defined by an  1
5
# 2n1 is shown in Figure 

1. Notice that the points in the graph lie on the graph of the exponential function 
y  1

5
# 2x1.

If 0  r  1, then the terms of the geometric sequence ar n1 decrease, but if r  1, 
then the terms increase. (What happens if r  1?)

Now Try exercises 5, 9, and 13 ■

Geometric sequences occur naturally. Here is a simple example. Suppose a ball has 
elasticity such that when it is dropped, it bounces up one-third of the distance it has 
fallen. If this ball is dropped from a height of 2 m, then it bounces up to a height of 
2A13B  2

3  m. On its second bounce, it returns to a height of A23B A13B  2
9  m, and so on (see 

Figure 2). Thus the height hn that the ball reaches on its nth bounce is given by the 
geometric sequence

hn  2
3 
A13Bn1

 2A13Bn

We can find the nth term of a geometric sequence if we know any two terms, as the 
following examples show.

exAMPle 2 ■ Finding Terms of a Geometric Sequence
Find the common ratio, the first term, the nth term, and the eighth term of the geomet-
ric sequence

5, 15, 45, 135, . . .

SoluTIoN  To find a formula for the nth term of this sequence, we need to find the 
first term a and the common ratio r. Clearly, a  5. To find r, we find the ratio of any 
two consecutive terms. For instance, r  45

15  3. Thus

an  513 2 n1    an  arn1

The eighth term is a8  513 2 81  513 2 7  10,935.

Now Try exercise 29 ■

20

0 8

FIGuRe 1

1 2 3

2 m

m2
3

m2
9

0 t

h

FIGuRe 2
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904 CHAPTER 13 ■ Sequences and Series

exAMPle 3 ■ Finding Terms of a Geometric Sequence
The third term of a geometric sequence is 63

4 , and the sixth term is 1701
32 . Find the fifth 

term.

SoluTIoN  Since this sequence is geometric, its nth term is given by the formula 
an  arn1. Thus

 a3   ar 
31  ar 

2

 a6   ar61  ar 
5

From the values we are given for these two terms, we get the following system of 
 equations:

u
63
4  ar2

1701
32  ar5

We solve this system by dividing.

 
ar 

5

ar 
2 

1701
32
63
4

 r3  27
8     Simplify

 r  3
2     Take cube root of each side

Substituting for r in the first equation gives

 63
4  aA32B2    Substitute r  3

2 in 63
4  ar2

 a  7     Solve for a

It follows that the nth term of this sequence is

an  7A32Bn1

Thus the fifth term is

a5  7A32B51
 7A32B4  567

16

Now Try exercise 41 ■

■ Partial Sums of Geometric Sequences
For the geometric sequence a, ar, ar2, ar3, ar4, . . . , ar n1, . . . , the nth partial sum 
is

Sn  a
n

k1
ar 

k1  a  ar  ar2  ar3  ar4  . . .  arn1

To find a formula for Sn, we multiply Sn by r and subtract from Sn.

 Sn  a  ar  ar2  ar3  ar4  . . .  arn1

 rSn  ar  ar2  ar3  ar4  . . .  arn1  arn

 Sn  rSn  a  arn

So  Sn11  r 2  a11  rn 2

 Sn 
a11  rn 2

1  r
  r ? 1

We summarize this result.

Sc
ie

nc
e 

So
ur

ce

srinivasa raManujan (1887–1920) 
was born into a poor family in the small 
town of Kumbakonam in India. Self-
taught in mathematics, he worked in vir-
tual isolation from other mathematicians. 
At the age of 25 he wrote a letter to G. H. 
Hardy, the leading British mathematician 
at the time, listing some of his discover-
ies. His discoveries included the following 
series for calculating p:

1
p


2!2
9801 a

`

k0

14k 2 ! 11103  26390k 2
1k ! 2 4 3964k

Hardy immediately recognized 
Ramanujan’s genius, and for the next six 
years the two worked together in London 
until Ramanujan fell ill and returned to 
his hometown in India, where he died a 
year later.  Ramanujan was a genius with 
a phenomenal ability to see hidden pat-
terns in the properties of numbers. Most 
of his discoveries were written as compli-
cated infinite series, the importance of 
which was not recognized until many 
years after his death. In the last year of 
his life he wrote 130 pages of mysterious 
formulas, many of which still defy proof. 
Hardy tells the story that when he visited 
Ramanujan in a hospital and arrived in a 
taxi, he remarked to Ramanujan that the 
cab’s number, 1729, was uninteresting. 
 Ramanujan replied “No, it is a very inter-
esting number. It is the smallest number 
expressible as the sum of two cubes in 
two different ways.”
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SECTION 13.3 ■ Geometric Sequences 905

PARTIAl SuMS oF A GeoMeTRIc SequeNce

For the geometric sequence defined by an  arn1, the nth partial sum

Sn  a  ar  ar 
2  ar 

3  ar 
4  . . .  ar 

n1  r ? 1

is given by

Sn  a 

1  r 
n

1  r

exAMPle 4 ■ Finding a Partial Sum of a Geometric Sequence
Find the following partial sum of a geometric sequence:

1  4  16  . . .  4096

SoluTIoN  For this sequence a  1 and r  4, so an  4n1. Since 46  4096, we use 
the formula for Sn with n  7, and we have

S7  1 # 1  47

1  4
 5461

Thus this partial sum is 5461.

Now Try exercises 49 and 53 ■

exAMPle 5 ■  Finding a Partial Sum of a Geometric Sequence

Find the sum a
6

k1
7A 

2
3Bk1

.

SoluTIoN  The given sum is the sixth partial sum of a geometric sequence with 
first term a  7A 

2
3B0  7 and r   

2
3 . Thus by the formula for Sn with n  6 we 

have

S6  7 #
1  A 

2
3B6

1  A 
2
3B

 7 # 1  64
729

5
3


931

243
< 3.83

Now Try exercise 59 ■

■ What Is an Infinite Series?
An expression of the form

a
`

k1
ak  a1  a2  a3  a4  . . .

dIScoVeRy PRojecT

Finding Patterns

Finding patterns in nature is an important part of mathematical modeling. If we 
can find a pattern (or a formula) that describes the terms of a sequence, then we 
can use the pattern to predict subsequent terms of the sequence. In this project 
we investigate difference sequences and how they help us find patterns in trian-
gular, square, pentagonal, and other polygonal numbers. You can find the proj-
ect at www.stewartmath.com.
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906 CHAPTER 13 ■ Sequences and Series

is called an infinite series. The dots mean that we are to continue the addition indefinitely. 
What meaning can we attach to the sum of infinitely many numbers? It seems at first that 
it is not possible to add infinitely many numbers and arrive at a finite number. But consider 
the following problem. You have a cake, and you want to eat it by first eating half the cake, 
then eating half of what remains, then again eating half of what remains. This process can 
continue indefinitely because at each stage, some of the cake remains. (See Figure 3.)

1
2

1
4

1
8

1
16

1
32

1
2

1
4

1
8

1
16

1
2

1
4

1
8

1
2

1
4

1
2

FIGuRe 3
Does this mean that it’s impossible to eat all of the cake? Of course not. Let’s write 

down what you have eaten from this cake:

a
`

k1

1

2k 
1

2


1

4


1

8


1

16
 . . .

This is an infinite series, and we note two things about it: First, from Figure 3 it’s clear 
that no matter how many terms of this series we add, the total will never exceed 1. 
Second, the more terms of this series we add, the closer the sum is to 1 (see Figure 3). 
This suggests that the number 1 can be written as the sum of infinitely many smaller 
numbers:

1 
1

2


1

4


1

8


1

16
 . . . 

1

2n  . . .

To make this more precise, let’s look at the partial sums of this series:

 S1 
1

2
  

1

2

 S2 
1

2


1

4
  

3

4

 S3 
1

2


1

4


1

8
  

7

8

 S4 
1

2


1

4


1

8
  

1

16


15

16

and, in general (see Example 5 of Section 13.1),

Sn  1 
1

2n

As n gets larger and larger, we are adding more and more of the terms of this series. 
Intuitively, as n gets larger, Sn gets closer to the sum of the series. Now notice that as n 
gets large, 1/2n gets closer and closer to 0. Thus Sn gets close to 1  0  1. Using the 
notation of Section 3.6, we can write

Sn S 1 as n S `

In general, if Sn gets close to a finite number S as n gets large, we say that the infinite 
series converges (or is convergent). The number S is called the sum of the infinite series. 
If an infinite series does not converge, we say that the series diverges (or is divergent).
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SECTION 13.3 ■ Geometric Sequences 907

■ Infinite Geometric Series
An infinite geometric series is a series of the form

a  ar  ar2  ar3  ar4  . . .  arn1  . . .

We can apply the reasoning used earlier to find the sum of an infinite geometric series. 
The nth partial sum of such a series is given by the formula

Sn  a  

1  r 
n

1  r
  r ? 1

It can be shown that if 0  r 0  1, then rn gets close to 0 as n gets large (you can easily 
convince yourself of this using a calculator). It follows that Sn gets close to a/ 11  r 2  
as n gets large, or

Sn S
a

1  r
 as n S `

Thus the sum of this infinite geometric series is a/ 11  r 2 .

SuM oF AN INFINITe GeoMeTRIc SeRIeS

If 0  r 0  1, then the infinite geometric series 

a
`

k1
ark1  a  ar  ar2  ar3  . . .

converges and has the sum 

S 
a

1  r

If 0  r 0  1, the series diverges.

exAMPle 6 ■  Infinite Series
Determine whether the infinite geometric series is convergent or divergent. If it is con-
vergent, find its sum.

(a) 2 
2

5


2

25


2

125
 . . .    (b) 1 

7

5
 a 7

5
b

2

 a 7

5
b

3

 . . . 

Here is another way to arrive at the  
formula for the sum of an infinite geo-
metric series:

 S  a  ar  ar2  ar3  . . .

  a  r 1a  ar  ar2  . . . 2
  a  rS

Solve the equation S  a  rS for S  
to get

 S  rS  a

 11  r 2S  a

 S 
a

1  r

Fractals
Many of the things we 
model in this book have 
regular predictable 
shapes. But recent 
advances in mathematics 
have made it possible to 
model such seemingly 
random or even chaotic 
shapes as those of a cloud, 
a flickering flame, a moun-

tain, or a jagged coastline. The basic tools in this type of modeling are 
the fractals invented by the mathematician Benoit Mandelbrot. A  
fractal is a geometric shape built up from a simple basic shape by 

Mathematics in the Modern World

scaling and repeating the shape indefinitely according to a given rule. 
Fractals have infinite detail; this means the closer you look, the more 
you see. They are also self-similar; that is, zooming in on a portion of 
the fractal yields the same detail as the original shape. Because of their 
beautiful shapes, fractals are used by movie makers to create fictional 
landscapes and exotic backgrounds.

Although a fractal is a complex shape, it is produced according to very 
simple rules. This property of fractals is exploited in a process of storing pic-
tures on a computer called fractal image compression. In this process a pic-
ture is stored as a simple basic shape and a rule; repeating the shape accord-
ing to the rule produces the original picture. This is an extremely efficient 
method of storage; that’s how thousands of color pictures can be put on a 
single flash drive.

Bi
ll 

Ro
ss

/C
us

p/
Co

rb
is

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



908 CHAPTER 13 ■ Sequences and Series

SoluTIoN

(a)  This is an infinite geometric series with a  2 and r  1
5. Since 0  r 0  @  15 @  1, 

the series converges. By the formula for the sum of an infinite geometric series 
we have 

S 
2

1  1
5


5

2

(b)  This is an infinite geometric series with a  1 and r  7
5. Since 0  r 0  @  75 @  1,  

the series diverges.

Now Try exercises 65 and 69 ■

exAMPle 7 ■ Writing a Repeated decimal as a Fraction
Find the fraction that represents the rational number 2.351.

SoluTIoN  This repeating decimal can be written as a series:

23

10


51

1000


51

100,000


51

10,000,000


51

1,000,000,000
 . . .

After the first term, the terms of this series form an infinite geometric series with

a 
51

1000
  and  r 

1

100

Thus the sum of this part of the series is

S 
51

1000

1  1
100


51

1000
99

100


51

1000
# 100

99


51

990

So 2.351 
23

10


51

990


2328

990


388

165

Now Try exercise 77 ■

coNcePTS
 1. A geometric sequence is a sequence in which the   

of successive terms is constant.

 2. The sequence given by an  arn1 is a geometric sequence 

  in which a is the first term and r is the      . 
  So for the geometric sequence an  215 2 n1 the first term is 

     ,and the common ratio is    .

 3. True or False? If we know the first and second terms of a 
geometric sequence, then we can find any other term.

 4. (a)  The nth partial sum of a geometric sequence an  arn1 

   is given by Sn     .

  (b) The series a
`

k1
ark1  a  ar  ar2  ar3  . . .

    is an infinite   series. If 0  r 0  1, then this 

   series    , and its sum is S     . 

   If 0  r 0  1, the series    .

SkIllS
5–8 ■ nth Term of a Geometric Sequence  The nth term of a 
sequence is given. (a) Find the first five terms of the sequence. 
(b) What is the common ratio r? (c) Graph the terms you found  
in (a).

 5. an  713 2 n1  6. an  610.5 2 n1

 7. an  5
2 A 

1
2 Bn1

  8. an  3n1

9–12 ■ nth Term of a Geometric Sequence  Find the nth term of 
the geometric sequence with given first term a and common ratio 
r. What is the fourth term?

 9. a  7, r  4 10. a  3, r  2

 11. a  5
2, r   

1
2  12. a  !3, r  !3

13–22 ■ Geometric Sequence?  The first four terms of a 
sequence are given. Determine whether these terms can be the 
terms of a geometric sequence. If the sequence is geometric, find 
the common ratio.

 13. 3, 6, 12, 24, . . . 14. 3, 48, 93, 138, . . .

13.3 exeRcISeS
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SECTION 13.3 ■ Geometric Sequences 909

15. 3072, 1536, 768, 384, . . . 16. 432, 144, 48, 16, . . .

17. 3, 32, 34, 38, . . . 18. 27, 9, 3, 1, . . .

19. 1
2, 13, 14, 15, . . . 20. e2, e4, e6, e8, . . .

21. 1.0, 1.1, 1.21, 1.331, . . . 22. 1
2, 14, 16, 18, . . .

23–28 ■ Geometric Sequence?  Find the first five terms of the 
sequence, and determine whether it is geometric. If it is geomet-
ric, find the common ratio, and express the nth term of the 
sequence in the standard form an  arn1.

23. an  213 2 n 24. an  4  3n

25. an 
1

4n  26. an  11 2 n2n

27. an  ln15n1 2  28. an  nn

29–38 ■ Terms of a Geometric Sequence  Determine the  
common ratio, the fifth term, and the nth term of the geometric 
sequence.

29. 2, 6, 18, 54, . . . 30. 7, 14
3 , 28

9 , 56
27, . . .

31. 0.3, 0.09, 0.027, 0.0081, . . .

32. 1, !2, 2, 2!2, . . .

33. 144, 12, 1,  
1

12 , . . . 34. 8, 2,  
1
2,  

1
8, . . .

35. 3, 35/3, 37/3, 27, . . . 36. t, 
t 

2

2
, 

t 
3

4
, 

t  
4

8
, . . .

37. 1, s2/7, s4/7, s6/7, . . . 38. 5, 5c1, 52c1, 53c1, . . .

39–46 ■ Finding Terms of a Geometric Sequence  Find the  
indicated term(s) of the geometric sequence with the given 
description.

39. The first term is 15 and the second term is 6. Find the fourth 
term.

40. The first term is 1
12 and the second term is  

1
2 . Find the sixth 

term.

41. The third term is  
1
3  and the sixth term is 9. Find the first 

and second terms.

42. The fourth term is 12 and the seventh term is 32
9 . Find the first 

and nth terms.

43. The third term is 18 and the sixth term is 9216. Find the 
first and nth terms.

44. The third term is 54 and the sixth term is 729
256. Find the first 

and second terms. 

45. The common ratio is 0.75 and the fourth term is 729. Find 
the first three terms.

46. The common ratio is 1
6  and the third term is 18. Find the first 

and seventh terms.

47. Which Term?  The first term of a geometric sequence is 
1536 and the common ratio is 1

2 . Which term of the sequence 
is 6?

48. Which Term?  The second and fifth terms of a geometric 
sequence are 30 and 3750, respectively. Which term of the 
sequence is 468,750?

49–52 ■ Partial Sums of a Geometric Sequence  Find the  
partial sum Sn of the geometric sequence that sat isfies the given 
conditions.

49. a  5,  r  2,  n  6 50. a  2
3,    r  1

3,    n  4

51. a3  28,  a6  224,  n  6

52. a2  0.12,  a5  0.00096,  n  4

53–58 ■ Partial Sums of a Geometric Sequence  Find the sum.

53. 1  3  9  . . .  2187

54. 1  1
2  1

4  1
8  . . .  1

512

55. 15  30  60  . . .  960

56. 5120  2560  1280  . . .  20

57. 1.25  12.5  125  . . .  12,500,000

58. 10800  1080  108  . . .  0.000108

59–64 ■ Partial Sums of a Geometric Sequence  Find the sum.

59. a
5

k1
3A12 Bk1

 60. a
5

k1
8A 

3
2 Bk1

61. a
6

k1
512 2 k1 62. a

6

k1
1015 2 k1

63. a
5

k1
3A23 Bk1

 64. a
6

k1
64A32 Bk1

65–76 ■ Infinite Geometric Series  Determine whether the infi-
nite geometric series is convergent or divergent. If it is conver-
gent, find its sum.

65. 1 
1

3


1

9


1

27
 . . . 66. 1 

1

2


1

4


1

8
 . . .

67. 1 
1

3


1

9


1

27
 . . . 68. 

2

5


4

25


8

125
 . . .

 69. 1 
3

2
 a 3

2
b

2

 a 3

2
b

3

 . . .

70. 
1

36 
1

38 
1

310 
1

312  . . .

71. 3 
3

2


3

4


3

8
 . . .

72. 1  1  1  1  . . .

73. 3  311.1 2  311.1 2 2  311.1 2 3  . . .

74.  

100

9


10

3
 1 

3

10
 . . .

75. 
1

!2


1

2


1

2!2


1

4
 . . .

76. 1  "2  2  2"2  4  . . .

77–82 ■ Repeated decimal  Express the repeating decimal as a 
fraction.

77. 0.777 . . . 78. 0.253 79. 0.030303 . . .

 80. 2.1125 81. 0.112 82. 0.123123123 . . .
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SkIllS Plus
83. Geometric Means  If the numbers a1, a2, . . . , an form a geo-

metric sequence, then a2, a3, . . . , an1 are geometric means 
between a1 and an. Insert three geometric means between 5 
and 80.

84. Partial Sum of a Geometric Sequence  Find the sum of the 
first ten terms of the sequence

a  b, a2  2b, a3  3b, a4  4b, . . .

85–86 ■ Arithmetic or Geometric?  The first four terms of a 
sequence are given. Determine whether these terms can be the 
terms of an arithmetic sequence, a geometric sequence, or neither. 
If the sequence is arithmetic or geometric, find the next term.

85. (a) 5, 3, 5, 3, . . . (b) 1
3, 1, 53, 73, . . .

  (c) !3, 3, 3!3, 9, . . . (d) 3,  
3
2, 0, 32, . . .

86. (a) 1, 1, 1, 1, . . . (b) !5, !3 5, !6 5, 1, . . .

  (c) 2, 1, 12, 2, . . . (d) x  1, x, x  1, x  2, . . .

APPlIcATIoNS
87. depreciation  A construction company purchases a bull-

dozer for $160,000. Each year the value of the bulldozer 
depreciates by 20% of its value in the preceding year. Let Vn 
be the value of the bulldozer in the nth year. (Let n  1 be 
the year the bulldozer is purchased.)

(a) Find a formula for Vn.

(b)  In what year will the value of the bulldozer be less than 
$100,000?

88. Family Tree  A person has two parents, four grandparents, 
eight great-grandparents, and so on. How many ancestors 
does a person have 15 generations back?

Father

Mother

Grandfather

Grandmother

Grandfather

Grandmother

89. Bouncing Ball  A ball is dropped from a height of 80 ft. The 
elasticity of this ball is such that it rebounds three-fourths of 
the distance it has fallen. How high does the ball rebound on 
the fifth bounce? Find a formula for how high the ball 
rebounds on the nth bounce.

90. Bacteria culture  A culture initially has 5000 bacteria, and 
its size increases by 8% every hour. How many bacteria are 
present at the end of 5 hours? Find a formula for the number 
of bacteria present after n hours.

91. Mixing coolant  A truck radiator holds 5 gal and is filled 
with water. A gallon of water is removed from the radiator 
and replaced with a gallon of antifreeze; then a gallon of the 
mixture is removed from the radiator and again replaced by a 
gallon of antifreeze. This process is repeated in defi nitely. 
How much water remains in the tank after this process is 
repeated 3 times? 5 times? n times?

92. Musical Frequencies  The frequencies of musical notes 
(measured in cycles per second) form a geometric sequence. 
Middle C has a frequency of 256, and the C that is an octave 
higher has a frequency of 512. Find the frequency of C two 
 octaves below middle C.

93. Bouncing Ball  A ball is dropped from a height of 9 ft. The 
elasticity of the ball is such that it always bounces up one-
third the distance it has fallen.

(a)  Find the total distance the ball has traveled at the instant 
it hits the ground the fifth time.

(b)  Find a formula for the total distance the ball has traveled 
at the instant it hits the ground the nth time.

94. Geometric Savings Plan  A very patient woman wishes to 
become a billionaire. She decides to follow a simple scheme: 
She puts aside 1 cent the first day, 2 cents the second day,  
4 cents the third day, and so on, doubling the number of cents 
each day. How much money will she have at the end of 
30 days? How many days will it take this woman to realize  
her wish?

95. St. Ives  The following is a well-known children’s rhyme:

As I was going to St. Ives,
I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;
Every cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?

  Assuming that the entire group is actually going to St. Ives, 
show that the answer to the question in the rhyme is a partial 
sum of a geometric sequence, and find the sum.

96. drug concentration  A certain drug is administered once a 
day. The concentration of the drug in the patient’s blood-
stream increases rapidly at first, but each successive dose has 
less effect than the preceding one. The total amount of the 
drug (in mg) in the bloodstream after the nth dose is given by

a
n

k1
50A12 B k1

(a)  Find the amount of the drug in the bloodstream after  
n  10 days.

(b) If the drug is taken on a long-term basis, the amount in  
the bloodstream is approximated by the infinite series 

 a
`

k1
50A12 Bk1

. Find the sum of this series.

97. Bouncing Ball  A certain ball rebounds to half the height 
from which it is dropped. Use an infinite geometric series to 
approximate the total distance the ball travels after being 
dropped from 1 m above the ground until it comes to rest.

98. Bouncing Ball  If the ball in Exercise 97 is dropped from  
a height of 8 ft, then 1 s is required for its first complete 

13.4 MATheMATIcS oF FINANce
■ The Amount of an Annuity ■ The Present Value of an Annuity ■ Installment Buying

Many financial transactions involve payments that are made at regular intervals. For 
example, if you deposit $100 each month in an interest-bearing account, what will the 
value of your account be at the end of 5 years? If you borrow $100,000 to buy a house, 
how much must your monthly payments be in order to pay off the loan in 30 years? 
Each of these questions involves the sum of a sequence of numbers; we use the results 
of the preceding section to answer them here.

■ The Amount of an Annuity
An annuity is a sum of money that is paid in regular equal payments. Although the 
word annuity suggests annual (or yearly) payments, they can be made semiannually, 
quarterly, monthly, or at some other regular interval. Payments are usually made at the 
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SECTION 13.4 ■ Mathematics of Finance 911

  bounce—from the instant it first touches the ground until it 
next touches the ground. Each subsequent complete bounce 
requires 1/!2 as long as the preceding complete bounce. 
Use an infinite geometric series to estimate the time interval 
from the instant the ball first touches the ground until it 
stops bouncing.

 99. Geometry  The midpoints of the sides of a square of side 1 
are joined to form a new square. This procedure is repeated 
for each new square. (See the figure.)

(a) Find the sum of the areas of all the squares.

(b) Find the sum of the perimeters of all the squares.

100. Geometry  A circular disk of radius R is cut out of paper, 
as shown in figure (a). Two disks of radius 1

2 R are cut out of 
paper and placed on top of the first disk, as in figure (b), 
and then four disks of radius 1

4 R are placed on these two 
disks, as in fig ure (c). Assuming that this process can be 
repeated in defi nitely, find the total area of all the disks.

(a) (b) (c)

101. Geometry  A yellow square of side 1 is divided into nine 
smaller squares, and the middle square is colored blue as 
shown in the figure. Each of the smaller yellow squares is in 
turn divided into nine squares, and each middle square is 
colored blue. If this process is continued indefinitely, what 
is the total area that is colored blue?

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
102. PRoVe: Reciprocals of a Geometric Sequence  If a1, a2,  

a3, . . . is a geometric sequence with common ratio r, show 
that the sequence

1
a1

, 
1
a2

, 
1
a3

, . . .

  is also a geometric sequence, and find the common ratio.

103. PRoVe: logarithms of a Geometric Sequence  If a1, a2,  
a3, . . . is a geometric sequence with a common ratio r  0 
and a1  0, show that the sequence

log a1, log a2, log a3, . . .

  is an arithmetic sequence, and find the common difference.

104. PRoVe: exponentials of an Arithmetic Sequence  If a1, a2,  
a3, . . . is an arithmetic sequence with common difference d, 
show that the sequence

10a1, 10a2, 10a3, . . .

  is a geometric sequence, and find the common ratio.

13.4 MATheMATIcS oF FINANce
■ The Amount of an Annuity ■ The Present Value of an Annuity ■ Installment Buying

Many financial transactions involve payments that are made at regular intervals. For 
example, if you deposit $100 each month in an interest-bearing account, what will the 
value of your account be at the end of 5 years? If you borrow $100,000 to buy a house, 
how much must your monthly payments be in order to pay off the loan in 30 years? 
Each of these questions involves the sum of a sequence of numbers; we use the results 
of the preceding section to answer them here.

■ The Amount of an Annuity
An annuity is a sum of money that is paid in regular equal payments. Although the 
word annuity suggests annual (or yearly) payments, they can be made semiannually, 
quarterly, monthly, or at some other regular interval. Payments are usually made at the 
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end of the payment interval. The amount of an annuity is the sum of all the individual 
payments from the time of the first payment until the last payment is made, together 
with all the interest. We denote this sum by Af (the subscript f here is used to denote 
final amount).

exAMPle 1 ■ calculating the Amount of an Annuity
An investor deposits $400 every December 15 and June 15 for 10 years in an account 
that earns interest at the rate of 8% per year, compounded semiannually. How much 
will be in the account immediately after the last payment?

SoluTIoN  We need to find the amount of an annuity consisting of 20 semiannual 
payments of $400 each. Since the interest rate is 8% per year, compounded semiannu-
ally, the interest rate per time period is i  0.08/2  0.04. The first payment is in the 
account for 19 time periods, the second for 18 time periods, and so on.

The last payment receives no interest. The situation can be illustrated by the time 
line in Figure 1.

1 2 3

400 400 400 400 400 400

9 10

400400 400 400
400(1.04)
400(1.04)2

400(1.04)3

400(1.04)14

400(1.04)15

400(1.04)16

400(1.04)17

400(1.04)18

400(1.04)19

Time
(years)

NOW

Payment
(dollars)

…

…

FIGuRe 1

The amount Af of the annuity is the sum of these 20 amounts. Thus

Af  400  40011.04 2  40011.04 2 2  . . .  40011.04 2 19

But this is a geometric series with a  400, r  1.04, and n  20, so

Af  400  

1  11.04 2 20

1  1.04
< 11,911.23

Thus the amount in the account after the last payment is $11,911.23.

Now Try exercise 3 ■

In general, the regular annuity payment is called the periodic rent and is denoted by 
R. We also let i denote the interest rate per time period and let n denote the number of 
payments. We  always assume that the time period in which interest is compounded is 
equal to the time between payments. By the same reasoning as in Example 1, we see 
that the amount Af of an annuity is

Af  R  R11  i 2  R11  i 2 2  . . .  R11  i 2 n1

Since this is the nth partial sum of a geometric sequence with a  R and r  1  i, the 
formula for the partial sum gives

Af  R  
1  11  i 2 n
1  11  i 2  R  

1  11  i 2 n
i

 R  
11  i 2 n  1

i

 When using interest rates in calcu-
lators, remember to convert percent-
ages to decimals. For example, 8% is 
0.08.
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AMouNT oF AN ANNuITy

The amount Af of an annuity consisting of n regular equal payments of size R 
with interest rate i per time period is given by

Af  R  
11  i 2 n  1

i

exAMPle 2 ■ calculating the Amount of an Annuity
How much money should be invested every month at 12% per year, compounded 
monthly, in order to have $4000 in 18 months?

SoluTIoN  In this problem i  0.12/12  0.01, Af  4000, and n  18. We need to 
find the amount R of each payment. By the formula for the amount of an annuity,

4000  R 
11  0.01 2 18  1

0.01

Solving for R, we get

R 
400010.01 2

11  0.01 2 18  1
< 203.928

Thus the monthly investment should be $203.93.

Now Try exercise 9 ■

■ The Present Value of an Annuity
If you were to receive $10,000 five years from now, it would be worth much less than 
if you got $10,000 right now. This is because of the interest you could accumulate 
during the next 5 years if you invested the money now. What smaller amount would 
you be willing to accept now instead of receiving $10,000 in 5 years? This is the 
amount of money that, together with interest, would be worth $10,000 in 5 years. The 
amount that we are looking for here is called the discounted value or present value. 
If the interest rate is 8% per year, compounded quarterly, then the interest per time 
period is i  0.08/4  0.02, and there are 4  5  20 time periods. If we let PV 
denote the present value, then by the formula for compound interest (Section 4.1) we 
have

10,000  PV11  i 2 n  PV11  0.02 2 20

so PV  10,00011  0.02 220 < 6729.713

Thus in this situation the present value of $10,000 is $6729.71. This reasoning leads to  
a general formula for present value. If an amount Af  is to be paid in a lump sum n time  
periods from now and the interest rate per time period is i, then its present value Ap is 
given by

Ap  Af 11  i 2n

Similarly, the present value of an annuity is the amount Ap that must be invested 
now at the interest rate i per time period to provide n payments, each of amount R. 
Clearly, Ap is the sum of the present values of each individual payment (see Exercise 
29). Another way of finding Ap is to note that Ap is the present value of Af:

Ap  Af 11  i 2n  R  
11  i 2 n  1

i
 11  i 2n  R 

1  11  i 2n

i

Mathematical Economics
The health of the global economy is 
determined by such interrelated factors 
as supply, demand, production, con-
sumption, pricing, distribution, and thou-
sands of other factors. These factors are 
in turn determined by economic deci-
sions (for example, whether or not you 
buy a certain brand of toothpaste) made 
by billions of different individuals each 
day. How will today’s creation and distri-
bution of goods affect tomorrow’s econ-
omy? Such questions are tackled by 
mathematicians who work on mathemat-
ical models of the economy. In the 1940s 
Wassily Leontief, a pioneer in this area, 
created a model consisting of thousands 
of equations that describe how different 
sectors of the economy, such as the oil 
industry, transportation, and communi-
cation, interact with each other. A differ-
ent approach to economic models, one 
dealing with individuals in the economy 
as opposed to large sectors, was pio-
neered by John Nash in the 1950s. In his 
model, which uses game theory, the 
economy is a game where individual 
players make  decisions that often lead to 
mutual gain. Leontief and Nash were 
awarded the Nobel Prize in Economics in 
1973 and 1994, respectively. Economic 
theory continues to be a major area of 
mathematical research.

Mathematics in the Modern World
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The PReSeNT VAlue oF AN ANNuITy

The present value Ap of an annuity consisting of n regular equal payments of 
size R and interest rate i per time period is given by

Ap  R  

1  11  i 2n

i

exAMPle 3 ■ calculating the Present Value of an Annuity
A person wins $10,000,000 in the California lottery, and the amount is paid in yearly 
installments of half a million dollars each for 20 years. What is the present value of 
his winnings? Assume that he can earn 10% interest, compounded annually.

SoluTIoN  Since the amount won is paid as an annuity, we need to find its present 
value. Here i  0.1, R  $500,000, and n  20. Thus

Ap  500,000 
1  11  0.1 220

0.1
< 4,256,781.859

This means that the winner really won only $4,256,781.86 if it were paid 
immediately.

Now Try exercise 11 ■

■ Installment Buying
When you buy a house or a car by installment, the payments that you make are an an-
nuity whose present value is the amount of the loan.

exAMPle 4 ■ The Amount of a loan
A student wishes to buy a car. She can afford to pay $200 per month but has no 
money for a down payment. If she can make these payments for 4 years and the inter-
est rate is 12%, what purchase price can she afford?

SoluTIoN  The payments that the student makes constitute an annuity whose present 
value is the price of the car (which is also the amount of the loan, in this case). Here 
we have i  0.12/12  0.01, R  200, and n  12  4  48, so

Ap  R  
1  11  i 2n

i
 200  

1  11  0.01 248

0.01
< 7594.792

Thus the student can buy a car priced at $7594.79.

Now Try exercise 19 ■

When a bank makes a loan that is to be repaid with regular equal payments R, then 
the payments form an annuity whose present value Ap is the amount of the loan. So to 
find the size of the payments, we solve for R in the formula for the amount of an annu-
ity. This gives the following formula for R.

INSTAllMeNT BuyING 

If a loan Ap is to be repaid in n regular equal payments with interest rate i per 
time period, then the size R of each payment is given by

R 
iAp

1  11  i 2n
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exAMPle 5 ■ calculating Monthly Mortgage Payments
A couple borrows $100,000 at 9% interest as a mortgage loan on a house. They 
expect to make monthly payments for 30 years to repay the loan. What is the size of 
each payment?

SoluTIoN  The mortgage payments form an annuity whose present value is  
Ap  $100,000. Also, i  0.09/12  0.0075, and n  12  30  360. We are  
looking for the amount R of each payment.

From the formula for installment buying we get

 R 
iAp

1  11  i 2n 
10.0075 2 1100,000 2

1  11  0.0075 2360 < 804.623

Thus the monthly payments are $804.62.

Now Try exercise 15 ■

We now illustrate the use of graphing devices in solving problems related to install-
ment buying.

exAMPle 6 ■  calculating the Interest Rate from the Size  
of Monthly Payments

A car dealer sells a new car for $18,000. He offers the buyer payments of $405 per 
month for 5 years. What interest rate is this car dealer charging?

SoluTIoN  The payments form an annuity with present value Ap  $18,000,  
R  405, and n  12  5  60. To find the interest rate, we must solve for i in the 
 equation

R 
iAp

1  11  i 2n

A little experimentation will convince you that it is not possible to solve this equation 
for i algebraically. So to find i, we use a graphing device to graph R as a function of 
the interest rate x, and we then use the graph to find the interest rate corresponding to 
the value of R we want ($405 in this case). Since i  x/12, we graph the function

R1x 2 

x

12
 118,000 2

1  a 1 
x

12
b

60

in the viewing rectangle 30.06, 0.16 4  3350, 450 4 , as shown in Figure 2. We also 
graph the horizontal line R1x 2  405 in the same viewing rectangle. Then, by moving 
the cursor to the point of intersection of the two graphs, we find that the correspond-
ing x-value is approximately 0.125. Thus the interest rate is about 12 

1
2%.

Now Try exercise 25 ■

450

350
0.06 0.160.125

405

FIGuRe 2

coNcePTS
 1. An annuity is a sum of money that is paid in regular equal 

  payments. The   of an annuity is the sum of all the 
 individual payments together with all the interest.

 2. The     of an annuity is the amount that 
must be invested now at interest rate i per time period to  
provide n payments each of amount R.

13.4 exeRcISeS
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APPlIcATIoNS
 3. Annuity  Find the amount of an annuity that consists of  

ten annual payments of $1000 each into an account that pays 
6% interest per year.

 4. Annuity  Find the amount of an annuity that consists of  
24 monthly payments of $500 each into an account that pays 
8% interest per year, compounded monthly.

 5. Annuity  Find the amount of an annuity that consists of  
20 annual payments of $5000 each into an account that pays 
interest of 12% per year.

 6. Annuity  Find the amount of an annuity that consists of  
20 semiannual payments of $500 each into an account that 
pays 6% interest per year, compounded semiannually.

 7. Annuity  Find the amount of an annuity that consists of  
16 quarterly payments of $300 each into an account that pays 
8% interest per year, compounded quarterly.

 8. Annuity  Find the amount of an annuity that consists of  
40 annual payments of $2000 each into an account that pays 
interest of 5% per year. 

 9. Saving  How much money should be invested every quarter 
at 10% per year, compounded quarterly, to have $5000 in  
2 years?

 10. Saving  How much money should be invested monthly at 6% 
per year, compounded monthly, to have $2000 in 8 months?

 11. Annuity  What is the present value of an annuity that con-
sists of 20 semiannual payments of $1000 at an interest rate 
of 9% per year, compounded semiannually?

12. Annuity  What is the present value of an annuity that con-
sists of 30 monthly payments of $300 at an interest rate of 
8% per year, compounded monthly?

 13. Funding an Annuity  How much money must be invested 
now at 9% per year, compounded semiannually, to fund an 
annuity of 20 payments of $200 each, paid every 6 months, 
the first payment being 6 months from now?

14. Funding an Annuity  A 55-year-old man deposits $50,000 to 
fund an annuity with an insurance company. The money will 
be invested at 8% per year, compounded semiannually. He is 
to draw semiannual payments until he reaches age 65. What 
is the amount of each payment?

15. Financing a car  A woman wants to borrow $12,000 to buy a 
car. She wants to repay the loan by monthly installments for 
4 years. If the interest rate on this loan is 10 

1
2 % per year, 

compounded monthly, what is the amount of each payment?

16. Mortgage  What is the monthly payment on a 30-year mort-
gage of $80,000 at 9% interest? What is the monthly pay-
ment on this same mortgage if it is to be repaid over a 
15-year  period?

17. Mortgage  What is the monthly payment on a 30-year 
 mortgage of $100,000 at 8% interest per year, compounded 
monthly? What is the total amount paid on this loan over the 
30-year period?

 18. Mortgage  What is the monthly payment on a 15-year mort-
gage of $200,000 at 6% interest? What is the total amount 
paid on this loan over the 15-year period?

 19. Mortgage  Dr. Gupta is considering a 30-year mortgage at 
6% interest. She can make payments of $3500 a month. What 
size loan can she afford?

20. Mortgage  A couple can afford to make a monthly mortgage 
payment of $650. If the mortgage rate is 9% and the couple 
intends to secure a 30-year mortgage, how much can they 
 borrow?

21. Financing a car  Jane agrees to buy a car for a down pay-
ment of $2000 and payments of $220 per month for 3 years. 
If the interest rate is 8% per year, compounded monthly, what 
is the actual purchase price of her car?

22. Financing a Ring  Mike buys a ring for his fiancee by paying 
$30 a month for one year. If the interest rate is 10% per year, 
compounded monthly, what is the price of the ring?

23. Mortgage  A couple secures a 30-year loan of $100,000 at 
9 

3
4 % per year, compounded monthly, to buy a house.

(a) What is the amount of their monthly payment?

(b) What total amount will they pay over the 30-year period?

(c) If, instead of taking the loan, the couple deposits the 
monthly payments in an account that pays 9 

3
4% interest  

per year, compounded monthly, how much will be in the 
account at the end of the 30-year period?

 24. Mortgage  A couple needs a mortgage of $300,000. Their 
mortgage broker presents them with two options: a 30-year 
mortgage at 6 

1
2% interest or a 15-year mortgage at 5 

3
4% 

 interest.

(a)  Find the monthly payment on the 30-year mortgage and 
on the 15-year mortgage. Which mortgage has the larger 
monthly payment?

(b)  Find the total amount to be paid over the life of each 
loan. Which mortgage has the lower total payment over 
its  lifetime?

25. Interest Rate  John buys a stereo system for $640. He agrees 
to pay $32 a month for 2 years. Assuming that interest is 
compounded monthly, what interest rate is he paying?

26. Interest Rate  Janet’s payments on her $12,500 car are $420 
a month for 3 years. Assuming that interest is compounded 
monthly, what interest rate is she paying on the car loan?

27. Interest Rate  An item at a department store is priced at 
$189.99 and can be bought by making 20 payments of 
$10.50. Find the interest rate, assuming that interest is com-
pounded monthly.

28. Interest Rate  A man purchases a $2000 diamond ring for a 
down payment of $200 and monthly installments of $88 for  
2 years. Assuming that interest is compounded monthly, what 
interest rate is he paying?

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
29. dIScoVeR: Present Value of an Annuity  

(a)  Draw a time line as in Example 1 to show that the pres-
ent value of an annuity is the sum of the present values 
of each payment, that is,

Ap 
R

1  i


R

11  i 2 2 
R

11  i 2 3  . . . 
R

11  i 2 n
(b) Use part (a) to derive the formula for Ap given in the text.

13.5 MATheMATIcAl INducTIoN
■ conjecture and Proof ■ Mathematical Induction

There are two aspects to mathematics—discovery and proof—and they are of equal 
importance. We must discover something before we can attempt to prove it, and we 
cannot be certain of its truth until it has been proved. In this section we examine the 
relationship between these two key components of mathematics more closely.

■ conjecture and Proof
Let’s try a simple experiment. We add more and more of the odd numbers as follows:

 1  1

 1  3  4

 1  3  5  9

 1  3  5  7  16

 1  3  5  7  9  25

What do you notice about the numbers on the right-hand side of these equations? They 
are, in fact, all perfect squares. These equations say the following:

The sum of the first 1 odd number is 12 .

The sum of the first 2 odd numbers is 22.

The sum of the first 3 odd numbers is 32.

The sum of the first 4 odd numbers is 42.

The sum of the first 5 odd numbers is 52.
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30. dIScoVeR: An Annuity That lasts Forever  An annuity in 
perpetuity is one that continues forever. Such annuities are 
useful in setting up scholarship funds to ensure that the award 
continues.

(a)  Draw a time line (as in Example 1) to show that to set up 
an annuity in perpetuity of amount R per time period, the 
amount that must be invested now is

Ap 
R

1  i


R

11  i 2 2 
R

11  i 2 3  . . . 
R

11  i 2 n  . . .

  where i is the interest rate per time period.

(b) Find the sum of the infinite series in part (a) to show that

Ap 
R

i

(c)  How much money must be invested now at 10% per 
year, compounded annually, to provide an annuity in per-
petuity of $5000 per year? The first payment is due in  
1 year.

(d)  How much money must be invested now at 8% per year, 
compounded quarterly, to provide an annuity in perpetu-
ity of $3000 per year? The first payment is due in 1 year.

31. dIScoVeR: Amortizing a Mortgage  When they bought their 
house, John and Mary took out a $90,000 mortgage at 9% 
interest, repayable monthly over 30 years. Their payment is 

$724.17 per month (check this, using the formula in the text). 
The bank gave them an amortization schedule, which is a 
table showing how much of each payment is interest, how 
much goes toward the principal, and the remaining principal 
after each payment. The table below shows the first few 
entries in the amortization schedule.

Payment  
number

Total  
payment

Interest  
payment

Principal  
payment

Remaining  
principal

1 724.17 675.00 49.17 89,950.83
2 724.17 674.63 49.54 89,901.29
3 724.17 674.26 49.91 89,851.38
4 724.17 673.89 50.28 89,801.10

  After 10 years they have made 120 payments and are won-
dering how much they still owe, but they have lost the amor-
tization schedule.

(a)  How much do John and Mary still owe on their mort-
gage? [Hint: The remaining balance is the present 
value of the 240 remaining payments.]

(b)  How much of their next payment is interest, and how 
much goes toward the principal?  [Hint: Since  
9%  12  0.75%, they must pay 0.75% of the  
remaining principal in interest each month.]

13.5 MATheMATIcAl INducTIoN
■ conjecture and Proof ■ Mathematical Induction

There are two aspects to mathematics—discovery and proof—and they are of equal 
importance. We must discover something before we can attempt to prove it, and we 
cannot be certain of its truth until it has been proved. In this section we examine the 
relationship between these two key components of mathematics more closely.

■ conjecture and Proof
Let’s try a simple experiment. We add more and more of the odd numbers as follows:

 1  1

 1  3  4

 1  3  5  9

 1  3  5  7  16

 1  3  5  7  9  25

What do you notice about the numbers on the right-hand side of these equations? They 
are, in fact, all perfect squares. These equations say the following:

The sum of the first 1 odd number is 12 .

The sum of the first 2 odd numbers is 22.

The sum of the first 3 odd numbers is 32.

The sum of the first 4 odd numbers is 42.

The sum of the first 5 odd numbers is 52.
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918 CHAPTER 13 ■ Sequences and Series

This leads naturally to the following question: Is it true that for every natural number n, the 
sum of the first n odd numbers is n2? Could this remarkable property be true? We could try 
a few more numbers and find that the pattern persists for the first 6, 7, 8, 9, and 10 odd 
numbers. At this point we feel fairly confident that this is always true, so we make a  
conjecture:

The sum of the first n odd numbers is n2.

Since we know that the nth odd number is 2n  1, we can write this statement more 
precisely as

1  3  5  . . .  12n  1 2  n2

It is important to realize that this is still a conjecture. We cannot conclude by checking 
a finite number of cases that a property is true for all numbers (there are infinitely 
many). To see this more clearly, suppose someone tells us that he has added up the first 
trillion odd numbers and found that they do not add up to 1 trillion squared. What would 
you tell this person? It would be silly to say that you’re sure it’s true because you have 
already checked the first five cases. You could, however, take out paper and pencil and 
start checking it yourself, but this task would probably take the rest of your life. The 
tragedy would be that after completing this task, you would still not be sure of the truth 
of the conjecture! Do you see why?

Herein lies the power of mathematical proof. A proof is a clear argument that dem-
onstrates the truth of a statement beyond doubt.

■ Mathematical Induction
Let’s consider a special kind of proof called mathematical induction. Here is how it 
works: Suppose we have a statement that says something about all natural numbers n. 
For example, for any natural number n, let P1n 2  be the following statement:

P1n 2 :  The sum of the first n odd numbers is n2

Since this statement is about all natural numbers, it contains infinitely many statements; 
we will call them P(1), P(2), . . . .

 P11 2 : The sum of the first 1 odd number is 12.

 P12 2 : The sum of the first 2 odd numbers is 22.

 P13 2 : The sum of the first 3 odd numbers is 32.

 (  (

How can we prove all of these statements at once? Mathematical induction is a clever 
way of doing just that.

The crux of the idea is this: Suppose we can prove that whenever one of these state-
ments is true, then the one following it in the list is also true. In other words,

For every k, if P1k 2  is true, then P1k  1 2  is true.

This is called the induction step because it leads us from the truth of one statement to 
the truth of the next. Now suppose that we can also prove that

P11 2  is true.

The induction step now leads us through the following chain of statements:

P11 2  is true, so P12 2  is true.

P12 2  is true, so P13 2  is true.

P13 2  is true, so P14 2  is true.

 (  (

Consider the polynomial

p1n 2  n2  n  41

Here are some values of p1n 2 :
p11 2  41 p12 2  43

p13 2  47 p14 2  53

p15 2  61 p16 2  71

p17 2  83 p18 2  97

All the values so far are prime num-
bers. In fact, if you keep going, you 
will find that p1n 2  is prime for all nat-
ural numbers up to n  40. It might 
seem reasonable at this point to conjec-
ture that p1n 2  is prime for every natu-
ral number n. But that conjecture 
would be too hasty, because it is easily 
seen that p141 2  is not prime. This 
illustrates that we cannot be certain of 
the truth of a statement no matter how 
many special cases we check. We need 
a convincing argument—a proof—to 
determine the truth of a statement.
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SECTION 13.5 ■ Mathematical Induction 919

So we see that if both the induction step and P11 2  are proved, then statement P1n 2  is 
proved for all n. Here is a summary of this important method of proof.

PRINcIPle oF MATheMATIcAl INducTIoN

For each natural number n, let P1n 2  be a statement depending on n. Suppose 
that the following two conditions are satisfied.

1. P11 2  is true.

2. For every natural number k, if P1k 2  is true then P1k  1 2  is true.

Then P1n 2  is true for all natural numbers n.

To apply this principle, there are two steps:

Step 1 Prove that P11 2  is true.

Step 2 Assume that P1k 2  is true, and use this assumption to prove that P1k  1 2  is 
true.

Notice that in Step 2 we do not prove that P1k 2  is true. We only show that if P1k 2  is 
true, then P1k  1 2  is also true. The assumption that P1k 2  is true is called the induc-
tion  hypothesis.
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We now use mathematical induction to prove that the conjecture that we made at the 
beginning of this section is true.

exAMPle 1 ■ A Proof by Mathematical Induction
Prove that for all natural numbers n,

1  3  5  . . .  12n  1 2  n2

SoluTIoN  Let P1n 2  denote the statement 1  3  5  . . .  12n  1 2  n2.

Step 1 We need to show that P11 2  is true. But P11 2  is simply the statement that  
1  12, which is of course true.

Step 2 We assume that P1k 2  is true. Thus our induction hypothesis is

1  3  5  . . .  12k  1 2  k 2

 We want to use this to show that P1k  1 2  is true, that is,

1  3  5  . . .  12k  1 2  321k  1 2  1 4  1k  1 2 2
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blaisE Pascal (1623–1662) is consid-
ered one of the most versatile minds in 
modern history. He was a writer and phi-
losopher as well as a gifted mathemati-
cian and physicist. Among his contribu-
tions that appear in this book are Pascal’s 
triangle and the Principle of Mathemati-
cal Induction.

Pascal’s father, himself a mathemati-
cian, believed that his son should not study 
mathematics until he was 15 or 16. But at 
age 12, Blaise insisted on learning geome-
try and proved most of its elementary theo-
rems himself. At 19 he invented the first 
mechanical adding machine. In 1647, after 
writing a major treatise on the conic sec-
tions, he abruptly abandoned mathematics 
because he felt that his intense studies 
were contributing to his ill health. He 
devoted himself instead to frivolous recre-
ations such as gambling, but this only 
served to pique his interest in probability. In 
1654 he miraculously survived a carriage 
accident in which his horses ran off a 
bridge. Taking this to be a sign from God, 
Pascal entered a monastery, where he pur-
sued theology and philosophy, writing his 
famous Pensées. He also continued his 
mathematical research. He valued faith and 
intuition more than reason as the source of 
truth, declaring that “the heart has its own 
reasons, which reason cannot know.”
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920 CHAPTER 13 ■ Sequences and Series

 3Note that we get P1k  1 2  by substituting k  1 for each n in the statement 
P1n 2 . 4  We start with the left-hand side and use the induction hypothesis to ob-
tain the right-hand side of the equation.

1  3  5  . . .  12k  1 2  321k  1 2  1 4
    31  3  5  . . .  12k  1 2 4  321k  1 2  1 4  Group the first k terms

    k 
2  321k  1 2  1 4  Induction hypothesis

    k 
2  32k  2  1 4  Distributive  Property

    k 
2  2k  1  Simplify

    1k  1 2 2  Factor

Thus P1k  1 2  follows from P1k 2 , and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that P1n 2  is true for all natural numbers n.

Now Try exercise 3 ■

exAMPle 2 ■ A Proof by Mathematical Induction
Prove that for every natural number n,

1  2  3  . . .  n 
n1n  1 2

2

SoluTIoN  Let P1n 2  be the statement 1  2  3  . . .  n  n1n  1 2 /2. We want 
to show that P1n 2  is true for all natural numbers n.

Step 1 We need to show that P11 2  is true. But P11 2  says that

1 
111  1 2

2

 and this statement is clearly true.

Step 2 Assume that P1k 2  is true. Thus our induction hypothesis is

1  2  3  . . .  k 
k1k  1 2

2

 We want to use this to show that P1k  1 2  is true, that is,

1  2  3  . . .  k  1k  1 2 
1k  1 2 3 1k  1 2  1 4

2

  So we start with the left-hand side and use the induction hypothesis to obtain 
the right side.

1  2  3  . . .  k  1k  1 2
    31  2  3  . . .  k 4  1k  1 2     Group the first k terms

    
k1k  1 2

2
 1k  1 2     Induction hypothesis

    1k  1 2 a k

2
 1 b     Factor k  1

    1k  1 2 a k  2

2
b     Common denominator

    
1k  1 2 3 1k  1 2  1 4

2
    Write k  2 as k  1  1

Thus P1k  1 2  follows from P1k 2 , and this completes the induction step.

This equals k2 by the induction 
hypothesis

This equals 
k1k  1 2

2
 by the 

 induction hypothesis
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SECTION 13.5 ■ Mathematical Induction 921

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induc-
tion that P1n 2  is true for all natural numbers n.

Now Try exercise 5 ■

The following box gives formulas for the sums of powers of the first n natural num-
bers. These formulas are important in calculus. Formula 1 is proved in Example 2. The 
other formulas are also proved by using mathematical induction (see Exercises 6 and 9).

SuMS oF PoWeRS

0. a
n

k1
1  n 2. a

n

k1
k2 

n1n  1 2 12n  1 2
6

1. a
n

k1
k 

n1n  1 2
2

 3. a
n

k1
k3 

n21n  1 2 2
4

It might happen that a statement P1n 2  is false for the first few natural numbers but 
true from some number on. For example, we might want to prove that P1n 2  is true for 
n  5. Notice that if we prove that P15 2  is true, then this fact, together with the induc-
tion step, would imply the truth of P15 2 , P16 2 , P17 2 , . . . . The next example illustrates 
this point.

exAMPle 3 ■ Proving an Inequality by Mathematical Induction
Prove that 4n  2n for all n  5.

SoluTIoN  Let P1n 2  denote the statement 4n  2n.

Step 1 P15 2  is the statement that 4 # 5  25, or 20  32, which is true.

Step 2 Assume that P1k 2  is true. Thus our induction hypothesis is

4k  2k

 We want to use this to show that P1k  1 2  is true, that is,

41k  1 2  2k1

 So we start with the left-hand side of the inequality and use the induction  
hypothesis to show that it is less than the right-hand side. For k  5 we have

 41k  1 2  4k  4     Distributive Property

  2k  4     Induction hypothesis

  2k  4k    Because 4  4k

  2k  2k     Induction hypothesis

  2 # 2k

  2k1     Property of exponents

 Thus P1k  1 2  follows from P1k 2 , and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that P1n 2  is true for all natural numbers n  5.

Now Try exercise 21 ■

We get P(k  1) by replacing n by  
k  1 in the statement P(n).
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922 CHAPTER 13 ■ Sequences and Series

coNcePTS
 1. Mathematical induction is a method of proving that a 

  statement P 1n 2  is true for all   numbers n. In Step 1 

  we prove that   is true.

 2. Which of the following is true about Step 2 in a proof by 
mathematical induction?

 (i) We prove “P1k  1 2  is true.”

 (ii) We prove “If P1k 2  is true, then P1k  1 2  is true.”

SkIllS
3–14 ■ Proving a Formula  Use mathematical induction to prove 
that the formula is true for all natural numbers n.

 3. 2  4  6  . . .  2n  n1n  1 2

 4. 1  4  7  . . .  13n  2 2 
n13n  1 2

2

 5. 5  8  11  . . .  13n  2 2 
n13n  7 2

2

 6. 12  22  32  . . .  n 
2 

n1n  1 2 12n  1 2
6

 7. 1 # 2  2 # 3  3 # 4  . . .  n1n  1 2 
n1n  1 2 1n  2 2

3

 8. 1 # 3  2 # 4  3 # 5  . . .  n1n  2 2 
n1n  1 2 12n  7 2

6

 9. 13  23  33  . . .  n3 
n21n  1 2 2

4

 10. 13  33  53  . . .  12n  1 2 3  n212n2  1 2
 11. 23  43  63  . . .  12n 2 3  2n21n  1 2 2

12. 
1

1 # 2


1

2 # 3


1

3 # 4
 . . . 

1

n1n  1 2 
n

1n  1 2
13. 1 # 2  2 # 22  3 # 23  4 # 24  . . .  n # 2n

     2 31  1n  1 22n 4
14. 1  2  22  . . .  2n1  2n  1

15–24 ■ Proving a Statement  Use mathematical induction to 
show that the given statement is true.

15. n2  n is divisible by 2 for all natural numbers n.

16. 5n  1 is divisible by 4 for all natural numbers n.

17. n2  n  41 is odd for all natural numbers n.

18. n3  n  3 is divisible by 3 for all natural numbers n.

19. 8n  3n is divisible by 5 for all natural numbers n.

20. 32n  1 is divisible by 8 for all natural numbers n.

21. n  2n for all natural numbers n.

22. 1n  1 2 2  2n2 for all natural numbers n  3.

23. If x  1, then 11  x 2 n  1  nx for all natural numbers n.

24. 100n  n2 for all n  100.

25. Formula for a Recursive Sequence  A sequence is  
defined recursively by an1  3an and a1  5. Show that  
an  5  3n1 for all natural numbers n.

26. Formula for a Recursive Sequence  A sequence is defined 
recursively by an1  3an  8 and a1  4. Find an explicit 
formula for an, and then use mathematical induction to prove 
that the formula you found is true.

27. Proving a Factorization  Show that x  y is a factor of  
xn  yn for all natural numbers n.
3Hint: x 

k1  y 
k1  x 

k1x  y 2  1x 
k  y 

k 2y. 4
28. Proving a Factorization  Show that x  y is a factor of  

x2n1  y2n1 for all natural numbers n.

SkIllS Plus
29–33 ■ Fibonacci Sequence  Fn denotes the nth term of the 
Fibonacci sequence discussed in Section 13.1. Use mathematical 
induction to prove the statement.

29. F3n is even for all natural numbers n.

30. F1  F2  F3  . . .  Fn  Fn2  1

31. F2
1  F2

2  F2
3  . . .  F2

n  FnFn1

32. F1  F3  . . .  F2n1  F2n

33. For all n  2,

c 1 1

1 0
d

n

 cFn1 Fn

Fn Fn1
d

34. Formula using Fibonacci Numbers  Let an be the nth term of 
the sequence defined recursively by

an1 
1

1  an

  and let a1  1. Find a formula for an in terms of the Fibo-
nacci numbers Fn. Prove that the formula you found is valid 
for all natural numbers n.

35. discover and Prove an Inequality  Let Fn be the nth term of 
the Fibonacci sequence. Find and prove an inequality relating 
n and Fn for natural numbers n.

36. discover and Prove an Inequality  Find and prove an 
inequality relating 100n and n3.

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
37. dIScuSS: True or False?  Determine whether each statement 

is true or false. If you think the statement is true, prove it. If 
you think it is false, give an example in which it fails.

(a) p1n 2  n2  n  11 is prime for all n.

(b) n2  n for all n  2.

(c) 22n1  1 is divisible by 3 for all n  1.

(d) n3  1n  1 2 2 for all n  2.

(e) n3  n is divisible by 3 for all n  2.

(f ) n3  6n2  11n is divisible by 6 for all n  1.

13.5 exeRcISeS

13.6 The BINoMIAl TheoReM
■ expanding xa 1 b c n ■ The Binomial coefficients ■ The Binomial Theorem  
■ Proof of the Binomial Theorem

An expression of the form a  b is called a binomial. Although in principle it’s easy 
to raise a  b to any power, raising it to a very high power would be tedious. In this 
section we find a formula that gives the expansion of 1a  b 2 n for any natural number 
n and then prove it using mathematical induction.

■ expanding xa 1 bc n

To find a pattern in the expansion of 1a  b 2 n, we first look at some special cases.

 1a  b 2 1  a  b

 1a  b 2 2  a2  2ab  b2

 1a  b 2 3  a3  3a2b  3ab2  b3

 1a  b 2 4  a4  4a3b  6a2b2  4ab3  b4

 1a  b 2 5  a5  5a4b  10a3b2  10a2b3  5ab4  b5

 (

The following simple patterns emerge for the expansion of 1a  b 2 n.

1. There are n  1 terms, the first being an and the last being bn.

2.  The exponents of a decrease by 1 from term to term, while the exponents of b  
increase by 1.

3. The sum of the exponents of a and b in each term is n.

For instance, notice how the exponents of a and b behave in the expansion of 
1a  b 2 5.
The exponents of a decrease:

1a  b 2 5  a    5a   b1    10a b2   10a b3   5a  b4  b5

The exponents of b increase:

1a  b 2 5  a5  5a4b     10a3b     10a2b   5a1b    b

5 4 3 2 1

1 2 3 4 5
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SECTION 13.6 ■ The Binomial Theorem 923

38. dIScuSS: All cats Are Black?  What is wrong with the fol-
lowing “proof” by mathematical induction that all cats are 
black? Let P1n 2  denote the statement “In any group of n cats, 
if one cat is black, then they are all black.”

Step 1 The statement is clearly true for n  1.

Step 2 Suppose that P1k 2  is true. We show that P1k  1 2  is true.
Suppose we have a group of k  1 cats, one of whom 

is black; call this cat “Tadpole.” Remove some other cat 
(call it “Sparky”) from the group. We are left with k cats, 
one of whom (Tadpole) is black, so by the induction 
hypothesis, all k of these are black. Now put Sparky back 
in the group and take out Tadpole. We again have a group 
of k cats, all of whom—except possibly Sparky—are 

black. Then by the induction hypothesis, Sparky must be 
black too. So all k  1 cats in the original group are black.

  Thus by induction P1n 2  is true for all n. Since everyone has 
seen at least one black cat, it follows that all cats are black.

Tadpole Sparky

13.6 The BINoMIAl TheoReM
■ expanding xa 1 b c n ■ The Binomial coefficients ■ The Binomial Theorem  
■ Proof of the Binomial Theorem

An expression of the form a  b is called a binomial. Although in principle it’s easy 
to raise a  b to any power, raising it to a very high power would be tedious. In this 
section we find a formula that gives the expansion of 1a  b 2 n for any natural number 
n and then prove it using mathematical induction.

■ expanding xa 1 bc n

To find a pattern in the expansion of 1a  b 2 n, we first look at some special cases.

 1a  b 2 1  a  b

 1a  b 2 2  a2  2ab  b2

 1a  b 2 3  a3  3a2b  3ab2  b3

 1a  b 2 4  a4  4a3b  6a2b2  4ab3  b4

 1a  b 2 5  a5  5a4b  10a3b2  10a2b3  5ab4  b5

 (

The following simple patterns emerge for the expansion of 1a  b 2 n.

1. There are n  1 terms, the first being an and the last being bn.

2.  The exponents of a decrease by 1 from term to term, while the exponents of b  
increase by 1.

3. The sum of the exponents of a and b in each term is n.

For instance, notice how the exponents of a and b behave in the expansion of 
1a  b 2 5.
The exponents of a decrease:

1a  b 2 5  a    5a   b1    10a b2   10a b3   5a  b4  b5

The exponents of b increase:

1a  b 2 5  a5  5a4b     10a3b     10a2b   5a1b    b

5 4 3 2 1

1 2 3 4 5
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924 CHAPTER 13 ■ Sequences and Series

With these observations we can write the form of the expansion of 1a  b 2 n for any natu-
ral number n. For example, writing a question mark for the missing coefficients, we have

Óa  bÔ8  a8  ? a7b  ? a6b2  ? a5b3  ? a4b4  ? a3b5  ? a2b6  ? ab7  b8

To complete the expansion, we need to determine these coefficients. To find a pattern, 
let’s write the coefficients in the expansion of 1a  b 2 n for the first few values of n in 
a triangular array as shown in the following array, which is called Pascal’s triangle.

 1a  b 2 0 

1 5 10 110 5

1

1

1

1

1

1

1

1

1

4

3

2

4

3

6

 1a  b 2 1 

 1a  b 2 2

 1a  b 2 3

 1a  b 2 4

 1a  b 2 5
The row corresponding to 1a  b 2 0 is called the zeroth row and is included to show the 
symmetry of the array. The key observation about Pascal’s triangle is the following 
 property.

key PRoPeRTy oF PAScAl’S TRIANGle

Every entry (other than a 1) is the sum of the two entries diagonally above it.

From this property it is easy to find any row of Pascal’s triangle from the row above 
it. For instance, we find the sixth and seventh rows, starting with the fifth row:

 1a  b 2 5 1    5    10    10    5    1
          
 1 6 15 20 15 6 1
            
1 7 21 35 35 21 7 1

 1a  b 2 6
 1a  b 2 7
To see why this property holds, let’s consider the following expansions:

1a  b 2 5  a5  5a4b  10a3b2   10a2b3   5ab4  b5

1a  b 2 6  a6  6a5b  15a4b2  20a3b3   15a2b4  6ab5  b6

We arrive at the expansion of 1a  b 2 6 by multiplying 1a  b 2 5 by 1a  b 2 . Notice, 
for instance, that the circled term in the expansion of 1a  b 2 6 is obtained via this 
multiplication from the two circled terms above it. We get this term when the two terms 
above it are multiplied by b and a, respectively. Thus its coefficient is the sum of the 
coefficients of these two terms. We will use this observation at the end of this section 
when we prove the Binomial Theorem.

Having found these patterns, we can now easily obtain the expansion of any bino-
mial, at least to relatively small powers.

exAMPle 1 ■ expanding a Binomial using Pascal’s Triangle
Find the expansion of 1a  b 2 7 using Pascal’s triangle.

SoluTIoN  The first term in the expansion is a7, and the last term is b7. Using the fact 
that the exponent of a decreases by 1 from term to term and that of b increases by 1 
from term to term, we have

1a  b2 7  a7  ? a6b  ? a5b2  ? a4b3  ? a3b4  ? a2b5  ? ab6  b7

→ → →

→ → → → → →

→ → →

→ → → → → →

→ → → →

←––

←

What we now call Pascal’s triangle 
appears in this Chinese document by Chu 
Shikie, dated 1303. The title reads “The 
Old Method Chart of the Seven Multiply-
ing Squares.” The triangle was rediscov-
ered by Pascal (see page 919).
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SECTION 13.6 ■ The Binomial Theorem 925

The appropriate coefficients appear in the seventh row of Pascal’s triangle. Thus

1a  b 2 7  a7  7a6b  21a5b2  35a4b3  35a3b4  21a2b5  7ab6  b7

Now Try exercise 5 ■

exAMPle 2 ■  expanding a Binomial using Pascal’s Triangle
Use Pascal’s triangle to expand 12  3x 2 5.

SoluTIoN  We find the expansion of 1a  b 2 5 and then substitute 2 for a and 3x  
for b. Using Pascal’s triangle for the coefficients, we get

1a  b 2 5  a 
5  5a 

4b  10a 
3b 

2  10a 
2b 

3  5ab 
4  b 

5

Substituting a  2 and b  3x gives

 12  3x 2 5  12 2 5  512 2 413x 2  1012 2 313x 2 2  1012 2 213x 2 3  512 2 13x 2 4  13x 2 5
  32  240x  720x 

2  1080x 
3  810x 

4  243x 
5

Now Try exercise 13 ■

■ The Binomial coefficients
Although Pascal’s triangle is useful in finding the binomial expansion for reasonably 
small values of n, it isn’t practical for finding 1a  b 2 n for large values of n. The 
reason is that the method we use for finding the successive rows of Pascal’s triangle 
is recursive. Thus to find the 100th row of this triangle, we must first find the preced-
ing 99 rows.

We need to examine the pattern in the coefficients more carefully to develop a for-
mula that allows us to calculate directly any coefficient in the binomial expansion. Such 
a formula exists, and the rest of this section is devoted to finding and proving it. How-
ever, to state this formula, we need some notation.

The product of the first n natural numbers is denoted by n! and is called n factorial.

n!  1 # 2 # 3 # . . . # 1n  1 2 # n

We also define 0! as follows:

0!  1

This definition of 0! makes many formulas involving factorials shorter and easier to 
write.

The BINoMIAl coeFFIcIeNT

Let n and r be nonnegative integers with r  n. The binomial coefficient is 
denoted by Anr B  and is defined by

a n

r
b 

n!

r! 1n  r 2 !

 4!  1 # 2 # 3 # 4  24

 7!  1 # 2 # 3 # 4 # 5 # 6 # 7  5040

 10!  1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

  3,628,800
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926 CHAPTER 13 ■ Sequences and Series

exAMPle 3 ■ calculating Binomial coefficients

(a)  a 9

4
b 

9!

4! 19  4 2 ! 
9!

4! 5!


1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9

11 # 2 # 3 # 4 2 11 # 2 # 3 # 4 # 5 2
   

6 # 7 # 8 # 9

1 # 2 # 3 # 4
 126

(b)  a 100

3
b 

100!

3! 1100  3 2 ! 
1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 2 11 # 2 # 3 # p # 97 2
   

98 # 99 # 100

1 # 2 # 3
 161,700

(c)  a 100

97
b 

100!

97! 1100  97 2 ! 
1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 # p # 97 2 11 # 2 # 3 2
   

98 # 99 # 100

1 # 2 # 3
 161,700

Now Try exercises 17 and 19 ■

Although the binomial coefficient Anr B  is defined in terms of a fraction, all the results of 
Example 3 are natural numbers. In fact, Anr B  is always a natural number (see Exercise 54). 
Notice that the binomial coefficients in parts (b) and (c) of Example 3 are equal. This is a 
special case of the following relation, which you are asked to prove in Exercise 52.

a n

r
b  a n

n  r
b

To see the connection between the binomial coefficients and the binomial expansion 
of 1a  b 2 n, let’s calculate the following binomial coefficients:

a 5

0
b  1  a 5

1
b  5  a 5

2
b  10  a 5

3
b  10  a 5

4
b  5  a 5

5
b  1

These are precisely the entries in the fifth row of Pascal’s triangle. In fact, we can write 
Pascal’s triangle as follows.

a 0

0
b

a 1

0
b  a 1

1
b

a 2

0
b  a 2

1
b  a 2

2
b

a 3

0
b  a 3

1
b  a 3

2
b  a 3

3
b

a 4

0
b  a 4

1
b  a 4

2
b  a 4

3
b  a 4

4
b

a 5

0
b  a 5

1
b  a 5

2
b  a 5

3
b  a 5

4
b  a 5

5
b

#   #   #   #   #   #   #

a n

0
b  a n

1
b  a n

2
b  #  #  #  a n

n  1
b  a n

n
b

a5

2
b 

5!

2! 15  2 2!  10
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SECTION 13.6 ■ The Binomial Theorem 927

To demonstrate that this pattern holds, we need to show that any entry in this version of 
Pascal’s triangle is the sum of the two entries diagonally above it. In other words, we 
must show that each entry satisfies the key property of Pascal’s triangle. We now state 
this property in terms of the binomial coefficients.

key PRoPeRTy oF The BINoMIAl coeFFIcIeNTS

For any nonnegative integers r and k with r  k,

a k

r  1
b  a k

r
b  a k  1

r
b

Notice that the two terms on the left-hand side of this equation are adjacent entries 
in the kth row of Pascal’s triangle and the term on the right-hand side is the entry di-
agonally below them, in the 1k  1 2 st row. Thus this equation is a restatement of the 
key property of Pascal’s triangle in terms of the binomial coefficients. A proof of this 
formula is outlined in Exercise 53.

■ The Binomial Theorem
We are now ready to state the Binomial Theorem.

The BINoMIAl TheoReM

1a  b 2 n  a n

0
b a 

n  a n

1
b a 

n1b  a n

2
b a 

n2
 b 

2  . . .  a n

n  1
b ab 

n1  a n

n
b b 

n

We prove this theorem at the end of this section. First, let’s look at some of its appli-
cations.

exAMPle 4 ■  expanding a Binomial using the Binomial Theorem
Use the Binomial Theorem to expand 1x  y 2 4.

SoluTIoN  By the Binomial Theorem,

1x  y 2 4  a 4

0
b x 

4  a 4

1
b x 

3y  a 4

2
b x 

2y 
2  a 4

3
b xy 

3  a 4

4
b y 

4

Verify that

a 4

0
b  1  a 4

1
b  4  a 4

2
b  6  a 4

3
b  4  a 4

4
b  1

It follows that

1x  y 2 4  x 
4  4x 

3y  6x 
2y 

2  4xy 
3  y 

4

Now Try exercise 25 ■

exAMPle 5 ■  expanding a Binomial using the Binomial Theorem
Use the Binomial Theorem to expand A!x  1B8.

B.
 S

an
er

so
n/

Sc
ie

nc
e 

So
ur

ce

sir isaac nEWton (1642–1727) is uni-
versally regarded as one of the giants of 
physics and mathematics. He is well 
known for discovering the laws of motion 
and gravity and for inventing calculus, 
but he also proved the Binomial Theorem 
and the laws of optics, and he developed 
methods for solving poly nomial equa-
tions to any desired ac curacy. He was 
born on Christmas Day, a few months 
after the death of his father. After an 
unhappy childhood, he entered Cam-
bridge University, where he learned 
mathematics by studying the writings of 
Euclid and Descartes.

During the plague years of 1665 and 
1666, when the university was closed, 
Newton thought and wrote about ideas 
that, once published, instantly revolution-
ized the sciences. Imbued with a pathologi-
cal fear of criticism, he published these 
writings only after many years of encour-
agement from Edmund Halley (who discov-
ered the now-famous comet) and other 
colleagues.

Newton’s works brought him enor-
mous fame and prestige. Even poets were 
moved to praise; Alexander Pope wrote:

Nature and Nature’s Laws
  lay hid in Night.
God said, “Let Newton be”
  and all was Light.

Newton was far more modest about his 
accomplishments. He said, “I seem to have 
been only like a boy playing on the sea-
shore . . . while the great ocean of truth lay 
all undiscovered before me.” Newton was 
knighted by Queen Anne in 1705 and was 
buried with great honor in Westminster 
Abbey.
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928 CHAPTER 13 ■ Sequences and Series

SoluTIoN  We first find the expansion of 1a  b 2 8 and then substitute !x for a and 
1 for b. Using the Binomial Theorem, we have

 1a  b 2 8  a 8

0
b a8  a 8

1
b a7b  a 8

2
b a6b 

2  a 8

3
b a 

5b 
3  a 8

4
b a 

4b 
4

  a 8

5
b a 

3b 
5  a 8

6
b a 

2b6  a 8

7
b ab7  a 8

8
b b8

Verify that

a 8

0
b  1  a 8

1
b  8  a 8

2
b  28  a 8

3
b  56  a 8

4
b  70

a 8

5
b  56  a 8

6
b  28  a 8

7
b  8  a 8

8
b  1

So

 1a  b 2 8  a8  8a7b  28a6b2  56a5b3  70a4b4  56a3b5

  28a2b6  8ab7  b8

Performing the substitutions a  x1/2 and b  1 gives

 A!x  1B8  1x1/2 2 8  81x1/2 2 711 2  281x1/2 2 611 2 2  561x1/2 2 511 2 3
  701x1/2 2 411 2 4  561x1/2 2 311 2 5  281x1/2 2 211 2 6
  81x1/2 2 11 2 7  11 2 8

This simplifies to

1!x  1 2 8  x4  8x7/2  28x3  56x5/2  70x2  56x3/2  28x  8x1/2  1

Now Try exercise 27 ■

The Binomial Theorem can be used to find a particular term of a binomial expansion 
without having to find the entire expansion.

GeNeRAl TeRM oF The BINoMIAl exPANSIoN

The term that contains ar in the expansion of 1a  b 2 n is

a n

r
b arbnr

exAMPle 6 ■ Finding a Particular Term in a Binomial expansion
Find the term that contains x5 in the expansion of 12x  y 2 20.

SoluTIoN  The term that contains x5 is given by the formula for the general term 
with a  2x, b  y, n  20, and r  5. So this term is

a 20

5
b a5b15 

20!

5! 120  5 2 ! 12x 2 5y15 
20!

5! 15!
 32x5y15  496,128x5y15

Now Try exercise 39 ■

exAMPle 7 ■ Finding a Particular Term in a Binomial expansion

Find the coefficient of x8 in the expansion of a x2 
1
x
b

10

.

Recall that

an

r
b  a n

n  r
b

(See page 926.)
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SECTION 13.6 ■ The Binomial Theorem 929

SoluTIoN  Both x2 and 1/x are powers of x, so the power of x in each term of  
the expansion is determined by both terms of the binomial. To find the required 
coefficient, we first find the general term in the expansion. By the formula we have  
a  x2, b  1/x, and n  10, so the general term is

a 10

r
b 1x2 2 r a 1

x
b

10r

 a 10

r
b x2r1x1 2 10r  a 10

r
b x3r10

Thus the term that contains x8 is the term in which

 3r  10  8

 r  6

So the required coefficient is

a 10

6
b  210

Now Try exercise 41 ■

■ Proof of the Binomial Theorem
We now give a proof of the Binomial Theorem using mathematical induction.

Proof  Let P1n 2  denote the statement

1a  b 2 n  a n

0
b a 

n  a n

1
b a 

n1b  a n

2
b a 

n2b 
2  . . .  a n

n  1
b ab 

n1  a n

n
b b 

n

Step 1 We show that P11 2  is true. But P11 2  is just the statement

1a  b 2 1  a 1

0
b a1  a 1

1
b b1  1a  1b  a  b

 which is certainly true.

Step 2 We assume that P1k 2  is true. Thus our induction hypothesis is

1a  b 2 k  a k

0
b a 

k  a k

1
b a 

k1b  a k

2
b a 

k2b 
2  . . .  a k

k  1
b ab 

k1  a k

k
b b 

k

 We use this to show that P1k  1 2  is true.

 1a  b 2 k1  1a  b 2 3 1a  b 2 k 4
   1a  b 2 c a k

0
b a 

k  a k

1
b a 

k1b  a k

2
b a 

k2b 
2  . . .  a k

k  1
b ab 

k1  a k

k
b b 

k d  Induction 
hypothesis

  a c a k

0
b a 

k  a k

1
b a 

k1b  a k

2
b a 

k2b 
2  . . .  a k

k  1
b ab 

k1  a k

k
b b 

k d

  b c a k

0
b ak  a k

1
b ak1b  a k

2
b ak2b2  . . .  a k

k  1
b abk1  a k

k
b bk d  Distributive 

Property

  a k

0
b ak1  a k

1
b akb  a k

2
b ak1b2  . . .  a k

k  1
b a2bk1  a k

k
b abk

  a k

0
b akb  a k

1
b ak1b 

2  a k

2
b ak2b3  . . .  a k

k  1
b abk  a k

k
b bk1 

Distributive 
Property

  a k

0
b ak1  c a k

0
b  a k

1
b dakb  c a k

1
b  a k

2
b dak1b2

 
 . . .  c a k

k  1
b  a k

k
b dabk  a k

k
b bk1 

Group  
like terms
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930 CHAPTER 13 ■ Sequences and Series

 Using the key property of the binomial coefficients, we can write each of the  
expressions in square brackets as a single binomial coefficient. Also, writing 

the first and last coefficients as Ak1
0 B  and Ak1

k1B  (these are equal to 1 by Exer-
cise 50) gives

1a  b 2 k1  a k  1

0
b a 

k1  a k  1

1
b a 

kb  a k  1

2
b a 

k1b 
2  . . .  a k  1

k
b ab 

k  a k  1

k  1
b b 

k1

 But this last equation is precisely P1k  1 2 , and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical 
Induction that the theorem is true for all natural numbers n. ■

coNcePTS
 1. An algebraic expression of the form a  b, which consists of 

  a sum of two terms, is called a    .

 2. We can find the coefficients in the expansion of 1a  b 2 n 

  from the nth row of   triangle. So 

1a  b 2 4  ■a4  ■a3b  ■a2b2  ■ab3  ■b4

 3. The binomial coefficients can be calculated directly by using

  the formula an
k
b     . So a4

3
b     .

 4. To expand 1a  b 2 n, we can use the   Theorem.  
Using this theorem, we find the expansion 1a  b 2 4 

a■
■
ba4  a■

■
ba3b  a■

■
ba2b2  a■

■
bab3  a■

■
bb4

SkIllS
5–16 ■ Pascal’s Triangle  Use Pascal’s triangle to expand the 
expression.

 5. 1x  y 2 6 6. 12x  1 2 4  7. a x 
1
x
b

4

 8. 1x  y 2 5 9. 1x  1 2 5 10. A!a  !bB6
 11. 1x 

2
 y  1 2 5 12. A1  !2B6 13. 12x  3y 2 3

14. 11  x 
3 2 3 15. a 1

x
 !xb

5

 16. a2 
x

2
b

5

17–24 ■ calculating Binomial coefficients  Evaluate the 
expression.

17. a6

4
b  18. a8

3
b  19. a100

98
b

20. a10

5
b  21. a3

1
b a4

2
b  22. a5

2
b a5

3
b

23. a5

0
b  a5

1
b  a5

2
b  a5

3
b  a5

4
b  a5

5
b

24. a5

0
b  a5

1
b  a5

2
b  a5

3
b  a5

4
b  a5

5
b

25–28 ■ Binomial Theorem  Use the Binomial Theorem to 
expand the expression.

25. 1x  2y 2 4 26. 11  x 2 5

27. a1 
1
x
b

6

 28. 12A  B2 2 4

29–42 ■ Terms of a Binomial expansion  Find the indicated 
terms in the expansion of the given binomial.

29. The first three terms in the expansion of 1x  2y 2 20

30. The first four terms in the expansion of 1x1/2  1 2 30

31. The last two terms in the expansion of 1a2/3  a1/3 2 25

32. The first three terms in the expansion of

a x 
1
x
b

40

33. The middle term in the expansion of 1x2  1 2 18

34. The fifth term in the expansion of 1ab  1 2 20

35. The 24th term in the expansion of 1a  b 2 25

36. The 28th term in the expansion of 1A  B 2 30

37. The 100th term in the expansion of 11  y 2 100

38. The second term in the expansion of

a x2 
1
x
b

25

39. The term containing x4 in the expansion of 1x  2y 2 10

40. The term containing y3 in the expansion of A!2  yB12

41. The term containing b8 in the expansion of 1a  b2 2 12

42. The term that does not contain x in the expansion of

a8x 
1

2x
b

8

43–46 ■ Factoring  Factor using the Binomial Theorem.

43. x4  4x3y  6x2y2  4xy3  y4

44. 1x  1 2 5  51x  1 2 4  101x  1 2 3

   101x  1 2 2  51x  1 2  1

13.6 exeRcISeS
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CHAPTER 13 ■ Review 931

45. 8a3  12a2b  6ab2  b3

46. x8  4x6y  6x4y2  4x2y3  y4

47–48 ■ Simplifying a difference quotient  Simplify using the 
Binomial Theorem.

47. 
1x  h 2 3  x3

h
 48. 

1x  h 2 4  x4

h

SkIllS Plus
49–52 ■ Proving a Statement  Show that the given statement  
is true.

49. 11.01 2 100  2.  [Hint: Note that 11.01 2 100  11  0.01 2 100, 
and use the Binomial Theorem to show that the sum of the 
first three terms of the expansion is greater than 2.]

50. an

0
b  1 and an

n
b  1

51. an

1
b  a n

n  1
b  n

52. an

r
b  a n

n  r
b   for 0  r  n

53. Proving an Identity  In this exercise we prove the identity

a n

r  1
b  an

r
b  an  1

r
b

(a) Write the left-hand side of this equation as the sum of 
two  fractions.

(b) Show that a common denominator of the expression that 
you found in part (a) is r! 1n  r  1 2 !.

(c) Add the two fractions using the common denominator in 
part (b), simplify the numerator, and note that the resulting 
expression is equal to the right-hand side of the equation.

54. Proof using Induction  Prove that Anr B  is an integer for all n 
and for 0  r  n. [Suggestion: Use induction to show that 
the statement is true for all n, and use Exercise 53 for the 
induction step.]

APPlIcATIoNS
55. difference in Volumes of cubes  The volume of a cube of 

side x inches is given by V1x 2  x3, so the volume of a cube 

of side x  2 inches is given by V1x  2 2  1x  2 2 3. Use 
the Binomial Theorem to show that the difference in volume 
between the larger and smaller cubes is 6x2  12x  8 cubic 
inches. 

56. Probability of hitting a Target  The probability that an archer 
hits the target is p  0.9, so the probability that he misses 
the target is q  0.1. It is known that in this situation the 
probability that the archer hits the target exactly r times in n 
attempts is given by the term containing pr in the binomial 
expansion of 1  p  q 2 n. Find the probability that the archer 
hits the target exactly three times in five attempts.

dIScuSS ■ dIScoVeR ■ PRoVe ■ WRITe
57. dIScuSS: Powers of Factorials  Which is larger, 1100! 2 101 or 
1101! 2 100?  [Hint: Try factoring the expressions. Do they 
have any common factors?]

58. dIScoVeR ■ PRoVe: Sums of Binomial coefficients  Add 
each of the first five rows of Pascal’s triangle, as indicated. 
Do you see a pattern?

1  1  ?

1  2  1  ?

1  3  3  1  ?

1  4  6  4  1  ?

1  5  10  10  5  1  ?

  On the basis of the pattern you have found, find the sum of 
the nth row:

an

0
b  an

1
b  an

2
b  . . .  an

n
b

  Prove your result by expanding 11  1 2 n using the Binomial 
Theorem.

59. dIScoVeR ■ PRoVe: Alternating Sums of Binomial 
coefficients  Find the sum

an

0
b  an

1
b  an

2
b  . . .  11 2 n an

n
b

  by finding a pattern as in Exercise 58. Prove your result by 
 expanding 11  1 2 n using the Binomial Theorem.

Sequences (p. 886)
A sequence is a function whose domain is the set of natural 
numbers. Instead of writing a(n) for the value of the sequence at 
n, we generally write an, and we refer to this value as the nth 
term of the sequence. Sequences are often described in list 
form:

a1, a2, a3, c

Partial Sums of a Sequence (pp. 891–892)
For the sequence a1, a2, a3, cthe nth partial sum Sn is the sum 
of the first n terms of the sequence:

Sn  a1  a2  a3  . . .  an

The nth partial sum of a sequence can also be expressed by using 
sigma notation:

Sn  a
n

k1
ak

■ PRoPeRTIeS ANd FoRMulAS

chAPTeR 13 ■ ReVIeW
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932 CHAPTER 13 ■ Sequences and Series

Arithmetic Sequences (p. 897)
An arithmetic sequence is a sequence whose terms are obtained 
by adding the same fixed constant d to each term to get the next 
term. Thus an arithmetic sequence has the form

a, a  d, a  2d, a  3d, c

The number a is the first term of the sequence, and the number d 
is the common difference. The nth term of the sequence is

an  a  1n  1 2d

Partial Sums of an Arithmetic Sequence (p. 899)
For the arithmetic sequence an  a  1n  1 2d the nth partial 

sum Sn  a
n

k1
3a  1k  1 2d 4  is given by either of the following 

equivalent formulas:

1. Sn 
n

2
 32a  1n  1 2d 4    2. Sn  n a a  an

2
b

Geometric Sequences (p. 902)
A geometric sequence is a sequence whose terms are obtained 
by multiplying each term by the same fixed constant r to get the 
next term. Thus a geometric sequence has the form

a, ar, ar2, ar3, c

The number a is the first term of the sequence, and the number r 
is the common ratio. The nth term of the sequence is

an  arn1

Partial Sums of a Geometric Sequence (p. 905)
For the geometric sequence an  arn1 the nth partial sum 

Sn  a
n

k1
ar k1 (where r ? 1) is given by

Sn  a 

1  rn

1  r

Infinite Geometric Series (p. 907)
An infinite geometric series is a series of the form

a  ar  ar2  ar3  . . .  arn1  . . .

An infinite geometric series for which 0  r 0  1 has the sum

S 
a

1  r

Amount of an Annuity (p. 913)
The amount Af  of an annuity consisting of n regular equal pay-
ments of size R with interest rate i per time period is given by

Af  R 

11  i 2 n  1

i

Present Value of an Annuity (p. 914)
The present value Ap of an annuity consisting of n regular equal 
payments of size R with interest rate i per time period is given by

Ap  R 

1  11  i 2n

i

Present Value of a Future Amount (p. 913)
If an amount Af  is to be paid in one lump sum, n time periods 
from now, and the interest rate per time period is i, then its  
present value Ap is given by

Ap  Af 11  i 2n

Installment Buying (p. 914)
If a loan Ap is to be repaid in n regular equal payments with 
interest rate i per time period, then the size R of each payment is 
given by

R 
iAp

1  11  i 2n

Principle of Mathematical Induction (p. 919)
For each natural number n, let P(n) be a statement that depends 
on n. Suppose that each of the following conditions is satisfied.

1. P(1) is true.

2. For every natural number k, if P(k) is true, then P1k  1 2  is 
true.

Then P(n) is true for all natural numbers n.

Sums of Powers (p. 921)

0. a
n

k1
1  n 

1. a
n

k1
k 

n1n  1 2
2

2. a
n

k1
k2 

n1n  1 2 12n  1 2
6

 

3. a
n

k1
k3 

n2 1n  1 2 2
4

Binomial coefficients (pp. 925–927)
If n and r are positive integers with n  r, then the binomial 
coefficient Anr B  is defined by

an
r b 

n!

r! 1n  r 2!
Binomial coefficients satisfy the following properties:

an
r b  a n

n  r b

a k
r  1

b  a k
r b  a k  1

r b

The Binomial Theorem (pp. 927–928)

1a  b 2 n  an
0
ban  an

1
ban1b  an

2
ban2b2  . . .  an

n bbn

The term that contains ar in the expansion of 1a  b 2 n is 

Anr Barbnr.
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 1. (a)  What is a sequence? What notation do we use to denote 
the terms of a sequence?

(b)  Find a formula for the sequence of even numbers and a 
formula for the sequence of odd numbers.

(c)  Find the first three terms and the 10th term of the 
sequence given by an  n/ 1n  1 2 .

 2. (a)  What is a recursively defined sequence?

(b)  Find the first four terms of the sequence recursively 
defined by a1  3 and an  n  2an1.

 3. (a)  What is meant by the partial sums of a sequence?

(b)  Find the first three partial sums of the sequence given by 
an  1/n.

 4. (a)  What is an arithmetic sequence? Write a formula for the 
nth term of an arithmetic sequence.

(b)  Write a formula for the arithmetic sequence that starts as 
follows: 3, 8, . . . Write the first five terms of this sequence.

(c)  Write two different formulas for the sum of the first  
n terms of an arithmetic sequence.

(d)  Find the sum of the first 20 terms of the sequence in  
part (b).

 5. (a)  What is a geometric sequence? Write an expression for 
the nth term of a geometric sequence that has first term a 
and common ratio r.

(b)  Write an expression for the geometric sequence with first 
term a  3 and common ratio r  1

2. Give the first five 
terms of this sequence.

(c)  Write an expression for the sum of the first n terms of a 
geometric sequence. 

(d)  Find the sum of the first five terms of the sequence in 
part (b).

 6. (a)  What is an infinite geometric series?

(b)  What does it mean for an infinite series to converge? For 
what values of r does an infinite geometric series con-
verge? If an infinite geometric series converges, then 
what is its sum?

(c) Write the first four terms of the infinite geometric series 
with first term a  5 and common ratio r  0.4. Does 
the series converge? If so, find its sum.

 7. (a)  Write 13  23  33  43  53 using sigma notation.

(b)  Write a
5

k3
2k2 without using sigma notation.

 8. (a)  What is an annuity? Write an expression for the amount 
Af  of an annuity consisting of n regular equal payments 
of size R with interest rate i per time period.

(b)  An investor deposits $200 each month into an account 
that pays 6% compounded monthly. How much is in the 
account at the end of 3 years?

(c)  What is the formula for calculating the present value of 
the annuity in part (b)?

(d)  What is the present value of the annuity in part (b)?

(e) When buying on installment, what is the formula for cal-
culating the periodic payments?

(f) If you take out a 5-year loan for $10,000 at 3% interest 
compounded monthly, what is the size of each monthly 
payment?

 9. (a)  State the Principle of Mathematical Induction.

(b)  Use mathematical induction to prove that for all natural 
numbers n, 3n  1 is an even number.

 10. (a)  Write Pascal’s triangle. How are the entries in the trian-
gle related to each other?

 Row 0 

 Row 1  

 Row 2   

 Row 3    

(b)  Use Pascal’s triangle to expand 1x  c 2 3.

 11. (a)  What does the symbol n! mean? Find 5!.

(b)  Define Anr B , and find A52 B .
 12. (a)  State the Binomial Theorem.

(b)  Use the Binomial Theorem to expand 1x  2 2 3.

(c)  Use the Binomial Theorem to find the term containing x4 
in the expansion of 1x  2 2 10.

■ coNcePT check

1–6 ■ Terms of a Sequence  Find the first four terms as well as 
the tenth term of the sequence with the given nth term.

 1. an 
n2

n  1
  2. an  11 2 n 2

n

n

 3. an 
11 2 n  1

n3   4. an 
n1n  1 2

2

 5. an 
12n 2 !
2nn!

  6. an  an  1

2
b

7–10 ■ Recursive Sequences  A sequence is defined recursively. 
Find the first seven terms of the sequence.

 7. an  an1  2n  1,  a1  1

 8. an 
an1

n
,  a1  1

 9. an  an1  2an2,  a1  1, a2  3

10. an  !3an1, a1  !3

■ exeRcISeS

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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934 CHAPTER 13 ■ Sequences and Series

11–14 ■ Arithmetic or Geometric?  The nth term of a sequence 
is given. (a) Find the first five terms of the sequence. (b) Graph 
the terms you found in part (a). (c) Find the fifth partial sum of 
the sequence. (d) Determine whether the sequence is arithmetic or 
geometric. Find the common difference or the common ratio.

11. an  2n  5 12. an 
5

2n

 13. an 
3n

2n1  14. an  4 
n

2

15–22 ■ Arithmetic or Geometric?  The first four terms of a 
sequence are given. Determine whether they can be the terms of 
an arithmetic sequence, a geometric sequence, or neither. If the 
sequence is arithmetic or geometric, find the fifth term.

15. 5, 5.5, 6, 6.5, . . . 16. !2, 2 !2, 3 !2, 4 !2, . . .

17. t  3, t  2, t  1, t, . . . 18. !2, 2, 2 !2, 4, . . .

19. t3, t2, t, 1, . . . 20. 1,  
3
2, 2,  

5
2, . . .

21. 3
4, 12, 13, 29, . . . 22. a, 1, 

1
a

, 
1

a 
2, . . .

23. Proving a Sequence Is Geometric  Show that 3, 6i, 12, 
24i, . . . is a geometric sequence, and find the common 
ratio. (Here i  !1.)

24. nth Term of a Geometric Sequence  Find the nth term of the 
geometric sequence 2, 2  2i, 4i, 4  4i, 8, . . . (Here 
i  !1.)

25–28 ■ Finding Terms of Arithmetic and Geometric Sequences   
Find the indicated term of the arithmetic or geometric sequence 
with the given description.

25. The fourth term of an arithmetic sequence is 11, and the sixth 
term is 17. Find the second term.

26. The 20th term of an arithmetic sequence is 96, and the com-
mon difference is 5. Find the nth term.

27. The third term of a geometric sequence is 9, and the common 
ratio is 3

2 . Find the fifth term.

28. The second term of a geometric sequence is 10, and the fifth 
term is 1250

27 . Find the nth term.

29. Salary  A teacher makes $32,000 in his first year at Lakeside 
School and gets a 5% raise each year.

(a)  Find a formula for his salary An in his nth year at this 
school.

(b) List his salaries for his first 8 years at this school.

30. Salary  A colleague of the teacher in Exercise 29, hired at 
the same time, makes $35,000 in her first year and gets a 
$1200 raise each year.

(a) What is her salary An in her nth year at this school?

(b)  Find her salary in her eighth year at this school, and 
compare it to the salary of the teacher in Exercise 29 in 
his eighth year.

31. Bacteria culture  A certain type of bacteria divides every  
5 s. If three of these bacteria are put into a petri dish, how 
many bacteria are in the dish at the end of 1 min?

32. Arithmetic Sequences  If a1, a2, a3, . . . and b1, b2, b3, . . . 
are arithmetic sequences, show that a1  b1, a2  b2,  
a3  b3, . . . is also an arithmetic sequence.

33. Geometric Sequences  If a1, a2, a3, . . . and b1, b2, b3, . . . 
are geometric sequences, show that a1b1, a2b2, a3b3, . . . is 
also a geometric sequence.

34. Arithmetic or Geometric?  
(a)  If a1, a2, a3, . . . is an arithmetic sequence, is the 

sequence a1  2, a2  2, a3  2, . . . arithmetic?

(b)  If a1, a2, a3, . . . is a geometric sequence, is the sequence 
5a1, 5a2, 5a3, . . . geometric?

35. Arithmetic and Geometric Sequences  Find the values of x 
for which the sequence 6, x, 12, . . . is

(a) arithmetic (b) geometric

36. Arithmetic and Geometric Sequences  Find the values of x 
and y for which the sequence 2, x, y, 17, . . . is

(a) arithmetic (b) geometric

37–40 ■ Partial Sums  Find the sum.

37. a
6

k3
1k  1 2 2 38. a

4

i1

2i

2i  1

39. a
6

k1
1k  1 22k1 40. a

5

m1
3m2

41–44 ■ Sigma Notation  Write the sum without using sigma 
notation. Do not  evaluate.

41. a
10

k1
1k  1 2 2 42. a

100

j2

1

j  1

43. a
50

k1

3k

2k1  44. a
10

n1
n22n

45–48 ■ Sigma Notation  Write the sum using sigma notation. 
Do not evaluate.

45. 3  6  9  12  . . .  99

46. 12  22  32  . . .  1002

47. 1 # 23  2 # 24  3 # 25  4 # 26  . . .  100 # 2102

48. 
1

1 # 2


1

2 # 3


1

3 # 4
 . . . 

1

999 # 1000

49–54 ■ Sums of Arithmetic and Geometric Sequences  Deter-
mine whether the expression is a partial sum of an arithmetic or 
geometric sequence. Then find the sum.

49. 1  0.9  10.9 2 2  . . .  10.9 2 5
50. 3  3.7  4.4  . . .  10

51. !5  2 !5  3 !5  . . .  100 !5

52. 1
3  2

3  1  4
3  . . .  33

53. a
6

n0
314 2 n 54. a

8

k0
715 2 k/2
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CHAPTER 13 ■ Review 935

55–60 ■ Infinite Geometric Series  Determine whether the infi-
nite geometric series is convergent or divergent. If it is conver-
gent, find its sum.

55. 1  2
5  4

25  8
125  . . .

56. 0.1  0.01  0.001  0.0001  . . .

57. 5  511.01 2  511.01 2 2  511.01 2 3  . . .

58. 1 
1

31/2


1

3


1

33/2
 . . .

59. 1 
9

8
 a 9

8
b

2

 a 9

8
b

3

 . . .

60. a  ab2  ab4  ab6  . . . ,  0  b 0  1

61. Terms of an Arithmetic Sequence  The first term of an arithme-
tic sequence is a  7, and the common difference is d  3. 
How many terms of this sequence must be added to obtain 325?

62. Terms of an Geometric Sequence  The sum of the first three 
terms of a geometric series is 52, and the common ratio is  
r  3. Find the first term.

63. Ancestors  A person has two parents, four grandparents, 
eight great- grandparents, and so on. What is the total number 
of a person’s ancestors in 15 generations?

64. Annuity  Find the amount of an annuity consisting of  
16 annual payments of $1000 each into an account that pays 
8% interest per year, compounded annually.

65. Investment  How much money should be invested every 
quarter at 12% per year, compounded quarterly, in order to 
have $10,000 in one year?

66. Mortgage  What are the monthly payments on a mortgage 
of $60,000 at 9% interest if the loan is to be repaid in

(a) 30 years? (b) 15 years?

67–69 ■ Mathematical Induction  Use mathematical induction 
to prove that the formula is true for all natural numbers n.

67. 1  4  7  . . .  13n  2 2 
n13n  1 2

2

68. 
1

1 # 3


1

3 # 5


1

5 # 7
 . . . 

1

12n  1 2 12n  1 2  
n

2n  1

69. a1 
1

1
b a1 

1

2
b a1 

1

3
b  . . . a1 

1
n
b  n  1

70–72 ■ Proof by Induction  Use mathematical induction to 
show that the given statement is true.

70. 7 n  1 is divisible by 6 for all natural numbers n.

71. The Fibonacci number F4n is divisible by 3 for all natural 
numbers n.

72. Formula for a Recursive Sequence  A sequence is defined 
recursively by an1  3an  4 and a1  4. Show that  
an  2 # 3n  2 for all natural numbers n.

73–76 ■ Binomial coefficients  Evaluate the expression.

73. a5

2
b a5

3
b  74. a10

2
b  a10

6
b

75. a
5

k0
a5

k
b  76. a

8

k0
a8

k
b a 8

8  k
b

77–80 ■ Binomial expansion  Expand the expression.

77. 1A  B 2 3 78. 1 x  2 2 5
79. 11  x2 2 6 80. 12x  y 2 4

81–83 ■ Terms in a Binomial expansion  Find the indicated 
terms in the given binomial expansion.

81. Find the 20th term in the expansion of 1a  b 2 22.

82. Find the first three terms in the expansion of 1b2/3  b1/3 2 20.

83. Find the term containing A6 in the expansion of 1A  3B 2 10.
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FocuS oN ModelING

 1. Find the first six terms and the sixth partial sum of the sequence whose nth term is  
an  2n2  n.

 2. A sequence is defined recursively by an1  3an  n, a1  2.  Find the first six terms of  
the sequence.

 3. An arithmetic sequence begins 2, 5, 8, 11, 14, . . . .

(a) Find the common difference d for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the 35th term of the sequence.

 4. A geometric sequence begins 12, 3, 3
4 , 3

16 , 3
64 , . . . .

(a) Find the common ratio r for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the tenth term of the sequence.

 5. The first term of a geometric sequence is 25, and the fourth term is 1
5.

(a) Find the common ratio r and the fifth term.

(b) Find the partial sum of the first eight terms.

 6. The first term of an arithmetic sequence is 10, and the tenth term is 2.

(a) Find the common difference and the 100th term of the sequence.

(b) Find the partial sum of the first ten terms.

 7. Let a1, a2, a3, . . . be a geometric sequence with initial term a and common ratio r. Show 
that a 

2
1, a 

2
2, a 

2
3, . . . is also a geometric sequence by finding its common ratio.

 8. Write the expression without using sigma notation, and then find the sum.

(a) a
5

n1
11  n2 2  (b) a

6

n3
11 2 n2n2

 9. Find the sum.

(a) 
1

3


2

32 
22

33 
23

34  . . . 
29

310

(b) 1 
1

21/2


1

2


1

23/2
 . . .

10. Use mathematical induction to prove that for all natural numbers n,

12  22  32  . . .  n2 
n1n  1 2 12n  1 2

6

11. Expand 12x  y 
2 2 5.

12. Find the term containing x3 in the binomial expansion of 13x  2 2 10.

13. A puppy weighs 0.85 lb at birth, and each week he gains 24% in weight. Let an be his 
weight in pounds at the end of his nth week of life.

(a) Find a formula for an.

(b) How much does the puppy weigh when he is 6 weeks old?

(c) Is the sequence a1, a2, a3, . . . arithmetic, geometric, or neither?

chAPTeR 13 TeST
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937

Many real-world processes occur in stages. Population growth can be viewed in 
stages—each new generation represents a new stage in population growth. Compound 
interest is paid in stages—each interest payment creates a new account balance. Many 
things that change continuously are more easily measured in discrete stages. For ex-
ample, we can measure the temperature of a continuously cooling object in one-hour 
intervals. In this Focus on Modeling we learn how recursive sequences are used to 
model such situations. In some cases we can get an explicit formula for a sequence from 
the recursion relation that defines it by finding a pattern in the terms of the sequence.

■ Recursive Sequences as Models
Suppose you deposit some money in an account that pays 6% interest compounded 
monthly. The bank has a definite rule for paying interest: At the end of each month the 
bank adds to your account 1

2% (or 0.005) of the amount in your account at that time. 
Let’s express this rule as follows:

amount at the end of 
this month

  
amount at the end of 

last month
 0.005  

amount at the end of 
last month

Using the Distributive Property, we can write this as

amount at the end of 
this month

  1.005  
amount at the end of 

last month

To model this statement using algebra, let A0 be the amount of the original deposit, let 
A1 be the amount at the end of the first month, let A2 be the amount at the end of the 
second month, and so on. So An is the amount at the end of the nth month. Thus

An  1.005An1

We recognize this as a recursively defined sequence—it gives us the amount at each 
stage in terms of the amount at the preceding stage.

An

0.005An�1

A2A1A0

To find a formula for An, let’s find the first few terms of the sequence and look for a 
 pattern.

 A1  1.005A0

 A2  1.005A1  11.005 2 2A0

 A3  1.005A2  11.005 2 3A0

 A4  1.005A3  11.005 2 4A0

We see that in general, An  11.005 2 nA0.

We can use mathematical induction to 
prove that the formula we found for An 
is valid for all natural numbers n.

Modeling with Recursive Sequences FocuS oN ModelING
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938 Focus on Modeling

exAMPle 1 ■ Population Growth
A certain animal population grows by 2% each year. The initial population is 5000.

(a)  Find a recursive sequence that models the population Pn at the end of the nth 
year.

(b) Find the first five terms of the sequence Pn.

(c) Find a formula for Pn.

SoluTIoN

(a) We can model the population using the following rule:

population at the end of this year   1.02  population at the end of last year

 Algebraically, we can write this as the recursion relation

Pn  1.02Pn1

(b) Since the initial population is 5000, we have

 P0  5000

 P1  1.02P0  11.02 25000

 P2  1.02P1  11.02 2 25000

 P3  1.02P2  11.02 2 35000

 P4  1.02P3  11.02 2 45000

(c)  We see from the pattern exhibited in part (b) that Pn  11.02 2 n5000. (Note that 
Pn is a geometric sequence, with common ratio r  1.02.) ■

exAMPle 2 ■ daily drug dose
A patient is to take a 50-mg pill of a certain drug every morning. It is known that the 
body eliminates 40% of the drug every 24 h.

(a)  Find a recursive sequence that models the amount An of the drug in the patient’s 
body after each pill is taken.

(b)  Find the first four terms of the sequence An.

(c)  Find a formula for An.

(d)  How much of the drug remains in the patient’s body after 5 days? How much will 
accumulate in his system after prolonged use?

SoluTIoN

(a)  Each morning, 60% of the drug remains in his system, plus he takes an additional 
50 mg (his daily dose).

amount of drug this 
morning

  0.6  
amount of drug 

yesterday morning
  50 mg

 We can express this as a recursion relation

An  0.6An1  50

(b) Since the initial dose is 50 mg, we have

 A0  50

 A1  0.6A0  50  0.6150 2  50
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  Modeling with Recursive Sequences 939

 A2  0.6A1  50  0.6 30.6150 2  50 4  50

  0.62150 2  0.6150 2  50

  5010.62  0.6  1 2
 A3  0.6A2  50  0.6 30.62150 2  0.6150 2  50 4  50

  0.63150 2  0.62150 2  0.6150 2  50

  5010.63  0.62  0.6  1 2
(c) From the pattern in part (b) we see that

 An  5011  0.6  0.62  . . .  0.6n 2

  50 a 1  0.6n1

1  0.6
b      

Partial sum of a geometric  
sequence (page 905)

  12511  0.6n1 2     Simplify

(d)  To find the amount remaining after 5 days, we substitute n  5 and get 
A5  12511  0.651 2 < 119 mg.

  To find the amount remaining after prolonged use, we let n become large. As n 
gets large, 0.6n approaches 0. That is, 0.6n S 0 as n S `  (see Section 4.1, page 
368). So as n S ` ,

An  12511  0.6n1 2 S 12511  0 2  125

 Thus after prolonged use, the amount of drug in the patient’s system approaches 
125 mg (see Figure 1, where we have used a graphing calculator to graph the  
sequence).

Enter sequence Graph sequence

Plot1 Plot2 Plot3

 Min=0
u( )=125(1-.6^( +1))

150

0 16
FIGuRe 1  ■

PRoBleMS
 1.  Retirement Accounts  Many college professors keep retirement savings with TIAA, the 

largest annuity program in the world. Interest on these accounts is compounded and cred-
ited daily. Professor Brown has $275,000 on deposit with TIAA at the start of 2015 and re-
ceives 3.65% interest per year on his account.

(a)  Find a recursive sequence that models the amount An in his account at the end of the 
nth day of 2015.

(b) Find the first eight terms of the sequence An, rounded to the nearest cent.

(c) Find a formula for An.

 2. Fitness Program  Sheila decides to embark on a swimming program as the best way to 
maintain cardiovascular health. She begins by swimming 5 min on the first day, then adds  
1 

1
2  min every day after that.

(a)  Find a recursive formula for the number of minutes Tn that she swims on the nth day 
of her program.

(b) Find the first 6 terms of the sequence Tn.

(c) Find a formula for Tn. What kind of sequence is this?

(d) On what day does Sheila attain her goal of swimming at least 65 min a day?

(e) What is the total amount of time she will have swum after 30 days?
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940 Focus on Modeling

 3. Monthly Savings Program  Alice opens a savings account that pays 3% interest per 
year, compounded monthly. She begins by depositing $100 at the start of the first month 
and adds $100 at the end of each month, when the interest is credited.

(a)  Find a recursive formula for the amount An in her account at the end of the nth month. 
 (Include the interest credited for that month and her monthly deposit.)

(b) Find the first five terms of the sequence An.

(c)  Use the pattern you observed in (b) to find a formula for An.  [Hint: To find the pat-
tern most easily, it’s best not to simplify the terms too much.]

(d) How much has she saved after 5 years?

 4. Pollution  A chemical plant discharges 2400 tons of pollutants every year into an adja-
cent lake. Through natural runoff, 70% of the pollutants contained in the lake at the begin-
ning of the year are expelled by the end of the year.

  (a)  Explain why the following sequence models the amount An of the pollutant in the lake 
at the end of the nth year that the plant is operating.

An  0.30An1  2400

(b) Find the first five terms of the sequence An.

(c) Find a formula for An.

(d)  How much of the pollutant remains in the lake after 6 years? How much will remain 
after the plant has been operating a long time?

(e)  Verify your answer to part (d) by graphing An with a graphing calculator for n  1 to  
n  20.

 5. Annual Savings Program  Ursula opens a 1-year CD that yields 5% interest per year. 
She begins with a deposit of $5000. At the end of each year when the CD matures, she re-
invests at the same 5% interest rate, also adding 10% to the value of the CD from her other 
savings. (So for example, after the first year her CD has earned 5% of $5000 in interest, for 
a value of $5250 at maturity. She then adds 10%, or $525, bringing the total value of her 
renewed CD to $5775.)

(a)  Find a recursive formula for the amount Un in Ursula’s CD when she reinvests at the 
end of the nth year.

(b)  Find the first five terms of the sequence Un. Does this appear to be a geometric sequence?

(c) Use the pattern you observed in (b) to find a formula for Un.

(d) How much has she saved after 10 years?

 6. Annual Savings Program  Victoria opens a one-year CD with a 5% annual interest yield at 
the same time as her friend Ursula in Problem 5. She also starts with an initial deposit of 
$5000. However, Victoria decides to add $500 to her CD when she reinvests at the end of the 
first year, $1000 at the end of the second, $1500 at the end of the third, and so on.

(a)  Explain why the recursive formula displayed below gives the amount Vn in Victoria’s 
CD when she reinvests at the end of the nth year.

Vn  1.05Vn1  500n

(b)  Using the Seq (“sequence”) mode on your graphing calculator, enter the sequences 
Un and Vn as shown in the figure. Then use the TABLE  command to compare the 
two sequences. For the first few years, Victoria seems to be accumulating more savings 
than Ursula. Scroll down in the table to verify that Ursula eventually pulls ahead of  
Victoria in the savings race. In what year does this occur?

Entering the sequences Table of values of the sequences

   u( )
 0 5000
 1 5775
 2 6670.1
 3 7704
 4 8898.1
 5 10277
 6 11870

5000
5750
7037.5
8889.4
11334
14401
18121

v( )

 =0
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In the preceding chapters  we modeled real-world situations using precise 
rules, such as equations and functions. But many of our everyday activities 
are not governed by precise rules but rather involve randomness. It is 
remarkable that there are also rules that govern randomness. For example, 
if we toss a balanced coin many times, we can be pretty sure that “heads” 
will show up about half of the time. Such patterns in apparently haphazard 
events allow us to use mathematics to model randomness. 

Probability is the mathematical study of chance. Knowing the chance, 
or probability, of an event happening can be very useful. For example, 
insurance companies estimate the probability that a particular driver will 
have an automobile accident. This allows the company to calculate a 
reasonable price to charge their customers.

The importance of probability in the modern world cannot be 
overestimated. It is used by business, governments, medical researchers, 
political pollsters, and many others. In the Focus on Modeling at the end of 
the chapter we use a calculator (or computer) to simulate random events 
and estimate probabilities.

941

Counting and Probability14
14.1 Counting
14.2 Probability
14.3 Binomial Probability
14.4 Expected Value

FoCus on ModEling
 The Monte Carlo Method

© Volodymyr Goinyk/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



942 CHAPTER 14 ■ Counting and Probability

14.1 CounTing
■ The Fundamental Counting Principle ■ Counting Permutations ■ distinguishable 
Permutations ■ Counting Combinations ■ Problem solving with Permutations  
and Combinations

Counting the number of apples in a bag or the number of students in an algebra class is 
easy. But counting all the different ways in which these students can stand in a row is 
more difficult. It is this latter kind of counting that we’ll study in this section.

■ The Fundamental Counting Principle
Suppose that three towns—Ashbury, Brampton, and Carmichael—are located in such a 
way that two roads connect Ashbury to Brampton and three roads connect Brampton to 
Carmichael.

Ashbury

Brampton

Carmichael

p

q z
y x

How many different routes can one take to travel from Ashbury to Carmichael via 
Brampton? The key to answering this question is to consider the problem in stages. At 
the first stage—from Ashbury to Brampton—there are two choices. For each of these 
choices there are three choices at the second stage—from Brampton to Carmichael. 
Thus the number of different routes is 2  3  6. These routes are conveniently enu-
merated by a tree diagram as in Figure 1. The method that we used to solve this prob-
lem leads to the following principle.

ThE FundaMEnTal CounTing PrinCiPlE

Suppose that two events occur in order. If the first event can occur in m ways 
and the second can occur in n ways (after the first has occurred), then the two 
events can occur in  order in m  n ways.

There is an immediate consequence of this principle for any number of events: If 
E1, E2, . . . , Ek are events that occur in order and if E1 can occur in n1 ways, E2 in n2 
ways, and so on, then the events can occur in order in n1  n2  . . .  nk ways.

ExaMPlE 1 ■ using the Fundamental Counting Principle
An ice-cream store offers three types of cones and 31 flavors. How many different 
single-scoop ice-cream cones is it possible to buy at this store?

soluTion  There are two stages for selecting an ice-cream cone. At the first stage we 
choose a type of cone, and at the second stage we choose a flavor. We can think of the 
different stages as boxes:

Stage 1: Type 
of Cone

Stage 2:  
Flavor

Route

q

p

x

x

y

y

z

z

px

py

pz

qx

qy

qz

A

B

B

C

C

C

C

C

C

FigurE 1 Tree diagram
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SECTION 14.1 ■ Counting 943

The first box can be filled in three ways, and the second can be filled in 31 ways:

Stage 1 Stage 2

 3 31

By the Fundamental Counting Principle there are 3  31  93 ways of choosing a  
single-scoop ice-cream cone at this store.

now Try Exercise 17 ■

ExaMPlE 2 ■ using the Fundamental Counting Principle
In a certain state, automobile license plates display three letters followed by three dig-
its. How many such plates are possible if repetition of the letters

(a) is allowed?    (b) is not allowed?

soluTion 

(a)  There are six selection stages, one for each letter or digit on the license plate. As 
in the preceding example, we sketch a box for each stage:

Letters Digits

26 26 26 10 10 10

   At the first stage we choose a letter (from 26 possible choices); at the second 
stage we choose another letter (again from 26 choices); at the third stage we 
choose another letter (26 choices); at the fourth stage we choose a digit (from  
10 possible choices); at the fifth stage we choose a digit (again fro m 10 choices); 
and at the sixth stage, we choose another digit (10 choices). By the Fundamental 
Counting Principle the number of possible license plates is

26  26  26  10  10  10  17,576,000

(b)  If repetition of letters is not allowed, then we arrange the choices as follows:

Letters Digits

26 25 24 10 10 10

   At the first stage we have 26 letters to choose from, but once the first letter has been 
chosen, there are only 25 letters to choose from at the second stage. Once the first 
two letters have been chosen, 24 letters are left to choose from for the third stage. 
The digits are chosen as before. Thus the number of possible license plates in this 
case is

26  25  24  10  10  10  15,600,000

now Try Exercise 29 ■

Let S be a set with n elements. A subset of S can be chosen by making one of two 
choices for each element: We can choose the element to be in or out of A. Since S has 
n elements and we have two choices for each element, by the Fundamental Counting 
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944 CHAPTER 14 ■ Counting and Probability

Principle the total number of different subsets is 2  2  . . .  2, where there are n 
factors. This gives the following formula.

ThE nuMBEr oF suBsETs oF a sET

A set with n elements has 2n different subsets.

ExaMPlE 3 ■ Finding the number of subsets
A pizza parlor offers a basic cheese pizza and a choice of 16 toppings. How many  
different kinds of pizza can be ordered at this pizza parlor?

soluTion  We need the number of possible subsets of the 16 toppings (including the 
empty set, which corresponds to a plain cheese pizza). Thus

216  65,536

different pizzas can be ordered.

now Try Exercise 37 ■

■ Counting Permutations
A permutation of a set of distinct objects is an ordering of these objects. For example, 
some permutations of the letters ABCD are

ABDC    BACD    DCBA    DABC

How many such permutations are possible? There are four choices for the first position, 
three for the second (after the first has been chosen), two for the third (after the first two 
have been chosen), and only one choice for the fourth letter (the letter that has not yet 
been chosen). By the Fundamental Counting Principle the number of possible permuta-
tions is

4  3  2  1  4!  24

The same reasoning with 4 replaced by n leads to the following.

The number of permutations of n objects is n!

How many permutations consisting of two letters can be made from these same four 
letters? Some of these permutations are AB, AC, BD, DB, . . . . There are 4 choices of 
the first letter and 3 for the second letter. By the Fundamental Counting Principle there 
are 4  3  12 such permutations. In general, if a set has n elements, then the number 
of ways of ordering r elements from the set is denoted by P(n, r) and is called the 
number of permutations of n objects taken r at a time.

PErMuTaTions oF n oBJECTs TaKEn r aT a TiME

The number of permutations of n objects taken r at a time is

P1n, r 2 
n!

1n  r 2 !

Permutations of
three colored squares
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SECTION 14.1 ■ Counting 945

Proof  There are n objects and r positions to place them in. Thus there are n choices 
for the first position, n  1 choices for the second, n  2 choices for the third, and 
so on. The last position can be filled in n  r  1 ways. By the Fundamental Count-
ing Principle we conclude that

P1n, r 2  n1n  1 2 1n  2 2  . . . 1n  r  1 2
We can express this formula using factorial notation by multiplying numerator and  
denominator by 1n  r 2  . . . 3 # 2 # 1:

 P1n, r 2 
n1n  1 2 1n  2 2  . . . 1n  r  1 2 1n  r 2  . . . 3 # 2 # 1

1n  r 2  . . . 3 # 2 # 1


n!

1n  r 2 !  
■

ExaMPlE 4 ■ Finding the number of Permutations
There are six runners in a race that is completed with no tie.

(a) In how many different ways can the race be completed?

(b) In how many different ways can first, second, and third place be decided?

soluTion

(a)  The number of ways to complete the race is the number of permutations of the 
six runners: 6!  720.

(b) The number of ways in which the first three positions can be decided is

P16, 3 2 
6!

16  3 2 ! 
6  5  4  3  2  1

3  2  1
 120

now Try Exercise 41 ■

ExaMPlE 5 ■ Finding the number of Permutations
A club has nine members. In how many ways can a president, a vice president, and a 
secretary be chosen from the members of this club?

soluTion  We need the number of ways of selecting three members, in order, for the 
positions of president, vice president, and secretary from the nine club members. This 
number is

P19, 3 2 
9!

19  3 2 ! 
9  8  7  6  5  4  3  2  1

6  5  4  3  2  1
 504

now Try Exercise 43 ■

Ronald GRaham, born in Taft, 
California, in 1935, is considered the 
world’s leading mathematician in the 
field of combinatorics, the branch of 
mathematics that deals with count
ing. For many years Graham headed 
the Mathematical Studies Center at 
Bell Laboratories in  Murray Hill, New 
Jersey, where he solved key prob
lems for the telephone industry.  
During the Apollo program, NASA 
needed to evaluate mission sched
ules so that the three astronauts Ro

na
ld

 G
ra

ha
m

aboard the spacecraft could find the time to perform all the  necessary 
tasks. The number of ways to allot these tasks was  astronomical—too 
vast for even a computer to sort out. Graham, using his knowledge of 
combinatorics, was able to reassure NASA that there were easy ways 
of solving their problem that were not too far from the theoretically 
best possible solution.  Besides being a prolific mathematician, 
Graham is an accomplished juggler (he has been on stage with the 
Cirque du Soleil and is a past president of the International Jugglers 
Association). Several of his research papers address the mathematical 
aspects of juggling. He is also fluent in Mandarin Chinese and Japa
nese and once spoke with former President Jiang of China in his 
native language.
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946 CHAPTER 14 ■ Counting and Probability

ExaMPlE 6 ■ Finding the number of Permutations
From 20 raffle tickets in a hat, 4 tickets are to be selected in order. The holder of the 
first ticket wins a car, the second a motorcycle, the third a bicycle, and the fourth a 
skateboard. In how many different ways can these prizes be awarded?

soluTion  The order in which the tickets are chosen determines who wins each 
prize. So we need to find the number of ways of selecting 4 objects, in order, from  
20 objects (the tickets). This number is

P120, 4 2 
20!

120  4 2 ! 
20  19  18  17  16  15  14  . . .  3  2  1

16  15  14  . . .  3  2  1
 116,280

now Try Exercise 45 ■

■ distinguishable Permutations
If we have a collection of ten balls, each a different color, then the number of permutations 
of these balls is P110, 10 2  10!. If all ten balls are red, then we have just one distin-
guishable permutation because all the ways of ordering these balls look exactly the same. 
In general, in considering a set of objects, some of which are of the same kind, then two 
permutations are distinguishable if one cannot be obtained from the other by interchang-
ing the positions of elements of the same kind. For example, if we have ten balls, of which 
six are red and the other four are each a different color, then how many distinguishable 
permutations are possible? The key point here is that balls of the same color are not dis-
tinguishable. So each rearrangement of the red balls, keeping all the other balls fixed, 
gives essentially the same permutation. Since there are 6! rearrangements of the red balls 
for each fixed position of the other balls, the total number of distinguishable permutations 
is 10!/6!. The same type of reasoning gives the following general rule:

disTinguishaBlE PErMuTaTions

If a set of n objects consists of k different kinds of objects with n1 objects of the 
first kind, n2 objects of the second kind, n3 objects of the third kind, and so on, 
where n1  n2  . . .  nk  n, then the number of distinguishable permuta-
tions of these objects is

n!

n1! n2! n3! . . . nk!

ExaMPlE 7 ■  Finding the number of distinguishable Permutations
Find the number of different ways of placing 15 balls in a row given that 4 are red, 3  
are yellow, 6 are black, and 2 are blue.

soluTion  We want to find the number of distinguishable permutations of these balls. 
By the formula this number is 

15!

4! 3! 6! 2!
 6,306,300

now Try Exercise 55 ■

Suppose we have 15 wooden balls in a row and four colors of paint: red, yellow, black, 
and blue. In how many different ways can the 15 balls be painted in such a way that we 
have 4 red, 3 yellow, 6 black, and 2 blue balls? A little thought will show that this number 
is exactly the same as that calculated in Example 7. This way of looking at the problem 
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SECTION 14.1 ■ Counting 947

is somewhat different, however. Here we think of the number of ways to partition the 
balls into four groups, each containing 4, 3, 6, and 2 balls to be painted red, yellow, 
black, and blue, respectively. The next example shows how this reasoning is used.

ExaMPlE 8 ■ Finding the number of Partitions
Fourteen construction workers are to be assigned to three different tasks. Seven workers 
are needed for mixing cement, five for laying bricks, and two for carrying the bricks to 
the brick layers. In how many different ways can the workers be assigned to these tasks?

soluTion  We need to partition the workers into three groups containing 7, 5, and  
2 workers, respectively. This number is

14!

7! 5! 2!
 72,072

now Try Exercise 59 ■

■ Counting Combinations
When counting permutations, we are interested in the number of ways of ordering the 
elements of a set. In many counting problems, however, order is not important. For ex-
ample, a poker hand is the same hand regardless of how it is ordered. A poker player who 
is interested in the number of possible hands wants to know the number of ways of draw-
ing five cards from 52 cards, without regard to the order in which the cards are dealt. We 
now develop a formula for counting in situations in which order doesn’t matter.

A combination of r elements of a set is any subset of r elements from the set (with-
out regard to order). If the set has n elements, then the number of combinations of r 
elements is denoted by C(n, r) and is called the number of combinations of n ele-
ments taken r at a time. For example, consider a set with the four elements A, B, C, 
and D. The combinations of these four elements taken three at a time are listed below. 
Compare this with the permutations of these elements listed in the margin.

ABC    ABD    ACD    BCD

We notice that the number of combinations is a lot fewer than the number of permuta-  
tions. In fact, each combination of three elements generates 3! permutations. So 
C14, 3 2  P14, 3 2 /3!  4. In general, each combination of r objects gives rise to r! 
permutations of these objects, so we get the following formula.

CoMBinaTions oF n oBJECTs TaKEn r aT a TiME

The number of combinations of n objects taken r at a time is

C1n, r 2 
n!

r! 1n  r 2 !

The key difference between permutations and combinations is order. If we are inter-
ested in ordered arrangements, then we are counting permutations, but if we are con-
cerned with subsets without regard to order, then we are counting combinations. Com-
pare Examples 9 and 10 below (in which order doesn’t matter) to Examples 5 and 6 (in 
which order does matter).

ExaMPlE 9 ■ Finding the number of Combinations
A club has nine members. In how many ways can a committee of three be chosen 
from the members of this club?

ABC  ABD  ACD  BCD
ACB  ADB  ADC  BDC
BAC  BAD  CAD  CBD
BCA  BDA  CDA  CDB
CAB  DAB  DAC  DBC
CBA  DBA  DCA  DCB

Compare to Example 5, where order 
matters.
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948 CHAPTER 14 ■ Counting and Probability

soluTion  We need the number of ways of choosing three of the nine members. 
Order is not important here, because the committee is the same no matter how its 
members are ordered. So we want the number of combinations of nine objects (the 
club members) taken three at a time. This number is

C19, 3 2 
9!

3! 19  3 2 ! 
9  8  7  6  5  4  3  2  1

13  2  1 2  16  5  4  3  2  1 2  84

now Try Exercise 61 ■

ExaMPlE 10 ■ Finding the number of Combinations
From 20 raffle tickets in a hat, four tickets are to be chosen at random. The holders of 
the winning tickets get free trips to the Bahamas. In how many ways can the four 
winners be chosen?

soluTion  We need to find the number of ways of choosing four winners from  
20 entries. The order in which the tickets are chosen doesn’t matter, because the same 
prize is awarded to each of the four winners. So we want the number of combinations 
of 20 objects (the tickets) taken four at a time. This number is

C120, 4 2 
20!

4! 120  4 2 ! 
20  19  18  17  16  15  14  . . .  3  2  1

14  3  2  1 2  116  15  14  . . .  3  2  1 2  4845

now Try Exercise 63 ■

■ Problem solving with Permutations and Combinations
The crucial step in solving counting problems is deciding whether to use permutations, 
combinations, or the Fundamental Counting Principle. In some cases the solution of a 
problem may require using more than one of these principles. Here are some general 
guidelines to help us decide how to apply these principles.

guidElinEs For solVing CounTing ProBlEMs

1. Fundamental Counting Principle.  When consecutive choices are being 
made, we use the Fundamental Counting Principle.

2. does order Matter?  When we want to find the number of ways of picking 
r objects from n objects, we need to ask ourselves, “Does the order in 
which we pick the objects matter?”

  If the order matters, we use permutations.

  If the order doesn’t matter, we use combinations.

ExaMPlE 11 ■ using Combinations
A group of 25 campers consists of 15 women and 10 men. In how many ways can a 
scouting party of 6 be chosen if it must consist of 3 women and 2 men?

soluTion  Three women can be chosen from the 15 women in C115, 3 2  ways, and 
two men can be chosen from the 10 men in C110, 2 2  ways. It follows by the Funda-
mental Counting Principle that the number of ways of choosing the scouting party is

C115, 3 2  C110, 2 2  455  45  20,475

now Try Exercise 75 ■

Compare to Example 6, where order 
matters.
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SECTION 14.1 ■ Counting 949

ExaMPlE 12 ■ using Permutations and Combinations
A committee of seven—consisting of a chairman, a vice chairman, a secretary, and 
four other members—is to be chosen from a class of 20 students. In how many ways 
can the committee be chosen?

soluTion  In choosing the three officers, order is important. So the number of ways 
of choosing them is

P120, 3 2  6840

Next, we need to choose four other students from the 17 remaining. Since order 
doesn’t matter in choosing these four members, the number of ways of doing this is

C117, 4 2  2380

By the Fundamental Counting Principle the number of ways of choosing this committee is

P120, 3 2  C117, 4 2  6840  2380  16,279,200

now Try Exercise 77 ■

ExaMPlE 13 ■ using Permutations and Combinations
Twelve employees at a company picnic are to stand in a row for a group photograph. 
In how many ways can this be done if

(a) Jane and John insist on standing next to each other?

(b) Jane and John refuse to stand next to each other?

soluTion  Since the order in which the people stand is important, we use permuta-
tions. But we can’t use permutations directly.

(a)  Since Jane and John insist on standing together, let’s think of them as one object. 
So we have 11 objects to arrange in a row, and there are P111, 11 2  ways of doing 
this. For each of these arrangements there are two ways of having Jane and John 
stand together: Jane-John or John-Jane. By the Fundamental Counting Principle 
the total number of arrangements is

2  P111, 11 2  2  11!  79,833,600

(b)  There are P112, 12 2  ways of arranging the 12 people. Of these, 2  P111, 11 2  
have Jane and John standing together (by part (a)). All the rest have Jane and John 
standing apart. So the number of arrangements with Jane and John standing apart is

P112, 12 2   2  P111, 11 2  12!  2  11!  399,168,000

now Try Exercise 85 ■

Jane John

ConCEPTs
 1. The Fundamental Counting Principle says that if one event 

can occur in m ways and a second event can occur in n ways, 

then the two events can occur in order in   
ways. So if you have two choices for shoes and three choices 
for hats, then the number of different shoe-hat combinations 

you can wear is       .

 2. The number of ways of arranging r objects from n objects 

in order is called the number of  of  
n objects taken r at a time and is given by the formula 

P1n, r 2    .

14.1 ExErCisEs
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950 CHAPTER 14 ■ Counting and Probability

 3. The number of ways of choosing r objects from n objects is 

  called the number of  of n objects taken r at a 

  time and is given by the formula C1n, r 2    .

 4. True or False?

(a) In counting combinations, order matters.

(b) In counting permutations, order matters.

(c)  For a set of n distinct objects, the number of different 
combinations of these objects is more than the number of 
different permutations.

(d)  If we have a set with five distinct objects, then the num-
ber of different ways of choosing two members of this 
set is the same as the number of ways of choosing three  
members.

sKills
5–16 ■ Evaluating Permutations and Combinations  Evaluate 
the expression.

 5. P18, 3 2   6. P19, 2 2  
 7. P111, 4 2   8. P110, 5 2
 9. P1100, 1 2  10. P199, 3 2
11. C18, 3 2  12. C19, 2 2  
13. C111, 4 2  14. C110, 5 2
 15. C1100, 1 2  16. C199, 3 2

aPPliCaTions
17–36 ■ Fundamental Counting Principle  These exercises 
involve the Fundamental Counting Principle.

17. ice-Cream Cones  A vendor sells ice cream from a cart on 
the boardwalk. He offers vanilla, chocolate, strawberry, and 
pistachio ice cream, served in either a waffle, sugar, or plain 
cone. How many different single-scoop ice-cream cones can 
you buy from this vendor?

18. Three-letter Words  How many three-letter “words” (strings 
of letters) can be formed by using the 26 letters of the alpha-
bet if repetition of letters

(a) is allowed?

(b) is not allowed?

19. horse race  Eight horses compete in a race. (Assume that 
the race does not end in a tie.)

(a)  How many different orders are possible for completing 
the race?

(b)  In how many different ways can first, second, and third 
places be decided?

20. Multiple-Choice Test  A multiple-choice test has five ques-
tions with four choices for each question. In how many dif-
ferent ways can the test be completed?

21. Phone numbers  Telephone numbers consist of seven digits; 
the first digit cannot be 0 or 1. How many telephone numbers 
are possible?

22. running a race  In how many different ways can a race with 
five runners be completed? (Assume that there is no tie.)

23. restaurant Meals  A restaurant offers the items listed in the 
table. How many different meals consisting of a main course, 
a drink, and a dessert can be selected at this restaurant?

Main courses Drinks Desserts

Chicken Iced tea Ice cream
Beef Apple juice Layer cake
Lasagna Cola Blueberry pie
Quiche Ginger ale

Coffee

24. Multiple routes  Towns A, B, C, and D are located in such a 
way that there are four roads from A to B, five roads from B 
to C, and six roads from C to D. How many routes are there 
from town A to town D via towns B and C?

25. Flipping a Coin  A coin is flipped five times, and the result-
ing sequence of heads and tails is recorded. How many such 
sequences are possible?

26. rolling a Pair of dice  A red die and a white die are rolled, 
and the numbers that show are recorded. How many different 
outcomes are possible? (The singular form of the word dice  
is die.)

27. rolling Three dice  A red die, a blue die, and a white  
die are rolled, and the numbers that show are recorded. How 
many different outcomes are possible?

28. Choosing outfits  A girl has five skirts, eight blouses, and 
12 pairs of shoes. How many different skirt-blouse-shoe out-
fits can she wear? (Assume that each item matches all the 
others, so she is willing to wear any combination.)

29. license Plates  Standard automobile license plates in  
California display a nonzero digit, followed by three letters, 
followed by three digits. How many different standard plates 
are possible in this system?

30. id numbers  A company’s employee ID number system 
consists of one letter followed by three digits. How many dif-
ferent ID numbers are possible with this system?
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31. Combination lock  A combination lock has 60 different 
positions. To open the lock, the dial is turned to a certain 
number in the clockwise direction, then to a number in the 
counterclockwise direction, and finally to a third number in 
the clockwise direction. If successive numbers in the combi-
nation cannot be the same, how many different combinations 
are possible?

32. license Plates  A state has registered 8 million automobiles. 
To simplify the license plate system, a state employee sug-
gests that each plate display only two letters followed by 
three digits. Will this system create enough different license 
plates for all the vehicles that are registered?

33. Class Executive  In how many ways can a president, vice 
president, and secretary be chosen from a class of 30 
students?

34. Committee officers  A senate subcommittee consists of ten 
Democrats and seven Republicans. In how many ways can a 
chairman, vice chairman, and secretary be chosen if the 
chairman must be a Democrat and the vice chairman must be 
a Republican?

35. social security numbers  Social Security numbers consist of 
nine digits, with the first digit between 0 and 6, inclusive. 
How many Social Security numbers are possible?

36. holiday Photos  A couple have seven children: three  
girls and four boys. In how many ways can the children be 
arranged for a holiday photo if the girls sit in a row in the 
front and the boys stand in a row behind the girls?

37–40 ■ Counting subsets  These exercises involve counting 
subsets.

37. subsets  A set has eight elements.

(a)  How many subsets containing five elements does this set 
have?

(b) How many subsets does this set have?

38. Travel Brochures  A travel agency has limited numbers of 
eight different free brochures about Australia. The agent tells 
you to take any that you like but no more than one of any 
kind. In how many different ways can you choose brochures 
(including not choosing any)?

39. hamburgers  A hamburger chain gives their customers a 
choice of ten different hamburger toppings. In how many dif-
ferent ways can a customer order a hamburger?

40. To shop or not to shop  Each of 20 shoppers in a shopping 
mall chooses to enter or not to enter the Dressfastic clothing 
store. How many different outcomes of their decisions are 
possible?

41–52 ■ Counting Permutations  These exercises involve count-
ing permutations.

41. seating arrangements  Ten people are at a party.

(a)  In how many different ways can they be seated in a row 
of ten chairs?

(b)  In how many different ways can six of these people be 
selected and then seated in a row of six chairs?

42. Three-letter Words  How many three-letter “words”  
can be made from the letters FGHIJK? (Letters may not be 
repeated.)

43. Class officers  In how many different ways can a president, 
vice president, and secretary be chosen from a class of  
15 students?

44. Three-digit numbers  How many different three-digit whole 
numbers can be formed by using the digits 1, 3, 5, and 7 if no 
repetition of digits is allowed?

45. Contest Prizes  In how many different ways can first,  
second, and third prizes be awarded in a game with eight  
contestants?

46. Piano recital  A pianist plans to play eight pieces at a 
recital. In how many ways can she arrange these pieces in the 
program?

47. running a race  In how many different ways can a race with 
nine runners be completed, assuming that there is no tie?

48. signal Flags  A ship carries five signal flags of different  
colors. How many different signals can be sent by hoisting 
exactly three of the five flags on the ship’s flagpole in differ-
ent orders?

49. Contest Prizes  In how many ways can first, second, and 
third prizes be awarded in a contest with 1000 contestants?

50. Class officers  In how many ways can a president, vice  
president, secretary, and treasurer be chosen from a class of  
30 students?

51. seating arrangements  In how many ways can five  
students be seated in a row of five chairs if Jack insists on sit-
ting in the first chair?

Jack

52. seating arrangements  In how many ways can the  students 
in Exercise 51 be seated if Jack insists on sitting in the mid-
dle chair?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



952 CHAPTER 14 ■ Counting and Probability

53–60 ■ distinguishable Permutations  These exercises involve 
distinguishable permutations.

 53. arrangements  In how many ways can two blue marbles 
and four red marbles be arranged in a row?

54. arrangements  In how many different ways can five red 
balls, two white balls, and seven blue balls be arranged in  
a row?

 55. arranging Coins  In how many different ways can four pen-
nies, three nickels, two dimes, and three quarters be arranged 
in a row?

 56. arranging letters  In how many different ways can the let-
ters of the word ELEEMOSYNARY be arranged?

 57. distributions  A man bought three vanilla ice-cream cones, 
two chocolate cones, four strawberry cones, and five butter-
scotch cones for his 14 chidren. In how many ways can he 
distribute the cones among his children?

 58. room assignments  When seven students take a trip, they 
find a hotel with three rooms available: a room for one per-
son, a room for two people, and a room for three people. In 
how many different ways can the students be assigned to 
these rooms? (One student has to sleep in the car.)

 59. Work assignments  Eight workers are cleaning a large house. 
Five are needed to clean windows, two to clean the  carpets, 
and one to clean the rest of the house. In how many different 
ways can these tasks be assigned to the eight  workers?

60. Transporting students   A group of 30 students is taking a 
field trip to a science museum. Three vans are available for 
transporting the students. The first van has room for 8 students, 
and the other two vans each have room for 11 students. In how 
many different ways can the students be assigned to the vans? 

61–74 ■ Combinations  These exercises involve counting 
combinations.

 61. Committee  In how many ways can a committee of three 
members be chosen from a club of 25 members?

62. Choosing Books  In how many ways can three books be cho-
sen from a group of six different books?

63. raffle  In a raffle with 12 entries, in how many ways can 
three winners be selected?

64. Choosing a group  In how many ways can six people be 
chosen from a group of ten?

65. draw Poker hands  How many different five-card hands can 
be dealt from a deck of 52 cards?

66. stud Poker hands  How many different seven-card hands 
can be picked from a deck of 52 cards?

67. Choosing Exam Questions  A student must answer seven of 
the ten questions on an exam. In how many ways can she 
choose the seven questions?

68. Three-Topping Pizzas  A pizza parlor offers a choice of 16 dif-
ferent toppings. How many three-topping pizzas are possible?

69. Violin recital  A violinist has practiced 12 pieces. In how 
many ways can he choose eight of these pieces for a recital?

70. Choosing Clothing  If a woman has eight skirts, in how many 
ways can she choose five of these to take on a weekend trip?

71. Choosing Clothing  If a man has ten pairs of pants, in how 
many ways can he choose three of these to take on a business 
trip?

72. Field Trip  From a class with 30 students, seven are to be 
chosen to go on a field trip. Find the number of different 
ways in which the seven students can be chosen under the 
given condition.

(a) Jack must go on the field trip.

(b) Jack is not allowed to go on the field trip.

(c) There are no restrictions on who can go on the field trip.

73. lottery  In the 6/49 lottery game, a player picks six numbers 
from 1 to 49. How many different choices does the player have?

74. Jogging routes  A jogger jogs every morning to his health 
club, which is eight blocks east and five blocks north of his 
home. He always takes a route that is as short as possible, but 
he likes to vary it (see the figure). How many different routes 
can he take?  [Hint: The route shown can be thought of as 
ENNEEENENEENE, where E is East and N is North.]

Home

Health club

75–90 ■ Counting Principles  Solve these exercises by using the 
appropriate counting principle(s).

75. Choosing a Committee  A class has 20 students, of whom  
12 are females and 8 are males. In how many ways can a 
committee of five students be picked from this class under 
each condition?

(a)  No restriction is placed on the number of males or 
females on the committee.

(b) No males are to be included on the committee.

(c) The committee must have three females and two males.

76. doubles Tennis  From a group of ten male and ten fe - 
male tennis players, two men and two women are to face 
each other in a men-versus-women doubles match. In how 
many different ways can this match be arranged?

77. Choosing a Committee  A committee of six is to be chosen 
from a class of 20 students. The committee is to consist of a 
chair, a secretary and four other members. In how many dif-
ferent ways can the committee be picked?
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78. Choosing a group  Sixteen boys and nine girls go on a 
camping trip. In how many ways can a group of six be 
selected to gather firewood, given the following conditions?

(a) The group consists of two girls and four boys.

(b) The group contains at least two girls.

79. dance Committee  A school dance committee is to consist 
of 2 freshmen, 3 sophomores, 4 juniors, and 5 seniors. If  
6 freshmen, 8 sophomores, 12 juniors, and 10 seniors are eli-
gible to be on the committee, in how many ways can the 
committee be chosen?

80. Casting a Play  A group of 22 aspiring thespians contains  
10 men and 12 women. For the next play, the director wants to 
choose a leading man, a leading lady, a supporting male role, a 
supporting female role, and eight extras—three women and 
five men. In how many ways can the cast be chosen?

81. hockey lineup  A hockey team has 20 players, of whom  
12 play forward, six play defense, and two are goalies. In 
how many ways can the coach pick a starting lineup consist-
ing of three forwards, two defense players, and one goalie?

82. Choosing a Pizza  A pizza parlor offers four sizes of pizza 
(small, medium, large, and colossus), two types of crust 
(thick and thin), and 14 different toppings. How many differ-
ent pizzas can be made with these choices?

83. Choosing a Committee  In how many ways can a committee 
of four be chosen from a group of ten if Barry and Harry 
refuse to serve together on the same committee?

84. Parking Committee  A five-person committee consisting of 
students and teachers is being formed to study the issue of 
student parking privileges. Of those who have expressed an 
interest in serving on the committee, 12 are teachers and 14 
are students. In how many ways can the committee be formed 
if at least one student and one teacher must be included?

85. arranging Books  In how many ways can five different 
mathematics books be placed on a shelf if the two algebra 
books are to be placed next to each other?

86. arranging a Class Picture  In how many ways can ten stu-
dents be arranged in a row for a class picture if John and Jane 
want to stand next to each other and Mike and Molly also 
insist on standing next to each other?

87. seating arrangements  In how many ways can four men 
and four women be seated in a row of eight seats for each of 
the following arrangements?

(a) The first seat is to be occupied by a man.

(b) The first and last seats are to be occupied by women.

88. seating arrangements  In how many ways can four men 
and four women be seated in a row of eight seats for each of 
the following arrangements?

(a) The women are to be seated together.

(b)  The men and women are to be seated alternately by gender.

89. selecting Prizewinners  From a group of 30 contestants, six 
are to be chosen as semifinalists, then two of those are chosen 
as finalists, and then the top prize is awarded to one of the final-
ists. In how many ways can these choices be made in sequence?

90. Choosing a delegation  Three delegates are to be chosen 
from a group of four lawyers, a priest, and three professors. 
In how many ways can the delegation be chosen if it must 
include at least one professor?

disCuss ■ disCoVEr ■ ProVE ■ WriTE
91. disCuss: Pairs of initials  Explain why in any group of  

677 people, at least two people must have the same pair of 
initials.

92. disCuss: Complementary Combinations  Without perform-
ing any calculations, explain in words why the number of 
ways of choosing two objects from ten objects is the same as 
the number of ways of choosing eight objects from ten 
objects. In general, explain why

C1n, r 2  C1n, n  r 2
93. disCuss: an identity involving Combinations  Kevin has 

ten different marbles, and he wants to give three of them to 
Luke and two to Mark. In how many ways can he choose to 
do this? There are two ways of analyzing this problem: He 
could first pick three for Luke and then two for Mark, or he 
could first pick two for Mark and then three for Luke. 
Explain how these two viewpoints show that

C110, 3 2 # C17, 2 2  C110, 2 2 # C18, 3 2
  In general, explain why

C1n, r 2 # C1n  r, k 2  C1n, k 2 # C1n  k, r 2
94. disCuss ■ disCoVEr: Why is 1 nr 2  the same as Cxn, r c ?  This 

exercise explains why the binomial coefficients 1 nr 2  that appear 
in the expansion of 1x  y 2 n are the same as C1n, r 2 , the num-
ber of ways of choosing r objects from n objects. First, note that 
expanding a binomial using only the Distributive Property gives

 1x  y 2 2  1x  y 2 1x  y 2
  1x  y 2x  1x  y 2y
  xx  xy  yx  yy

 1x  y 2 3  1x  y 2 1xx  xy  yx  yy 2
  xxx  xxy  xyx  xyy  yxx

  yxy  yyx  yyy

(a) Expand 1x  y 2 5 using only the Distributive Property.

(b)  Write all the terms that represent x2y3. These are all the 
terms that contain two x’s and three y’s.

(c)  Note that the two x’s appear in all possible positions. 
Conclude that the number of terms that represent x2y3 is 
C15, 2 2 .

(d)  In general, explain why 1 nr 2  in the Binomial Theorem is 
the same as C1n, r 2 .
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14.2 ProBaBiliTy
■ What is Probability? ■ Calculating Probability by Counting ■ The Complement of an 
Event ■ The union of Events ■ Conditional Probability and the intersection of Events

In this section we study probability, which is the mathematical study of “chance.”

■ What is Probability?
Suppose we roll a die, and we’re hoping to get a “two.” Of course, it’s impossible to 
predict what number will show up. But here’s the key idea: If we roll the die many many 
times, a “two” will show up about one-sixth of the time. If you try this experiment, 
you’ll see that it actually works! We say that the probability (or chance) of getting a 
“two” is 1

6.

To discuss probability, let’s begin by defining some terms. An experiment is a proc-
ess, such as tossing a coin, that gives definite results, called the outcomes of the ex-
periment. The sample space of an experiment is the set of all possible outcomes. If we 
let H stand for heads and T for tails, then the sample space of the coin-tossing experi-
ment is S  5H, T6 . The table gives some experiments and their sample spaces.

Experiment Sample space

Tossing a coin 5H, T6
Rolling a die 51, 2, 3, 4, 5, 66
Tossing a coin twice and observing the sequence 
of heads and tails

5HH, HT, TH, TT6

Picking a card from a deck and observing the suit
Administering a drug to three patients and  
observing whether they recover (R) or not (N)

5RRR, RRN, RNR, RNN, 
NRR, NRN, NNR, NNN 6

We will be concerned only with experiments for which all the outcomes are equally 
likely. For example, when we toss a perfectly balanced coin, heads and tails are equally 
likely outcomes in the sense that if this experiment is repeated many times, we expect 
that about as many heads as tails will show up.

In any given experiment we are often concerned with a particular set of outcomes. 
We might be interested in a die showing an even number or in picking an ace from a 
deck of cards. Any particular set of outcomes is a subset of the sample space. This leads 
to the following definition.

dEFiniTion oF an EVEnT

If S is the sample space of an experiment, then an event E is any subset of the 
sample space.

The mathematical theory of probability 
was first discussed in 1654 in a series of 
letters between Pascal (see page 919) 
and Fermat (see page 154). Their corre
spondence was prompted by a question 
raised by the experienced gambler the 
Chevalier de Méré. The Chevalier was 
interested in the equitable distri bution of 
the stakes of an interrupted gambling 
game (see Problem 3, page 982).
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ExaMPlE 1 ■ Events in a sample space
An experiment consists of tossing a coin three times and recording the results in 
order. List the outcomes in the sample space, then list the outcome in each event.

(a) The event E of getting “exactly two heads.”

(b) The event F of getting “at least two heads.”

(c) The event G of getting “no heads.”

soluTion  We write H for heads and T for tails. So the outcome HTH means that  
the three tosses resulted in Heads, Tails, Heads, in that order. The sample space is

S  5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6
(a)  The event E is the subset of the sample space S that consists of all outcomes  

with exactly two heads. Thus

E  5HHT, HTH, THH6
(b)  The event F is the subset of the sample space S that consists of all outcomes  

with at least two heads. Thus

F  5HHH, HHT, HTH, THH6
(c)  The event G is the subset of the sample space S that consists of all outcomes  

with no heads. Thus

G  5TTT6
now Try Exercise 5 ■

We are now ready to define the notion of probability. Intuitively, we know that roll-
ing a die may result in any of six equally likely outcomes, so the chance of any par-
ticular outcome occurring is 1

6. What is the chance of showing an even number? Of the 
six equally likely outcomes possible, three are even numbers. So it is reasonable to say 
that the chance of showing an even number is 3

6  1
2. This reasoning is the intuitive 

basis for the following definition of probability.

dEFiniTion oF ProBaBiliTy

Let S be the sample space of an experiment in which all outcomes are equally 
likely, and let E be an event. Then the probability of E, written P1E 2 , is

P1E 2 
n1E 2
n1S 2 

number of elements in E

number of elements in S

Notice that 0  n1E 2  n1S 2 , so the probability P1E 2  of an event is a number be-
tween 0 and 1, that is,

0  P1E 2  1

The closer the probability of an event is to 1, the more likely the event is to happen; the 
closer to 0, the less likely. If P1E 2  1, then E is called a certain event; if P1E 2  0, 
then E is called an impossible event.

ExaMPlE 2 ■ Finding the Probability of an Event
A coin is tossed three times, and the results are recorded in order. Find the probability 
of the following.

(a) The event E of getting “exactly two heads.”

(b) The event F of getting “at least two heads.”

(c) The event G of getting “no heads.”
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soluTion  By the results of Example 1 the sample space S of this experiment con-
tains 8 outcomes.

(a)  The event E of getting “exactly two heads” contains 3 outcomes, so by the defini-
tion of probability,

P1E 2 
n1E 2
n1S 2 

3

8

(b) The event F of getting “at least two heads” has 4 outcomes, so

P1F 2 
n1F 2
n1S 2 

4

8


1

2

(c) The event G of getting “no heads” has one outcome, so

P1G 2 
n1G 2
n1S 2 

1

8

now Try Exercise 7 ■

■ Calculating Probability by Counting
To find the probability of an event, we do not need to list all the elements in the sample 
space and the event. We need only the number of elements in these sets. The counting 
techniques that we learned in the preceding sections will be very useful here.

ExaMPlE 3 ■ Finding the Probability of an Event
A five-card poker hand is drawn from a standard deck of 52 cards. What is the proba-
bility that all five cards are spades?

soluTion  The experiment here consists of choosing five cards from the deck, and 
the sample space S consists of all possible five-card hands. Thus the number of ele-
ments in the sample space is

n1S 2  C152, 5 2 
52!

5! 152  5 2 !  2,598,960

The event E that we are interested in consists of choosing five spades. Since the deck 
contains only 13 spades, the number of ways of choosing five spades is

n1E 2  C113, 5 2 
13!

5! 113  5 2 !  1287

Thus the probability of drawing five spades is

P1E 2 
n1E 2
n1S 2 

1287

2,598,960
< 0.0005

now Try Exercise 15 ■

What does the answer to Example 3 tell us? Because 0.0005  1
2000, we conclude 

that if you play poker many, many times, on average you will be dealt a hand consisting 
of only spades about once in every 2000 hands.

ExaMPlE 4 ■ Finding the Probability of an Event
A bag contains 20 tennis balls, of which four are defective. If two balls are selected at 
random from the bag, what is the probability that both are defective?

PeRsi diaconis (b. 1945) is currently 
professor of statistics and mathematics at 
Stanford University in California. He was 
born in New York City into a musical fam
ily and studied violin until the age of 14. 
At that time he left home to become a 
magician. He was a magician (apprentice 
and master) for ten years. Magic is still his 
passion, and if there were a professorship 
for magic, he would certainly qualify for 
such a post! His interest in card tricks led 
him to a study of probability and statis
tics. He is now one of the leading statisti
cians in the world. With his unusual back
ground he approaches mathematics with 
an undeniable flair. He says, “Statistics is 
the physics of numbers. Numbers seem 
to arise in the world in an orderly fashion. 
When we examine the world, the same 
regularities seem to appear again and 
again.” Among his many original contri
butions to mathematics is a probabilistic 
study of the perfect card shuffle.
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soluTion  The experiment consists of choosing two balls from 20, so the number of 
elements in the sample space S is C120, 2 2 . Since there are four defective balls, the 
number of ways of picking two defective balls is C14, 2 2 . Thus the probability of the 
event E of picking two defective balls is

P1E 2 
n1E 2
n1S 2 

C14, 2 2
C120, 2 2 

6

190
< 0.032

now Try Exercise 17 ■

■ The Complement of an Event
The complement of an event E is the set of outcomes in the sample space that are not 
in E. We denote the complement of E by E r .

ProBaBiliTy oF ThE CoMPlEMEnT oF an EVEnT

Let S be the sample space of an experiment, and let E be an event. Then the 
probability of E r , the complement of E, is

P1E r 2  1  P1E 2

By solving this equation for P1E 2 , we 
also have

P1E 2  1  P1E r 2

Proof  We calculate the probability of E r  using the definition of probability and the 
fact that n1E r 2  n1S 2  n1E 2 .

 P1E r 2 
n1E r 2
n1S 2 

n1S 2  n1E 2
n1S 2 

n1S 2
n1S 2 

n1E 2
n1S 2  1  P1E 2  

■

This is a very useful result, since it is often difficult to calculate the probability of an 
event E but easy to find the probability of E r .

ExaMPlE 5 ■  Finding a Probability using the Complement of an Event
An urn contains 10 red balls and 15 blue balls. Six balls are drawn at random from 
the urn. What is the probability that at least one ball is red?

soluTion  Let E be the event that at least one red ball is drawn. It is tedious to count 
all the possible ways in which one or more of the balls drawn are red. So let’s consider 
E r, the complement of this event—namely, that none of the balls that are chosen is 
red. The number of ways of choosing 6 blue balls from the 15 blue balls is C115, 6 2 ; 
the number of ways of choosing 6 balls from the 25 balls is C125, 6 2 . Thus

P1E r 2 
n1E r 2
n1S 2 

C115, 6 2
C125, 6 2 

5005

177,100


13

460

By the formula for the complement of an event we have

P1E 2  1  P1E r 2  1 
13

460
< 0.97

now Try Exercise 19 ■

■ The union of Events
If E and F are events, what is the probability that E or F occurs? The word or indicates 
that we want the probability of the union of these events, that is, E < F .
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ProBaBiliTy oF ThE union oF EVEnTs

If E and F are events in a sample space S, then the probability of E or F is

P1E < F 2  P1E 2  P1F 2  P1E > F 2

Proof  We need to find the number of elements in E < F . If we simply added  
the number of elements in E to the number of elements in F, we would be counting  
the elements in the overlap twice—once in E and once in F (see Figure 1). To  
get the correct total, we must subtract the number of elements in E > F . So 
n1E < F 2  n1E 2  n1F 2  n1E > F 2 . Using the definition of probability,  
we get

P1E < F 2 
n1E < F 2

n1S 2 
n1E 2  n1F 2  n1E > F 2

n1S 2  P1E 2  P1F 2  P1E > F 2  
 ■

ExaMPlE 6 ■  Finding the Probability of the union  
of Events

What is the probability that a card drawn at random from a standard 52-card deck is 
either a face card or a spade?

soluTion  Let E denote the event “the card is a face card,” and let F denote the event 
“the card is a spade.” We want to find the probability of E or F, that is, P1E < F 2 .

There are 12 face cards and 13 spades in a 52-card deck, so

P1E 2 
12

52
    and    P1F 2 

13

52

Since 3 cards are simultaneously face cards and spades, we have

P1E > F 2 
3

52

Now, by the formula for the probability of the union of two events we have

 P1E < F 2  P1E 2  P1F 2  P1E > F 2

 
12

52


13

52


3

52


11

26

now Try Exercise 21 ■

Two events that have no outcome in common are said to be mutually exclusive (see 
Figure 2). In other words, the events E and F are mutually exclusive if E > F  [. So 
if the events E and F are mutually exclusive, then P1E > F 2  0. The following result 
now follows from the formula for the union of two events.

ProBaBiliTy oF ThE union oF MuTually ExClusiVE EVEnTs

If E and F are mutually exclusive events, then

P1E < F 2  P1E 2  P1F 2

K
Q
J

K
Q
J

K
Q
J

K
Q
J

A
2

3

4

5

6

7

8

9
10

Face cards Spades

E F

FigurE 2

E F

E � F

FigurE 1
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SECTION 14.2 ■ Probability 959

ExaMPlE 7 ■  Finding the Probability of the union  
of Mutually Exclusive Events

What is the probability that a card drawn at random from a standard 52-card deck is  
either a seven or a face card?

soluTion  Let E denote the event “the card is a seven,” and let F denote the event 
“the card is a face card.” These events are mutually exclusive because a card cannot 
be at the same time a seven and a face card. By the above formula we have

P1E < F 2  P1E 2  P1F 2 
4

52


12

52


4

13

now Try Exercises 23 and 25 ■

■ Conditional Probability and the intersection of Events
When we calculate probabilities, there sometimes is additional information that may 
alter the probability of an event. For example, suppose a person is chosen at random. 
What is the probability that the person has long hair? How does the probability change 
if we are given the additional information that the person chosen is a woman? In gen-
eral, the probability of an event E given that another event F has occurred is expressed 
by writing

P1E 0 F 2  The probability of E given F

For example, suppose a die is rolled. Let E be the event of “getting a two,” and let F be 
the event of “getting an even number.” Then

P1E 0 F 2  P1The number is two given that the number is even 2
Since we know that the number is even, the possible outcomes are the three numbers 2, 
4, and 6. So in this case the probability of a “two” is P1E 0 F 2  1

3.
In general, if we know that F has occurred, then F serves as the sample space (see 

Figure 3). So P1E 0 F 2  is determined by the number of outcomes in E that are also in F, 
that is, the number of outcomes in E > F .

CondiTional ProBaBiliTy

Let E and F be events in a sample space S. The conditional probability of E 
given that F occurs is

P1E 0 F 2 
n1E > F 2

n1F 2

ExaMPlE 8 ■ Finding Conditional Probability
A mathematics class consists of 30 students; 12 of them study French, 8 study Ger-
man, 3 study both of these languages, and the rest do not study a foreign language. If 
a student is chosen at random from this class, find the probability of each of the fol-
lowing events.

(a) The student studies French.

(b) The student studies French, given that he or she studies German.

(c) The student studies French, given that he or she studies a foreign language.

7

7
7

7

Q

Q

Q

Q

K

K

K

K

J

J

J

J

Sevens

Face cards

E F

E � F

FigurE 3
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960 CHAPTER 14 ■ Counting and Probability

soluTion  Let F denote the event “the student studies French,” let G be the event 
“the student studies German,” and let L be the event “the student studies a foreign 
language.” It is helpful to organize the information in a Venn diagram, as in Figure 4.

(a) There are 30 students in the class, 12 of whom study French, so

P1F 2 
12

30


2

5

(b)  We are asked to find P1F 0 G 2 , the probability that a student studies French given 
that the student studies German. Since eight students study German and three of 
these study French, it is clear that the required conditional probability is 3

8. The 
formula for conditional probability confirms this:

P1F 0 G 2 
n1F > G 2

n1G 2 
3

8

(c)  From the Venn diagram in Figure 4 we see that the number of students who study 
a foreign language is 9  3  5  17. Since 12 of these study French, we have

P1F 0 L 2 
n1F > L 2

n1L 2 
12

17

now Try Exercises 27 and 29 ■

Using the expression for conditional probability and dividing the numerator and 
denominator by n1S 2 , we get

P1F 0 E 2 
n1F > E 2

n1E 2 

n1E > F 2
n1S 2
n1E 2
n1S 2


P1E > F 2

P1E 2

Multiplying both sides by P1E 2  gives the following formula.

ProBaBiliTy oF ThE inTErsECTion oF EVEnTs

If E and F are events in a sample space S, then the probability of E and F is

P1E > F 2  P1E 2P1F 0 E 2

ExaMPlE 9 ■  Finding the Probability of the intersection of Events
Two cards are drawn, without replacement, from a 52-card deck. Find the probability 
of the following events.

(a) The first card drawn is an ace and the second is a king.

(b) The first card drawn is an ace and the second is also an ace.

soluTion  

(a)  Let E be the event “the first card is an ace,” and let F be the event “the second card 
is a king.” We are asked to find the probability of E and F, that is, P1E > F 2 . 
Now, P1E 2  4

52. After an ace is drawn, 51 cards remain in the deck; of these,  
4 are kings, so P1F 0 E 2  4

51. By the above formula we have

P1E > F 2  P1E 2P1F 0 E 2 
4

52


4

51
< 0.0060

Note that F > E  E > F .

F G

39 5

12 8

FigurE 4
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SECTION 14.2 ■ Probability 961

(b)  Let E be the event “the first card is an ace,” and let H be the event “the second 
card is an ace.” The probability that the first card drawn is an ace is P1E 2  4

52. 
After an ace is drawn, 51 cards remain; of these, 3 are aces, so P1H 0 E 2  3

51. By 
the above formula we have

P1E > H 2  P1E 2P1H 0 E 2 
4

52


3

51
< 0.0045

now Try Exercise 33 ■

When the occurrence of one event does not affect the probability of the occurrence 
of another event, we say that the events are independent. This means that the events E 
and F are independent if P1E 0 F 2  P1E 2  and P1F 0 E 2  P1F 2 . For instance, if a fair 
coin is tossed, the probability of showing heads on the second toss is 1

2, regardless of 
what was obtained on the first toss. So any two tosses of a coin are independent.

ProBaBiliTy oF ThE inTErsECTion oF indEPEndEnT EVEnTs

If E and F are independent events in a sample space S, then the probability of E 
and F is

P1E > F 2  P1E 2P1F 2

ExaMPlE 10 ■ Finding the Probability of independent Events
A jar contains five red balls and four black balls. A ball is drawn at random from the 
jar and then replaced; then another ball is picked. What is the probability that both 
balls are red?

soluTion  Let E be the event “the first ball drawn is red,” and let F be the event “the 
second ball drawn is red.” Since we replace the first ball before drawing the second,  
the events E and F are independent. Now, the probability that the first ball is red is 5

9. 
The probability that the second is red is also 5

9. Thus the probability that both balls are 
red is

P1E > F 2  P1E 2P1F 2 
5

9


5

9
< 0.31

now Try Exercise 37 ■

disCoVEry ProJECT

small samples, Big results

Suppose that we want to estimate the proportion of fish in a lake that are dis-
eased. It is impossible to examine each fish in the lake. However, if we select 
a small random sample of fish, we can infer the proportion of diseased fish in 
the lake by calculating this proportion in the sample. In this project we per-
form a hands-on experiment to simulate this type of problem. You can find the 
project at www.stewartmath.com.
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962 CHAPTER 14 ■ Counting and Probability

ConCEPTs
 1. The set of all possible outcomes of an experiment is called 

  the     . A subset of the sample space 

  is called an   . The sample space for the 

  experiment of tossing two coins is S  5HH, ___ , ___ , ___6 . 
  The event “getting at least one head” is E  5HH, ___ , ___6 . 
  The probability of getting at least one head is 

  P1E 2 
n1___ 2
n1___ 2  ____

 2. Let E and F be events in a sample space S.

(a) The probability of E or F occurring is 

 P1E < F 2    .

(b)  If the events E and F have no outcome in common (that 
is, the intersection of E and F is empty), then the events 

  are called    . So in drawing a 
card from a deck, the event E, “getting a heart,” and the 

 event F, “getting a spade,” are    .

(c) If E and F are mutually exclusive, then the probability of 

 E or F is P1E < F 2    .

 3. The conditional probability of E given that F occurs is 

  P1E 0 F 2    . So in rolling a die the conditional 
probability of the event E, “getting a six,” given that the  
event F, “getting an even number,” has occurred is 

  P1E 0 F 2    .

 4. Let E and F be events in a sample space S.

(a) The probability of E and F occurring is 

 P1E > F 2    .

(b)  If the occurrence of E does not affect the probability of 

  the occurrence F, then the events are called   .
  So in tossing a coin twice, the event E, “getting heads on 

the first toss,” and the event F, “getting heads on the 

 second toss,” are   .

(c) If E and F are independent events, then the probability of 

 E and F is P1E > F 2    .

sKills
 5. rolling a die  An experiment consists of rolling a die. List 

the elements in the following sets.

(a) The sample space

(b) The event “getting an even number”

(c) The event “getting a number greater than 4”

 6. Tossing a Coin  An experiment consists of tossing a coin and 
drawing a card from a deck.

(a) How many elements does the sample space have?

(b) List the elements in the event “getting heads and an ace.”

(c)  List the elements in the event “getting tails and a face 
card.”

(d) List the elements in the event “getting heads and a spade.”

7–20 ■ Probability by Counting  These exercises involve finding 
probabilities by counting.

 7. An experiment consists of tossing a coin twice.

(a) Find the sample space.

(b) Find the probability of getting heads exactly two times.

(c) Find the probability of getting heads at least one time.

(d) Find the probability of getting heads exactly one time.

 8. An experiment consists of tossing a coin and rolling a die.

(a) Find the sample space.

(b) Find the probability of getting heads and an even 
number.

(c)  Find the probability of getting heads and a number 
greater than 4.

(d) Find the probability of getting tails and an odd number.

9–10 ■ A die is rolled. Find the probability of the given event.

 9. (a) The number showing is a six.

(b) The number showing is an even number.

(c) The number showing is greater than five.

10. (a) The number showing is a two or a three.

(b) The number showing is an odd number.

(c) The number showing is a number divisible by 3.

11–12 ■ A card is drawn randomly from a standard 52-card 
deck. Find the probability of the given event.

11. (a) The card drawn is a king.

(b) The card drawn is a face card.

(c) The card drawn is not a face card.

12. (a) The card drawn is a heart.

(b) The card drawn is either a heart or a spade.

(c) The card drawn is a heart, a diamond, or a spade.

13–14 ■ A ball is drawn randomly from a jar that contains five 
red balls, two white balls, and one yellow ball. Find the probabil-
ity of the given event.

13. (a) A red ball is drawn.

(b) The ball drawn is not yellow.

(c) A black ball is drawn.

14. (a) Neither a white nor yellow ball is drawn.

(b) A red, white, or yellow ball is drawn.

(c) The ball that is drawn is not white.

15. A poker hand, consisting of five cards, is dealt from a stan-
dard deck of 52 cards. Find the probability that the hand con-
tains the cards described.

(a) Five hearts

(b) Five cards of the same suit

14.2 ExErCisEs
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SECTION 14.2 ■ Probability 963

(c) Five face cards

(d)  An ace, king, queen, jack, and a ten, all of the same suit 
(royal flush)

16. Three CDs are picked at random from a collection of 12 CDs 
of which four are defective. Find the probability of the  
following.

(a) All three CDs are defective.

(b) All three CDs are functioning properly.

17. Two balls are picked at random from a jar that contains three 
red and five white balls. Find the probability of the following 
events.

(a) Both balls are red.

(b) Both balls are white.

18. A letter is chosen at random from the word  
EXTRATERRESTRIAL. Find the probability of the given  
event.

(a) The letter T is chosen.

(b) The letter chosen is a vowel.

(c) The letter chosen is a consonant.

19. A five-card poker hand is drawn from a standard 52-card 
deck. Find the probability of the following events.

(a) At least one card is a spade.

(b) At least one card is a face card.

20. A pair of dice is rolled, and the numbers showing are  
observed.

(a) List the sample space of this experiment.

(b) Find the probability of getting a sum of 7.

(c) Find the probability of getting a sum of 9.

(d)  Find the probability that the two dice show doubles (the 
same number).

(e)  Find the probability that the two dice show different  
numbers.

(f) Find the probability of getting a sum of 9 or higher.

21–26 ■ union of Events  These exercises involve finding the 
probability of the union of events.

21–22 ■ Refer to the spinner shown in the figure. Find the prob-
ability of the given event.

1
2

3

4

5

6

7
89

10

11

12

13

14
15

16

21. (a) The spinner stops on red.

(b) The spinner stops on an even number.

(c) The spinner stops on red or an even number.

22. (a) The spinner stops on blue.

(b) The spinner stops on an odd number.

(c) The spinner stops on blue or an odd number.

23–24 ■ A die is rolled, and the number showing is observed. 
Determine whether the events E and F are mutually exclusive. 
Then find the probability of the event E < F .

23. (a) E: The number is even.
 F: The number is odd. 

(b) E: The number is even.
 F: The number is greater than 4.

24. (a) E: The number is greater than 3.
 F: The number is less than 5.

(b) E: The number is divisible by 3.
 F: The number is less than 3.

25–26 ■ A card is drawn at random from a standard 52-card 
deck. Determine whether the events E and F are mutually exclu-
sive. Then find the probability of the event E < F .

25. (a) E: The card is a face card.
 F: The card is a spade.

(b) E: The card is a heart.
 F: The card is a spade.

26. (a)  E: The card is a club.
 F: The card is a king.

(b) E: The card is an ace.
 F: The card is a spade.

27–32 ■ Conditional Probability  These exercises involve condi-
tional probability.

27. A die is rolled. Find the given conditional probability.

(a)  A “five” shows, given that the number showing is greater 
than 3.

(b) A “three” shows, given that the number showing is odd.

28. A card is drawn from a deck. Find the following conditional 
probability.

(a) The card is a queen, given that it is a face card.

(b) The card is a king, given that it is a spade.

(c) The card is a spade, given that it is a king.

29–30 ■ Refer to the spinner in Exercises 21–22.

29. Find the probability that the spinner has stopped on an even 
number, given that it has stopped on red.

30. Find the probability that the spinner has stopped on a number 
divisible by 3, given that it has stopped on blue.

31–32 ■ A jar contains five red balls numbered 1 to 5 and seven 
green balls numbered 1 to 7.

31. A ball is drawn at random from the jar. Find the following 
conditional probabilities.

(a) The ball is red, given that it is numbered 3.

(b) The ball is green, given that is numbered 7.

(c) The ball is red, given that it has an even number.

(d) The ball has an even number, given that it is red.
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964 CHAPTER 14 ■ Counting and Probability

32. Two balls are drawn at random from the jar. Find the follow-
ing conditional probabilities.

(a) The second ball drawn is red, given that the first is red.

(b)  The second ball drawn is red, given that the first is green.

(c)  The second ball drawn is even-numbered, given that the 
first is odd-numbered.

(d)  The second ball drawn is even-numbered, given that the 
first is even-numbered.

33–40 ■ intersection of Events  These exercises involve the 
probability of the intersection of events.

33. A jar contains seven black balls and three white balls. Two 
balls are drawn, without replacement, from the jar. Find the 
probability of the following events.

(a) The first ball drawn is black, and the second is white.

(b) The first ball drawn is black, and the second is black.

34. A drawer contains an unorganized collection of 18 socks. Three 
pairs are red, two pairs are white, and four pairs are black.

(a)  If one sock is drawn at random from the drawer, what is 
the probability that it is red?

(b)  Once a sock is drawn and discovered to be red, what is 
the probability of drawing another red sock next to make 
a matching pair?

(c)  If two socks are drawn from the drawer at the same time, 
what is the probability that both are red?

35. Two cards are drawn from a deck without replacement. Find 
the probability of the following events.

(a) The first is an ace and the second is a king.

(b) Both cards are aces.

36. A die is rolled twice. Let E and F be the following events:

   E: The first roll shows a “six.”
   F: The second roll shows a “six.”

(a) Are the events E and F independent?

(b) Find the probability of showing a “six” on both rolls.

37. A die is rolled twice. What is the probability of getting a 
“one” on the first roll and an even number on the second roll?

38. A coin is tossed and a die is rolled.

(a) Are the events “tails” and “even number” independent?

(b)  Find the probability of getting a tail and an even number.

39–40 ■ Spinners A and B shown in the figure are spun at the 
same time.

Spinner A Spinner B

39. (a)  Are the events “spinner A stops on red” and “spinner B 
stops on yellow” independent?

(b)  Find the probability that spinner A stops on red and spin-
ner B stops on yellow

40. (a)  Find the probability that both spinners stop on purple.

(b)  Find the probability that both spinners stop on blue.

aPPliCaTions
41. Four siblings  A couple intends to have four children. Assume 

that having a boy and having a girl are equally likely events.

(a) List the sample space of this experiment.

(b) Find the probability that the couple will have only boys.

(c)  Find the probability that the couple will have two boys 
and two girls.

(d)  Find the probability that the couple will have four chil-
dren of the same gender

(e)  Find the probability that the couple will have at least two 
girls.

42. Bridge hands  What is the probability that a 13-card bridge 
hand consists of all cards from the same suit?

43. roulette  An American roulette wheel has 38 slots. Two 
slots are numbered 0 and 00, and the remaining slots are 
numbered from 1 to 36. Find the probability that the ball 
lands in an odd-numbered slot.

44. Making Words  A toddler has wooden blocks showing  
the letters C, E, F, H, N, and R. Find the probability that the 
child arranges the letters in the indicated order.

(a) In the order FRENCH

(b) In alphabetical order

45. lottery  In the 6/49 lottery game, a player selects six num-
bers from 1 to 49. What is the probability of picking the six 
winning numbers?

46. an unlikely Event  The president of a large company  
selects six employees to receive a special bonus. He claims 
that the six employees are chosen randomly from among the 
30 employees, of whom 19 are women and 11 are men. What 
is the probability that no woman is chosen?

47. guessing on a Test  An exam has ten true-false questions. A 
student who has not studied answers all ten questions by just 
guessing. Find the probability that the student correctly 
answers all ten questions.

48. Quality Control  To control the quality of their product, the 
Bright-Light Company inspects three light bulbs out of each 
batch of ten bulbs manufactured. If a defective bulb is found, 
the batch is discarded. Suppose a batch contains two defective 
bulbs. What is the probability that the batch will be discarded?

49. Monkeys Typing shakespeare  An often-quoted example of an 
event of extremely low probability is that a monkey types 
Shakespeare’s entire play Hamlet by randomly striking keys on 
a typewriter. Assume that the typewriter has 48 keys (including 
the space bar) and that the monkey is equally likely to hit any 
key.

(a)  Find the probability that such a monkey will actually 
correctly type just the title of the play as his first word.

(b)  What is the probability that the monkey will type the 
phrase “To be or not to be” as his first words?
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50. Making Words  A monkey is trained to arrange wooden 
blocks in a straight line. He is then given six blocks showing 
the letters A, E, H, L, M, T.

(a)  What is the probability that he will arrange them to spell 
the word HAMLET?

(b)  What is the probability that he will arrange them to spell 
the word HAMLET three consecutive times?

51. Making Words  A toddler has eight wooden blocks showing 
the letters A, E, I, G, L, N, T, and R. What is the probability 
that the child will arrange the letters to spell one of the words 
TRIANGLE or INTEGRAL?

52. horse race  Eight horses are entered in a race. You randomly 
predict a particular order for the horses to complete the race. 
What is the probability that your prediction is correct?

53. genetics  Many genetic traits are controlled by two genes, 
one dominant and one recessive. In Gregor Mendel’s origi-
nal experiments with peas the genes controlling the height 
of the plant are denoted by T (tall) and t (short). The gene T 
is dominant, so a plant with the genotype (genetic makeup) 
TT or Tt is tall, whereas one with genotype tt is short. By  
a statistical analysis of the offspring in his experiments, 
Mendel concluded that offspring inherit one gene from each 
parent and that each possible combination of the two genes 
is equally likely. If each parent has the genotype Tt, then 
the following chart gives the possible genotypes of the 
offspring:

Parent 2
T t

Parent 1
T TT Tt
t Tt tt

  Find the probability that a given offspring of these parents  
will be

(a) tall      (b) short

54. genetics  Refer to Exercise 53. Make a chart of the possible 
genotypes of the offspring if one parent has genotype Tt and 
the other has tt. Find the probability that a given offspring  
will be

(a) tall      (b) short

55. roulette  An American roulette wheel has 38 slots. Two of 
the slots are numbered 0 and 00, and the rest are numbered 

from 1 to 36. A player places a bet on a number between 1 
and 36 and wins if a ball thrown into the spinning roulette 
wheel lands in the slot with the same number. Find the prob-
ability of winning on two consecutive spins of the roulette 
wheel.

56. Choosing a Committee  A committee of five is chosen ran-
domly from a group of six males and eight females. What is 
the probability that the committee includes either all males or 
all females?

57. snake Eyes  What is the probability of rolling snake eyes 
(“double ones”) three times in a row?

58. lottery  In the 6/49 lottery game a player selects six num-
bers from 1 to 49. What is the probability of selecting at least 
five of the six winning numbers?

59. Marbles in a Jar  A jar contains six red marbles numbered  
1 to 6 and ten blue marbles numbered 1 to 10. A marble is 
drawn at random from the jar. Find the probability that the 
given event occurs.

(a) The marble is red.

(b) The marble is odd-numbered.

(c) The marble is red or odd-numbered.

(d) The marble is blue or even-numbered.

60. lottery  In the 6/49 lottery game, a player selects six num-
bers from 1 to 49 and wins if he or she selects the winning 
six numbers. What is the probability of winning the lottery 
two times in a row?

61. Balls in a Jar  Jar A contains three red balls and four white 
balls. Jar B contains five red balls and two white balls. Which 
one of the following ways of randomly selecting balls gives 
the greatest probability of drawing two red balls?

 (i) Draw two balls from jar B.
 (ii) Draw one ball from each jar.

 (iii) Put all the balls in one jar, and then draw two balls.

62. slot Machine  A slot machine has three wheels. Each wheel 
has 11 positions: a bar and the digits 0, 1, 2, . . . , 9. When 
the handle is pulled, the three wheels spin independently 
before coming to rest. Find the probability that the wheels 
stop on the following positions.

(a) Three bars

(b)  The same number on each wheel

(c) At least one bar

63. Combination lock  A student has locked her locker with a 
combination lock, showing numbers from 1 to 40, but she has 
forgotten the three-number combination that opens the lock. 
She remembers that all three numbers in the combination are 
different. To open the lock, she decides to try all possible 
combinations. If she can try ten different combinations every 
minute, what is the probability that she will open the lock 
within one hour?
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64. Committee Membership  A mathematics department consists 
of ten men and eight women. Six mathematics faculty members 
are to be selected at random for the curriculum committee.

(a)  What is the probability that two women and four men are 
selected?

(b)  What is the probability that two or fewer women are  
selected?

(c)  What is the probability that more than two women are  
selected?

65. Class Photo  Twenty students are arranged randomly in a 
row for a class picture. Paul wants to stand next to Phyllis. 
Find the probability that he gets his wish.

66. Making Words   A monkey is trained to arrange wooden 
blocks in a row. The monkey is then given 6 blocks showing 
the letters B, B, B, E, L, U. What is the probability that the 
monkey will arrange the blocks to spell the word BUBBLE?

67. Making Words   A monkey is trained to arrange wooden 
blocks in a row. The monkey is then given 11 blocks showing 
the letters A, B, B, I, I, L, O, P, R, T, Y. What is the probabil-
ity that the monkey will arrange the blocks to spell the word 
PROBABILITY?

disCuss ■ disCoVEr ■ ProVE ■ WriTE
68. disCuss: oldest son  A family with two children is ran-

domly selected. Assume that the events of having a boy or a 
girl are equally likely. Find the following probabilities.

(a)  The family has two boys given that the oldest child is a 
boy.

(b)  The family has two boys given that one of the children is 
a boy.

14.3 BinoMial ProBaBiliTy
■ Binomial Probability ■ The Binomial distribution

In this section we study a special kind of probability that plays a crucial role in model-
ing many real-world situations.

■ Binomial Probability
A coin is weighted so that the probability of heads is 0.6. What is the probability of 
getting exactly two heads in five tosses of this coin? Since the tosses are independent, 
the probability of getting two heads followed by three tails is

0.6   0.6   0.4   0.4   0.4   10.6 2 210.4 2 3

But this is not the only way we can get exactly two heads. The two heads can occur, for 
example, on the second toss and the last toss. In this case the probability is

0.4   0.6   0.4   0.4   0.6   10.6 2 210.4 2 3

In fact, the two heads could occur on any two of the five tosses. Thus there are C15, 2 2  
ways in which this can happen, each with probability 10.6 2 210.4 2 3. It follows that

P1exactly 2 heads in 5 tosses 2  C15, 2 2 10.6 2 210.4 2 3 < 0.023

The probability that we have just calculated is an example of a binomial probability. 
In general, a binomial experiment is one in which there are two outcomes, which are 
called “success” and “failure.” In the coin-tossing experiment described above, “suc-
cess” is getting “heads,” and “failure” is getting “tails.” The following box tells us how 
to calculate the probabilities associated with binomial experiments when we perform 
them many times.

Calculating the probability of indepen-
dent events is studied on page 961.

Heads

Heads Tails

Tails Tails

Tails

Heads Tails

Tails Heads

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 14.3 ■ Binomial Probability 967

BinoMial ProBaBiliTy

An experiment has two possible outcomes called “success” and “failure,” with 
P1success 2  p and P1 failure 2  1  p. The probability of getting exactly r 
successes in n independent trials of the experiment is

P1r successes in n trials 2  C1n, r 2pr11  p 2 nr

ExaMPlE 1 ■ Binomial Probability
A fair die is rolled 10 times. Find the probability of each event.

(a) Exactly 2 sixes.    (b) At most 1 six.    (c) At least 2 sixes.

soluTion  Let’s call “getting a six” success and “not getting a six” failure. So 
P1success 2  1

6 and P1 failure 2  5
6. Since each roll of the die is independent of the 

other rolls, we can use the formula for binomial probability with n  10 and p  1
6.

(a) P1exactly 2 sixes 2  C110, 2 2 A16B2A56B8 < 0.29

(b) The statement “at most 1 six” means 0 sixes or 1 six. So

P1at most one six 2
   P10 sixes or 1 six 2     Meaning of “at most”

   P10 sixes 2  P11 six 2     P1A or B 2  P1A 2  P1B 2

   C110, 0 2 a 1

6
b

0

a 5

6
b

10

  C110, 1 2 a 1

6
b

1

a 5

6
b

9

    Binomial probability

  < 0.1615  0.3230     Calculator

  < 0.4845     Calculator

(c)  The statement “at least two sixes” means two or more sixes. Instead of adding the 
probabilities of getting 2, 3, 4, 5, 6, 7, 8, 9, or 10 sixes (which is a lot of work), 
it’s easier to find the probability of the complement of this event. The comple-
ment of the event “two or more sixes” is “0 or 1 six.” So

 P1 two or more sixes 2  1  P10 or 1 six 2     P1E 2  1  P1E r 2
  1  0.4845     From part (b)

  0.5155     Calculator

now Try Exercises 3 and 21 ■

ExaMPlE 2 ■ Binomial Probability
Patients infected with a certain virus have a 40% chance of surviving. There are  
10 patients in a hospital who have acquired this virus. Find the probability that 7 or 
more of the patients survive.

soluTion  Let’s call the event “patient survives” success and the event “patient dies” 
failure. We are given that the probability of success is p  0.4, so the probability of 
failure is 1  p  1  0.4  0.6. We need to calculate the probability of 7, 8, 9, or 
10 successes in 10 trials:

 P17 out of 10 recover 2  C110, 7 2 10.4 2 710.6 2 3 < 0.04247

 P18 out of 10 recover 2  C110, 8 2 10.4 2 810.6 2 2 < 0.01062

 P19 out of 10 recover 2  C110, 9 2 10.4 2 910.6 2 1 < 0.00157

 P110 out of 10 recover 2  C110, 10 2 10.4 2 1010.6 2 0 < 0.00010

The name “binomial probability” is  
appropriate because C1n, r 2  is the 
same as the binomial coefficient 1 nr 2  
(see Exercise 94, page 953).
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968 CHAPTER 14 ■ Counting and Probability

Adding the probabilities, we find that

P17 or more recover 2 < 0.05476

There is about a 1 in 20 chance that 7 or more patients recover.

now Try Exercise 35 ■

■ The Binomial distribution
We can describe how the probabilities of an experiment are “distributed” among all the 
outcomes of an experiment by making a table of values. The function that assigns to 
each outcome its corresponding probability is called a probability distribution. A bar 
graph of a probability distribution in which the width of each bar is 1 is called a prob-
ability histogram. The next example illustrates these concepts.

ExaMPlE 3 ■ Probability distributions
Make a table of the probability distribution for the experiment of rolling a fair die and 
observing the number of dots. Draw a histogram of the distribution.

soluTion  When rolling a fair die each face has probability 1
6 of showing. The proba-

bility distribution is shown in the following table. To draw a histogram, we draw bars 
of width 1 and height 1

6 corresponding to each outcome.

 Probability Distribution Probability Histogram

Outcome 
(dots) Probability

1 1
6

2 1
6

3 1
6

4 1
6

5 1
6

6 1
6

Pr
ob

ab
ili

ty

Number of dots
0 2 3 4 5 6

1
6

1

now Try Exercise 15 ■

A probability distribution in which all outcomes have the same probability is called 
a uniform distribution. The rolling-a-die experiment in Example 3 is a uniform distri-
bution. The probability distribution of a binomial experiment is called a binomial dis-
tribution.

ExaMPlE 4 ■ a Binomial distribution
A fair coin is tossed eight times, and the number of heads is observed. Make a table 
of the probability distribution, and draw a histogram. What is the number of heads 
that is most likely to show up?

soluTion  This is a binomial experiment with n  8 and p  1
2, so 1  p  1

2 as 
well. We need to calculate the probability of getting 0 heads, 1 head, 2 heads, 3 heads, 
and so on. For example, to calculate the probability of 3 heads, we have

P13 heads 2   C18, 3 2 a 1

2
b

3

a 1

2
b

5


56

256


7

32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 14.3 ■ Binomial Probability 969

The other entries in the following table are calculated similarly. We draw the histo-
gram by making a bar for each outcome with width 1 and height equal to the corre-
sponding probability. From the histogram below, we see that the most likely outcome 
is 4 heads.

 Probability Distribution Probability Histogram

Outcome 
(heads) Probability

0 1
256

1 8
256

2 28
256

3 56
256

4 70
256

5 56
256

6 28
256

7 8
256

8 1
256

Pr
ob

ab
ili

ty

Number of heads
0 2 3 4 5 61 7 8

70
256

28
256

now Try Exercise 17 ■

Notice that the sum of the probabilities in a probability distribution is 1, because the 
sum is the probability of the occurrence of any outcome in the sample space (this is the 
certain event).

ConCEPTs
 1. A binomial experiment is one in which there are exactly 

   outcomes. One outcome is called   ,

  and the other is called   .

 2. If a binomial experiment has probability p of success, then 

  the probability of failure is   . The probability of 
getting exactly r successes in n trials of this experiment is

  C 1  ,  2p 11  p2 .

sKills
3–14 ■ Binomial Trials  Five independent trials of a binomial 
experiment with probability of success p  0.7 are performed. 
Find the probability of each event.

 3. Exactly two successes   4. Exactly three successes

 5. No successes   6. All successes

 7. Exactly one success   8. Exactly one failure

 9. At least four successes  10. At least three successes

11. At most one failure  12. At most two failures

13. At least two successes 14. At most three failures

15–16 ■ Probability distribution  An experiment is described. 
(a) Complete the table of the probability distribution. (b) Draw a 
probability histogram.

15. A jar contains five balls numbered 1 to 5. A ball is drawn at 
random, and the number of the ball is observed.

Outcome Probability

1 0.2

2

3

4

5

16. A jar contains five balls numbered 1, three balls numbered 2, 
one ball numbered 3, and one ball numbered 4. A ball is 
drawn at random and the number of the ball is observed.

Outcome Probability

1 0.5

2

3

4

5

14.3 ExErCisEs
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970 CHAPTER 14 ■ Counting and Probability

17–20 ■ Probability distribution  A binomial experiment with 
probability of success p is performed n times. (a) Make a table of 
the probability distribution. (b) Draw a probability histogram.

17. n  4, p  0.5 18. n  5, p  0.4

19. n  7, p  0.2  20. n  6, p  0.9

aPPliCaTions
21. rolling dice  Six dice are rolled. Find the probability that 

two of them show a four.

22. archery  An archer hits his target 80% of the time. If he 
shoots seven arrows, what is the probability of each event?

(a) He never hits the target.

(b) He hits the target each time.

(c) He hits the target more than once.

(d) He hits the target at least five times.

23. Television ratings  According to a ratings survey, 40% of 
the households in a certain city tune in to the local evening 
TV news. If ten households are visited at random, what is the 
probability that four of them will have their television tuned 
to the local news?

24. spread of disease  Health authorities estimate that 10% of 
the raccoons in a certain rural county are carriers of rabies. A 
dog is bitten by four different raccoons in this county. What 
is the probability that he was bitten by at least one rabies 
carrier?

25. Blood Type  About 45% of the populations of the United 
States and Canada have Type O blood.

(a)  If a random sample of ten people is selected, what is the 
probability that exactly five have Type O blood?

(b)  What is the probability that at least three of the random 
sample of ten have Type O blood?

26. handedness  A psychologist needs 12 left-handed subjects 
for an experiment, and she interviews 15 potential subjects. 
About 10% of the population is left-handed.

(a)  What is the probability that exactly 12 of the potential 
subjects are left-handed?

(b)  What is the probability that 12 or more are left-handed?

27. germination rates  A certain brand of tomato seeds has a 
0.75 probability of germinating. To increase the chance that 
at least one tomato plant per seed hill germinates, a gardener 
plants four seeds in each hill.

(a)  What is the probability that at least one seed germinates 
in a given hill?

(b)  What is the probability that two or more seeds will ger-
minate in a given hill?

(c)  What is the probability that all four seeds germinate in a 
given hill?

28. genders of Children  Assume that for any given live  
human birth, the chances that the child is a boy or a girl are 
equally likely.

(a)  What is the probability that in a family of five children a 
majority are boys?

(b)  What is the probability that in a family of seven children 
a majority are girls?

29. genders of Children  The ratio of male to female births is in 
fact not exactly one to one. The probability that a newborn 
turns out to be a male is about 0.52. A family has ten 
children.

(a)  What is the probability that all ten children are boys?

(b)  What is the probability all are girls?

(c)  What is the probability that five are girls and five are 
boys?

30. Education level  In a certain county 20% of the population 
has a college degree. A jury consisting of 12 people is 
selected at random from this county.

(a)  What is the probability that exactly two of the jurors 
have a college degree?

(b)  What is the probability that three or more of the jurors 
have a college degree?

31. defective light Bulbs  The DimBulb Lighting Company 
manufactures light bulbs for appliances such as ovens and 
refrigerators. Typically, 0.5% of their bulbs are defective. 
From a crate with 100 bulbs, three are tested. Find the proba-
bility that the given event occurs.

(a) All three bulbs are defective.

(b) One or more bulbs is defective.

32. Quality Control  An assembly line that manufactures fuses 
for automotive use is checked every hour to ensure the qual-
ity of the finished product. Ten fuses are selected randomly, 
and if any one of the ten is found to be defective, the process 
is halted and the machines are recalibrated. Suppose that at a 
certain time 5% of the fuses being produced are actually 
defective. What is the probability that the assembly line is 
halted at that hour’s quality check?

33. sick leave  The probability that a given worker at Dyno 
Nutrition will call in sick on a Monday is 0.04. The packaging 
department has eight workers. What is the probability that two 
or more packaging workers will call in sick next Monday?

34. Political surveys  In a certain county, 60% of the voters are 
in favor of an upcoming school bond initiative. If five voters 
are interviewed at random, what is the probability that 
exactly three of them will favor the initiative?

35. Pharmaceuticals  A drug that is used to prevent motion sick-
ness is found to be effective about 75% of the time. Six 
friends, all prone to seasickness, go on a sailing cruise, and 
all take the drug. Find the probability of each event.

(a) None of the friends gets seasick.

(b) All of the friends get seasick.

14.4 ExPECTEd ValuE
■ Expected Value ■ What is a Fair game?

In this section we study an important application of probability called expected value.

■ Expected Value
Suppose that a coin has probability 0.8 of showing heads. If the coin is tossed many 
times, we would expect to get heads about 80% of the time. Now, suppose that you get 
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(c) Exactly three get seasick.

(d) At least two get seasick.

36. reliability of a Machine  A machine that is used in a manu-
facturing process has four separate components, each of 
which has a 0.01 probability of failing on any given day. If 
any component fails, the entire machine breaks down. Find 
the probability that on a given day the indicated event  
occurs.

(a) The machine breaks down.

(b) The machine does not break down.

(c) Only one component does not fail.

37. genetics  Huntington’s disease is a hereditary ailment 
caused by a recessive gene. If both parents carry the gene but 
do not have the disease, there is a 0.25 probability that an 
offspring will fall victim to the condition. A newlywed cou-
ple find through genetic testing that they both carry the gene 
(but do not have the disease). If they intend to have four chil-
dren, find the probability of each event.

(a) At least one child gets the disease.

(b) At least three of the children get the disease.

38. selecting Cards  Three cards are randomly selected from a 
standard 52-card deck, one at a time, with each card replaced 
in the deck before the next one is picked. Find the probability 
of each event.

(a) All three cards are hearts.

(b) Exactly two of the cards are spades.

(c) None of the cards is a diamond.

(d) At least one of the cards is a club.

39. smokers and nonsmokers  The participants at a  
mathematics conference are housed dormitory-style, five to a 
room. Because of an oversight, conference organizers forget 
to ask whether the participants are smokers. In fact, it turns 
out that 30% are smokers. Find the probability that Fred, a 
nonsmoking conference participant, will be housed with:

(a) Exactly one smoker.

(b) One or more smokers.

40. Telephone Marketing  A mortgage company advertises its 
rates by making unsolicited telephone calls to random num-
bers. About 2% of the calls reach consumers who are 

interested in the company’s services. A telephone consultant 
can make 100 calls per evening shift.

(a)  What is the probability that two or more calls will reach 
an interested party in one shift?

(b)  How many calls does a consultant need to make to 
ensure at least a 0.5 probability of reaching one or more 
interested parties?  [Hint: Use trial and error.]

41. Effectiveness of a drug  A certain disease has a mor tality 
rate of 60%. A new drug is tested for its effectiveness against 
this disease. Ten patients are given the drug, and eight of 
them recover.

(a)  Find the probability that eight or more of the patients 
would have recovered without the drug.

(b)  Does the drug appear to be effective? (Consider the drug 
effective if the probability in part (a) is 0.05 or less.)

42. hitting a Target  An archer normally hits the target with 
probability of 0.6. She hires a new coach for a series of spe-
cial lessons. After the lessons she hits the target in five out of 
eight attempts.

(a)  Find the probability that she would have hit five or more 
out of the eight attempts before her lessons with the new 
coach.

(b)  Did the new coaching appear to make a difference? 
(Consider the coaching effective if the probability in part 
(a) is 0.05 or less.)

disCuss ■ disCoVEr ■ ProVE ■ WriTE
43. disCuss: Most likely outcome for n Tosses of a Coin  A bal-

anced coin is tossed n times. In this exercise we investigate 
the following question: What is the number of heads that has 
the greatest probability of occurring? Note that for a balanced 
coin the probability of heads is p  0.5.

(a)  Suppose n  8. Draw a probability histogram for the 
resulting binomial distribution. What number of heads has 
the greatest probability of occurring? If n  100, what 
number of heads has the greatest probability of occurring?

(b)  Suppose n  9. Draw a probability histogram for the 
resulting binomial distribution. What number of heads has 
the greatest probability of occurring? If n  101, what 
number of heads has the greatest probability of occurring?

14.4 ExPECTEd ValuE
■ Expected Value ■ What is a Fair game?

In this section we study an important application of probability called expected value.

■ Expected Value
Suppose that a coin has probability 0.8 of showing heads. If the coin is tossed many 
times, we would expect to get heads about 80% of the time. Now, suppose that you get 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



972 CHAPTER 14 ■ Counting and Probability

a payout of one dollar for each head. If you play this game many times, you would 
expect on average to gain $0.80 per game:

 aExpected payout
per game

b  aAmount of payout
per game

b  aProbability of payout
per game

b

  $1.00  0.80  $0.80

The reasoning in this example motivates the following definition.

dEFiniTion oF ExPECTEd ValuE

A game gives payouts a1, a2, . . . , an with probabilities p1, p2, . . . , pn. The 
expected value (or expectation) E of this game is

E  a1p1  a2p2  . . .  anpn

ExaMPlE 1 ■ Finding Expected Value
A die is rolled, and you receive $1 for each point that shows. What is your 
expectation?

soluTion  Each face of the die has probability 1
6 of showing. So you get $1 with  

probability 1
6, $2 with probability 1

6, $3 with probability 1
6, and so on. Thus the 

expected value is

E  1 a 1

6
b  2 a 1

6
b  3 a 1

6
b  4 a 1

6
b  5 a 1

6
b  6 a 1

6
b  3.5

So if you play this game many times, you will make, on average, $3.50 per game.

now Try Exercise 3 ■

ExaMPlE 2 ■ Finding Expected Value
In Monte Carlo the game of roulette is played on a wheel with slots numbered  
0, 1, 2, . . . , 36. The wheel is spun, and a ball dropped in the wheel is equally  
likely to end up in any one of the slots. To play the game, you bet $1 on any number. 
(For example, you may bet $1 on number 23.) If the ball stops in your slot, you get 
$36 (the $1 you bet plus $35). Find the expected value of this game.

soluTion  The gambler can gain $35 with probability 1
37 and can lose $1 with proba-

bility 36
37. So the gambler’s expected value is

E  135 2 1

37
 11 2 36

37
< 0.027

In other words, if you play this game many times, you would expect to lose 2.7 cents 
on every dollar you bet (on average). Consequently, the house expects to gain 2.7 
cents on every dollar that is bet.

now Try Exercise 13 ■

ExaMPlE 3 ■ Expected number
At any given time, the express checkout lane at a small supermarket has three shoppers 
in line with probability 0.2, two shoppers with probability 0.5, one shopper with prob-
ability 0.2, and no shoppers with probability 0.1. If you go to this market, how many 
shoppers would you expect to find waiting in the express checkout lane?
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soluTion  The “payouts” here are the number of shoppers waiting in line. To find 
the expected number of shoppers waiting in line, we multiply each “payout” by its 
probability and add the results:

E  310.2 2  210.5 2  110.2 2  010.1 2  1.8

So on average, you would expect 1.8 shoppers waiting in the express lane.

now Try Exercise 21 ■

■ What is a Fair game?
A fair game is a game with expected value zero. So if you play a fair game many times, 
you would expect, on average, to break even.

ExaMPlE 4 ■ a Fair game?
Suppose that you play the following game. A card is drawn from a deck. If the card is 
an ace, you get a payout of $10. If the card is not an ace, you have to pay $1.

(a) Is this a fair game?

(b)  If the game is not fair, find the payout amount that would make this game a fair 
game.

soluTion

(a)  In this game you get a payout of $10 if an ace is drawn (probability 4
52), and you 

lose $1 if any other card is drawn (probability 48
52). So the expected value is

E  10 a 4

52
b  1 a 48

52
b   

8

52

   Since the expected value is not zero, the game is not fair. If you play this game 
many times, you would expect to lose, on average, 8

52 < $0.15 per game.

(b) We want to find the payout x that makes the expected value 0:

E  x a 4

52
b  1 a 48

52
b  0

   Solving this equation, we get x  12. So a payout of $12 for an ace would make 
this a fair game.

now Try Exercise 25 ■

Games of chance in casinos are never fair; the gambler always has a negative ex-
pected value (as in Examples 2 and 4(a)). This makes gambling profitable for the casino 
and unprofitable for the gambler.

Fair Voting methods
The methods of mathematics have 
recently been applied to problems in the 
social sciences. For example, how do we 
find fair voting methods? You may ask, 
“What is the problem with how we vote 
in elections?” Well, suppose candidates A, 
B, and C are running for president. The 
final vote tally is as follows: A gets 40%, B 
gets 39%, and C gets 21%. So candidate 
A wins. But 60% of the voters didn’t want 
A. Moreover, suppose you voted for C, 
but you dislike A so much that you would 
have been willing to change your vote to 
B to avoid having A win. Suppose most of 
the voters who voted for C feel the same 
way you do. Then we have a situation in 
which most of the voters prefer B over A, 
but A wins. Is that fair?

In the 1950s Kenneth Arrow showed 
mathematically that no democratic 
method of voting can be completely fair; 
he later won a Nobel Prize for his work. 
Mathematicians continue to work on find
ing fairer voting systems. The system that 
is most often used in federal, state, and 
local elections is called plurality voting 
(the candidate with the most votes wins). 
Other systems include majority voting (if 
no candidate gets a majority, a runoff is 
held between the top two votegetters), 
approval voting (each voter can vote for 
as many candidates as he or she approves 
of ), preference voting (each voter orders 
the candidates according to his or her 
preference), and cumulative voting (each 
voter gets as many votes as there are can
didates and can give all of his or her votes 
to one candidate or distribute them 
among the candidates as he or she sees 
fit). This last system is often used to select 
corporate boards of  directors. Each system 
of voting has both advantages and 
 disadvantages.

mathematics in the modern World

ConCEPTs
 1. If a game gives payoffs of $10 and $100 with probabilities 0.9 

and 0.1, respectively, then the expected value of this game is

E  _____  0.9  _____  0.1  ______

 2. If you played the game in Exercise 1 many times, then you 
would expect your average payoff per game to be about 

  $    .

sKills
3–12 ■ Expected Value of a game  Find the expected value (or 
expectation) of the games described.

 3. Mike wins $2 if a coin toss shows heads and $1 if it shows 
tails.

 4. Jane wins $10 if a die roll shows a six, and she loses $1 
otherwise.

14.4 ExErCisEs
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 5. The game consists of drawing a card from a deck. You win 
$100 if you draw the ace of spades or lose $1 if you draw 
any other card.

 6. Tim wins $3 if a coin toss shows heads or $2 if it shows tails.

 7. Carol wins $3 if a die roll shows a six, and she wins $0.50 
otherwise.

 8. A coin is tossed twice. Albert wins $2 for each heads and 
must pay $1 for each tails.

 9. A die is rolled. Tom wins $2 if the die shows an even num-
ber, and he pays $2 otherwise.

10. A card is drawn from a deck. You win $104 if the card is an 
ace, $26 if it is a face card, and $13 if it is the eight of clubs.

11. A bag contains two silver dollars and eight slugs. You pay  
50 cents to reach into the bag and take a coin, which you get 
to keep.

12. A bag contains eight white balls and two black balls. John 
picks two balls at random from the bag, and he wins $5 if he 
does not pick a black ball.

aPPliCaTions
13. roulette  An American roulette wheel has 38 slots. Two 

slots are numbered 0 and 00, and the rest are numbered 1 to 
36. A $1 bet on any number wins $36 ($35 plus the $1 bet). 
Find the expected value of this game.

14. sweepstakes  A sweepstakes offers a first prize of 
$1,000,000, second prize of $100,000, and third prize of 
$10,000. Suppose that two million people enter the contest 
and three names are drawn randomly for the three prizes.

(a)  Find the expected winnings for a person participating in 
this contest.

(b) Is it worth paying a dollar to enter this sweepstakes?

15. a game of Chance  A box contains 100 envelopes. Ten enve-
lopes contain $10 each, ten contain $5 each, two are 
“unlucky,” and the rest are empty. A player draws an enve-
lope from the box and keeps whatever is in it. If a person 
draws an unlucky envelope, however, he must pay $100. 
What is the expectation of a person playing this game?

16. Combination lock  A safe containing $1,000,000 is locked 
with a combination lock. You pay $1 for one guess at the six-
digit combination. If you open the lock, you get to keep the 
million dollars. What is your expectation?

17. gambling on stocks  An investor buys 1000 shares of a 
risky stock for $5 a share. She estimates that the probability 
that the stock will rise in value to $20 a share is 0.1 and the 
probability that it will fall to $1 a share is 0.9. If the only cri-
terion for her decision to buy this stock was the expected 
value of her profit, did she make a wise investment?

18. slot Machine  A slot machine has three wheels, and each 
wheel has 11 positions: the digits 0, 1, 2, . . . , 9 and the pic-
ture of a watermelon. When a quarter is placed in the 
machine and the handle is pulled, the three wheels spin inde-
pendently and come to rest. When three watermelons show, 
the machine pays the player $5; otherwise, nothing is paid. 
What is the expected value of this game?

19. lottery  In a 6/49 lottery game, a player pays $1 and 
selects six numbers from 1 to 49. Any player who has cho-
sen the six winning numbers wins $1,000,000. Assuming 
that this is the only way to win, what is the expected value 
of this game?

20. lightning insurance  An insurance company has determined 
that in a certain region the probability of lightning striking a 
house in a given year is about 0.0003, and the average cost of 
repairs of lightning damage is $7500 per incident. The com-
pany charges $25 per year for lightning insurance.

(a)  Find the company’s expected value for each lightning 
insurance policy.

(b)  If the company has 450,000 lightning damage policies, 
what is the company’s expected yearly income from 
lightning insurance?

21. Expected number  During the school year a college  
student watches TV for two hours a week with probability 
0.15, three hours with probability 0.45, four hours with prob-
ability 0.30, and five hours with probability 0.10. Find the 
expected number of hours of TV that he watches per week.

22. Expected number  In a large liberal arts college 5% of the 
students are studying three foreign languages, 15% are study-
ing two foreign languages, 45% are studying one foreign lan-
guage, and 35% are not studying a foreign language. If a stu-
dent is selected at random, find the expected number of 
foreign languages that he or she is studying.

23. Expected number  A student goes to swim practice several 
times a week. In any given week the probability that he 
swims three times is 0.30, two times is 0.45, one time is 0.15, 
and no times is 0.10. Find the expected number of times the 
student goes to practice in any given week.

24. Expected number  Consider families with three children, 
and assume that the probability of having a girl is 1

2 .

(a)  Complete the table for the probabilities of having 0, 1, 2, 
or 3 girls in a family of three children.

(b)  Find the expected number of girls in a family of three 
children.

Number 
of girls Probability

0 1
8

1

2

3

25–30 ■ a Fair game?  A game of chance is described. (a) Is 
the game fair? (b) If the game is not fair, find the payout amount 
that would make the game fair.

25. A card is drawn from a deck. If the card is the ace of spades, 
you get a payout of $12. If the card is not an ace, you have to 
pay $0.50.

26. A die is rolled. You get $20 if a one or a six shows; other-
wise, you pay $10.
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27. A pair of dice is rolled. You get $30 if two ones show; other-
wise, you pay $2.

28. A die is rolled, and a coin is tossed. If the result is a “six” 
and “heads,” you get $10. For any other result you pay $1.

29. A card is drawn from a deck, a die is rolled, and a coin is 
tossed. If the result is the “ace of spades,” a “six,” and “heads,” 
you get $600. For any other result you pay $1.

30. A bag contains two silver dollars and six slugs. A game con-
sists of reaching into the bag and drawing a coin, which you 
get to keep. If you draw a slug, you pay $0.50.

disCuss ■ disCoVEr ■ ProVE ■ WriTE
31. disCuss: The Expected Value of a sweepstakes Contest   

A magazine clearinghouse holds a sweepstakes contest to sell 
subscriptions. If you return the winning number, you win 
$1,000,000. You have a 1-in-20-million chance of winning, 
but your only cost to enter the contest is a first-class stamp to 
mail the entry. Use the current price of a first-class stamp to 
calculate your expected net winnings if you enter this contest. 
Is it worth entering the contest?

Fundamental Counting Principle (p. 942)
If E1, E2, . . . , Ek are events that occur in order and if event Ei can 
occur in ni ways 1 i  1, 2, . . . , k 2 ,  then the sequence of events 
can occur in order in n1  n2  . . .  nk ways.

Permutations (p. 944)
A permutation of a set of objects is an ordering of these objects. If 
the set has n objects, then there are n! permutations of the objects.

If a set has n objects, then the number of ways of ordering the  
r- element subsets of the set is denoted Pxn, r c  and is called the 
number of permutations of n objects taken r at a time.

P1n, r 2 
n!

1n  r 2!

distinguishable Permutations (p. 946)
Suppose that a set has n objects of k kinds (where the objects in 
each kind cannot be distinguished from each other), and suppose 
that there are n1 objects of the first kind, n2 of the second kind, 
and so on (so n1  n2  . . .  nk  n). Two permutations of the 
set are distinguishable from each other if one cannot be obtained 
from the other simply by interchanging the positions of elements 
of the same kind. 

The number of distinguishable permutations of these objects is 

n!

n1! n2! . . . nk!

Combinations (p. 947)
A combination of r objects from a set is any subset of the set 
that contains r elements (without regard to order). 

If a set has n objects, then the number of combinations of r ele-
ments from the set is denoted Cxn, r c  and is called the number 
of combinations of n objects taken r at a time:

C1n, r 2 
n!

r! 1n  r 2!

Permutations or Combinations? (p. 948)
When solving a problem that involves counting the number of 
ways of picking r objects from a set of n objects, we ask, “Does 
the order in which the objects are picked make a difference?”

 If the order matters, use permutations.

 If the order doesn’t matter, use combinations.

sample spaces and Events (p. 954)
An experiment is a process that gives definite results, called the 
outcomes. The sample space of an experiment is the set of all 
possible outcomes. 

An event is any subset of the sample space.

Probability (p. 955)
Suppose that S is the sample space of an experiment in which all 
outcomes are equally likely and that E is an event in this experi-
ment. The probability of E, denoted P1E 2 , is

P1E 2 
n1E 2
n1S 2 

number of outcomes in E

number of outcomes in S

The probability of any event E satisfies

0  P1E 2  1

If P1E 2  0, then E is impossible (will never happen). If 
P1E 2  1, then E is certain (will definitely happen).

The Complement of an Event (p. 957)
If S is the sample space of an experiment and E is an event, then 
the complement of E (denoted E r) is the set of all outcomes in S 
that are not in E. The probability of E r  is given by

P1E r 2  1  P1E 2

■ ProPErTiEs and ForMulas

ChaPTEr 14 ■ rEViEW
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The union of Events (p. 958)
Suppose E and F are events in a sample space S.

The union of E and F is the set of all outcomes in S that are in 
 either E or F (or both). The union of E and F is denoted E < F.

For any events E and F the probability of their union is

P1E < F 2  P1E 2  P1F 2  P1E > F 2
The events E and F are mutually exclusive if E > F  [. For 
mutually exclusive events E and F the probability of their union is

P1E < F 2  P1E 2  P1F 2

Conditional Probability (p. 959)  
Suppose E and F are events in a sample space S.

The conditional probability of E given that F occurs is denoted 
by P1E 0 F 2  and is given by

P1E 0 F 2 
n1E > F 2

n1F 2

The intersection of Events (pp. 960–961)  
Suppose E and F are events in a sample space S.

The intersection of E and F is the set of all outcomes in S that 
are in both E and F. The intersection of E and F is denoted by 
E > F . 

The probability of the intersection of E and F is

P1E > F 2  P1E 2P1F 0 E 2
The events E and F are independent if the occurrence of one  
of them does not affect the probability of the occurrence of the 
other. For independent events E and F the probability of their  
intersection is

P1E > F 2  P1E 2P1F 2

Binomial Probabilities (pp. 966–967)
A binomial experiment is one that has two possible outcomes, S 
and F (“success” and “failure”). If 

P1S 2  p 

and P1F 2  q  1  p 

then the probability of getting exactly r successes in n trials of the 
experiment is

P1r successes in n trials 2  C1n, r 2prqnr

Expected Value (p. 972)
If a game gives payoffs a1, a2, . . . , an with probabilities 
p1, p2, . . . , pn, then the expected value (or expectation) E of this 
game is

E  a1 p1  a2 p2  . . .  an pn

 1. (a) What does the Fundamental Counting Principle say?

(b) Suppose that there are three roads from town A to town 
B and five roads from town B to town C. How many 
routes are there from A to C via B?

 2. (a)  What is a permutation of r elements of a set? How many 
permutations are there of n objects taken r at a time?

(b) In how many different ways can a president, vice-president, 
and secretary be selected from a group of 15 students?

 3. (a)  What is a combination of r elements of a set? How many 
combinations are there of n elements taken r at a time?

(b) How many subsets does a set with n elements have?  

(c) A pizza parlor offers ten different toppings. How many 
three-topping pizzas are possible? How many pizzas are 
possible?

 4. (a)  In solving a problem involving picking r objects from n 
objects, how do you know whether to use permutations 
or combinations?

(b) Would you use combinations or permutations in counting 
the following: 

 (i) The number of five-card hands from a 52-card deck. 

 (ii)  The number of ways in which first, second, and third 
prizes can be awarded in a ten-person race.

 5. (a) What is meant by an experiment? Sample space?

(b) What is an event?

(c) Define the probability of an event E in a sample space S 
in which all outcomes are equally likely.

(d) What is the probability of the complement of E? 

(e) If a coin is tossed three times, what is the probability of 
getting all heads? At least one tail? 

 6. (a) What are mutually exclusive events?

(b) If E and F are mutually exclusive events, what is the 
probability of E or F occurring? What if E and F are not 
mutually exclusive?

(c) A card is picked from a deck. Let E, F, and G be the 
events “the card is an ace,” “the card is a spade,” and 
“the card is king,” respectively. Are E and F mutually 
exclusive? E and G? Find P1E < F 2  and P1E < G 2 .

 7. (a)  What is meant by the conditional probability of E given 
F? How is this probability calculated?

(b) What are independent events? 

(c) If E and F are independent events, what is the probability 
of E and F occurring? What if E and F are not 
independent?

(d) A jar contains 3 white and 7 black balls. Let E be the 
event “the first ball drawn is black” and let F be the 
event “the second ball drawn is black.”

 (i)  Find P1E > F 2  if the balls are drawn with 
replacement.

 (ii)  Find P1E > F 2  if the balls are drawn without 
replacement.

■ ConCEPT ChECK
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 8. (a)  An experiment has two outcomes, “success” and “fail-
ure,” where the probability of “success” is p. The experi-
ment is performed n times. What type of probability is 
associated with this experiment? 

(b) What is the probability that success occurs exactly r times?

(c) An archer has probability 0.6 of hitting the target. Find 
the probability that she hits the target exactly 3 times in 
5 attempts.

 9. (a)  Suppose that a game gives payouts a1, a2, . . . , an with 
probabilities p1, p2, . . . , pn. What is the expected value 
of this game?

(b) You get $10 if you pick an ace from a deck, and you 
must pay $2 if you pick any other card. What is your 
expected value?

1–24 ■ Counting  These exercises involve counting.

 1. Coin Toss  A coin is tossed, a die is rolled, and a card is 
drawn from a deck. How many possible outcomes does this 
experiment have?

 2. Three-digit numbers  How many three-digit numbers can be 
formed by using the digits 1, 2, 3, 4, 5, and 6 if repetition of 
digits 

(a) is allowed?  (b) is not allowed?

 3. Two-Element subsets  
(a)  How many different two-element subsets does the set  

{A, E, I, O, U} have?

(b)  How many different two-letter “words” can be made by 
using the letters from the set in part (a)?

 4. airline Flight Bookings  An airline company has overbooked 
a particular flight, and seven passengers must be “bumped” 
from the flight. If 120 passengers are booked on this flight, in 
how many ways can the airline choose the seven passengers 
to be bumped?

 5. Quiz Questions  A quiz has ten true-false questions. In how 
many different ways can a student earn a score of exactly 
70% on this quiz?

 6. Test Questions  A test has ten true-false questions and five 
multiple-choice questions with four choices for each. In how 
many ways can this test be completed?

 7. Test Questions  If you must answer only eight of ten ques-
tions on a test, how many ways do you have of choosing the 
questions you will omit?

 8. ice-Cream Flavors  An ice-cream store offers 15 flavors of 
ice cream. The specialty is a banana split with four scoops of 
ice cream. If each scoop must be a different flavor, how many 
different banana splits may be ordered?

 9. Three-letter security Code  A company uses a different three-
letter security code for each of its employees. What is the max-
imum number of codes this security system can generate?

10. standing in a row  A group of students determines that they 
can stand in a row for their class picture in 120 different 
ways. How many students are in this class?

11. Coin Toss  A coin is tossed ten times. In how many different 
ways can the result be three heads and seven tails?

12. license Plates  The Yukon Territory in Canada uses a 
license-plate system for automobiles that consists of two let-
ters followed by three numbers. Explain how we can know 
that fewer than 700,000 autos are licensed in the Yukon.

13. Tennis games  A group of friends has reserved a tennis 
court. They find that there are ten different ways in which 
two of them can play a singles game on this court. How 
many friends are in this group?

14. Pizza Toppings  A pizza parlor advertises that they prepare 
2048 different types of pizza. How many toppings does this 
parlor offer?

15. Morse Code  In Morse code, each letter is represented by a 
sequence of dots and dashes, with repetition allowed. How 
many letters can be represented by using Morse code if three 
or fewer symbols are used?

16. genetic Code  The genetic code is based on the four nucleo-
tides adenine (A), cytosine (C), guanine (G), and thymine 
(T). These are connected in long strings to form DNA mole-
cules. For example, a sequence in the DNA may look like 
CAGTGGTACC . . . . The code uses “words,” all the same 
length, that are composed of the nucleotides A, C, G, and T. 
It is known that at least 20 different words exist. What is the 
minimum word length necessary to generate 20 words?

17. selecting Fields of study  Given 16 subjects from which to 
choose, in how many ways can a student select fields of study 
as follows?

(a) A major and a minor

(b) A major, a first minor, and a second minor

(c) A major and two minors

18. Three-digit numbers  
(a)  How many three-digit numbers can be formed by using 

the digits 0, 1, . . . , 9? (Remember, a three-digit number 
cannot have 0 as the leftmost digit.)

(b)  If a number is chosen randomly from the set {0, 1, 2, . . . , 
1000}, what is the probability that the number chosen is a 
three-digit number?

■ ExErCisEs

ANSWERS TO THE CONCEPT CHECK CAN BE FOUND AT THE BACK OF THE BOOK.
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19–22 ■ anagrams  An anagram of a word is a permutation of 
the letters of that word. For example, anagrams of the word trian-
gle include griantle, integral, and tenalgir. Find the number of 
different anagrams of the given word.

19. RANDOM 20. BLOB

21. BUBBLE 22. MISSISSIPPI

23. Choosing a Committee  A committee of seven is to be cho-
sen from a group of ten men and eight women. In how many 
ways can the committee be chosen using each of the follow-
ing selection requirements?

(a)  No restriction is placed on the number of men and 
women on the committee.

(b)  The committee must have exactly four men and three 
women.

(c) Susie refuses to serve on the committee.

(d) At least five women must serve on the committee.

(e) At most two men can serve on the committee.

(f)  The committee is to have a chairman, a vice chairman, a 
secretary, and four other members.

24. Choosing a Committee  The U.S. Senate has two senators 
from each of the 50 states. In how many ways can a commit-
tee of five senators be chosen if no state is to have two mem-
bers on the committee?

25–42 ■ Probability  These exercises involve probability.

25. Marbles in a Jar  A jar contains ten red marbles labeled 0, 1,  
2, . . . , 9 and five white marbles labeled 0, 1, 2, 3, 4. If a 
marble is drawn from the jar, find the probability of the given 
event.

(a) The marble is red.

(b) The marble is even-numbered.

(c) The marble is white and odd-numbered.

(d) The marble is red or odd-numbered.

26. Marbles in a Jar  If two marbles are drawn from the jar in 
Exercise 25, find the probability of the given event.

(a) Both marbles are red.

(b) One marble is white, and the other is red.

(c) At least one marble is red.

(d) Both marbles are red and even-numbered.

(e) Both marbles are white and odd-numbered.

27. Coin Toss  A coin is tossed three times in a row, and the out-
comes of each toss are observed.

(a) Find the sample space for this experiment.

(b) Find the probability of getting three heads.

(c) Find the probability of getting two or more heads.

(d) Find the probability of getting tails on the first toss.

28. Choosing Books  A shelf has ten books: two mysteries, four 
romance novels, and four mathematics textbooks. If you 
select a book at random to take to the beach, what is the 
probability that it turns out to be a mathematics text?

29. rolling a die and selecting a Card  A die is rolled, and a 
card is selected from a standard 52-card deck. What is the 
probability that both the die and the card show a six?

30. selecting Cards  Find the probability that the indicated card 
is drawn at random from a 52-card deck.

(a) An ace (b) An ace or a jack

(c) An ace or a spade (d) A red ace

31. rolling a die, selecting a Card, and Tossing a Coin  A card  
is drawn from a 52-card deck, a die is rolled, and a coin is 
tossed. Find the probability of each outcome.

(a) The ace of spades, a six, and heads

(b) A spade, a six, and heads

(c) A face card, a number greater than 3, and heads

32. rolling dice  Two dice are rolled. Find the probability of 
each outcome.

(a) The dice show the same number.

(b) The dice show different numbers.

33. selecting a Card  Four cards are dealt from a standard 
52-card deck. Find the probability that the cards are

(a) all kings (b) all spades

(c) all the same color

34. lottery  In the “numbers game” lottery a player picks a 
three-digit number (from 000 to 999), and if the number is 
selected in the drawing, the player wins $500. If another 
number with the same digits (in any order) is drawn, the 
player wins $50. John plays the number 159.

(a) What is the probability that he will win $500?

(b) What is the probability that he will win $50?

35. game show  In a TV game show, a contestant is given five 
cards with a different digit on each and is asked to arrange 
them to match the price of a brand-new car. If she gets the 
price right, she wins the car. What is the probability that she 
wins, assuming that she knows the first digit but must guess 
the remaining four?

36. Pizza Toppings  A pizza parlor offers 12 different toppings, 
one of which is anchovies. If a pizza is ordered at random 
(that is, any number of the toppings from 0 to all 12 may be 
ordered), what is the probability that anchovies is one of the 
toppings selected?

37. Choosing socks  A drawer contains an unorganized collection 
of 50 socks; 20 are red and 30 are blue. Suppose the lights go 
out, so Kathy can’t distinguish the color of the socks.

(a)  What is the minimum number of socks Kathy must take 
out of the drawer to be sure of getting a matching pair?

(b)  If two socks are taken at random from the drawer, what 
is the probability that they make a matching pair?

38. Zip Codes  Zip codes consist of five digits.

(a) How many different zip codes are possible?

(b)  How many different zip codes can be read when the 
envelope is turned upside down? (An upside-down 9 is a 
6; and 0, 1, and 8 are the same when read upside down.)

(c)  What is the probability that a randomly chosen zip code 
can be read upside down?

(d)  How many zip codes read the same upside down as right 
side up?
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39. Zip Codes  In the Zip4 postal code system, zip codes con-
sist of nine digits.

(a) How many different Zip4 codes are possible?

(b)  How many different Zip4 codes are palindromes? (A 
palindrome is a number that reads the same from left to 
right as right to left.)

(c)  What is the probability that a randomly chosen Zip4 
code is a palindrome?

40. divisors of a number  Let N  3,600,000. (Note that 
N  273255.)

(a) How many divisors does N have?

(b) How many even divisors does N have?

(c) How many divisors of N are multiples of 6?

(d)  What is the probability that a randomly chosen divisor of 
N is even?

41. selecting Cards  A card is drawn at random from a standard 
52-card deck. Find the probability of each event.

(a) The card is a king.

(b) The card is a king or an ace.

(c) The card is a king given that it is a face card.

(d)  The card is a king given that it is not an ace.

42. selecting Cards  Three cards are randomly selected from a 
standard 52-card deck, one at a time, with each card replaced 
in the deck before the next one is picked. Find the probability 
of each event.

(a) All three cards are kings.

(b) Exactly two of the cards are jacks.

(c) None of the cards is a face card.

(d) At least one of the cards is a face card.

43–46 ■ Binomial Probability  These exercises involve binomial 
probability.

43. rolling a die  A fair die is rolled eight times. Find the prob-
ability of each event.

(a) A six occurs four times.

(b) An even number occurs two or more times.

44. salmon Fishing  Pacific Chinook salmon occur in two  
varieties: white-fleshed and red-fleshed. It is impossible to tell 
without cutting the fish open whether it is the white or red 
variety. About 30% of Chinooks have white flesh. An angler 
catches five Chinooks. Find the probability of each event.

(a) All are white. (b) All are red.

(c) Exactly two are white. (d) Three or more are red.

45. Effectiveness of a drug  A certain disease has a mortality 
rate of 35%. A new drug is tested for its effectiveness against 
this disease. Twelve patients are given the drug, and nine of 
them recover.

(a)  Find the probability that nine or more patients would 
have recovered without the drug.

(b)  Does the drug appear to be effective? (Consider the drug 
effective if the probability in part (a) is 0.05 or less.)

46. unbalanced Coin  An unbalanced coin has probability 0.7  
of showing a “heads” when tossed. The coin is tossed four 
times. Make a table of the probability distribution for the 
number of heads.

Number 
of heads Probability

0

1

2

3

4

47–50 ■ Expected Value  These exercises involve expected value.

47. rolling dice  Two dice are rolled. John gets $5 if they show 
the same number; he pays $1 if they show different numbers. 
What is the expected value of this game?

48. rolling dice  Three dice are rolled. John gets $5 if they all 
show the same number; he pays $1 otherwise. What is the 
expected value of this game?

49. name recall  Mary will win $1,000,000 if she can name the 
13 original states in the order in which they ratified the U.S. 
Constitution. Mary has no knowledge of this order, so she 
makes a guess. What is her expectation?

50. Exercise Program  Liam goes jogging several times a week. 
In any given week the probability that he jogs three times is 
0.4, that he jogs two times is 0.1, that he jogs once is 0.2, and 
that he doesn’t go jogging is 0.3. Find the expected number 
of times he goes jogging in any given week.
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 1. Alice and Bill have four grandchildren, and they have three framed pictures of each grand-
child. They wish to choose one picture of each grandchild to display on the piano in their 
living room, arranged from oldest to youngest. In how many ways can they do this?

 2. A hospital cafeteria offers a fixed-price lunch consisting of a main course, a dessert, and a 
drink. If there are four main courses, three desserts, and six drinks to pick from, in how 
many ways can a customer select a meal consisting of one choice from each category?

 3. An Internet service provider requires its customers to select a password consisting of four 
letters followed by three digits. Find how many such passwords are possible in each of the 
following cases:

(a) Repetition of letters and digits is allowed.

(b) Repetition of letters and digits is not allowed.

 4. Over the past year, John has purchased 30 books.

(a)  In how many ways can he pick four of these books and arrange them, in order, on his 
nightstand bookshelf?

(b)  In how many ways can he choose four of these books to take with him on his vacation 
at the shore?

 5. A commuter must travel from Ajax to Barrie and back every day. Four roads join the two 
cities. The commuter likes to vary the trip as much as possible, so she always leaves and 
returns by different roads. In how many different ways can she make the round-trip?

 6. A pizza parlor offers four sizes of pizza and 14 different toppings. A customer may choose 
any number of toppings (or no topping at all). How many different pizzas does this parlor  
offer?

 7. An anagram of a word is a rearrangement of the letters of the word.

(a) How many anagrams of the word LOVE are possible?

(b) How many different anagrams of the word KISSES are possible?

 8. A board of directors consisting of eight members is to be chosen from a pool of 30 candi-
dates. The board is to have a chairman, a treasurer, a secretary, and five other members. In 
how many ways can the board of directors be chosen?

 9. One card is drawn from a deck. Find the probability of each event.

(a) The card is red. (b) The card is a king.

(c) The card is a red king.

10. A jar contains five red balls, numbered 1 to 5, and eight white balls, numbered 1 to 8.  
A ball is chosen at random from the jar. Find the probability of each event.

(a) The ball is red. (b) The ball is even-numbered.

(c) The ball is red or even-numbered.

11. Three people are chosen at random from a group of five men and ten women. What is the 
probability that all three are men?

12. Two dice are rolled. What is the probability of getting doubles?

13. In a group of four students, what is the probability that at least two have the same astrolog-
ical sign?

14. An unbalanced coin is weighted so that the probability of heads is 0.55. The coin is tossed 
ten times.

(a) What is the probability of getting exactly 6 heads?

(b) What is the probability of getting fewer than 3 heads?

15. You are to draw one card from a deck. If it is an ace, you win $10; if it is a face card, you 
win $1; otherwise, you lose $0.50. What is the expected value of this game?

ChaPTEr 14 TEsT

A CUMULATIVE REVIEW TEST FOR CHAPTERS 13 AND 14 CAN BE FOUND AT THE BOOK COMPANION WEBSITE: www.stewartmath.com.
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A good way to familiarize ourselves with a fact is to experiment with it. For instance, 
to convince ourselves that the earth is a sphere (which was considered a major paradox 
at one time), we could go up in a space shuttle to see that it is so; to see whether a given 
equation is an identity, we might try some special cases to make sure there are no obvi-
ous counter examples. In problems involving probability, we can perform an experiment 
many times and use the results to estimate the probability in question. In fact, we often 
model the experiment on a computer, thereby making it feasible to perform the experi-
ment a large number of times. This technique is called the Monte Carlo method, 
named after the famous gambling casino in Monaco.

ExaMPlE 1 ■ The Contestant’s dilemma
In a TV game show, a contestant chooses one of three doors. Behind one of them is a 
valuable prize; the other two doors have nothing behind them. After the contes tant has 
made her choice, the host opens one of the other two doors—one that he knows does 
not conceal a prize—and then gives her the opportunity to change her choice.

Should the contestant switch or stay, or does it matter? In other words, by switching 
doors, does she increase, decrease, or leave unchanged her probability of winning? At 
first, it may seem that switching doors doesn’t make any difference. After all, two doors 
are left—one with the prize and one without—so it seems reasonable that the contestant 
has an equal chance of winning or losing. But if you play this game many times, you 
will find that by switching doors, you actually win about 2

3 of the time.
The authors modeled this game on a computer and found that in one million games 

the simulated contestant (who always switches) won 667,049 times—very close to 2
3 

of the time. Thus it seems that switching doors does make a difference: Switching in-
creases the contestant’s chances of winning. This experiment forces us to reexamine 
our reasoning. Here is why switching doors is the correct strategy:

1. When the contestant first made her choice, she had a 1
3 chance of winning. If she 

doesn’t switch, no matter what the host does, her probability of winning remains 1
3.

2. If the contestant decides to switch, she will switch to the winning door if she had 
initially chosen a losing one or to a losing door if she had initially chosen the win-
ning one. Since the probability of having initially selected a losing door is 2

3, by 
switching the probability of winning then becomes 2

3.

We conclude that the contestant should switch, because her probability of winning 
is 2

3 if she switches and 1
3 if she doesn’t. Put simply, there is a much greater chance 

that she initially chose a losing door (since there are more of these), so she should 
switch. ■

An experiment can be modeled by using any computer language or programmable 
calculator that has a random-number generator. This is a command or function (usually 
called Rnd or Rand) that returns a randomly chosen number x with 0  x  1. In the 
next example we see how to use this to model a simple experiment.

ExaMPlE 2 ■ Monte Carlo Model of a Coin Toss
When a balanced coin is tossed, each outcome—“heads” or “tails”—has probability 1

2. 
This doesn’t mean that if we toss a coin several times, we will necessarily get exactly 
half heads and half tails. We would expect, however, the proportion of heads and of tails 
to get closer and closer to 1

2 as the number of tosses increases. To test this hypothesis, 
we could toss a coin a very large number of times and keep track of the results. But this 
is a very tedious process, so we will use the Monte Carlo method to model this process.

The Monte Carlo Method FoCus on ModEling

Contestant: “Oh no, what should I do?”

Contestant: “I choose door number 2.”

1

1

2 3

2
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982 Focus on Modeling

To model a coin toss with a calculator or computer, we use the random-number 
generator to get a random number x such that 0  x  1. Because the number is cho-
sen randomly, the probability that it lies in the first half of this interval A0  x  1

2B  is 
the same as the probability that it lies in the second half A12  x  1B . Thus we could 
model the outcome “heads” by the event that 0  x  1

2 and the outcome “tails” by 
the event that 1

2  x  1.
An easier way to keep track of heads and tails is to note that if 0  x  1, then  

0  2x  2, and so 2x, the integer part of 2x, is either 0 or 1, each with probability 1
2. 

(On most programmable calculators, the function Int gives the integer part of a num-
ber.) Thus we could model “heads” with the outcome “0” and “tails” with the outcome 
“1” when we take the integer part of 2x. The program in the margin models 100 tosses 
of a coin on the TI-83 calculator. The graph in Figure 1 shows what proportion p of the 
tosses have come up “heads” after n tosses. As you can see, this proportion settles down 
near 0.5 as the number n of tosses increases—just as we hypothesized.

100 500 1000

p

0 n

0.5

1.0

Heads

Number of tosses
FigurE 1 Relative frequency  
of “heads”

 ■

In general, if a process has n equally likely outcomes, then we can model the process 
using a random-number generator as follows: If our program or calculator produces the 
random number x, with 0  x  1, then the integer part of nx will be a random choice 
from the n integers 0, 1, 2, . . . , n  1. Thus we can use the outcomes 0, 1, 2, . . . , n  1 
as models for the outcomes of the actual experiment.

ProBlEMs
 1. Winning strategy  In a game show like the one described in Example 1, a prize is con-

cealed behind one of ten doors. After the contestant chooses a door, the host opens eight los-
ing doors and then gives the contestant the opportunity to switch to the other unopened door.

(a)  Play this game with a friend 30 or more times, using the strategy of switching doors 
each time. Count the number of times you win, and estimate the probability of winning 
with this strategy.

(b)  Calculate the probability of winning with the switching strategy using reasoning  
similar to that in Example 1. Compare with your result from part (a).

 2. Family Planning  A couple intend to have two children. What is the probability that they 
will have one child of each sex? The French mathematician D’Alembert analyzed this 
problem (incorrectly) by reasoning that three outcomes are possible: two boys, or two girls, 
or one child of each sex. He concluded that the probability of having one of each sex is 1

3 , 
mistakenly assuming that the three outcomes are equally likely.

(a)  Model this problem with a pair of coins (using “heads” for boys and “tails” for girls), 
or write a program to model the problem. Perform the experiment 40 or more times, 
counting the number of boy-girl combinations. Estimate the probability of having one 
child of each sex.

(b)  Calculate the correct probability of having one child of each sex, and compare this 
with your result from part (a).

 3. dividing a Jackpot  A game between two players consists of tossing a coin. Player A 
gets a point if the coin shows heads, and player B gets a point if it shows tails. The first 
player to get six points wins an $8000 jackpot. As it happens, the police raid the place 

PROGRAM:HEADTAIL

:0→J:0→K

:For(N,1,100)

:rand→X

:int(2X)→Y

:J+(1Y)→J

:K+Y→K

:END

:Disp”HEADS=”,J

:Disp”TAILS=”,K
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  The Monte Carlo Method 983

when player A has five points and B has three points. After everyone has calmed down, 
how should the jackpot be divided between the two players? In other words, what is the 
probability of A winning (and that of B winning) if the game were to continue?

    The French mathematicians Pascal and Fermat corresponded about this problem, and 
both came to the same correct conclusion (though by very different reasonings). Their 
friend Roberval disagreed with both of them. He argued that player A has probability 3

4 of 
winning, because the game can end in the four ways H, TH, TTH, TTT, and in three of 
these, A wins. Roberval’s reasoning was wrong.

(a)  Continue the game from the point at which it was interrupted, using either a coin or a 
modeling program. Perform this experiment 80 or more times, and estimate the proba-
bility that player A wins.

(b) Calculate the probability that player A wins. Compare with your estimate from part (a).

 4. long or short World series?  In the World Series the top teams in the National League 
and the American League play a best-of-seven series; that is, they play until one team has 
won four games. (No tie is allowed, so this results in a maximum of seven games.) Suppose 
the teams are evenly matched, so the probability that either team wins a given game is 1

2.

(a)  Use a coin or a modeling program to model a World Series, in which “heads” repre-
sents a win by Team A and “tails” represents a win by Team B. Perform this experi-
ment at least 80 times, keeping track of how many games are needed to decide each 
series. Estimate the probability that an evenly matched series will end in four games. 
Do the same for five, six, and seven games.

(b)  What is the probability that the series will end in four games? Five games? Six games? 
Seven games? Compare with your estimates from part (a).

(c)  Find the expected value for the number of games until the series ends.  [Hint: This 
will be P1 four games 2  4  P1five 2  5  P1six 2  6  P1seven 2  7.]

 5. Estimating p  In this problem we use the Monte Carlo method to estimate the value of p. 
The circle in the figure has radius 1, so its area is p, and the square has area 4. If we choose 
a point at random from the square, the probability that it lies inside the circle will be

area of circle

area of square


p

4

  The Monte Carlo method involves choosing many points inside the square. Then we have

number of hits inside circle

number of hits inside square
<

p

4

  Thus 4 times this ratio will give us an approximation for p.
    To implement this method, we use a random-number generator to obtain the coordinates 
1x, y 2  of a random point in the square and then check to see whether it lies inside the circle 
(that is, we check if x2  y2  1). Note that we need to use only points in the first quad-
rant, since the ratio of areas is the same in each quadrant. The program in the margin 
shows a way of doing this on the TI-83 calculator for 1000 randomly selected points.

    Carry out this Monte Carlo simulation for as many points as you can. How do your  
results compare with the actual value of p? Do you think this is a reasonable way to get a 
good approximation for p?

0 x

y

1

1

_1

_1

PROGRAM:PI

:0→P

:For(N,1,1000)

:rand→X:rand→Y

:P+((X2+Y2)1)→P

:End

:Disp “PI IS  

APPROX”,4*P/N
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984 Focus on Modeling

 6. areas of Curved regions  The Monte Carlo method can be used to estimate the area 
under the graph of a function. The figure below shows the region under the graph of 
f 1x 2  x2, above the x-axis, between x  0 and x  1. If we choose a point in the square 
at random, the probability that it lies under the graph of f 1x 2  x2 is the area under the 
graph divided by the area of the square. So if we randomly select a large number of points 
in the square, we have

number of hits under graph

number of hits in square
<

area under graph

area of square

  Modify the program from Problem 5 to carry out this Monte Carlo simulation and approxi-
mate the required area. 

0 x

y

1

1

y=≈

 7. random numbers  Choose two numbers at random from the interval 30, 1 2 . What is the 
probability that the sum of the two numbers is less than 1?

(a) Use a Monte Carlo model to estimate the probability.

(b)  Calculate the exact value of the probability.  [Hint: Call the numbers x and y. Choos- 
ing these numbers is the same as choosing an ordered pair 1x, y 2  in the unit square 
5 1x, y 2 0 0  x  1, 0  y  16 . What proportion of the points in this square corre-
sponds to x  y being less than 1?]

The “contestant’s dilemma” problem dis
cussed on page 981 is an example of how 
subtle probability can be. This problem 
was posed in a nationally syndicated col
umn in  Parade magazine in 1990. The cor
rect solution was presented in the column, 
but it generated considerable controversy, 
with thousands of letters arguing that the 
 solution was wrong. This shows how prob
lems in probability can be quite tricky. 
Without a lot of  experience in probabilistic 
thinking, it’s easy to make a mistake. Even 
great mathematicians such as D’Alembert 
and Roberval (see Problems 2 and 3) made 
mistakes in probability. Professor David 
Burton writes in his book The History of 
Mathematics, “Probability theory abounds 
in paradoxes that wrench the common 
sense and trip the  unwary.”
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In this appendix we review the concepts of similarity and congruence as well as the 
Pythagorean Theorem.

■ Congruent Triangles
In general, two geometric figures are congruent if they have the same shape and size. 
In particular, two line segments are congruent if they have the same length, and two 
angles are congruent if they have the same measure. For triangles we have the following 
definition.

CongruenT Triangles

Two triangles are congruent if their vertices can be matched up so that corre-
sponding sides and angles are congruent.

We write nABC > nPQR to mean that triangle ABC is congruent to trian-
gle PQR and that the sides and angles correspond as follows.

AB 5 PQ  /A 5 /P

BC 5 QR  /B 5 /Q

AC 5 PR  /C 5 /R A B

C

A Q

R

P

To prove that two triangles are congruent, we don’t need to show that all six corre-
sponding parts (side and angles) are congruent. For instance, if all three sides are con-
gruent, then all three angles must also be congruent. You can easily see why the follow-
ing properties lead to congruent triangles.

■  Side-Side-Side (SSS). If each side of one triangle is congruent to the corre-
sponding side of another triangle, then the two triangles are congruent. See Fig-
ure 1(a).

■  Side-Angle-Side (SAS). If two sides and the included angle in one triangle are 
congruent to the corresponding sides and angle in another triangle, then the two 
triangles are congruent. See Figure 1(b).

■ Angle-Side-Angle (ASA). If two angles and the included side in one triangle are 
congruent to the corresponding angles and side in another triangle, then the trian-
gles are congruent. See Figure 1(c).

example 1 ■ Congruent Triangles
(a)  nADB > nCBD by SSS.   (b)  nABE > nCBD by SAS.

A
B

D
C

B C

DE

A

geometry reviewappenDix a

985

Figure 1
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986 APPENDIX A ■ Geometry Review

(c) nABD > nCBD by ASA.   (d)  These triangles are not necessarily congru-
ent. “Side-side-angle” does not determine 
congruence.

A

B

D

C

 

A B

C

D E

F

 ■

■ similar Triangles
Two geometric figures are similar if they have the same shape, but not necessarily the 
same size. (See Discovery Project: Similarity referenced on page 450.) In the case of 
triangles we can define similarity as follows.

similar Triangles

Two triangles are similar if their vertices can be matched up so that corre-
sponding angles are congruent. In this case corresponding sides are 
proportional.

We write nABC , nPQR to mean that triangle ABC is similar to triangle 
PQR and that the following conditions hold.

The angles correspond as follows:

/A 5 /P, /B 5 /Q, /C 5 /R

The sides are proportional as follows:

AB

PQ
5

BC

QR
5

AC

PR

A B

C

P Q

R

The sum of the angles in any triangle is 180°. So if we know two angles in a triangle, 
the third is determined. Thus to prove that two triangles are similar, we need only show 
that two angles in one are congruent to two angles in the other.

example 2 ■ similar Triangles
Find all pairs of similar triangles in the figures.

(a) (b) B

A

E

D

C

S

P Q R
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soluTion

(a)  Since /AEB and /CED are opposite angles, they are equal. Thus 

nAEB , nCED

(b)  Since all triangles in the figure are right triangles, we have

/QSR 1 /QRS 5 90°

/QSR 1 /QSP 5 90°

  Subtracting these equations we find that /QSP 5 /QRS. Thus

nPQS , nSQR , nPSR ■

example 3 ■ proportional sides in similar Triangles
Given that the triangles in the figure are similar, find the lengths x and y.

15 x

20  

3 2

y

soluTion  By similarity, we know that the lengths of corresponding sides in the  
triangles are proportional. First we find x.

 
x

2
5

15

3
    Corresponding sides are proportional

 x 5
2 # 15

3
5 10    Solve for x

Now we find y.

 
15

3
5

20
y

    Corresponding sides are proportional

 y 5
20 # 3

15
5 4    Solve for y

 ■

■ The pythagorean Theorem
In a right triangle the side opposite the right angle is called the hypotenuse, and the 
other two sides are called the legs.

The pyThagorean Theorem

In a right triangle the square of the hypotenuse  
is equal to the sum of the squares of the legs.  
That is, in triangle ABC in the figure

  a2 1 b2 5 c2

a

Cb

c

A

B
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example 4 ■ using the pythagorean Theorem
Find the lengths x and y in the right triangles shown.

(a)  (b) 

7

y

25
20

21

x

soluTion

(a)  We use the Pythagorean Theorem with a 5 20, and b 5 21, and c 5 x. Then  
x2 5 202 1 212 5 841. So x 5 !841 5 29.

(b)  We use the Pythagorean Theorem with c 5 25, a 5 7, and b 5 y. Then  
252 5 72 1 y2, so y2 5 252 2 72 5 576. Thus y 5 !576 5 24. ■

The converse of the Pythagorean Theorem is also true.

Converse oF The pyThagorean Theorem

If the square of one side of a triangle is equal to the sum of the squares of the 
other two sides, then the triangle is a right triangle.

example 5 ■ proving That a Triangle is a right Triangle
Prove that the triangle with sides of length 8, 15, and 17 is a right triangle.

soluTion  You can check that 82 1 152 5 172. So the triangle must be a right trian-
gle by the converse of the Pythagorean Theorem.
 ■

1–4 ■ Congruent Triangles?  Determine whether the pair of tri-
angles is congruent. If so, state the congruence principle you are 
using.

 1. 

 2.  3. 

 4. 

5–8 ■ similar Triangles?  Determine whether the pair of trian-
gles is similar.

 5. 

50*

40*

 

a exerCises
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 6. 

20*

20*

 7. 

45*

45*

 8. 
100*

100*
55*

15*

9–12 ■ similar Triangles  Given that the pair of triangles is sim-
ilar, find the length(s) x and/or y.

 9.

6 5 150 x

10. 

25

36 y

11.

7

2

x

3
2

y
9
2

 12.

x

8

x
2

13–14 ■ using similarity  Express x in terms of a, b, and c.

13. 

c

a b

x

14. c

b

a

x

15.  proving similarity  In the figure CDEF is a rectangle. Prove 
that nABC , nAED , nEBF.

A B

F

C

D

E

16. proving similarity  In the figure DEFG is a square. Prove the 
following:

(a) nADG , nGCF

(b) nADG , nFEB

(c) AD # EB 5 DG # FE

(d) DE 5 !AD # EB

A B

F

C

G

ED

17–22 ■ pythagorean Theorem  In the given right triangle, find 
the side labeled x.

17. 

6

8

x

 18. 

73

55

x

19. 
x

2

1
 20. 

x

20

3x
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990 APPENDIX A ■ Geometry Review

21. 

xx+2

58  22. x+1

x17

23–28 ■ right Triangle?  The lengths of the sides of a triangle are 
given. Determine whether the triangle is a right triangle.

23. 5, 12, 13 24. 15, 20, 25

25. 8, 10, 12 26. 6, 17, 18

27. 48, 55, 73 28. 13, 84, 85

29–32 ■ pythagorean Theorem  These exercises require the use 
of the Pythagorean Theorem.

29.  One leg of a right triangle measures 11 cm. The hypotenuse  
is 1 cm longer than the other leg. Find the length of the  
hypotenuse.

30.  The length of a rectangle is 1 ft greater than its width.  
Each diagonal is 169 ft long. Find the dimensions of the  
rectangle.

31.  Each of the diagonals of a quadrilateral is 27 cm long. Two 
adjacent sides measure 17 cm and 21 cm. Is the quadrilateral 
a rectangle?

32.  Find the height h of the right triangle ABC shown in the fig-
ure. [Hint: Find the area of triangle ABC in two different 
ways.]

15

A

20

B

C

h

33.  Diagonal of a Box  Find the length of the diagonal of the rect-
angular box shown in the figure.

3

4
12

34.  pythagorean Triples  If a, b, c are positive integers such that 
a2 1 b2 5 c2, then 1a, b, c 2  is called a Pythagorean triple. 

(a) Let m and n be positive integers with m . n. Let  
a 5 m2 2 n2, b 5 2mn, and c 5 m2 1 n2. Show that  
1a, b, c 2  is a Pythagorean triple.

(b) Use part (a) to find the rest of the Pythagorean triples in 
the table.

m n xa, b, cc

2 1 13, 4, 5 2
3 1 18, 6, 10 2
3 2
4 1
4 2
4 3
5 1
5 2
5 3
5 4

35.  Finding a length  Two vertical poles, one 8 ft tall and the 
other 24 ft tall, have ropes stretched from the top of each to 
the base of the other (see the figure). How high above the 
ground is the point where the ropes cross? [Hint: Use 
similarity.]

h8 ft

24 ft

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Most of the applied examples and exercises in this book involve approximate values. 
For example, one exercise states that the moon has a radius of 1074 miles. This does 
not mean that the moon’s radius is exactly 1074 miles; it simply means that this is the 
radius rounded to the nearest mile.

One simple method for specifying the accuracy of a number is to state how many 
significant digits it has. The significant digits in a number are the ones from the first 
nonzero digit to the last nonzero digit (reading from left to right). Thus 1074 has four 
significant digits, 1070 has three, 1100 has two, and 1000 has one significant digit. This 
rule may sometimes lead to ambiguities. For example, if a distance is 200 km to the 
nearest kilometer, then the number 200 really has three significant digits, not just one. 
This ambiguity is avoided if we use scientific notation—that is, if we express the num-
ber as a multiple of a power of 10:

2.00 102

When working with approximate values, students often make the mistake of giving a 
final answer with more significant digits than the original data. This is incorrect because 
you cannot “create” precision by using a calculator. The final result can be no more ac-
curate than the measurements given in the problem. For example, suppose we are told that 
the two shorter sides of a right triangle are measured to be 1.25 in. and 2.33 in. long. By 
the Pythagorean Theorem we find, using a calculator, that the hypotenuse has length

"1.252 1 2.332  2.644125564 in.

But since the given lengths were expressed to three significant digits, the answer cannot 
be any more accurate. We can therefore say only that the hypotenuse is 2.64 in. long, 
rounding to the nearest hundredth.

In general, the final answer should be expressed with the same accuracy as the least-
accurate measurement given in the statement of the problem. The following rules make 
this principle more precise.

Rules foR WoRking With AppRoximAte DAtA

1. When multiplying or dividing, round off the final result so that it has as 
many significant digits as the given value with the fewest number of signifi-
cant digits.

2. When adding or subtracting, round off the final result so that it has its last 
significant digit in the decimal place in which the least-accurate given value 
has its last significant digit.

3. When taking powers or roots, round off the final result so that it has the 
same number of significant digits as the given value.

exAmple 1 ■ Working with Approximate Data
A rectangular table top is measured to be 122.64 in. by 37.3 in. Find the area and 
perimeter.

solution  Using the formulas for area and perimeter, we get the following.

Area 5 length 3 width 5 122.64 3 37.3 < 4570 in2     
Three significant 
digits

Perimeter 5 21 length 1 width 2 5 21122.54 1 37.3 2 < 319.9 in.  Tenths digit

So the area is approximately 4570 in2, and the perimeter is approximately 319.9 in. ■

Calculations and significant figuresAppenDix B
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992 APPENDIX B ■ Calculations and Significant Figures

Note that in the formula for the perimeter the value 2 is an exact value, not an ap-
proximate measurement. It therefore does not affect the accuracy of the final result. In 
general, if a problem involves only exact values, we may express the final answer with 
as many significant digits as we wish.

Note also that to make the final result as accurate as possible, you should wait until 
the last step to round off your answer. If necessary, use the memory feature of your 
calculator to retain the results of intermediate calculations.

1–10 ■ significant figures  Evaluate the expression. Round 
your final answer to the appropriate number of decimal places or 
significant figures.

 1. 3.27 2 0.1834  2. 102.68 1 26.7

 3. 28.36 3 501.375  4. 
201,186

5238

 5. 11.36 2 3  6. !427.3

 7. 3.31642.75 1 66.787 2   8. 
701

1.27 2 10.5

 9. 15.10 3 1023 2 112.4 3 107 2 16.007 3 1026 2

10. 
11.361 3 107 2 14.7717 3 1025 2

1.281876

11–12 ■ significant figures in geometry  Use the geometric 
formulas on the inside front cover of the book to solve these 
problems.

11. Find the circumference and area of a circle whose radius is 
5.27 ft.

12. Find the volume of a cone whose height is 52.3 cm and 
whose radius is 4.267 cm.

13–14 ■ newton’s law of gravity  The gravitational force F (in 
newtons) between two objects with masses m1 and m2 (in kg), 
separated by a distance r (in meters), is given by Newton’s Law 
of Gravity: 

F 5 G 
m1m2

r2

where G < 6.67428 3 10211 Nm2/kg2. 

13. Find the gravitational force between two satellites in station-
ary earth orbit, 57.2 km apart, each with a mass of 11,426 kg.

14. The sun and the earth are 1.50 3 1011 m apart, with masses 
1.9891 3 1030 kg and 5.972 3 1024 kg, respectively. 

(a) Find the gravitational force between the sun and the 
earth.

(b)  Convert your answer in part (a) from newtons to pounds, 
using the fact that 1 N < 0.225 lb.

B exeRCises
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A graphing calculator is a powerful tool for graphing equations and functions. In this 
appendix we give general guidelines to follow and common pitfalls to avoid when 
graphing with a graphing calculator. See Appendix D for specific guidelines on graph-
ing with the TI-83/84 graphing calculators.

■ Selecting the Viewing Rectangle
A graphing calculator or computer displays a rectangular portion of the graph of an 
equation in a display window or viewing screen, which we call a viewing rectangle. 
The default screen often gives an incomplete or misleading picture, so it is important to 
choose the viewing rectangle with care. If we choose the x-values to range from a 
minimum value of Xmin  a to a maximum value of Xmax  b and the y-values to 
range from a minimum value of Ymin  c to a maximum value of Ymax  d, then the 
displayed portion of the graph lies in the rectangle

3a, b 4 3 3c, d 4  5 1x, y 2  0  a  x  b, c  y  d 6
as shown in Figure 1. We refer to this as the 3a, b 4  by 3c, d 4  viewing rectangle.

(a, d) (b, d)

(a, c) (b, c)

y=d

y=c

x=a x=b

FiguRe 1 The viewing rectangle  
3a, b 4  by 3c, d 4

The graphing device draws the graph of an equation much as you would. It plots 
points of the form 1x, y 2  for a certain number of values of x, equally spaced between a 
and b. If the equation is not defined for an x-value or if the corresponding y-value lies 
outside the viewing rectangle, the device ignores this value and moves on to the next 
x-value. The machine connects each point to the preceding plotted point to form a rep-
resentation of the graph of the equation.

example 1 ■ Choosing an appropriate Viewing Rectangle
Graph the equation y  x2  3 in an appropriate viewing rectangle.

SOluTiON  Let’s experiment with different viewing rectangles. We start with the 
viewing rectangle 32,  2 4  by 32,  2 4 , so we set

Xmin  2 Ymin  2

Xmax  2 Ymax  2

The resulting graph in Figure 2(a) (on the next page) is blank! This is because x2  0, 
so x2  3  3 for all x. Thus the graph lies entirely above the viewing rectangle, so 
this viewing rectangle is not appropriate. If we enlarge the viewing rectangle to 
34,  4 4  by 34,  4 4 , as in Figure 2(b), we begin to see a portion of the graph.

graphing with a graphing CalculatorappeNDix C
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994 APPENDIX C ■ Graphing with a Graphing Calculator

Now let’s try the viewing rectangle 310,  10 4  by 35,  30 4 . The graph in Fig-
ure 2(c) seems to give a more complete view of the graph. If we enlarge the viewing 
rectangle even further, as in Figure 2(d), the graph doesn’t show clearly that the 
y-intercept is 3.

So the viewing rectangle 310,  10 4  by 35,  30 4  gives an appropriate representa-
tion of the graph.

(a) (b) (c) (d)

4

_4

_4 4

2

_2

_2 2

30

_5

_10 10

1000

_100
_50 50

FiguRe 2 Graphs of y  x2  3  ■

example 2 ■ graphing a Cubic equation
Graph the equation y  x3  49x.

SOluTiON  Let’s experiment with different viewing rectangles. If we start with the 
viewing rectangle 

35, 5 4  by 35, 5 4
we get the graph in Figure 3. On most graphing calculators the screen appears to be 
blank, but it is not quite blank because the point 10, 0 2  has been plotted. It turns out 
that for all other x-values that the calculator chooses, the corresponding y-value is 
greater than 5 or less than 5, so the resulting point on the graph lies outside the 
viewing rectangle. 

Let’s use the zoom-out feature of a graphing calculator to change the viewing rect-
angle to the larger rectangle 

310, 10 4  by 310, 10 4
In this case we get the graph shown in Figure 4(a), which appears to consist of verti-
cal lines, but we know that cannot be true. If we look carefully while the graph is 
being drawn, we see that the graph leaves the screen and reappears during the graph-
ing process. That indicates that we need to see more of the graph in the vertical direc-
tion, so we  change the viewing rectangle to  

310, 10 4  by 3100,100 4
The resulting graph is shown in Figure 4(b). It still doesn’t reveal all the main fea-
tures of the equation. It appears that we need to see still more in the vertical direction. 
So we try the viewing rectangle 

310, 10 4  by 3200, 200 4
The resulting graph is shown in Figure 4(c). Now we are more confident that we  
have arrived at an appropriate viewing rectangle. In Chapter 3, where third-degree  

5

_5

_5 5

FiguRe 3
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APPENDIX C ■ Graphing with a Graphing Calculator 995

polynomials are discussed, we learn that the graph shown in Figure 4(c) does indeed 
reveal all the main features of the equation.

200

_200

100

_100

10

_10

_10 10 _10 10 _10 10

(a) (b) (c)

FiguRe 4 Graphing of y  x3  49x ■

■ interpreting the Screen image
Once a graph of an equation has been obtained by using a graphing calculator, we 
sometimes need to interpret what the graph means in terms of the equation. Certain 
limitations of the calculator can cause it to produce graphs that are inaccurate or need 
further modifications. Here are two examples. 

example 3 ■ Two graphs on the Same Screen
Graph the equations y  3x2  6x  1 and y  0.23x  2.25 together in the viewing  
rectangle 31,  3 4  by 32.5,  1.5 4 . Do the graphs intersect in this viewing rectangle?

SOluTiON  Figure 5(a) shows the essential features of both graphs. One is a pa rab ola, 
and the other is a line. It looks as if the graphs intersect near the point 11, 2 2 . How-
ever, if we zoom in on the area around this point as shown in Figure 5(b), we see that 
although the graphs almost touch, they do not actually  intersect.

1.5

_2.5

_1 3

(a)

_1.85

_2.25
0.75 1.25

(b)

FiguRe 5 ■

You can see from Examples 1, 2, and 3 that the choice of a viewing rectangle makes 
a big difference in the appearance of a graph. If you want an overview of the essential 
features of a graph, you must choose a relatively large viewing rectangle to obtain a 
global view of the graph. If you want to investigate the details of a graph, you must 
zoom in to a small viewing rectangle that shows just the feature of interest.
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996 APPENDIX C ■ Graphing with a Graphing Calculator

example 4 ■ avoiding extraneous lines in graphs

Graph the equation y 
1

1  x
.

SOluTiON  Figure 6(a) shows the graph produced by a graphing calculator with view-
ing rectangle 

35, 5 4  by 35, 5 4
In connecting successive points on the graph, the calculator produced a steep line seg-
ment from the top to the bottom of the screen. That line segment should not be part of 
the graph. The right side of the equation is not defined for x  1, so the calculator 
connects points on the graph to the left and right of x  1, and this produces the 
extraneous line segment. We can get rid of the extraneous near-vertical line by chang-
ing the graphing mode on the calculator. If we choose the Dot mode, in which points 
on the graph are not connected, we get the better graph in Figure 6(b). The graph in 
Figure 6(b) has gaps, so we have to interpret it as having the points connected but 
without creating the extraneous line segment. 

FiguRe 6 Graphing y 
1

1  x

5

_5

5

_5

_5 5 _5 5

(a) (b)

 ■

■ graphing equations That are Not Functions
Most graphing calculators can only graph equations in which y is isolated on one side 
of the equal sign. Such equations are ones that represent functions (see page 200). The 
next example shows how to graph equations that don’t have this property.

example 5 ■ graphing a Circle
Graph the circle x2  y2  1.

SOluTiON  We first solve for y, to isolate it on one side of the equal sign.

 y2  1  x2
    Subtract x2

 y  6"1  x2
    Take square roots

Therefore the circle is described by the graphs of two equations:

y  "1  x2  and  y  "1  x2

The first equation represents the top half of the circle (because y  0), and the sec-
ond represents the bottom half of the circle (because y  0). If we graph the first 
equation in the viewing rectangle 32,  2 4  by 32,  2 4 , we get the semicircle shown 
in Figure 7(a). The graph of the second equation is the semicircle in Figure 7(b). 

The graph in Figure 7(c) looks  
somewhat flattened. Most graphing  
calculators allow you to set the scales 
on the axes so that circles really look 
like circles. On the TI-83/84, from the 
ZOOM  menu, choose ZSquare to set 

the scales appropriately.
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APPENDIX C ■ Graphing with a Graphing Calculator 997

Graphing these semicircles together on the same viewing screen, we get the full  
circle in Figure 7(c).

2

_2

_2 2

2

_2

_2 2

2

_2

_2 2

(a) (b) (c)

FiguRe 7 Graphing the equation x2  y2  1 ■

1–6 ■ Choosing a Window  Use a graphing calculator or com-
puter to decide which viewing rectangle (a)–(d) produces the 
most appropriate graph of the equation.

 1. y  x4  2

(a) 32, 24 by 32, 24
(b) 30, 44 by 30, 44
(c) 38, 84 by 34, 404
(d) 340, 404 by 380, 8004

 2. y  x2  7x  6

(a) 35, 54 by 35, 54
(b) 30, 104 by 320, 1004
(c) 315, 84 by 320, 1004
(d) 310, 34 by 3100, 204

 3. y  100  x2

(a) 34, 44 by 34, 44
(b) 310, 104 by 310, 104
(c) 315, 154 by 330, 1104
(d) 34, 44 by 330, 1104

 4. y  2x2  1000

(a) 310, 104 by 310, 104
(b) 310, 104 by 3100, 1004
(c) 310, 104 by 31000, 10004
(d) 325, 254 by 31200, 2004

 5. y  10  25x  x3

(a) 34, 44 by 34, 44
(b) 310, 104 by 310, 104
(c) 320, 204 by 3100, 1004
(d) 3100, 1004 by 3200, 2004

 6. y  "8x  x2

(a) 34, 44 by 34, 44
(b) 35, 54 by 30, 1004
(c) 310, 104 by 310, 404
(d) 32, 104 by 32, 64

7–18 ■ graphing with a graphing Calculator  Determine an 
appropriate viewing rectangle for the equation, and use it to draw 
the graph.

 7. y  100x2  8. y  100x2

 9. y  4  6x  x2 10. y  0.3x2  1.7x  3

11. y  "4 256  x2 12. y  !12x  17

13. y  0.01x3  x2  5 14. y  x1x  6 2 1x  9 2

15. y 
1

x2  2x
 16. y 

x

x2  25

17. y  1  0  x  1 0  18. y  2x  0  x2  5 0

19–26 ■ intersection points  Do the graphs intersect in the 
given viewing rectangle? If they do, how many points of intersec-
tion are there?

19. y  3x2  6x  1
2 , y  "7  7

12 x2;  34,  44 by 31, 34
20. y  "49  x2, y  1

5 
141  3x 2 ;  38, 84 by 31, 84

21. y  6  4x  x2, y  3x  18;  36, 24 by 35, 204
22. y  x3  4x, y  x  5;  34, 44 by 315, 154
23. Graph the circle x2  y2  9 by solving for y and graphing 

two equations as in Example 3.

24. Graph the circle 1 y  1 2 2  x2  1 by solving for y and 
graphing two equations as in Example 3.

25. Graph the equation 4x2  2y2  1 by solving for y and 
graphing two equations corresponding to the negative and 
positive square roots. (This graph is called an ellipse.)

26. Graph the equation y2  9x2  1 by solving for y and graph-
ing the two equations corresponding to the positive and nega-
tive square roots. (This graph is called a hyperbola.)

C exeRCiSeS
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A TI-83 or TI-84 graphing calculator is a powerful tool that can draw graphs as well as 
do many of the other calculations that we study in this book. Here we give some of the 
basic calculator operations. When you master these, you’ll be able to easily use the 
calculator to do many other tasks. 

■ 1. Set the Mode 
Make sure the calculator is in the “mode” that you want. 

STEP 1 Find the Mode Menu  To get the mode menu, press the MODE  key. 
STEP 2  Make the Appropriate Selections  Use the cursor to highlight a selection, then 

press ENTER  to make the selection. For example, choose Normal for decimal 
notation, Sci for scientific notation, Func to graph functions in rectangular 
coordinates, Real to work with real numbers, or a+bi to work with complex 
numbers. The standard choices are shown here.

 NOTE: Press 2nd  QUIT  to exit this menu (or to exit any other menu).

Normal

Radian

Connected
Func

Degree

Sci Eng
Float 0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simul
Real a+bi re^i�
Full Horiz G-T

■ 2. Graph an Equation 
To graph one or more equations on the same screen, first express each equation in func-
tion form, with y on one side of the equation. Let’s graph y 5 x3 1 1 and y 5 2x 1 2.

STEP 1 Enter the Equation  Press the Y=  key, and then enter the equations as shown.
STEP 2 Choose the Window  Press the WINDOW  key, and then enter the values for 

Xmin, Xmax, Ymin, and Ymax that you want.
STEP 3 Get the Graph  To get the graph, press the GRAPH  key. 

Plot1 Plot2 Plot3

\Y2=-x+2

\Y6=
\Y5=

\Y3=
\Y4=

\Y1=x3+1

\Y7=

WINDOW
Xmin=-1.5

Ymax=5
Ymin=-1
Xscl=1
Xmax=2.5

Yscl=1
Xres=1

5

_1

_1.5 2.5

■ 3. Zoom in on a Graph
To zoom in on a portion of a graph, first draw the graph(s) by following the steps in  
Part 2. With the graph(s) on the screen, follow these steps.

STEP 1 Choose the Zoom Menu  Press the ZOOM  key to obtain the zoom menu. Choose 
ZBox, and press ENTER . (You can experiment with other choices also.)

STEP 2 Draw the Zoom Box  Move the cursor to the location of the bottom left corner 
of the rectangle (or box) that you want to zoom in on, then press ENTER . 
Then move the cursor to the location of the top right corner of the zoom box.

Using the TI-83/84 Graphing CalculatorAPPENDIX D
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1000 APPENDIX D ■ Using the TI-83/84 Graphing Calculator

STEP 3  Zoom In  Press ENTER  to zoom in on the portion of the graph that is in the 
zoom box.

■ 4. Trace a Graph 
Once a graph has been drawn on the calculator screen, you can find the coordinates of 
any point on the graph.

STEP 1 Graph an Equation  Graph an equation (or several equations) as in Part 2. 
Keep the graph(s) on the calculator screen.

STEP 2 Choose the Command  Go to the trace command by pressing the TRACE  key. 
A cursor ( ) appears on the screen. 

STEP 3 Trace the Graph  Move the cursor along the curve by using the left or right 
arrow keys. You can jump from one curve to another by using the up or down 
arrow keys. The numbers at the bottom of the screen give the coordinates of 
the location of the cursor. 

X=1.1382979 Y=2.4749176

Y1=x3+1

X=1.1382979 Y=.86170213

Y2=-x+2

■ 5. Find Points of Intersection of Two Graphs
To find the point of intersection of the graphs of two equations, first graph the two equa-
tions on the same screen, as in Part 2.

STEP 1 Choose the Calc Menu  Press 2nd  CALC  to obtain the menu. Choose the 
intersect command, and press ENTER . (You can also experiment with the 
other commands on this menu.)

STEP 2 Choose the Two Curves  Use the up and down keys to display the equations 
you have entered (they appear at the top of the screen). Select the first equa-
tion you want by pressing ENTER . Use the up and down keys again, and select 
the second equation. A cursor appears on one of the graphs. The numbers at 
the bottom of the screen give the coordinates of the cursor.

STEP 3 Get the Intersection Point  Now Guess? appears on the screen. Move the cur-
sor to a point near the point of intersection that you want to find (this is your 
guess). Press ENTER . The point of intersection is displayed at the bottom of 
the screen.

CALCULATE
1:value

6:dy/dx
5:intersect
4:maximum
3:minimum
2:zero

7: f(x)dx First curve?
X=.5 Y=1.125

Y1=x3+1

Intersection
X=.6823278 Y=1.3176722
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■ 6. Find Zeros of a Function
To find the zeros (or x-intercepts) of a function, we first graph the function, as in Part 2. 
Suppose we’ve graphed y 5 x3 2 2x2 2 5x 1 6.

STEP 1 Choose the Calc Menu  Press 2nd  CALC  to obtain the menu, as shown in  
Part 5 above. Choose the zero command, and press ENTER .

STEP 2 Choose Left and Right Bounds  The question Left Bound? appears at the 
bottom of the screen. Use the arrow keys to move the cursor to a point on the 
graph to the left of the zero you want, and then press ENTER . The question 
Right Bound? appears. Move the cursor to a point to the right of the zero 
you want, and then press ENTER .

STEP 3 Get the Zero  Now Guess? appears on the screen. Press ENTER . The coordi-
nates of the zero appear at the bottom of the screen.

Right Bound?
X=-1.87234 Y=1.7865983

Left Bound?
X=-2.212766 Y=-3.563276

Y1=x3-2x2-5x+6

Zero
X=-2  y=0

Y1=x3-2x2-5x+6Y1=x3-2x2-5x+6

■ 7. Find Maximum and Minimum Values of a Function
To find local maximum or minimum values of a function, we first graph the function, 
as in Part 2. Let’s find the local maximum of the function in y 5 x3 2 2x2 2 5x 1 6, 
graphed in Part 6 above.

STEP 1 Choose the Calc Menu  Press 2nd  CALC  to obtain the menu, as shown in Part 
5 above. Choose the maximum command, and press ENTER .

STEP 2 Choose Left and Right Bounds  The question Left Bound? appears at the 
bottom of the screen. Use the arrow keys to move the cursor to a point on the 
graph to the left of the local maximum that you want, and then press ENTER . 
The question Right Bound? appears. Move the cursor to a point to the right 
of the local maximum that you want, and then press ENTER .

STEP 3 Get the Maximum or Minimum  Now Guess? appears on the screen. Press 
ENTER . The coordinates of the maximum between the selected bounds appear 
at the bottom of the screen.

Right Bound?
X=-.2446809 Y=7.0890181

Maximum
X=-.7862989 Y=8.2088207

Left Bound?
X=-1.510638 Y=5.5418164

Y1=x3-2x2-5x+6Y1=x3-2x2-5x+6Y1=x3-2x2-5x+6

■ 8. Make a Table of Values of a Function
To make a table of values of a function, first enter the function. Let’s work with the 
function y 5 x2.

STEP 1 Enter the Function  Press the Y=  key, and then enter the definition of the 
function as shown on the next page.

STEP 2 Set the Table Properties  Press 2nd  TBLSET , and then select the value at 
which you want the table to start (TblStart) and the step size (DTbl).
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1002 APPENDIX D ■ Using the TI-83/84 Graphing Calculator

STEP 3 Get the Table  Press 2nd  TABLE  to obtain the table. Scroll up or down to see 
more of the table.

Plot1 Plot2 Plot3

\Y2= 

\Y6=
\Y5=

\Y3=
\Y4=

\Y1=x2

\Y7=

TABLE SETUP
TblStart=0
�Tbl=.5

Indpnt:Auto  Ask
Depend:Auto  Ask

X

.5
1
1.5
2
2.5
3

X=0

0
.25
1
2.25
4
6.25
9

0

Y1

■ 9. Graph a Piecewise Defined Function
To graph a piecewise defined function, we use the TEST  menu, which includes the 
inequality symbols ,, #, ., $ and the logical symbol and. Let’s graph 

f 1x 2 5 •
x 1 2 if x , 21

x2 if 21 # x # 1

2 if 1 , x

STEP 1 Enter the Equation  Press the Y=  key, and enter the equation as shown.  Put 
each part of the function in parentheses followed by the corresponding condi-
tion in parentheses. To obtain inequality symbols, press 2nd  TEST , and 
select the required symbol. A double inequality such as 21 # x # 1 is 
entered as 21#x and x#1. To get the logical symbol and, press 2nd  TEST  
and select LOGIC, and then choose and.

STEP 2 Choose the Window  Press the WINDOW  key, and then enter the values for 
Xmin, Xmax, Ymin, and Ymax that you want.

STEP 3 Get the Graph  To get the graph, press the GRAPH  key. 

 NOTE: To avoid extraneous vertical lines between the different parts of the 
graph, put the calculator in Dot mode (see Part 1).

\Y4=
\Y3=
\Y2=

\Y1=(x+2)(x<-1)+
(x2)(-1≤x and x≤1)+
(2)(1<x)

\Y5=

TEST LOGIC
1:=

6:≤
5:<
4:≥
3:>
2:=

Plot1 Plot2 Plot3

■ 10. Graph an Inequality
To graph an inequality in two variables, first enter the corresponding equation, as in  
Part 2. We illustrate the process with the inequalities y $ x3 1 1 and y # 2x 1 2.

STEP 1 Enter the Equation(s)  Enter the equation(s) as in Part 2, and set the window. 
STEP 2 Choose the Inequalities  For each equation, use the left arrow key to move the 

cursor to the very left of the equation. Press ENTER  repeatedly to cycle 
through the inequality options (  and ). When the desired inequality appears, 
move on to the next equation. 
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STEP 3 Get the Graph  To get the graph, press the GRAPH  key. 

Plot1 Plot2 Plot3

\Y6=
\Y5=

\Y3=
\Y4=

Y1=x3+1

\Y7=

Y2=-x+2

■ 11. Enter Data 
To enter data such as a list of one-variable data or a list of two-variable data into the 
calculator, we use the STAT  menu.

STEP 1 Go to the Statistics Menu  Press the STAT  key. From the top menu choose 
EDIT, then 1:Edit, and then press ENTER . 

STEP 2 Enter the Data  Enter the data in one or more of the columns labeled L1, L2,  
L3, . . . . For example, for two-variable data enter the x-coordinates of the data 
points in L1 and the y-coordinates in L2. To clear a list from an entire column, 
place the cursor at the title of the column (L1, for example) and press CLEAR .

EDIT CALC TESTS

1:Edit

2 :SortA(
3 :SortD(
4 :ClrList
5: SetUpEditor

L1 L2 L3 2
0
10
20
30
40
50

L2(6)=6.9

- - - - - -29.2
26
20
12.6
9.2 
6.9

- - - - - - - - - - - -

■ 12. Find the Curve of Best Fit 
To find the curve that best fits a given set of two-variable data, we first enter the data.

STEP 1 Enter the Data  Enter the two-variable data in two columns, say L1 and L2, as 
in Part 11. 

STEP 2 Choose the Regression Command  Press the STAT  key again. From the top 
menu choose CALC, then select the type of curve you want (LinReg(ax+b), 
QuadReg, ExpReg, PwrReg, . . .) and press ENTER .

STEP 3 Obtain the Regression Line  Now select the columns in which you stored the 
data. For example, for Xlist select L1, and for Ylist select L2, as in the 
middle graph. Note that the column names are located at 2ND  ENTER  and 
2nd  L2 . Scroll down to Calculate, and press ENTER . The regression 
equation with the values of the coefficients appears on the screen. 

 NOTE: To get r2 and r, go to 2nd  CATALOG  (above 0) and select  
DiagnosticOn.

CALCEDIT TESTS

4:

1-Var Stats
2: 2-Var Stats
3: Med-Med

1:

LinReg(ax+b)
5:QuadReg

0:ExpReg
A PwrReg

LinReg
Xlist: L1
Ylist: L2
FreqList:
Store RegEQ:
Calculate

y=ax+b

r2
b=29.40952381
a=-.4837142857

=.9738750529
r=-.9868510794

LinReg(ax+b)
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1004 APPENDIX D ■ Using the TI-83/84 Graphing Calculator

■ 13. Enter a Matrix
To enter a matrix into the calculator, we start with the MATRIX  menu.  

STEP 1 Go to the Matrix Menu  Press the 2nd  MATRIX  key to obtain the matrix 
menu. From the top menu choose EDIT, then select a matrix name ([A], for 
example), and press ENTER .

STEP 2  Enter the Matrix  Now enter the dimension of the matrix you want, (3 3 4, 
for example), and press ENTER . A matrix with the desired dimension appears. 
Key in the entries of the matrix, pressing ENTER  after inputting each entry. 
Press 2nd  QUIT  when you have completed entering the matrix.

STEP 3  Enter Another Matrix  Press the 2nd  MATRIX  key again, and repeat the proc-
ess in Step 2 to enter another matrix [B].

NAMES
1:[A]

EDITMATH

6:[F]
5:[E]
4:[D]
3:[C]
2:[B]

7 [G]

MATRIX [A]
[4   8  -4    4]
[3   8   5  -11]
[-2  1  12  -17]

3,4=-17

3X4 MATRIX [B]
[1   -2   -4]
[2   -3   -6]
[-3   6   15 ]

3,3=15

3X3

■ 14. Find the (Reduced) Row-Echelon Form of a Matrix
To find the row-echelon form or the reduced row-echelon form of a matrix, we first 
enter the matrix.  

STEP 1 Enter the Matrix  Enter a matrix as in Part 13. 
STEP 2 Choose the Form  Press the 2nd  MATRIX  key again. From the top menu 

choose MATH, then select rref (or ref) and press ENTER . (You can also 
experiment with the other commands on this menu.) Press the 2nd  MATRIX  
key yet again. From the top menu choose NAMES, then select the name of the 
matrix you want ([A], for example).

STEP 3 Obtain the (Reduced) Row-Echelon Form  You now have rref([A]) on the 
screen. Press ENTER  to obtain the reduced row-echelon form of the matrix  
you stored in [A].

MATRIX [A]
[4   8  -4    4]
[3   8   5  -11]
[-2  1  12  -17]

3,4=-17

3X4 NAMES

A:ref(

MATH EDIT
1:det(

3:dim(
2: T

B rref(

4:Fill(

rref([A])

1  0  0  -3
0  1  0   1
0  0  1  -2

■ 15. Perform Algebraic Operations on Matrices 
Before performing operations on matrices, store the matrices in the memory of the 
calculator with the names [A], [B], . . . as in Part 13.

STEP 1 Select a Matrix by Name  To enter the name of a matrix on the screen, go to 
2nd  MATRIX . From the top menu choose NAMES, then select the name of the 
matrix you want ([A], [B], . . .) and press ENTER .

STEP 2  Choose the Operation  To do algebraic operations on matrices, use the ordi-
nary arithmetic operation keys + , X , or X-1 . To multiply or add matrices, 
enter [A]*[B] or [A]+[B]. For the inverse use the X-1  key to enter [B]-1. 

STEP 3  Obtain the Result  On the screen you now have [A]*[B], [A]+[B], or  
[B]-1. Press ENTER  to obtain the result. The error message DIM  
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MISMATCH indicates that the dimensions of the matrices are incompatible 
for the requested operation. When you are attempting to find the inverse of a 
matrix, the error messages SINGULAR MAT or INVALID DIM indicate that 
the matrix is not invertible or is not a square matrix, respectively.

  NOTE: To obtain the result of any calculation as a fraction (as opposed to a 
decimal), go to MATH  and select 

▲

 Frac (see the second screen below). 

[B]*[A] [A]+[B]
ERR: DIM MISMATCH

[A]-1

ERR: INVALID DIM

[C]-1

ERR: SINGULAR MAT

  6 -12 -62   94

 11 -14 -95  143
-24  39 222 -333

[B]-1 Frac

-3  2     0

-4  1  -2/3
 1  0   1/3

-3

-4
 1

2

1
0

0

-2/3
1/3

■ 16. Find the Determinant of a Matrix 
To find the determinant of a matrix, we must first store the matrix in the memory of the 
calculator with a name [A], [B], . . . as in Part 13.

STEP 1 Select the Determinant Command  Press 2nd  MATRIX  to go to the matrix 
menu. From the top menu select MATH, then choose det(, and then press 
ENTER . The symbol det( appears on the screen. 

STEP 2 Choose the Name of a Matrix  To find the determinant of the matrix B, press 
2nd  MATRIX . From the top menu choose NAMES, and then select [B].

STEP 3 Obtain the Result  On the screen you now have det([B]). Press ENTER  to 
obtain the value of the determinant.

MATRIX [B]
[1  -2  -4]
[2  -3  -6]
[-3  6  15]

3,3=15

3X3 NAMES

6:randM(
7 augment(

MATH EDIT

3:dim(
2: T

4:Fill(
5:identity(

det([B])
31:det(

■ 17. Find a Term of a Sequence 
We can work with sequences on the calculator, but we must first put the calculator in 
the proper mode by following the instructions in Part 1.

STEP 1 Select the Sequence Mode  Press MODE , then select seq and press ENTER . 
This puts the calculator in sequence mode. Press 2nd  QUIT  to exit the mode 
menu.

STEP 2 Enter the Sequence  Press the Y=  key, and then enter the definition of the 
sequence. For the sequence an 5 2n 1 1, enter u(n)=2n+1, as shown. You 
must also enter the minimum value of n (in this case nMin=1) and the first 
term of the sequence (in this case u(nMin)={3}). 

STEP 3 Obtain Results  To find a term of the sequence, say a10, use the keypad to 
enter u(10). Note that u is located at 2nd  u  on the keypad.

u(10)
21

Normal

Radian

Connected
Func

Degree

Sci Eng
Float 0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simulq
Reala+bi re^i�
Full Horiz G-T

Plot1 Plot2 Plot3
Min=1

\u( )=2 +1
u( Min)={3}
\v( )=
v( Min)=
\w( )=
w( Min)=

n n
n

n
n
n
n
n
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■ 18. Find a Term of a Recursive Sequence 
To find a term of a recursively defined sequence, first put the calculator in sequence 
mode. We find the 20th term of the Fibonacci sequence.

STEP 1 Select the Sequence Mode  Put the calculator in sequence mode as in Part 17.   
Press 2nd  QUIT  to exit the mode menu.

STEP 2 Enter the Sequence  Press the Y=  key, and then enter the definition of the 
sequence. For the Fibonacci sequence, enter u(n)=u(n-1)+u(n-2), as 
shown. You must also enter the minimum value of n (in this case nMin=1) 
and the first two terms of the sequence (in this case u(nMin)={1,1}). 

STEP 3  Obtain Results  To find a term of the sequence, say, F20, use the keypad to 
enter u(20). Note that u is located at 2nd  u  on the keypad.

u(20)
6765

Plot1 Plot2 Plot3
Min=1

\u( )=u( -1)+u( -2)
u( Min)={1,1}
\v( )=
v( Min)=
\w( )=
w( Min)=

n nn
n

n
n
n
n
n

■ 19. List Terms of a Sequence
To list the terms of a sequence, first put the calculator in sequence mode, as in Part 17. 
We illustrate the process with the sequence an 5 1/n from n 5 1 to n 5 5.

STEP 1  Get the Sequence Command  Press 2nd  LIST . From the top menu choose 
OPS, select seq(, and then press ENTER .

STEP 2  Define the Sequence  Define the sequence by completing the commands on 
the screen. In this case enter 1/n for Expr, n for Variable, 1 for start, 5 
for end, and 1 for step. Scroll down to Paste, and press ENTER . We get 
the following: seq(1/n,n,1,5,1). The entries have the following mean-
ing: The expression is 1/n, the variable is n, the starting point is 1, the ending 
point is 5, and the step size is 1.

STEP 3  Obtain the List of Terms of the Sequence  Press ENTER  to obtain a list of the 
terms of the sequence. 

   NOTE: Use the 

▲

 Frac command to obtain the result in fractions. (See the 
note in Part 12.)

NAMES

6:cumsum(
7 List(

OPS MATH

3:dim(
2:SortD(

4:Fill(

1:SortA(
seq

Expr:1/
Variable:
start:1
end:5
step:1
Paste

5:seq(

seq(1/ , ,1,5,1)

{1 .5 .33333 .25...
Ans  Frac
{1 1/2 1/3 1/4 1/5}

nn
n
n

■ 20. Make a Table of Values of a Sequence
To make a table of values of a sequence, first put the calculator in sequence mode (see 
Part 1). Let’s work with the sequence u1n 2 5 n2.

STEP 1  Enter the Sequence  Press the Y=  key, and then enter the definition of the 
sequence as shown.
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STEP 2  Set the Table Properties  Press 2nd  TBLSET , and then select the value of n at 
which you want the table to start (TblStart) and the step size (DTbl) to be 1.

STEP 3  Get the Table  Press 2nd  TABLE  to obtain the table. Scroll up or down to see 
more of the table.

Plot1 Plot2 Plot3
Min=1

\u( )= 2

u( Min)={1}
\v( )=
v( Min)=
\w( )=
w( Min)=

n n
n

n
n
n
n
n

TABLE SETUP
TblStart=1
�Tbl=1

Indpnt: Auto  Ask
Depend: Auto  Ask

2
3
4
5
6
7
=1n

1
4
9
16
25
36
49

1

u( )nn

■ 21. Graph a Sequence
To graph a sequence, first put the calculator in sequence mode (see Part 1). Let’s work 
with the sequence u1n 2 5 n/ 1n 1 1 2 .
STEP 1  Enter the Sequence  Press the Y=  key, and then enter the definition of the 

sequence. To obtain a sequence graph where the dots are not connected, use 
the left arrow key to move the cursor to the very left of the equation. Press 
ENTER  repeatedly to obtain the dots (...)  to the left of the equation, as shown. 

STEP 2  Choose the Window  Press the WINDOW  key, and then enter the required val-
ues. Make sure you scroll down far enough to enter the values for Xmin, 
Xmax, Ymin, and Ymax that you want.

STEP 3 Get the Graph  Press GRAPH  to obtain the graph.

Plot1 Plot2 Plot3
Min=1

u( )= /( +1)
u( Min)={.5}
\v( )=
v( Min)=
\w( )=
w( Min)=

n n n
n

n
n
n
n
n

WINDOW

Xmin=1

Ymin=0
Xscl=1
Xmax=10

 Min=1
 Max=10
PlotStart=1
PlotStep=1

n
n

■ 22. Find a Partial Sum of a Sequence
To find a partial sum of a sequence, we use the LIST menu. We work with the sequence 
of odd numbers an 5 2n 2 1 from n 5 1 to n 5 5. 

STEP 1  Find a Sum of a Sequence  Press 2nd  LIST . From the top menu choose 
MATH, select sum(, and then press ENTER . Key in the sequence as in Part 19: 
sum(seq(2n-1,n,1,5,1)). Press ENTER  to get the sum.

STEP 2  Find the Partial Sums  Press 2nd  LIST . From the top menu choose OPS, 
select cumsum(, and then press ENTER . Key in the sequence as in Part 19:  
cumsum(seq(2n-1,n,1,5,1)). Press ENTER  to get the sequence of  
partial sums.

NAMES

6:prod(
7 stdDev(

OPS MATH

3:mean(
2:max(

4:median(

1:min(

5:sum(

NAMES

7 List(

OPS MATH

3:dim(
2:SortD(

4:Fill(

1:SortA(

5:seq(
6:cumsum(

sum(seq(2 -1, ,1,5,1))

25
cumsum(seq(2 -1, ,1,
5,1))

{1  4  9  16  25}

n n

n n
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■ 23. Perform Operations with Complex Numbers
We can work with complex numbers on the calculator, but we must first put the calcula-
tor in the proper mode (see Part 1).

STEP 1 Select the Complex Number Mode  Press MODE , then select a+bi and press 
ENTER . This puts the calculator in complex number mode. Press 2nd  QUIT  
to exit the mode menu.

STEP 2 Enter the Operation  The imaginary unit í is located above the decimal point. 
To get it, press 2nd  ~ . Enter complex number operations as shown.

STEP 3 Obtain Results  Press ENTER  to obtain the requested answer.

(2+3í)2
-5+12í

(-9)
3í

í 2
-1

Normal

Radian

Connected
Func

Degree

Sci Eng
0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simul
Reala+bi re^i�
Full Horiz G-T

■ 24. Graph Parametric Equations
Let’s graph the parametric equations x 5 t3 2 9t, y 5 t2.

STEP 1 Select Parametric Mode  Press MODE , select Par, then press ENTER . This puts 
the calculator in parametric mode. Press 2nd  QUIT  to exit the mode menu. 

STEP 2 Enter the Equation  Press the Y=  key, and enter the pair of parametric equa-
tions as X1T and Y1T, as shown. Press the WINDOW  key, and select appropriate 
values for the parameter t as well as for the dimensions of the window.

STEP 3 Get the Graph  To get the graph, press the GRAPH  key.

Normal

Radian

Connected
Func

Degree

Sci Eng
0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simulq
Reala+bi re^i�
Full Horiz G-T

Plot1 Plot2 Plot3

 Y1T=T2

 Y3T=
\X3T=

\X2T=
 Y2T=

\X1T=T3-9T

\X4T=

■ 25. Graph a Polar Equation
Let’s graph the polar equation r 5 u 2 sin 3u.

STEP 1 Select Polar Mode  Press MODE , select Pol, and then press ENTER . This puts 
the calculator in polar mode. Press 2nd  QUIT  to exit the mode menu.

STEP 2 Enter the Equation  Press the Y=  key, and enter the equation as r1, as shown. 
Press the WINDOW  key, and select appropriate values for u min and u max as 
well as for the dimensions of the window.

STEP 3 Get the Graph  To get the graph, press the GRAPH  key.

Normal

Connected
Func

Degree

Sci Eng
0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simulq
Reala+bi re^i�
Full Horiz G-T

Plot1 Plot2 Plot3

\r2=

\r6=
\r5=

\r3=
\r4=

\r1=� -sin(3�)
Radian
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Answers to Section 4 A1

prologue ■ pAge p4
1. It can’t go fast enough.  2. 40% discount  3. 427, 3n  1 
4. 57 min  5. No, not necessarily  6. The same amount  
7. 2p  8. The North Pole is one such point; there are infinitely 
many others near the South Pole.

chapter p
Section p.1 ■ pAge 5
1. 48  2. C  3.5x  3. T  $7.20  5. 245 mi  
7. (a) 30 mi/gal  (b) 7 gal  9. (a) 38 km3  (b) 2 km3  

11. (a) 

(b) 34 ft
13. N  25q  15. C  3.50x  17. d  60t  
19. (a) $15  (b) C  12  n  (c) 4
21. (a) (i) C  0.04x  (ii) C  0.12x  (b) (i) $400   
(ii) $1200 
23. (a) GPA  14a  3b  2c  d 2/ 1a  b  c  d  f 2
(b) 2.84

Section p.2 ■ pAge 15
1. Answers may vary. Examples: (a) 2  (b) 3  (c) 3

2    
(d) !2  2. (a) ba; Commutative  (b) 1a  b 2  c;  
Associative  (c) ab  ac; Distributive   
3. (a) 5x 0  2  x  76   (b) 12, 7 2   4. absolute value; positive   
5. 0  b  a 0 ; 7  6. (a) Yes  (b) No  7. (a) No  (b) No   
8. (a) Yes  (b) Yes  9. (a) 100  (b) 0, 100, 8   
(c) 1.5, 0, 52, 2.71, 3.14, 100, 8  (d) !7, p  
11. Commutative Property of Addition  13. Associative  
Property of Addition  15. Distributive Property   
17. Commutative Property of Multiplication   
19. 3  x  21. 4A  4B  23. 3x  3y   
25. 8m  27. 5x  10y   

29. (a) 17
30   (b) 9

20   31. (a) 3  (b) 13
20   33. (a)    

(b)   (c)   35. (a) False   
(b) True  37. (a) True  (b) False   
39. (a) x  0  (b) t  4  (c) a  p   
(d) 5  x  1

3   (e) 0  3  p 0  5   
41. (a) {1, 2, 3, 4, 5, 6, 7, 8}  (b) {2, 4, 6}  
43. (a) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  (b) {7}
45. (a) 5x 0  x  56   (b) 5x 0  1  x  46
47. 3  x  0 

−3 0  

Depth (ft) Pressure (lb/in2)

 0 14.7
10 19.2
20 23.7
30 28.2
40 32.7
50 37.2
60 41.7

49. 2  x  8 51. x  2

82
 

53. 1`,  1 4   1

55. 12,  1 4   −2 1

57. 11,  ` 2   −1

59. (a) 33,  5 4   (b) 13,  5 4   

61. −2 1  63. 0 6

65. −4 4  

67. (a) 100  (b) 73  69. (a) 2  (b) 1   
71. (a) 12  (b) 5  73. 5  75. (a) 15  (b) 24  (c) 67

40   

77. (a) 7
9   (b) 13

45   (c) 19
33   79. p  3  81. b  a  

83. (a)   (b)   (c)   (d)   
85. Distributive Property  87. (a) Yes, no  (b) 6 ft

Section p.3 ■ pAge 23
1. 56  2. Yes  3. base, exponent  4. add, 39  5. subtract, 33   
6. multiply, 38  7. (a) 1

2   (b) 1
8   (c) 2  (d) 8  

8. scientific; 8.3  106; 3.27  105  9. (a) No  (b) Yes  

10. (a) No  (b) No  11. (a) 64  (b) 64  (c)  
27
25   

13. (a) 1
2   (b) 1

8   (c) 16  15. (a) 625  (b) 9  (c) 64  

17. (a) 25  (b) 1000  (c) 1
9   19. (a) x5  (b) x6  (c) t2  

21. (a) 
1

x2   (b) 
1

„
  (c) y3  23. (a) a6  (b) a18  (c) 20x8  

25. (a) 6x5y  (b) 6b  (c) 4x8y4   27. (a) 12x4y7  (b) 
x7

y
  

(c) 
x6y3

27
  29. (a) 

1

x3y3   (b) 
b6

a12   (c) 
8

x10y13   

31. (a) 
xy3

3
  (b) 

y6

4x6   (c) 
x4y5

9
  33. (a) 

b3

3a
  (b) 

s3

q7r4   

35. (a) 6.93  107  (b) 7.2  1012  (c) 2.8536  105  
(d) 1.213  104  37. (a) 319,000  (b) 272,100,000  
(c) 0.00000002670  (d) 0.000000009999  
39. (a) 5.9  1012 mi  (b) 4  1013 cm  
(c) 3.3  1019 molecules  41. 1.3  1020  43. 1.429  1019  
45. 7.4  1014  47. 1010 and 1050  49. 2.5  1013 mi  
51. 1.3  1021 L  53. 4.03  1027 molecules  
55. $470.26, $636.64, $808.08

Section p.4 ■ pAge 29
1. 51/3  2. !5  3. No  4. 141/2 2 3  8, 143 2 1/2  8

5. 
1

!3
   

1

!3
# !3

!3
   

!3

3
  6. 2

3   7. No  8. No  

9. 31/2  11. "3 42  13. 53/5  15. "5 a2
  17. y4/3

  

19. (a) 4  (b) 2  (c) 1
2   21. (a) 6!3 2  (b) 

!2

3
  (c) 

3!3

2
  

2

A1
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A2 Answers to Selected Exercises and Chapter Tests

23. (a) 14  (b) 4  (c) 6  25. (a) 6  (b) 4  (c) 1
4   

27. 0  x 0   29. 2y!5 y  31. 2x2  33. x!3 y  35. 6 0  r 0  t2  

37. 2 0  x 0   39. 7!2  41. 2!5  43. 13a  1 2!a  

45. 1x  2 2!3 x  47. 9"x2  1  49. (a) 2  (b) 5  (c) 1
3   

51. (a) 4  (b) 3
2   (c) 8

27   53. (a) 5  (b) !5 3  (c) 4  

55. 5  57. 14  59. (a) x2  (b) y2  61. (a) „ 5/3  (b) 8a13/4  

63. (a) 4a4b  (b) 8a9b12  65. (a) 
1

4y2   (b) 
1

u4/3√2
  

67. (a) 
1
x

  (b) 
xy4

8
  69. x3/2  71. x5/9  73. y3/2  

75. 10x7/12  77. x  79. 
4u

√2   81. 
x1/4y1/4

2
  83. y1/2  

85. (a) 
!6

6
  (b) 

!6

2
  (c) 

9!4 8

2
  

87. (a) 
!5x

5x
  (b) 

!5x

5
  (c) 

x2/5

x
  

89. (a) 
"3 x2

x
  (b) 

!6 x

x
  (c) 

"7 x4

x
  

91. (a) 21/2  (b) A12 B1/3
  93. 41.3 mi  

95. (a) Yes  (b) 3292 ft2  

Section p.5 ■ pAge 35
1. (a), (d), (f)  2. like, 11x2  x  5  3. like, x3  8x2  5x  2  
4. FOIL, x2  5x  6  5. A2  2AB  B2, 4x2  12x  9  
6. A2  B2, 25  x2  7. (a) No  (b) Yes  
8. (a) Yes  (b) Yes  9. Binomial; 5x3, 6; 3  
11. Monomial; 8; 0  13. Four terms; x4, x3, x2, x; 4  
15. 9x  4  17. x2  3x  3  19. 7x  5  
21. 5x3  3x2  10x  2  23. 2x2  2x  25. x3  3x2  
27. t2  4  29. 7r3  3r2  9r  31. 2x4  x3  x2  
33. x2  2x  15  35. 2s2  15s  18  37. 21t2  26t  8  
39. 6x2  7x  5  41. 2x2  5xy  3y2  
43. 6r2  19rs  10s2  45. 25x2  10x  1  
47. 9y2  6y  1  49. 4u2  4u√  √2  51. 4x2  12xy  9y2  
53. x4  2x2  1  55. x2  36  57. 9x2  16  
59. x2  9y2  61. x  4  63. y3  6y2  12y  8  
65. 1  6r  12r2  8r3  67. x3  4x2  7x  6  
69. 2x3  7x2  7x  5  71. x3/2  x  73. y  y2  
75. x4  2x2y2  y4  77. x4  a4  79. a  b2  81. 1  x4/3  
83. x4  x2  2x  1  85. 4x2  4xy  y2  9  
89. (b) 4x3  32x2  60x; 3  (c) 32, 24  
91. (a) 2000r3  6000r2  6000r  2000; 3
(b) $2122.42, $2185.45, $2282.33, $2382.03, $2662.00

Section p.6 ■ pAge 42
1. 3; 2x5, 6x4, 4x3  2. 2x3; 2x31x2  3x  2 2
3. 10, 7; 2, 5; 1x  2 2 1x  5 2   4. 1x  1 2 2, 1x  1 2 214  x 2   
5. 1A  B 2 1A  B 2 ; 12x  5 2 12x  5 2   6. 1A  B 2 2; 1x  5 2 2  
7. 51a  4 2   9. x12x2  1 2   11. xy12x  6y  3 2   
13. 1 y  6 2 1 y  9 2   15. 1x  7 2 1x  1 2   
17. 1x  5 2 1x  3 2   19. 13x  1 2 1x  5 2   
21. 13x  4 2 13x  8 2   23. 1x  5 2 1x  5 2   
25. 17  2z 2 17  2z 2   27. 14y  z 2 14y  z 2   
29. 1x  3  y 2 1x  3  y 2   31. 1x  5 2 2  
33. 1z  6 2 2  35. 12t  5 2 2  37. 13u  √ 2 2  

39. 1x  3 2 1x2  3x  9 2   41. 12a  1 2 14a2  2a  1 2
43. 13x  y 2 19x2  3xy  y2 2   45. 1u  √2 2 1u2  u√2  √4 2   
47. 1x  4 2 1x2  1 2   49. 15x  1 2 1x2  1 2   
51. 1x  1 2 1x2  1 2   53. x1/21x  1 2 1x  1 2
55. x3/21x  1 2 2  57. 1x2  3 2 1x2  1 21/2

59. x1/31x  2 21/313x  4 2   61. 6x12x2  3 2   
63. 3y312y  5 2   65. 1x  4 2 1x  2 2   67. 1 y  3 2 1 y  5 2   
69. 12x  3 2 1x  1 2   71. 91x  5 2 1x  1 2   
73. 13x  2 2 12x  3 2   75. 1x  6 2 1x  6 2   
77. 17  2y 2 17  2y 2   79. 1 t  3 2 2  81. 12x  y 2 2  
83. 1 t  1 2 1 t2  t  1 2   85. 12x  5 2 14x2  10x  25 2   
87. x1x  1 2 2  89. x21x  3 2 1x  1 2   
91. x2y31x  y 2 1x  y 2   93. 1x2  2y 2 1x4  2x2y  4y2 2
95. 1 y  2 2 1 y  2 2 1 y  3 2   97. 13x  1 2 1x  2 2 1x  2 2   
99. 4ab  101. 1x  3 2 1x  3 2 1x  1 2 1x  1 2   
103. 31x  1 2 1x  2 2   105. y41 y  2 2 31 y  1 2 2  
107. 1a  2 2 1a  2 2 1a  1 2 1a  1 2   
109. 16x21x  3 2 15x  9 2   

111. 12x  1 2 21x  3 21/2A7x  35
2 B   

113. 1x2  3 24/3A13 
x2  3B

Section p.7 ■ pAge 50

1. (a), (c)  2. numerator; denominator; 
x  1

x  3
  

3. numerators; denominators; 
2x

x2  4x  3
  

4. (a) 3  (b) x1x  1 2 2  (c) 
2x2  1

x1x  1 2 2
5. (a) Yes  (b) No  6. (a) Yes  (b) No  7.   
9. 5x 0  x ? 36   11. 5x 0  x  36   13. 5x 0  x ? 1, 26   

15. 
2x  1

21x  3 2   17. 
1

x  2
  19. 

x  2

x  5
  21. 

y

y  1
  

23. 
x 12x  3 2

2x  3
  25. 

1

41x  2 2   27. 
x  3

x  2
  29. 

1

t 
2  9

  

31. 
x  4

x  1
  33. 

x  5

12x  3 2 1x  4 2   35. x21x  1 2   37. 
x

yz
  

39. 
x  4

x  3
  41. 

3x  7

1x  3 2 1x  5 2   43. 
2x  5

1x  1 2 1x  2 2   

45. 
215x  9 2
12x  3 2 2   47. 

u2  3u  1

u  1
  49. 

2x  1

x21x  1 2   

51. 
2x  7

1x  3 2 1x  4 2   53. 
x  2

1x  3 2 1x  3 2   55. 
5x  6

x1x  1 2   

57. 
5

1x  1 2 1x  2 2 1x  3 2   59. 
x  1

1  2x
  61. 

x  3

x  1
  

63. 
2

1x  1 2 1x  3 2   65. 
x21y  1 2
y21x  1 2   67. xy  

69. 
y  x

xy
  71. 

1

1  x
  73.  

1

11  x 2 11  x  h 2   

75.  

2x  h

x 21x  h 2 2   77. 
1

"1  x2
  79. 

1x  2 2 21x  13 2
1x  3 2 3   

81. 
x  2

1x  1 2 3/2
  83. 

2x  3

1x  1 2 4/3
  85. 

!3  5

22
  

87. 
21!7  !2 2

5
  89. 

y!3  y!y

3  y
  91. 

4

311  !5 2   
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Answers to Chapter P Test A3

93. 
r  2

51!r  !2 2   95. 
1

"x2  1  x
  

97. (a) 
R1R2

R1  R2
  (b) 20

3  6.7 ohms  

Section p.8 ■ pAge 59
1. solution  2. 3x  6; x  2; 2  3. (a), (c)  4. (a) Equation 
contains a square of the variable.  (b) Equation contains a 
square root of the variable.  (c) Equation contains a square of the 
variable.  5. (a) True  (b) False (because quantity could be 0)  
(c) False  6. cube, 5  7. (a) No  (b) Yes  9. (a) Yes  
(b) No  11. (a) No  (b) Yes  13. (a) Yes  (b) No  
15. 4  17. 4  19. 8  21. 0  23. 1

3   25. 3
5   27. 6  

29.  
3
4   31. 32

9   33. 30  35. 1
17   37. 4

3   39. 14
13   41.  

1
3   

43. 13
6   45. 20  47. 13

3   49. 3
97   51. No solution  

53. No solution  55. 5  57. !3  59. 2 !2  
61. No solution  63. 3  !5  65. 3  67. 2  
69. No solution  71. 5, 1  73. 8  75. 125  77. 8  

79. 3.13  81. 5.06  83. 43.66  85. 1.60  87. M 
12
r

  

89. R 
PV

nT
  91. „ 

1P  2l 2
2

  93. r   Å
3V

ph
  

95. r  Å
3 3V

4p
  97. i  100  100 Å

A

P
  99. x 

2d  b

a  2c
  

101. (a) 0.00055, 12.018 m  (b) 234.375 kg/m3  
103. (a) 8.6 km/h  (b) 14.7 km/h  

Section p.9 ■ pAge 69
2. principal; interest rate; time in years  3. (a) x2  (b) l„  

(c) pr2  4. 1.6  5. 
1
x

  6. r 
d

t
; t 

d

r
  7. 3n  3  

9. 3n  6  11. 
160  s

3
  13. 0.025x  15. 4„2  17. 

d

55

19. 
25

x  3
  21. 400 miles  23. 86%  

25. $9000 at 4 
1
2% and $3000 at 4%  27. 7.5%  29. $7400  

31. 8 h  33. 40 years old  35. 9 pennies, 9 nickels, 9 dimes  
37. 45 ft  39. 120 ft by 120 ft  41. 8.94 in.  43. 4 in.  
45. 5 m  47. 200 mL  49. 18 g  51. 0.6 L  53. 35%  
55. 37 min 20 s  57. 3 h  59. 4 h  61. 500 mi/h  
63. 6.4 ft from the fulcrum  65. 120 ft  67. 18 ft  

chApter p revieW ■ pAge 76
1. (a) T  250  2x  (b) 190  (c) 125  
3. (a) rational, natural number, integer  
(b) rational, integer  (c) rational, natural number, integer   
(d) irrational  (e) rational, neither  (f) rational, integer
5. Commutative Property of Addition  7. Distributive Property  
9. (a) 3

2   (b) 1
6   11. (a) 9

2   (b) 25
32   

13. 2  x  6  
−2 6

15. x  4  
4

17. 35, ` 2   
5

19. 11, 5 4   
5−1

21. (a) E1, 0, 12, 1, 2, 3, 4F   (b) 516   
23. (a) 51, 26  (b) E12, 1F   25. 3  27. 4  29. 1

6   31. 11  
33. (a) 0  5  3 0  2  (b) 0  5  3 0  8  

35. (a) 71/3  (b) 74/5  37. (a) x5/6  (b) x9/2  

39. 12x5y4  41. 9x3  43. x2y2  45. 
4r 

5/2

s 
7   

47. 7.825  1010  49. 1.65  1032  51. 2xy1x  3y 2   
53. 1x  7 2 1x  2 2   55. 13x  1 2 1x  1 2   
57. 14t  3 2 1 t  4 2   59. 412  t 2 12  t 2   
61. 1x  1 2 1x 

2  x  1 2 1x  1 2 1x 
2  x  1 2

63. 1x  3 2 1x2  3x  9 2   65. 1x  2 2 14x2  3 2   
67. 1x  y  6 2 1x  y  1 2   69. 4y2  49  
71. 2x3  6x2  4x   73. 2x!x  x  !x  

75. 
x  3

2x  3
  77. 

31x  3 2
x  4

   79. 
x 

2  x  1

x  1
  

81. 
3x 

2  7x  8

x1x  2 2 2   83.  

1

2x
  85. 6x  3h  5  87. 

!11

11
  

89. 10  10!2  91. 
x1!x  2 2

x  4
  93. 5x 0 x ? 106   

95. 5x 0 x  0 and x ? 46   97. No  99. Yes  101. No  

103. 4  105. 5  107. 15
2   109. 6  111. 0  

113. No solution  115. 12  117. 3  119. 5  

121. 27  123. 625  125. x  2A  y  127. t 
11

6J
  

129. 20 lb raisins, 30 lb nuts  
131. $5475 at 1.5%, $1525 at 2.5%  133. 1 h 50 min  

chApter p teSt ■ pAge 79
1. (a) C  9  1.50x  (b) $15  2. (a) Rational, natural  
number, integer  (b) Irrational  (c) Rational, integer   
(d) Rational, integer  3. (a) 50, 1, 56  (b) 52, 0, 12, 1, 3, 5, 76
4. (a) 

2−4     30

(b) Intersection [0, 2)  
20

 Union [4, 3]  
3−4   (c) 0 4  2 0  6

5. (a) 64  (b) 64  (c) 1
64   (d) 1

49   (e) 4
9   (f) 1

2   (g) 9
16   

(h) 1
27   6. (a) 1.86  1011  (b) 3.965  107  7. (a) 

a2

b

(b) 
y4

4x6   (c) 18x  (d) 3!5  (e) 3xy2!2x  (f) 
1

4x10y
  

8. (a) 11x  2  (b) 4x2  7x  15  (c) a  b  
(d) 4x2  12x  9  (e) x3  6x2  12x  8  (f) x4  9x2  
9. (a) 12x  5 2 12x  5 2   (b) 12x  3 2 1x  4 2   
(c) 1x  3 2 1x  2 2 1x  2 2   (d) x1x  3 2 1x 

2  3x  9 2   
(e) 12x  y  5 2 2  (f) xy1x  2 2 1x  2 2   

10. (a) 
x  2

x  2
  (b) 

x  1

x  3
  (c) 

1

x  2
  (d) 1x  y 2   

11. (a) 3!3 2  (b) 5!2  2!10  (c) 
1  !x

1  x
  

12. (a) 5  (b)  
5
2   (c) 512  (d) 15

2   (e) "6  1  

13. c  Å
E

m
  14. 150 km
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A4 Answers to Selected Exercises and Chapter Tests

FocuS on Modeling ■ pAge 84
1. (a) C  5800  265n  (b) C  575n

(c) 

(d) 19 months  3. (a) C  8000  22x  (b) R  49x   
(c) P  27x  8000  (d) 297  5. (a) Design 2  (b) Design 1

7. (a) 

(b) CA  20x  5, CB  15x  25, CC  10x  50  
(c) 2.2 GB: CA  $49.00, CB  $58.00, CC  $72.00; 
3.7 GB: CA  $79.00, CB  $80.50, CC  $87.00; 
4.9 GB: CA  $103.00, CB  $98.50, CC  $99.00
(d) (i) 4.0 GB  (ii) 4.5 GB  (iii) 5.0 GB  

chapter 1
Section 1.1 ■ pAge 91
1. 12, 4 2   2. IV  3. "1c  a 2 2  1d  b 2 2; 10  

4. a a  c

2
, 

b  d

2
b ; 14, 6 2

5. A15, 1 2 , B11, 2 2 , C12, 6 2 , D16, 2 2 , E14, 1 2 , 
F12, 0 2 , G11, 3 2 , H12, 2 2
7.  9. 
 

1
2! , @2

3

5

(_1, 0)

(_1, _2)

(0, 5)5

y

0 x

 

11. 13. 

  

n Purchase Rent

12  8,980  6,900
24 12,160 13,800
36 15,340 20,700
48 18,520 27,600
60 21,700 34,500
72 24,880 41,400

Data used 
(GB) Plan A Plan B Plan C

1.0 $25.00 $40.00 $60.00
1.5 $35.00 $47.50 $65.00
2.0 $45.00 $55.00 $70.00
2.5 $55.00 $62.50 $75.00
3.0 $65.00 $70.00 $80.00
3.5 $75.00 $77.50 $85.00
4.0 $85.00 $85.00 $90.00

5

5

y

0 x

5

5

y

0 x 5

5

y

0 x

15. 17. 

  

19.  

  

21. (a) !13  (b) A32,  1B   23. (a) 10  (b) 11,  0 2   
25. (a)  (b) 10  (c) 13,  12 2

8

(0, 8)

(6, 16)

−8

8

y

0 x

27. (a)  (b) 7!2  (c) A 
1
2,  

3
2 B

(_4, 5)

(3, _2)

5

5

y

0 x

29. (a)  (b) 4!10  (c) 10,  0 2
y

0 x_4 4

_4

4

(6, _2)

(_6, 2)

 

31. 24  33. Trapezoid, area  9
y

0 x3

5

_3

_5

A(1, 3) B(5, 3)

C(1, _3) D(5, _3)

 

y

0 x3

5

_3

_5

D C

A B

y

0 x5

5

_5

_5

y

0 x5

5

_5

_5

2

1

0

y

x
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35. A16,  7 2   37. Q11,  3 2   41. (b) 10  45. 10,  4 2   
47. 12,  3 2    

y

0 x5

2

_5

R(4, 2)Q(1, 1)

P(_
S

1, _4)
(2, _3)

49. (a)  (b) A52,  3B, A52,  3B
y

0 x_4 4

_4

4

A

B

C
D

51. (a) 18, 5 2   (b) 1a  3, b  2 2   (c) 10, 2 2   
(d) A r 12, 1 2 , B r 10, 4 2 , C r 15, 3 2
53. (a) 5  (b) 31; 25  (c) Points P and Q must be on either the 
same street or the same avenue.  55. 166, 45 2 ; the y-value of the 
midpoint is the pressure experienced by the diver at a depth of  
66 ft.

Section 1.2 ■ pAge 101
1. 2; 3; No  

x y xx, yc

2  
1
2 A2,  

1
2 B

1 0 11, 0 2
0 1

2 A0, 12 B
1 1 11, 1 2
2 3

2 A2, 32 B

1

1

0

y

x

2. y; x; 1  3. x; y; 12   4. 11, 2 2 ; 3  

5. (a) 1a, b 2   (b) 1a,  b 2   (c) 1a, b 2   
6. (a) 3 and 3; 1 and 2  (b) y-axis  7. Yes  8. No  
9. Yes, no, yes  11. No, yes, yes  13. Yes, yes, yes  

15.  17. 

19.  21. 

1

1

y

x 1

1

y

0 x

4−4

2

−4

y

0 x

y

0 x5−5

−5

1

23.  25. 

27.  29. 

  

31.  33. 

  

35.  37. 

  

39.  41. 

  

43.  45. 
 

_1

20

_1 10

 

47. x-intercept 6; y-intercept 6  

2

1

y

0 x

2

5

0

y

x

5−5 0

3

−3

y

x

y

0 x− 4 4

− 4

4

1

1

y

0 x

2

1
0

y

x

y

0 x

5

5

−5

−2

y

0 x− 4

−2

1

4

y

0 x4

4

− 4

_2000

2000

_100 150

_0.2

0.2

_50 50

Answers to Section 1.2 A5
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A6 Answers to Selected Exercises and Chapter Tests

49. x-intercepts !5; y-intercept 5   
51. x-intercept 1

2; y-intercept 1   
53. x-intercept 1; y-intercept 1  
55. x-intercepts 5; y-intercepts 2 
57. x-intercepts 0, 4; y-intercept 0   
59. x-intercepts 2; y-intercepts 4
61. (a) 

 

_1

1

_2 2

 (b) x-intercepts 0, 1; y-intercept 0
63. (a) 

 

_3

1

_5 5

 (b) No x-intercept; y-intercept 2
65. (a) 

 

_2

2

_5 5

 (b) x-intercept 0; y-intercept 0
67. 10, 0 2 , 3 69. 13, 0 2 , 4
 

y 

x 1 0 
1

 

71. 13, 4 2 , 5 

  

y 

x 2 0 
1

y 

x 2 0 

2 

73. 1x  3 2 2  1y  2 2 2  25  

75. x2  y2  65  77. 1x  2 2 2  1 y  5 2 2  25  

79. 1x  7 2 2  1 y  3 2 2  9  81. 1x  2 2 2  1 y  2 2 2  4  

83. 11, 2 2 , 2  85. 12, 5 2 , 4  87. A 
1
2, 0B, 12   89. A14,  

1
4 B, 12   

91. 93. 
 y

0 x4

10

_10

(_2, 5)

 

95. Symmetry about y-axis  
97. Symmetry about the origin  
99. Symmetry about x-axis, y-axis, and the origin  
101.  103. 

  

105.  107. 12p

  

109. (a) 18, 5 2   (b) 1a  3, b  2 2   (c) 10, 2 2   
(d) A r 12, 1 2 , B r 10, 4 2 , C r 15, 3 2
111. (a) 14%, 6%, 2%  (b) 1975–1976, 1978–1982   
(c) Decrease, increase  (d) 14%, 1%  

Section 1.3 ■ pAge 112
1. y; x; 2  2. (a) 3  (b) 3  (c)  

1
3   3. y  2  31x  1 2

4. 6, 4;  
2
3 
x  4;  

2
3   5. 0; y  3  6. Undefined; x  2  

7. (a) Yes  (b) Yes  (c) No  (d) Yes  

8. 

x=_3

y=_3

5

5

y

0 x

  Yes

9. 2  11. 1
5   13. 0  15. 3

4   17. 2, 1
2, 3,  

1
4

y

0 x3

3

_3 _1

(_3, 6)

y

0 x

y

0 x

y

0 x2

2

_2

_2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



19. x  y  4  0  21. 3x  2y  6  0   
23. 3x  y  2  0  25. 5x  y  7  0   
27. 2x  3y  19  0  29. 5x  y  11  0   
31. 8x  y  11  0  33. 3x  y  3  0   
35. y  3  37. x  2  39. 3x  y  1  0   
41. y  5  43. x  2y  11  0  45. x  1   
47. 5x  2y  1  0  49. x  y  6  0  
51. (a)  

(−2, 1)

1

−3

5

y

0 x

 

(b) 3x  2y  8  0 
53. They all have the same slope.  

−8

8

−5 5

b = −6 b = −1
b = −3

b = 0
b = 1
b = 3

b = 6

 

55. They all have the same x-intercept.      

−5

5

−2 8

m = 1.5

m = −1.5

m = 0.75

m = 0.25
m = 0

m = −0.25

m = −0.75

 

57. 1, 3  59. 2, 7

1

1

0

y

x

 
1

1

0

y

x

61.  
4
5, 2 63. 0, 4

5−5 0

−3

3

y

x

 

5−5

5

y

0 x

65. Undefined, none 67. 2, 5

1

1

0

y

x

 

1

1

0

y

x

69. 2, 3 71.  
2
3, 4

1

1

0

y

x

 

1

4

0

y

x

73. Parallel  75. Perpendicular  77. Neither  
83. x  y  3  0  85. (b) 4x  3y  24  0  
87. (a) The slope represents an increase of 0.02C every year, 
and the T-intercept is the average surface temperature in 1950.   
(b) 17.0C  

89. (a) 

10 20 30 40 50 600

200

100

y

x

  (b) The slope represents 
a decrease of 4 spaces 
rented for each one dollar 
increase in rental price, 
the y-intercept indicates 
that 200 spaces are rented 
if there is no increase in 
price, and the x-intercept 
indicates that no spaces 
are rented with an 
increase of $50 in rental 
price.

91. (a) 

(b) 40
93. (a) V  950t  4000  

(b) 

4000

0 5

y

x

 

(c) The slope represents a decrease of $950 each year in the 
value of the computer, and the V-intercept is the original price of 
the computer.  (d) $1150

C 30 20 10 0 10 20 30

F 22 4 14 32 50 68 86

Answers to Section 1.3 A7
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A8 Answers to Selected Exercises and Chapter Tests

Section 1.4 ■ pAge 122

1. (a) 
b  "b2  4ac

2a
  (b) 1

2, 1, 4; 4, 2  

2. (a) Factor into 1x  1 2 1x  5 2  and use the Zero-Product 
 Property.  (b) Add 5 to each side, then complete the square by 
adding 4 to both sides.  (c) Insert coefficients into the Quadratic 
Formula.  3. b2  4ac; two distinct real; exactly one real; no real

5. 3, 5  7. 2, 3  9.  
1
5 , 2  11.  

1
2 , 3  13.  

5
6, 92   

15. 20, 25  17. 4  !15  19. 3  2 !5  21. 1
2 ,  

3
2   

23. 21, 1  25. 1 
2!15

5
  27.  

7

4


"17

4   

29. 2, 6  31. 10, 2  33.  
3
2 , 1  35. 

3  2 !6

3
  37. 2

3   

39.  
9
2, 12   41. No real solution  43. 

8  !14

10
  

45. No real solution  47. 0.248, 0.259  49. No real solution  

51. t 
√0  "√ 

2
0  2gh

g
  53. x 

2h  "4h2  2A

2
  

55. s 
1a  b  2c 2  "a2  b2  4c2  2ab

2

57. 2  59. 1  61. No real solution  63. 
1
a

  65. k  20  

67. 19 and 36  69. 25 ft by 35 ft  71. 60 ft by 40 ft  
73. 48 cm  75. 13 in. by 13 in.  77. 120 ft by 126 ft  
79. 50 mi/h (or 240 mi/h)  81. 6 km/h  83. 4.24 s  
85. (a) After 1 s and 1 

1
2  s  (b) Never  (c) 25 ft  

(d) After 1 
1
4  s  (e) After 2 

1
2  s  

87. (a) After 17 years, on Jan. 1, 2019   
(b) After 18.612 years, on Aug. 12, 2020   
89. 30 ft; 120 ft by 180 ft  91. Irene 3 h, Henry 4 

1
2  h  

93. 215,000 mi

Section 1.5 ■ pAge 130
1. 1  2. 3, 4  3. (a) 3  4i  (b) 9  16  25  
4. 3  4i  5. Yes  6. Yes  7. Real part 5, imaginary part 7   
9. Real part  

2
3 , imaginary part  

5
3   11. Real part 3, imaginary 

part 0  13. Real part 0, imaginary part  
2
3   

15. Real part !3, imaginary part 2  17. 3  7i  19. 1  10i  

21. 3  5i  23. 2  2i  25. 19  4i  27. 4  8i   
29. 30  10i  31. 27  8i  33. 29  35. 21  20i  37. i  

39. 8
5  1

5 i  41. 4  2i  43. 2  4
3 i  45. i  47. i  

49. 243i  51. 1  53. 7i  55. 6  

57. 13  !5 2  13  !5 2 i  59. 2  61. 7i  

63. 
1

2


!7

2
 i  65.  

3

2


!19

2
 i  67.  

1

2


!3

2
 i  

69. 1
2  1

2 i  71. 1 
!6

6
 i  73. 8  2i  75. 25

Section 1.6 ■ pAg  e 138
1. (a) factor  (b) 0, 4  2. (a) !2x  x  (b) 2x  x2  
(c) 0, 2  (d) 0  3. quadratic; x  1; W2  5W  6  0  

4. quadratic; x3; W2  7W  8  0  5. 0, 1  7.  5, 0, 5  

9. 0, !3 3  11. 0, #3 5
2   13. 2, 0  15. 0, 2, 3  

17. 0, 2  !2  19.  
5
3,  

4
3   21. !2, 5  23. 2  25. 1  

27.  
7
5 , 2  29. 50, 100  31. !2  33. 4,  

7
3   

35. 
5  4 !2

7
  37. 7  39. 4  41. 2  43. 4  45. 5  

47. 8  49. 1, !3  51. No real solution  53. 1, 3  

55. 7, 0  57.  
3
2,  

3
4   59. 3 !3, 2 !2  61. 1, 0, 3  

63. 5  65. 27, 729  67.  
1
2   69. 20  71. 3, 

1  !13

2
  

73. 2  75. !a, 2!a  77. "a2  36  79. 50  
81. 89 days  83. 7.52 ft  85. 4.63 mm  87. 16 mi; No  
89. 49 ft, 168 ft, and 175 ft  91. 132.6 ft

Section 1.7 ■ pAge 148
1. (a)   (b)   (c)   (d)   
2. 1, 2

Interval x2`, 21c x21, 2c x2, `c

Sign of x 1 1   
Sign of x 2 2   

Sign of xx 1 1c/xx 2 2c   

Yes, 2; 31, 2 2   

3. (a) No  (b) No  4. (a) Divide both sides by 3.   
(b) Add 2 to both sides.  5. E56, 1, !5, 3, 5F   7. 53, 56   

9. 55, 1, !5, 3, 56   

11. A `, 65 D  13. 14, ` 2
6
5  

15. 1`, 2 2  17. A`,  
1
2 B

−2  

19. A`, 23 D  21. A16
3 , ` B

2
3

 

23. 1`, 1 4  25. 33, 1 2
−1 0  

27. C13, 5D  29. C92, 5B
1
3

5  

31. A52, 11
2 D  33. 12, 3 2

11
2

5
2

 

35. A`,  
7
2 D < 30, ` 2  37. 33, 6 4

0− 7
2

 

39. 1`, 1 4 < C12, ` B  41. 11, 4 2
1
2

−1  

43. 1`, 3 2 < 16, ` 2  45. 12, 2 2
−3 6  

4

1
2

−

16
3

−1−3

9
2

5

−2 3

6−3

4−1

2−2
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Answers to Chapter 1 Review A9

47. 1`, 2 4 < 31, 3 4  49. 1`, 2 2 < 12, 4 2
3−2 1  

51. 31, 3 4  53. 12, 0 2 < 12, ` 2
−1 3  

55. 1`, 3 4 < A12, ` B  57. A`, 3
2 B

1
2

−3  

59. 1`, 5 2 < 316, ` 2  61. 12, 0 2 < 12, ` 2
165  

63. 32, 1 2 < 10, 1 4  65. 32, 0 2 < 11, 3 4
10−1−2  

67. A3,  
1
2 B < 12, ` 2  

− 1
2

2−3  

69. 1`, 2 4 < 31, 2 2 <  12, ` 2
−2 21

71. 1`, 1 2 < 11, ` 2
1−1

73. 4
3  x  4

3  75. x  2 or x  7  77. x 
c

a


c

b
  

79. 68  F  86  81. More than 200 mi
83. Between 12,000 mi and 14,000 mi  
85. (a)  

1
3 P  560

3   (b) From $215 to $290    
87. Distances between 20,000 km and 100,000 km   
89. From 0 s to 3 s  91. Between 0 and 60 mi/h   
93. Between 20 and 40 ft

Section 1.8 ■ pAge 152
1. 3, 3  2. (a) 33, 3 4   (b) 1`, 3 4 , 33, ` 2   3. (a)  3  
(b)  3  4. (a) Rewrite as two separate equations: 2x  1  5 
and 2x  1  5.  (b) Rewrite as: 8  3x  2  8.  
5. 4  7. 5  9. 1, 5  11. 4.5, 3.5  13. 4, 7  

15. 3, 1  17. 8, 2  19.  
25
2 , 35

2   21.  
3
2,  

1
4   

23. 35, 5 4   25. A`,  
7
2 B < A72, ` B   27. 36, 14 4   

29. 1`, 2 4 < 30, ` 2   31. 1`, 2 4 < 31, ` 2   

33. 31.3, 1.7 4   35. 14, 8 2   37. 16.001, 5.999 2   

39. 16, 2 2   41. C 
1
2, 32 D   43. A`,  

1
2 B < A13, ` B   

45. 34, 1 4 < 31, 4 4   47. A 
15
2 , 7B < A7,  

13
2 B   

49. 0  x 0  3  51. 0  x  7 0  5  53. 0  x 0  2  

55. 0  x 0  3  57. (a) 0  x  0.020 0  0.003
(b) 0.017  x  0.023  

Section 1.9 ■ pAge 158
1. x  2. above  3. (a) x  1, 0, 1, 3  (b) 31, 0 4 < 31, 3 4
4. (a) x  1, 4  (b) 11, 4 2   5. 4  7. 5

14   

9. 4!2  5.7  11. No solution  13. 2.5, 2.5  

15. 5  2!4 5  7.99, 5  2!4 5  2.01  17. 3.00, 4.00  

19. 1.00, 2.00, 3.00  21. 1.62  23. 1.00, 0.00, 1.00  25. 4

4−2

20−2

3
2

−

20−2

310−2

27. No solution  29. 2.55  31. 2.05, 0, 1.05  
33. 32.00, 5.00 4   35. 1`, 1.00 4 < 32.00, 3.00 4   
37. 11.00, 0 2 < 11.00, ` 2   39. 1`, 0 2   41. 11, 4 2   
43. 31, 3 4   45. 2.27  

47. (a) 

0 450

−5000

20,000   (b) 101 cooktops 
(c) 279  x  400

Section 1.10 ■ pAge 164
1. directly proportional; proportionality  2. inversely  
proportional; proportionality  3. directly proportional; 

inversely proportional  4. 1
2 xy  

5. (a) Directly proportional  (b) Not proportional  
6. (a) Not proportional  (b) Inversely proportional  
7. T  kx  9. √  k/z  11. y  ks/t  13. z  k!y  

15. V  kl„h  17. R 
kP2t2

b3   19. y  7x  21. A 
21
r

  

23. A 
18x

t
  25. W  360/r2  27. C  16l„h  

29. R 
27.5

!x
  31. (a) z  k  

x3

y2   (b) 27
4   

33. (a) z  kx3y5  (b) 864  
35. (a) F  kx  (b) 7.5  (c) 45 N  
37. (a) P  ks3  (b) 0.012  (c) 324  
39. 46 mi/h  41. 5.3 mi/h  
43. (a) P  kT/V  (b) 8.3  (c) 51.9 kPa  

45. (a) L  k/d2  (b) 7000  (c) 1
4   (d) 4  

47. (a) R  kL/d2  (b) 0.002916  (c) R  137   (d) 3
4   

49. (a) 160,000  (b) 1,930,670,340  
51. (a) T  k !l  (b) quadruple the length l  
53. (a) f  k/L  (b) Halves it  55. 3.47  1014 W/m2

chApter 1 revieW ■ pAge 169
1. (a) y

0 x4

4

_4

_4

8

12
Q (_5, 12)

P (2, 0)

  (b) !193  (c) A 
3
2,  6B

(d) y   
12
7  x  24

7   (e) 1x  2 2 2  y2  193 
y

0 x

4

_4

_4

8

12(_5, 12)

24
7

2

 

y

0 x8

8

_8

_8

(2, 0)
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A10 Answers to Selected Exercises and Chapter Tests

3. (a)  (b) 2!89  (c) 11, 6 2

(d) y   
8
5 x  38

5   (e) 1x  6 2 2  1y  2 2 2  356 

 

(_6, 2)

4

4

y

0 x

5.  

y

0 x5

3

7. B  9. 1x  5 2 2  1 y  1 2 2  26  
11. (a) Circle   
(b) Center 11, 3 2 , radius 1 

y 

x 1 0 
1 

 

13. (a) No graph  
15. 17.

y

0 x_2 2

_2

2

 

19. 21.

0 x3_3
_4

y

4

 

Q(4, _14)

P(_6, 2)

4

4

y

0 x

4

4

y

0 x

38
5

−

2

2

y

0 x

y

0 x2

2

23. (a) Symmetry about y-axis   
(b) x-intercepts 3, 3; y-intercept 9   
25. (a) Symmetry about y-axis  
(b) x-intercept 0; y-intercepts 0, 2  
27. (a) Symmetry about x- and y-axes and the origin   
(b) x-intercepts 4, 4; no y-intercept
29. (a) Symmetry about the origin   
(b) x-intercepts 1, 1; y-intercepts 1, 1

31. (a) 

8_2

10

_10

  (b) x-intercepts 0, 6;  
y-intercept 0

33. (a) 

6_3

10

_25

  (b) x-intercepts 1, 0, 5; 
y-intercept 0

35. (a) y  2x  6  (b) 2x  y  6  0  

(c) 

1

2

0

y

x

37. (a) y  2
3 
x  16

3   (b) 2x  3y  16  0  

(c) 

2

1

0

y

x

39. (a) x  3  (b) x  3  0  

(c) 

1

1

0

y

x
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Answers to Chapter 1 Test A11

41. (a) y  2
5 x  3

5   43. (a) y  2x  

(b) 2x  5y  3  0   (b) 2x  y  0  

(c)  (c) 

45. Parallel  
47. (a) The slope represents a stretch of 0.3 in. for each  
one-pound increase in weight. The S-intercept represents the 
unstretched length of the spring.  (b) 4 in.

49. 2, 7  51. 1, 1
2  53. 0,  

5
2   55. 

2  !7

3
  

57. 
3  !6

3
  59. 3  61. 1  63. 3, 11  

65. (a) 3  i  (b) 8  i  67. (a) 6
5  8

5 
i  (b) 2  

69. 4i  71. 3  i  73. 4, 4i  

75. 1
4 1!329  3 2  3.78 mi/h  

77. 12 cm, 16 cm  

79. 13,  ` 2  81. C10
3 , ` B

−3  

83. 1`,  6 2 < 12,  ` 2  85. 34, 1 2
−6 2  −4 −1

87. 1`,  2 2 < 12,  4 4  89. 32, 84
42−2  82

91. 1`, 1 4 < 30, ` 2
 

93. (a) C3, 83 D  (b) 10, 1 2
8
3

−3
 

95. 1, 6  97. 31, 6 4   99. 1`, 0 4 < 34, ` 2   
101. 1, 7  103. 2.72, 1.15, 1.00, 2.87  105. 31, 3 4    
107. 11.85, 0.60 2 < 10.45, 2.00 2    
109. x2  y2  169, 5x  12y  169  0  
111. M  8z  113. (a) I  k/d2  (b) 64,000  (c) 160 candles  
115. 11.0 mi/h  

chApter 1 teSt ■ pAge 172
1. (a) S13,  6 2   y

0 x1

1

Q

P

S

R

  (b) 18

1

1

y

0 x 2

6

y

0 x

10
3

−1 0

0 1

2. (a) y

0 x1

_4

(b)  x-intercepts 2, 2; y-intercept 4  
(c)  Symmetric about y-axis  

3. (a) 

Q(5, 6)

P(−3, 1)

1

1

0

y

x

(b) !89  (c) A1,  
7
2 B   (d) 5

8   (e) y   
8
5 x  51

10  

(f) 1x  1 2 2  Ay  7
2 B2  89

4

4. (a) 10,  0 2 , 5    (b) 12,  1 2 , 3   

(0, 0)

−2
−2

2

2

y

x

    

(2, −1)

0 4

2

y

x

(c) 13,  1 2 , 2  

(−3, 1)

−5 0

3

y

x

5. (a) Symmetry about  (b) No symmetry;  
x-axis; x-intercept 4;  x-intercept 2; y-intercept 2  
y-intercepts 2 and 2

 

y

x10
1

y

x10
1
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A12 Answers to Selected Exercises and Chapter Tests

6. (a) x-intercept 5, y-intercept 3 

(b)   (c) y  3
5 x  3  (d) 3

5  (e)  
5
3

7. (a) 3x  y  3  0  (b) 2x  3y  12  0

8. (a) 4C  (b)  

1

100100

T

x

(c) The slope represents an increase of 0.08C for each  
one-centimeter increase in depth, the x-intercept is the depth at 
which the temperature is 0C, and the T-intercept is the  
temperature at ground level.

9. (a) 3, 4  (b) 1 
!2

2
  (c) 3  (d) 1, 16  

(e) 1, !2  (f) 2
3, 22

3   

10. (a) 7  i  (b) 1  5i  (c) 18  i  (d) 6
25  17

25  
i  

(e) 1  (f) 6  2i  

11. 1  
!2

2
 i  12. 50 ft by 120 ft  

13. (a) 34,  3 2  _4 3

    (b) 12,  0 2 < 11,  ` 2  _2 0 1

    (c) 11,  7 2  1 7

    (d) 11,  4 4  _1 4

14. Between 41F and 50F  
15. 0  x  6  
16. (a) 2.94, 0.11, 3.05  (b) 31, 2 4
17. (a) M  k„h2/L  (b) 400  (c) 12,000 lb

FocuS on Modeling ■ pAge 179
1. (a) 

Regression line

Femur length (cm)

H
ei

gh
t (

cm
)

0

150

160

170

180

x

y

35 40 45 50 55

(b) y  1.8807x  82.65  (c) 191.7 cm

y

x20

2

3. (a) y

0 x

Regression line

Diameter (in.)

A
ge

 (
yr

)

100

80

60

40

20

161412108642

 

(b) y  6.451x  0.1523  (c) 116 years

5. (a) 

50 60 70 80 90

Temperature (°F)

C
hi

rp
in

g 
ra

te
 (

ch
ir

ps
/m

in
)

50

100

150

200

y

x0

Regression line

(b) y  4.857x  220.97  (c) 265 chirps/min

7. (a) 

10 20 30 80 9060 7040 50 100

Flow rate (%)

M
os

qu
ito

 p
os

iti
ve

 r
at

e 
(%

)

15

20

5

10

25

Regression line

y

0 x

(b) y  0.168x  19.89  (c) 8.13%

9. (a) 

1920 1940 1960 1980 2000

L
if

e 
ex

pe
ct

an
cy

 (
ye

ar
s)

55

60

65

70

80

75

y

0 x

Regression line

(b) y  0.2708x  462.9  (c) 80.4 years

chapter 2
Section 2.1 ■ pAge 191
1. (a) f 11 2  0   (b) f 12 2  9   (c) f 12 2  f 11 2  9   
2. domain, range  3. (a) f and g  (b) f 15 2  10, g15 2  0   
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Answers to Section 2.1 A13

4. (a) square, add 3  

(b) 
x 0 2 4 6

f xxc 19 7 3 7

5. one; (i)  6. (a) Yes  (b) No  7. f 1x 2  3x  5  
9. f 1x 2  1x  1 2 2  11. Multiply by 2, then add 3  
13. Add 1, then multiply by 5  

15. 
1 0

2 1

25

subtract 1,
take square root

subtract 1,
take square root

subtract 1,
take square root

(input) (output)

 17. 

19. 3, 3, 6,  
23
4   21. 1, 

5

3
, 0, 

1  2a

3
, 

1  2a

3
, 

3  2a

3

23. 0, 15, 3, a2  2a, x2  2x, 
1

a2 
2
a

  

25.  

1

3
, undefined, 

1

3
, 

1  a

1  a
, 

2  a

a
, 

2  x2

x2

27. 3, 5, 3, 1  2!2, a2  6a  5, x2  2x  3, 
x4  2x2  3
29. 6, 2, 1, 2, 2 0 x 0 , 21x2  1 2   31. 4, 1, 1, 2, 3   
33. 8,  

3
4 , 1, 0, 1  35. x2  4x  5, x2  6   

37. x2  4, x2  8x  16  39. 12  41. 21  
43. 5  2a, 5  2a  2h, 2  45. 5, 5, 0  

47. 
a

a  1
, 

a  h

a  h  1
, 

1

1a  h  1 2 1a  1 2
49. 3  5a  4a2, 3  5a  5h  4a2  8ah  4h2,  
5  8a  4h  51. 1`, ` 2 , 1`, ` 2    

53. 32, 6 4 , 36, 18 4   55. 5x 0  x ? 36   57. 5x 0  x ? 16
59. 31, ` 2   61. 1`, ` 2   63. A`, 12 D   65. 32, 3 2 < 13, ` 2   
67. 1`, 0 4 < 36, ` 2   69. 14, ` 2   71. A12, ` B   

73. (a) f 1x 2 
x

3


2

3

(b) 
x f xxc

2 4
3

4 2
6 8

3

8 10
3

 (c) 

x 

y 

1 0 

1

75. (a) T1x 2  0.08x 

(b) 
x Txxc

2 0.16
4 0.32
6 0.48
8 0.64

 (c) 

x

y

2

2

0

x f xxc

1 8
0 2
1 0
2 2
3 8

77. 1`, ` 2 , 51, 56    
79. (a) 50, 0  (b) V10 2  is the volume of the full tank, and 
V120 2  is the volume of the empty tank, 20 min later.  

(c) 
x Vxxc

0 50
5 28.125
10 12.5
15 3.125
20 0

 

(d) 50 gal
81. (a) 8.66 m, 6.61 m, 4.36 m   
(b) It will appear to get shorter.  
83. (a) √10.1 2  4440, √10.4 2  1665  
(b) Flow is faster near central axis.

(c) 
r √xr c

0 4625
0.1 4440
0.2 3885
0.3 2960
0.4 1665
0.5 0

 

(d) 4440 cm/s 
85. (a) T15000 2  0, T112,000 2  960, T125,000 2  5350 
(b) The amount of tax paid on incomes of 5000, 12,000,  
and 25,000

87. (a) T1x 2  e75x if 0  x  2
150  501x  2 2 if x  2

(b)  $150, $200, $300  (c) Total cost of staying at the hotel
89. 

Days

Height
of grass

0

91.
T

0 t2 4 6 8 10 12

50

52

54

56

58

60
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A14 Answers to Selected Exercises and Chapter Tests

Section 2.2 ■ pAge 202
1. f 1x 2 , x2  2, 7, 7  

x f xxc xx, yc

2 2 12, 2 2
1 1 11, 1 2
0 2 10, 2 2
1 1 11, 1 2

2 2 12, 2 2

   

1

1

0

y

x

2. 10  3. 7  4. (a) IV  (b) II  (c) I  (d) III
5.   7. 

1

1

0

y

x

 

9.  11. 

 

y
5

x10

13.  15. 
y

100

x10

 

17.  19. 
y

2

x10

 

y

x20

2

_2
_2

y
2

_5

0
x5_5

y

0 x4_4
_4

4

x 

y 

1 0 
1 

21.  23. 
y

1

t1_1 0

 

25.  27. 
y

0 x5

5

_5

_5
 

29. (a) (b)

−5

5

−5 5

 −10

10

−10 10

(c) (d)

−5

20

−2 10

 −100

100

−10 10

Graph (c) is the most appropriate.
31. (a) (b)

−2

2

−2 2

 −10

10

−3 3

(c) (d)

−10

5

−3 3

 −10

10

−10 10

Graph (c) is the most appropriate.

y

0 x5

5

_5
_2

y

0 x5

5

_5
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Answers to Section 2.2 A15

33.  35. 

 

y

0 x5

4

_5

37.  39. 
y

0 x3

3

_3

_3

 

41.  43. 
y

0 x5

5

_5

 

y

0 x5

5

_5

45.  47. 

 

7

7_7

_7

49. f 1x 2  •
2 if x  2
x if 2  x  2
2 if x  2

51. (a) Yes  (b) No  (c) Yes  (d) No   
53. Function, domain 33, 24, range 32, 24  55. Not a function   
57. Yes  59. No  61. No  63. No  65. Yes  67. Yes  
69. (a)  (b)

10

5_5

_10

c=6 c=4
c=2

c=0

 

(c) If c  0, then the graph of f 1x 2  x 2  c is the same as the 
graph of y  x2 shifted upward c units. If c  0, then the graph 
of f 1x 2  x2  c is the same as the graph of y  x2 shifted 
downward c units.

y

0 x5

2

_5
_2

y

0 x
3

3

_3

_2

y

0 x1

1

10

5_5

_10

c=0 c=_2
c=_4

c=_6

71. (a)  (b) 

 

10

10_10

_10

c=0c=_2
c=_4

c=_6

(c) If c  0, then the graph of f 1x 2  1x  c 2 3 is the same as 
the graph of y  x3 shifted to the right c units. If c  0, then the 
graph of f 1x 2  1x  c 2 3 is the same as the graph of y  x3 
shifted to the left 0 c 0  units.
73. (a)  (b) 

 

2

�2

�3 3

c=1
5

c=1
3

c=1

(c) Graphs of even roots are similar to !x; graphs of odd 
roots are similar to !3 x. As c increases, the graph of y 

c!x 
becomes steeper near 0 and flatter when x  1.
75. f 1x 2   

7
6 x  4

3, 2  x  4  

77. f 1x 2  "9  x2, 3  x  3  

79. 

0

0.005

10 100

81. (a) E1x 2  e 6  0.10x if 0  x  300
36  0.061x  300 2 if x  300

(b) 

83. P1x 2  d  

0.49 if 0  x  1
0.70 if 1  x  2
0.91 if 2  x  3
1.12 if 3  x  3.5

 

P

0.20
0.40
0.60
0.80
1.00
1.20

x1 2 3 40

10

10_10

_10

c=0 c=2
c=4

c=6

�1

3

�1 4

c=1
2

c=1
4

c=1
6

1000

10

x (kWh)

E (dollars)
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A16 Answers to Selected Exercises and Chapter Tests

Section 2.3 ■ pAge 214
1. a, 4, 0, f 13 2  f 11 2  4  2. x, y, 1`, ` 2 1`, 7 4    
3. (a) increase, 1`, 2 2 , 14, 5 2   (b) decrease, 12, 4 2 , 15, ` 2    
4. (a) largest, 7, 6, 5  (b) smallest, 2, 4  5. x; x; 1, 7, 31, 7 4    
6. (a) 2x  1, x  4; 1  (b) 2x  1, x  4, higher; 
1`, 1 2   7. (a) 1, 1, 3, 4  (b) Domain 33, 4 4 , range 
31, 4 4   (c) 3, 2, 4  (d) 3  x  2 and x  4  (e) 1   
9. (a) f 10 2   (b) g13 2   (c) 2, 2   
(d) 5x 0 4  x  2 or 2  x  36   (e) 5x 0 2  x  26   
11. (a)  13. (a) 

 

0

y

1

x2

(b)  1`, ` 2 , 1`, ` 2  (b)  32, 5 4 , 34, 3 4
15. (a)  17. (a) 

y

2

x10

 

(b)  33, 3 4 , 31, 8 4  (b) Domain 1`, ` 2 , 
 range 31, ` 2

19. (a)  21. (a)

−1

3

−1 9

 −0.8

4.8

−4.75 4.75

(b) Domain 31, ` 2 ,  (b) Domain 34, 44,  
range 30, ` 2  range 30, 44
23. (a) x  3  (b) x  3  
25. (a) x  2, 1  (b) 2  x  1   
27. (a) x  4.32, 1.12, 1.44   
(b) 4.32  x  1.12 or x  1.44   
29. (a) x  1, 0.25, 0.25   
(b) 1  x  0.25 or x  0.25   
31. (a) Domain 31, 4 4 , range 31, 3 4   (b) Increasing on 
11, 1 2  and 12, 4 2 , decreasing on 11, 2 2    
33. (a) Domain 33, 3 4 , range 32, 2 4   (b) Increasing on 
12, 1 2  and 11, 2 2 , decreasing on 13, 2 2 , 11, 1 2 , and 
12, 3 2      

y

2

x10

_3

10

_6 2

35. (a)  37. (a) 
10

_10

7_2

 

20

_25

5_3

(b) Domain 1`, ` 2 ,  (b) Domain 1`, ` 2 ,  
range 36.25, ` 2  range 1`, ` 2
(c) Increasing on 12.5, ` 2 ;  (c) Increasing on 1`, 1 2 ,   
decreasing on 1`, 2.5 2  12, ` 2 ; decreasing on 11, 2 2
39. (a) 41. (a) 

3

_3

5_5

 

5

_5

10_10

(b) Domain 1`, ` 2 ,  (b) Domain 1`, ` 2 ,  
range 1`, ` 2  range 30, ` 2
(c) Increasing on  (c) Increasing on 10, ` 2 ;  
1`, 1.55 2 , 10.22, ` 2 ;  decreasing on 1`, 0 2  
decreasing on 11.55, 0.22 2
43. (a) Local maximum 2 when x  0; local minimum 1 when  
x  2, local minimum 0 when x  2  (b) Increasing on 
12, 0 2 < 12, ` 2 ; decreasing on 1`, 2 2 < 10, 2 2    
45. (a) Local maximum 0 when x  0; local maximum 1 when  
x  3, local minimum 2 when x  2, local minimum 1 
when x  1  (b) Increasing on 12, 0 2 < 11, 3 2 ; decreasing on 
1`, 2 2 < 10, 1 2 < 13, ` 2    
47. (a) Local maximum  0.38 when x  0.58; local mini-
mum  0.38 when x  0.58  (b) Increasing on 
1`, 0.58 2 < 10.58, ` 2 ; decreasing on 10.58, 0.58 2    
49. (a) Local  maximum  0 when x  0;  
local minimum  13.61 when x  1.71, local  
minimum  73.32 when x  3.21   
(b) Increasing on 11.71, 0 2 < 13.21, ` 2 ; decreasing on 
1`, 1.71 2 < 10, 3.21 2    
51. (a) Local maximum  5.66 when x  4.00  (b) Increasing 
on 1`, 4.00 2 ; decreasing on 14.00, 6.00 2    
53. (a) Local maximum  0.38 when x  1.73;  local mini-
mum  0.38 when x  1.73  (b) Increasing on 
1`, 1.73 2 < 11.73, ` 2 ; decreasing on 11.73, 0 2 < 10, 1.73 2    
55. (a) 500 MW, 725 MW  (b) Between 3:00 a.m. and  
4:00 a.m.  (c) Just before noon  (d) 100 MW   
57. (a)  Increasing on 10, 30 2 < 132, 68 2 ; decreasing on 
130, 32 2   (b) He went on a crash diet and lost weight, only to 
regain it again later.  (c) 100 lb   
59. (a) Increasing on 10, 150 2 < 1300, ` 2 ; decreasing on 
1150, 300 2   (b) Local maximum when x  150; local minimum 
when x  300  (c) 50 ft   
61. Runner A won the race. All runners finished. Runner B fell 
but got up again to finish second.
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63. (a)

100

480

0
300

(b) Increases  65. 7.5 mi/h  

Section 2.4 ■ pAge 223

1. 
100 miles

2 hours
 50 mi/h  2. 

f 1b 2  f 1a 2
b  a

  3. 
25  1

5  1
 6

4. (a) secant  (b) 3  5. (a) Yes  (b) Yes  6. (a) No   
(b) No  7. (a) 2  (b) 2

3   9. (a) 4  (b)  
4
5   11. (a) 3   

(b) 3  13. (a) 5  (b) 1  15. (a) 51  (b) 17   
17. (a) 600  (b) 60  19. (a) 5h2  30h  (b) 5h  30  

21. (a) 
1  a

a
  (b)  

1
a

  23. (a) 
2h

a1a  h 2   (b)  

2

a1a  h 2   

25. (a) 1
2   27. f ; g; 0, 1.5  29. 0.25 ft/day   

31. (a) 245 persons/year  (b) 328.5 persons/year   
(c) 1997–2001  (d) 2001–2006  33. (a) 14 players/year   
(b) 18 players/year  (c) 103 players/year  (d) 2006–2007, 
2004–2005  35. First 20 minutes: 4.05°F/min, next 20 minutes: 
1.5°F/min; first  interval  37. (a) All 10 m/s  (b) Skier A 
started quickly and slowed down, skier B maintained a constant 
speed, and skier C started slowly and sped up.  

Section 2.5 ■ pAge 231
1. (a) linear, a, b  (b) line  2. (a) 5  (b) line, 5, 7   
3. 15  4. 15 gal/min  5. Upward  6. Yes, 0, 0  7. Yes, 
f 1x 2  1

3 
x  3  9. No  11. Yes, f 1x 2  1

5 
x  1

5  13. No  
15. 2 17.  

2
3

y

2

x10

 

19. (a)  21. (a) 
y

1
x10

 

(b) 2  (c) 2 (b) 0.5  (c) 0.5

y

2

t20

y

1

t10

23. (a)  25. (a) 
y

10

t20

 

(b)  
10
3   (c)  

10
3  (b)  

3
2   (c)  

3
2

27. f 1x 2  3x  1  29. h1x 2  1
2 
x  3   

31. (a) 3
2   (b) f 1x 2  3

2 
x  7   

33. (a) 1  (b) f 1x 2  x  3   
35. (a)  

1
2   (b) f 1x 2   

1
2 x  2  

37.  39. (a)
y

1
t1

1
2a=

a=1
a=2

 

As a increases, the graph of (b) 150  
f becomes steeper and the (c) 150,000 tons/year
rate of change increases. 
41. (a) V 1 t 2  0.5t  2  (b) 26 s  
43. (a) 1

12, H1x 2  1
12 

x  (b) 12.5 in.  
45. (a) Jari  (b) Jade: 60 mi/h; Jari: 70 mi/h   
(c) Jade: f 1 t 2  t  10; Jari g1 t 2  7

6 t  47. 3.16 mi 
49. (a) C1x 2  1

4 x  260
(b) 1

4 (c) $0.25/mi
 

Section 2.6 ■ pAge 242
1. (a) up  (b) left  2. (a) down  (b) right  3. (a) x-axis   
(b) y-axis  4. (a) II  (b) I  (c) III  (d) IV  5. Symmetric 
about the y-axis  6. Symmetric about the origin  7. (a) Shift 
downward 1 unit  (b) Shift to the right 2 units  9. (a) Reflect 
about the y-axis  (b) Stretch vertically by a factor of 3   
11. (a) Shift to the right 5 units, then upward 2 units   
(b) Shift to the left 1 unit, then downward 1 unit   
13. (a) Reflect in the x-axis, then shift upward 5 units   
(b) Stretch vertically by a factor of 3, then shift downward  
5 units  15. (a) Shift to the left 5 units, stretch vertically by a 
factor of 2, then shift downward 1 unit  (b) Shift to the right  
3 units, shrink vertically by a factor of 1

4, then shift upward  
5 units  

y

1

t10

T

32,000

34,000

36,000

38,000

x10 20 300

C

100

300

200

400

600

500

x200 600 1000 14000

Answers to Section 2.6 A17
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A18 Answers to Selected Exercises and Chapter Tests

17. (a) Shrink horizontally by a factor of 1
4   

(b) Stretch horizontally by a factor of 4  19. (a) Shift to the  
left 2 units  (b) Shift upward 2 units  21. (a) Shift to the left  
2 units, then shift downward 2 units  (b) Shift to the right  
2 units, then shift upward 2 units  
23. (a) (b)

 

x 

y 

1 0 

1 

(c) (d)

 

x 

y 

1 0 

1 

25. II  27. I  
29.  31. 

y

1
x10
 

33. 35.

x

y

10

5

 

37. 39.

x 

y 

1 0 

5 

 

x 

y 

1 0 

2 

x 

y 

2 0 
1 

x 

y 

1 

1 

y

1
x10

x 

y 

2 0 

1 

41. 43.

 

x 

y 

2 0 
2 

45. 47.

 

x 

y 

2 0 

2 

49. 51.

 

x

y

40

1

53. y  x2  3  55. y  !x  2  57. y  0  x  2 0  5  

59. y  !4 x  1  61. y  21x  3 2 2  2  

63. g1x 2  1x  2 2 2  65. g1x 2  0  x  1 0  2  

67. g1x 2  !x  2  69. (a) 3  (b) 1  (c) 2  (d) 4  
71. (a) (b)

x 

y 

1 

1 

0 

 

x 

y 

1 

1 

0 

(c) (d)

x 

y 

1 

1 
0 

 

x 

y 

1 

1 

0 

(e) (f)

x 

y 

1 

2 

0 

 

x 

y 

1 

1 

0 

x 

y 

1 0 
1 

x 

y 

1 0 
2 

x 

y 

2 0 
2 
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73. (a)  (b) 
y

0 x6

2

 

y

0 x6

2

75. 
y

0 x3

3

_3

_3

77. 8

8_8

_2

(a)

(b)

(c)

(d)

  

For part (b) shift the graph in (a) to the left 
5 units; for part (c) shift the graph in (a) to 
the left 5 units and stretch vertically by a 
factor of 2; for part (d) shift the graph in (a) 
to the left 5 units, stretch vertically by a fac-
tor of 2, and then shift upward 4 units.

79. 4

6_4

_4

(a) (b)

(c) (d)

  

For part (b) shrink the graph in (a) vertically 
by a factor of 1

3; for part (c) shrink the graph 
in (a) vertically by a factor of 1

3 and reflect in 
the x-axis; for part (d) shift the graph in (a) to 
the right 4 units, shrink vertically by a factor 
of 1

3, and then reflect in the x-axis.

81. 4

5_5

_4

1 2 4

(b) (a) (c)

   

The graph in part (b) is shrunk horizontally 
by a  factor of 1

2 and the graph in part (c) is 
stretched by a  factor of 2.

83. Even

x 

y 

1 0 
1 

 

85. Neither 
87. Odd 

y

0 x5

3

_5

_3

89. Neither  
91. (a)  (b) 

y

x2−2

3

−2

0

 

y

x2−2

2

0

93. To obtain the graph of g, reflect in the x-axis the part of the 
graph of f that is below the x-axis.  
95. (a)  (b) 

y

0 x5

5

_5

_3

 

97. (a) She drops to 200 ft, bounces up and down, then settles at 
350 ft.

(b) y (ft)

t (s)

500

40

(c) Shift downward 100 ft; H1 t 2  h1 t 2  100

_5

y

0 x5

5

Answers to Section 2.6 A19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A20 Answers to Selected Exercises and Chapter Tests

99. (a) 80 ft/min; 20 min; 800 ft

(b) d (ft)

t (min)

200

100

  Shrunk vertically by a factor  
of 0.50; 40 ft/min; 400 ft

(c) d (ft)

t (min)

200

100

  Shifted to the right 10 min; the 
class left 10 min later

Section 2.7 ■ pAge 252
1. 8, 2, 15, 3

5   2. f 1g1x 22 , 12  3. Multiply by 2, then add 1; 
Add 1, then multiply by 2  4. x  1, 2x, 2x  1, 21x  1 2
5. (a) f, g  (b) f, g  (c) f, g, 0  6. g, f    
7. 1f  g 2 1x 2  3x, 1`, ` 2 ; 1f  g 2 1x 2  x, 1`, ` 2 ; 
1fg 2 1x 2  2x2, 1`, ` 2 ; a f

g
b 1x 2 

1

2
, 1`, 0 2 < 10, ` 2  

9. 1f  g 2 1x 2  2x2  x, 1`, ` 2 ; 1f  g 2 1x 2  x, 1`, ` 2 ; 
1fg 2 1x 2  x4  x3, 1`, ` 2 ; a f

g
b 1x 2  1 

1
x

, 

1`, 0 2 < 10, ` 2  
11. 1f  g 2 1x 2  x2  4x  5, 1`, ` 2 ; 
1f  g 2 1x 2  x2  2x  5, 1`, ` 2 ; 
1fg 2 1x 2  x3  8x2  15x, 1`, ` 2 ;
a f

g
b 1x 2 

5  x

x2  3x
, 1`, 0 2 < 10, 3 2 < 13, ` 2

13. 1f  g 2 1x 2  "25  x2  "x  3, 33, 5 4 ; 
1f  g 2 1x 2  "25  x2  "x  3, 33, 5 4 ; 
1fg 2 1x 2  "125  x2 2  1x  3 2 , 33, 5 4 ; 

a f
g
b 1x 2  Å

25  x2

x  3
, 13, 5 4

15. 1f  g 2 1x 2 
6x  8

x2  4x
, x ? 4, x ? 0; 

1f  g 2 1x 2 
2x  8

x 2  4x
, x ? 4, x ? 0;

1fg 2 1x 2 
8

x2  4x
, x ? 4, x ? 0; 

a f
g
b 1x 2 

x  4

2x
, x ? 4, x ? 0  

17. 30, 3 4   19. 13, ` 2   
21.  23. 

1

1

0

y

x

g

f

f+g

 

3

3_3

_1

fg

f+g

1_1

25. 
3

3_3

_2

f

g

f+g

27. (a) 5  (b) 5  29. (a) 3  (b) 45   
31. (a) 2x2  5  (b) 4x2  12x  5  33. 4   
35. 5  37. 4  39. 6  41. 3  43. 1  45. 3  
47. 1f + g 2 1x 2  8x  1, 1`, ` 2 ; 
1g + f 2 1x 2  8x  11, 1`, ` 2 ; 1f + f 2 1x 2  4x  9, 1`, ` 2 ; 
1g + g 2 1x 2  16x  5, 1`, ` 2   
49. 1f + g 2 1x 2  1x  1 2 2, 1`, ` 2 ; 
1g + f 2 1x 2  x2  1, 1`, ` 2 ; 1f + f 2 1x 2  x4, 1`, ` 2 ; 
1g + g 2 1x 2  x  2, 1`, ` 2   

51. 1f + g 2 1x 2 
1

2x  4
, x ? 2; 1g + f 2 1x 2 

2
x

 4, x ? 0; 

1f + f 2 1x 2  x, x ? 0, 1g + g 2 1x 2  4x  12, 1`, ` 2   

53. 1f + g 2 1x 2  0  2x  3 0 , 1`, ` 2 ; 
1g + f 2 1x 2  2 0  x 0  3, 1`, ` 2 ; 1f + f 2 1x 2  0  x 0 , 1`, ` 2 ; 
1g + g 2 1x 2  4x  9, 1`, ` 2   

55. 1f + g 2 1x 2 
2x  1

2x
, x ? 0; 

1g + f 2 1x 2 
2x

x  1
 1, x ? 1; 

1f + f 2 1x 2 
x

2x  1
, x ? 1, x ?  

1
2 ; 

1g + g 2 1x 2  4x  3, 1`, ` 2
57. 1f + g 2 1x 2 

1

x  1
, x ? 1, x ? 0; 1g + f 2 1x 2 

x  1
x

,  

x ? 1, x ? 0; 1f + f 2 1x 2 
x

2x  1
, x ? 1, x ?  

1
2 ; 

1g + g 2 1x 2    x, x ? 0
59. 1f + g + h 2 1x 2  !x  1  1
61. 1f + g + h 2 1x 2  1!x  5 2 4  1  
63. g1x 2  x  9, f 1x 2  x5  65. g1x 2  x2, f 1x 2  x/ 1x  4 2   
67. g1x 2  1  x3, f 1x 2  0  x 0   
69. h1x 2  x2, g1x 2  x  1, f 1x 2  1/x  
71. h1x 2  !3 x, g1x 2  4  x, f 1x 2  x 

9  
73. Yes; m1m2  75. R1x 2  0.15x  0.000002x2  
77. (a) g1 t 2  60t  (b) f 1r 2  pr2  (c) 1f + g 2 1 t 2  3600pt2   
79. A1 t 2  16pt2  81. (a) f 1x 2  0.9x  
(b) g1x 2  x  100  (c) 1f + g 2 1x 2  0.9x  90,
1g + f 2 1x 2  0.9x  100, 1f + g 2 : first rebate, then discount, 
1g + f 2 : first discount, then rebate, g + f  is the better deal  

Section 2.8 ■ pAge 261
1. different, Horizontal Line  2. (a) one-to-one, g1x 2  x3

(b) g11x 2  x1/3  3. (a) Take the cube root, subtract 5, then 

 divide the result by 3.  (b) f 1x 2  13x  5 2 3, f11x 2 
x1/3  5

3
  

4. Yes, 4, 5  5. 14, 3 2   6. (a) False  (b) True  7. No   
9. Yes  11. No  13. Yes  15. Yes  17. No  19. No  21. Yes   
23. No  25. (a) 2  (b) 3  27. 1  29. (a) 6  (b) 2  (c) 0  
31. 4  33. 1  35. 2  49. f 11x 2  1

3 x  5
3  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



51. f11x 2  #3 1
4 15  x 2   53. f11x 2  11/x 2  2  

55. f11x 2 
4x

1  x
  57. f11x 2 

7x  5

x  2
  

59. f11x 2 
x  3

5x  2
  61. f11x 2  !4  x, x  4  

63. f11x 2  !6 x, x  0  65. f11x 2  !3 2  5x  

67. f11x 2 
x2  5

8
, x  0  69. f11x 2  1x  2 2 3  

71. (a)  (b)
y

0 x5

2

_5

_5

f

 

(c) f11x 2  1
3 1x  6 2   

73. (a) (b) 
y

0 x2

2

_2
_1

f

 

y

0 x2

2

_2
_1

f–¡

(c) f 11x 2  x2  1, x  0  

75. Not one-to-one 77. One-to-one
3

2_2

_3  

20

16_4

_20

79. Not one-to-one 
10

15_5

_10

81. (a) f11x 2  x  2 
(b)  

4

4_4

_4

f

f _1

 

y

0 x3

5

_5
_2

f–¡

83. (a) g11x 2  x2  3, x  0
(b)  

4

4_4

_4

g

g−1

85. x  0, f11x 2  !4  x  87. x  2, h11x 2  !x  2
89.  91. (a)

y

x1

1

0

 

 (b) Yes  (c) f11x 2 
1
x

93. (a) f 1n 2  16  1.5n  (b) f11x 2  2
3 1x  16 2 ; the  

number of toppings on a pizza that costs x dollars  (c) 6
95. (a) f11V 2  40  4!V , time elapsed when V gal of water 
remain  (b) 24.5 min; in 24.5 min the tank has 15 gal of water 
remaining  97. (a) f11D 2  50  1

3 D; the price associated with 
the demand D  (b) $40; when the demand is 30 units, the price  
is $40  99. (a) f 1x 2  0.9766x  (b) f11x 2  1.02396x; the 
exchange rate from U.S. dollars to  Canadian dollars   
(c) $12,543.52  101. (a) f1x 2  0.85x  (b) g1x 2  x  1000   
(c) H  0.85x  850  (d) H11x 2  1.176x  1000, the  
original sticker price for a given discounted price  (e) $16,288, 
the original price of the car when the discounted price  
($1000 rebate, then 15% off) is $13,000  

chApter 2 revieW ■ pAge 267
1. f 1x 2  x2  5  3. Add 10, then multiply the result by 3.  

5. 
x gxxc

1 5
0 0
1 3
2 4
3 3

7. (a) C11000 2  34,000, C110,000 2  205,000   
(b) The costs of printing 1000 and 10,000 copies of the book   
(c) C10 2  5000; fixed costs  (d) $171,000; $19/copy  
9. 6, 2, 18, a2  4a  6, a2  4a  6, x2  2x  3, 4x2  8x  6  
11. (a) Not a function  (b) Function  (c) Function, one-to-
one  (d) Not a function  13. Domain 33, ` 2 , range 30, ` 2   
15. 1`, ` 2   17. 34, ` 2   19. 5x 0  x ? 2, 1, 06   
21. 1`, 1 4 < 31, 4 4   

y

1

x10

Answers to Chapter 2 Review A21
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A22 Answers to Selected Exercises and Chapter Tests

23.  25. 

 

y

3

x10

27.  29. 

 

y

1

x10

31.  33. 
y

2

x10

 

35.  37. 
y

1
x20

 

39. No  41. Yes  43. (iii)  
45. (a)  47. (a) 

_1

4

_4 4

 _1

5

_5 5

(b) Domain 33, 3 4 ,  (b) Domain  
range 30, 3 4  32.11, 0.25 4 < 31.86, ` 2 ,  
 range 30, ` 2

y

0 x5

3

_5

_3

y

1
x10

y

1
x2

y

0 x5

5

_5

49.    Increasing on 1`, 0 2 , 
12.67, ` 2 ; decreasing on  
10, 2.67 2   

51. 4, 1  53. 4, 43   55. 9, 3  57. No  
59. (a)  

y

1
x10

(b) 3  (c) 3 

61. f 1x 2  2x  3  63. f 1x 2  2x  3  

65. f 1x 2   
1
2 x  4  67. (a) P110 2  5010, P120 2  7040; 

the populations in 1995 and 2005  (b) 203 people/year; average 
annual population increase  69. (a) 1

2, 12  (b) Yes  (c) Yes, 1
2   

71. (a) Shift upward 8 units  (b) Shift to the left 8 units   
(c) Stretch vertically by a factor of 2, then shift upward 1 unit   
(d) Shift to the right 2 units and downward 2 units  (e) Reflect in 
y-axis  (f) Reflect in y-axis, then in x-axis  (g) Reflect in x-axis   
(h) Reflect in line y  x  
73. (a) Neither  (b) Odd  (c) Even  (d) Neither   
75. Local minimum  7 when x  1  
77. Local maximum  3.79 when x  0.46; local  
minimum  2.81 when x  0.46  79. 68 ft  
81.

−2

10

f(x)

g(x)(f+g)(x)
−4 4

83. (a) 1f  g 2 1x 2  x2  6x  6  (b) 1f  g 2 1x 2  x2  2   
(c) 1fg 2 1x 2  3x3  13x2  18x  8  
(d) 1f/g 2 1x 2  1x2  3x  2 2/ 14  3x 2   
(e) 1f + g 2 1x 2  9x2  15x  6   
(f) 1g + f 2 1x 2  3x2  9x  2  
85. 1f + g 2 1x 2  3x2  6x  1, 1`, ` 2 ; 
1g + f 2 1x 2  9x2  12x  3, 1`, ` 2 ; 1f + f 2 1x 2  9x  4,
1`, ` 2 ; 1g + g 2 1x 2  x4  4x3  6x2  4x, 1`, ` 2   
87. 1f + g + h 2 1x 2  1  !x  89. Yes  91. No  

93. No  95. f11x 2 
x  2

3
  97. f11x 2  !3 x  1  

99. Yes, 1, 3  

10

6_2

_10
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Answers to Chapter 2 Test A23

101. (a), (b) y

0 x5

3

_5

_3
f

f –¡

(c) f11x 2  !x  4  

chApter 2 teSt ■ pAge 271
1. (a) and (b) are graphs of functions,  
(a) is one-to-one  

2. (a) 0, 
!2

3
, 
!a  2

a  3
  (b) 30, ` 2   

(c) 
3!10  11!2

264
 0.023  

3. (a) f 1x 2  1x  2 2 3  

(b) 
x f xxc

1 27
0 8
1 1
2 0
3 1
4 8

 (c) 

x 

y 

1 0 
2 

(d) By the Horizontal Line Test; take the cube root, then add 2
(e) f11x 2  x1/3  2  4. (a) Local minimum f 11 2  4,  
local maxima f 14 2  1 and f 13 2  4  (b) Increasing on 
1`, 4 2  and 11, 3 2 , decreasing on 14, 1 2  and 13, ` 2   

5. (a) R12 2  4000, R14 2  4000; total sales  revenue with 
prices of $2 and $4

(b) 

0

5000

5

  Revenue increases until price 
reaches $3, then decreases

(c) $4500; $3  6. 2h  h2, 2  h
7. (a) g; f is not linear because it has a square term

(b) y

10

x0

y=˝
y=Ï

2

(c) 5

8. (a)  (b) 

 

y

0 x5

3

_5

_3

9. (a) Shift to the right 3 units, then shift upward 2 units  
(b) Reflect in y-axis  
10. (a) 3, 0

(b) 

x 

y 

1 0 

3 

11. (a) x2  2x  2  (b) x2  4  (c) x2  5x  7  
(d) x2  x  2  (e) 1  (f) 4  (g) x  9  

12. (a) Yes  (b) No  14. f11x 2   

5x  3

2x  1
  

15. (a) f11x 2  3  x2, x  0  

(b) y

0 x5

3

_5

_3

f

f –¡

16. Domain 30, 64, range 31, 74  17. 1, 3

18. 

1

1

0

y

x

y=f(x)+2

y=f(x-2)f

19. 5, 5
4   20. 0, 4

21. y

x0 1

1

y

0
x5

3

_5

_3
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A24 Answers to Selected Exercises and Chapter Tests

22. (a)  (b) No  
20

4_4

_30

(c) Local minimum  27.18 when x  1.61;  
local maximum  2.55 when x  0.18;  
local minimum  11.93 when x  1.43   
(d) 327.18, ` 2   (e) Increasing on 11.61, 0.18 2 < 11.43, ` 2 ; 
decreasing on 1`, 1.61 2 < 10.18, 1.43 2

FocuS on Modeling ■ pAge 276
1. A1„ 2  3„2, „  0  3. V1„ 2  1

2 „3, „  0  
5. A1x 2  10x  x2, 0  x  10  
7. A1x 2  1!3/4 2x2, x  0  

9. r1A 2  "A/p, A  0  11. S1x 2  2 x2 
240

x
, x  0  

13. D1 t 2  25t, t  0  15. A1b 2  b!4  b, 0  b  4  

17. A1h 2  2h"100  h2, 0  h  10  
19. (b) p1x 2  x119  x 2   (c) 9.5, 9.5  
21. (b) A1x 2  x12400  2 x 2   (c) 600 ft by 1200 ft  
23. (a) f 1„ 2  8„  17200/„ 2   (b) Width along road is  
30 ft, length is 40 ft  (c) 15 ft to 60 ft  

25. (a) A1x 2  15x  ap  4

8
b x2  

(b) Width  8.40 ft, height of rectangular part  4.20 ft 

27. (a) A1x 2  x2 
48
x

  (b) Height  1.44 ft, width  2.88 ft

29. (a) A1x 2  2x 
200

x
  (b) 10 m by 10 m

31. (b) To point C, 5.1 mi from B  

chapter 3
Section 3.1 ■ pAge 287
1. square  2. (a) 1h, k2  (b) upward, minimum   
(c) downward, maximum  3. upward, 12, 6 2 , 6, minimum   
4. downward, 12, 6 2 , 6, maximum  
5. (a) 13, 4 2 ; x-intercepts 1, 5; y-intercept 5  
(b) maximum 4  (c) , 1`, 4 4   

7. (a) 11, 3 2 ; x-intercepts 
2  !6

2
; y-intercept 1  

(b) minimum 3  (c) , 33, ` 2   
9. (a) f 1x 2  1x  1 2 2  2
(b) Vertex 11, 2 2 ; no x-intercepts; y-intercept 3

(c)  (d) , 32, ` 2

x

y

10
1

11. (a) f 1x 2  1x  3 2 2  9 
(b) Vertex 13, 9 2 ; x-intercepts 0, 6; y-intercept 0

(c)  (d) , 39, ` 2

13. (a) f 1x 2  31x  1 2 2  3 15. (a) f 1x 2  1x  2 2 2  1
(b) Vertex 11, 3 2  (b) Vertex 12, 1 2
x-intercepts 2, 0 x-intercepts 1, 3  
y-intercept 0   y-intercept 3  

(c)  (c) 

(d) , 33, ` 2  (d) , 31, ` 2
17. (a) f 1x 2  1x  3 2 2  13  
(b) Vertex 13, 13 2 ; x-intercepts 3  !13; y-intercept 4  

(c)  (d) , 1`, 13 4

19. (a) f 1x 2  21x  1 2 2  1   
(b) Vertex 11, 1 2 ; no x-intercept; y-intercept 3

(c)  (d) , 31, ` 2

21. (a) f 1x 2  21x  5 2 2  7 
(b) Vertex 15, 7 2 ; no x-intercept; y-intercept 57  

(c)  (d) , 37, ` 2

30−3

−3

3

x

y

x

y

10

1

20−2

2

x

y

2−2

6

x

y

y

0 x3

3

_3

y

0 x5

7

_2
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Answers to Section 3.2 A25

23. (a) f 1x 2  4Ax  3
2 B2  10

(b) Vertex A 
3
2, 10B ; x-intercepts  

3
2  !10

2 ,  
3
2  !10

2 ;  
y-intercept 1

(c)  (d) , 1`, 10 4

25. (a) f 1x 2  1x  1 2 2  2 27. (a) f 1x 2  31x  1 2 2  2  

(b)  (b) 

(c) Minimum f 11 2  2 (c) Minimum f 11 2  2
29. (a) f 1x 2  Ax  3

2 B2  21
4  31. (a) g1x 2  31x  2 2 2  1

(b)  (b) 

(c) Maximum f A 
3
2 B  21

4  (c) Minimum g12 2  1
33. (a) h1x 2  Ax  1

2 B2  5
4

(b)  

(c) Maximum hA 
1
2 B  5

4

35. Minimum f 11 2  3  
37. Maximum f 12 2  77  
39. Minimum f 10.6 2  15.64  
41. Minimum h12 2  8  
43. Maximum f 11 2  7

2  
45. (a) 4.01  (b) 4.011025  
47. f 1x 2  41x  2 2 2  3  
49. 7  51. 25 ft  53. $4000, 100 units  55. 30 times  
57. 50 trees/acre  59. 600 ft by 1200 ft  
61. Width 8.40 ft, height of rectangular part 4.20 ft  
63. (a) f 1x 2  x11200  x 2   (b) 600 ft by 600 ft   
65. (a) R1x 2  x157,000  3000x 2   (b) $9.50  (c) $19.00  

x

y

10
1

y

0 x2

3

_3
_2

(_1, _2)

x

y

10

2

(1, −2)

y

0 x3

3

_3
_2

!_   ,      @3
2

21
4

y

0 x6

10

(2, 1)

y

0 x2

2

_4

_2

!_   ,    @1
2

5
4

Section 3.2 ■ pAge 301
1. II  2. (a) `, `   (b) `, `    
3. (a) 0  (b) factor  (c) x  4. (a)

5. (a)  (b) 

(c)  (d) 

7. (a)  (b) 

(c)  (d) 

9. (a) y S ` as x S `, y S ` as x S `   (b) III  
11. (a) y S ` as x S `, y S ` as x S `   (b) V  
13. (a) y S ` as x S `, y S ` as x S `   (b) VI  

15.  17. 

19.  21. 

y

0 x2

2

_2

_4

y

0 x4

16

_2

y

1
x10

y

1
x10

y

0 x2

4

_2

_8

y

0 x_3 _9

27

y

0 x1

4

_2

_8

y

0 x1

4

_1

y

0 x

1

1−2

x

y

1

30_2
1

x

y

1

1
2

3

_3 _1

0
1

y

6
x10
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A26 Answers to Selected Exercises and Chapter Tests

23.  25. 

27.  29. 

31. P1x 2  x1x  2 2 1x  3 2  33. P1x 2  x1x  3 2 1x  4 2  
 

35. P1x 2  x21x  1 2 1x  2 2  37. P1x 2  1x  1 2 21x  1 2   
 

39. P1x 2  12x  1 2 1x  3 2 1x  3 2  
y

0 x2
1
2

3

910

_2
_3

_20

41. P1x 2  1x  2 2 21x2  2x  4 2  
y

0 x2

5

16

_2

x

y

2

0 1

1 0

y

2
x10

y

0 x4

4
3

_4

y

0 x1

10

_1

_30

3

y

0 x4
3

4

_4

_2
_4

y

0 x1

4
10

_1
_3

_10

y

0 x1 2

1

_1

_1

y

0 x1

1

_1

_1

43. P1x 2  1x2  1 2 1x  2 2 1x  2 2  

0 x1
2

2

_1 _2

_4

_2

y

45. y → `   as  x → ` , y →`   as  x → `    
47. y → `   as  x → `   
49. y → `   as  x → ` ,  
y → `   as  x → `   
51. (a) x-intercepts 0, 4; y-intercept 0  (b) Maximum 12, 4 2   
53. (a) x-intercepts 2, 1; y-intercept 1   
(b) Minimum 11, 2 2 , maximum 11, 0 2   

55.    local maximum 14, 16 2 , 
domain 1`, ` 2 ,   
range 1`, 16 4

57.  59. 

local maximum 12, 25 2 ,  local minimum 13, 27 2 ,  
local minimum 12, 7 2 ,   domain 1`, ` 2 ,
domain 1`, ` 2 ,   range 327, ` 2
range 1`, ` 2   

61.   local maximum 11, 5 2 ,  
local minimum 11, 1 2 ,   
domain 1`, ` 2 ,   
range 1`, ` 2   

63. One local maximum, no local minimum  65. One local  
maximum, one local  minimum  67. One local maximum, two 
local minima  69. No local extrema  71. One local maximum, 
two local minima  
73.  75. 

5

1_1

_5

c=5

c=2

c=1
2

c=1

 

Increasing the value of c 
 Increasing the value of cstretches the graph vertically.

 moves the graph up.

30

12_4

_50

30

5_5

_30

30

5_5

_30

10

3_3

_5

5

1.5_1.5

_3

c=2
c=1
c=0
c=_1
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Answers to Section 3.4 A27

77.   

Increasing the value of c  
causes a deeper dip in the  
graph in the fourth quadrant 
and moves the positive 
x-intercept to the right.

10

4_2

_40

c=0
c=1

c=8
c=27

79. (a)  (b) Three   
(c) 10, 2 2 , 13, 8 2 , 12, 12 2

81. (d) P1x 2  PO1x 2  PE1x 2 , where PO1x 2  x5  6x3  2x  
and PE1x 2  x2  5

83. (a)   local maximum 11.8, 2.1 2  
local minimum 13.6, 0.6 2

    (b)    local maximum 11.8, 7.1 2  
local minimum  
13.5, 4.4 2

85. 5; there are four local extrema   
87. (a) 26 blenders  (b) No; $3276.22   
89. (a) V1x 2  4x3  120x2  800x  (b) 0  x  10  
(c) Maximum volume  1539.6 cm3 

   

1600

100

Section 3.3 ■ pAge 309
1. quotient, remainder  2. (a) factor  (b) k

3. 2x  1 
9

x  2
  5. 2x 

1

2


  
15
2

2x  1
  

7. 2x2  x  1 
4x  4

x2  4
  9. 1x  1 2 1x2  x  3 2  9  

11. 12x  3 2 1x2  1 2  3  
13. 12x2  1 2 14x2  2x  1 2  12x  1 2   

y

0 x3

10

_3

_10

−10

10

−2 6

−10

10

−2 6

In answers 15–37 the first polynomial given is the quotient, and 
the second is the remainder.
15. x  1, 5  17. 2x2  1, 2  19. x  1, 2  
21. 3x  1, 7x  5  23. x4  1, 0  25. 2x  1, 6  
27. 3x  2, 2  29. x2  2, 3  31. x2  3x  1, 1  
33. x4  x3  4x2  4x  4, 2  35. 2x2  4x, 1  
37. x2  3x  9, 0  39. 3  41. 12  43. 7  
45. 483  47. 2159  49. 7

3   51. 8.279  57. 3, 3  

59. 1  !6  61. 
5  !37

6
  63. x3  3x2  x  3  

65. x4  8x3  14x2  8x  15  
67. 2x4  4x3  10x2  12x  69. 3x4  9x2  6  
71. 1x  1 2 1x  1 2 1x  2 2   73. 1x  2 2 21x  1 2 2  

Section 3.4 ■ pAge 319
1. a0, an,  1,  

1
2,  

1
3,  

1
6, 2,  

2
3, 5,  

5
2,  

5
3,  

5
6, 10,  

10
3

2. 1, 3, 5; 0   3. True  4. False  5. 1, 3   
7. 1, 2, 4, 8,  

1
2   9. 1, 7,  

1
2 ,  

7
2 ,  

1
4 ,  

7
4   

11. (a) 1,  
1
5   (b) 1, 1, 1

5   13. (a) 1, 3,  
1
2,  

3
2   

(b)  
1
2, 1, 3  15. 5, 1, 2; P1x 2  1x  5 2 1x  1 2 1x  2 2

17. 2, 1; P1x 2  1x  2 2 21x  1 2
19. 2; P1x 2  1x  2 2 3  
21. 3, 2, 5; P1x 2  1x  3 2 1x  2 2 1x  5 2
23. 3, 1, 1; P1x 2  1x  3 2 1x  1 2 1x  1 2
25. 1, 2; P1x 2  1x  2 2 1x  2 2 1x  1 2 1x  1 2
27. 4, 2, 1, 1; P1x 2  1x  4 2 1x  2 2 1x  1 2 1x  1 2
29. 3,  

1
2, 12, 3; P1x 2  1x  3 2 12x  1 2 12x  1 2 1x  3 2

31. 2, 13, 3; P1x 2  1x  2 2 1x  2 2 1x  3 2 13x  1 2
33. 1,  

1
2; P1x 2  1x  1 2 12x  1 2 12x  1 2

35.  
3
2, 12, 1; P1x 2  1x  1 2 12x  3 2 12x  1 2

37.  
2
3,  

1
2, 34; P 1x 2  13x  2 2 12x  1 2 14x  3 2

39. 1, 12, 2; P1x 2  1x  1 2 1x  2 2 212x  1 2
41. 3, 2, 1, 3; P1x 2  1x  3 2 1x  2 2 21x  1 2 1x  3 2
43. 1,  

1
3, 2, 5; P1x 2  1x  1 2 21x  2 2 1x  5 2 13x  1 2

45. 1,  

1  !13

3
  47. 1, 4, 

3  !13

2
  

49. 3, 
1  !5

2
  51. 1

2 , 
1  !3

2
  53. 1,  

1
2 , 3  !10  

55. (a) 2, 2, 3      (b) 

57. (a)  
1
2 , 2 (b) 

y

0 x1

5

_1

y

0 x2

20

_20
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A28 Answers to Selected Exercises and Chapter Tests

59. (a) 1, 2 (b) 

61. (a) 1, 2   (b) 

63. 1 positive, 2 or 0 negative; 3 or 1 real  65. 1 positive,  
1 negative; 2 real  67. 2 or 0 positive, 0 negative; 3 or 1 real 
(since 0 is a zero but is neither  positive nor negative)  77. 3, 2 
79. 3, 1  81. 2, 1

2, 1  83.  
1
2,  !5  85. 2, 1, 3, 4  

91. 2, 2, 3  93.  
3
2 , 1, 1, 4  95. 1.28, 1.53  97. 1.50  

99. 11.3 ft  101. (a) It began to snow again.  (b) No  
(c) Just before midnight on Saturday night  103. 2.76 m   
105. 88 in. (or 3.21 in.)

Section 3.5 ■ pAge 329
1. 6; 7; 2, 3  2. (a) x  a  (b) 1x  a 2m  3. n  4. a  bi; 
3  i  5. (a) True  (b) True  (c) False, x4  1  0 for all 
real x  6. (a) False, x2  1 has no real zeros   
(b) True  (c) False, x2  1 factors into linear factors with 
complex coefficients  7. (a) 0, 2i  (b) x21x  2i 2 1x  2i 2    
9. (a) 0, 1  i  (b) x1x  1  i 2 1x  1  i 2    
11. (a) i  (b) 1x  i 2 21x  i 2 2   
13. (a) 2, 2i  (b) 1x  2 2 1x  2 2 1x  2i 2 1x  2i 2    
15. (a) 2, 1  i !3   
(b) 1x  2 2 Ax  1  i !3 B Ax  1  i !3 B   
17. (a) 1, 12  1

2 i !3,  
1
2  1

2 i !3  
(b)  1x  1 2 1x  1 2 Ax  1

2  1
2 i !3 B Ax  1

2  1
2 i !3 B  

 Ax  1
2  1

2 i !3B Ax  1
2  1

2 i !3 B
In answers 19–35 the factored form is given first, then the zeros 
are listed with the multiplicity of each in parentheses.
19. 1x  5i 2 1x  5i 2 ; 5i 11 2   
21. 3x  11  i 2 4 3x  11  i 2 4 ; 1  i 11 2 , 1  i 11 2
23. x1x  2i 2 1x  2i 2 ; 0 11 2 , 2i 11 2 , 2i 11 2   
25. 1x  1 2 1x  1 2 1x  i 2 1x  i 2 ; 1 11 2 , 1 11 2 , i 11 2 , i 11 2   
27. 16Ax  3

2 B Ax  3
2 B Ax  3

2 iB Ax  3
2 iB; 32 11 2 ,  

3
2 11 2 , 32 i 11 2 , 

 
3
2 i 11 2   29. 1x  1 2 1x  3i 2 1x  3i 2 ; 1 11 2 , 3i 11 2 , 3i 11 2

31. 1x  i 2 21x  i 2 2; i12 2 , i12 2
33. 1x  1 2 1x  1 2 1x  2i 2 1x  2i 2 ; 1 11 2 , 1 11 2 , 
2i11 2 , 2i11 2
35. xAx  i !3 B2Ax  i !3 B2; 0 11 2 , i !3 12 2 , i !3 12 2
37. P1x 2  x 2  2x  2  39. Q1x 2  x3  3x2  4x  12   
41. P1x 2  x3  2x2  x  2  
43. R1x 2  x4  4x3  10x2  12x  5  

y

0 x2

5

_1
_5

y

0 x1

5

_1

_5

45. T 1x 2  6x4  12x3  18x2  12x  12  47. 2, 2i  

49. 1, 

1  i !3

2
  51. 2, 

1  i !3

2
  53.  

3
2, 1  i !2  

55. 2, 1, 3i  57. 1, 2i, i !3  59. 3 (multiplicity 2), 2i  
61.  

1
2 1multiplicity 2 2 , i  63. 1 (multiplicity 3), 3i  

65. (a) 1x  5 2 1x2  4 2   (b) 1x  5 2 1x  2i 2 1x  2i 2   
67. (a) 1x  1 2 1x  1 2 1x2  9 2    
(b) 1x  1 2 1x  1 2 1x  3i 2 1x  3i 2
69. (a) 1x  2 2 1x  2 2 1x2  2x  4 2 1x2  2x  4 2
(b) 1x  2 2 1x  2 2 Cx  A1  i !3 B D Cx  A1  i !3 B D  
Cx  A1  i !3 B D Cx  A1  i !3 B D   

71. (a) 4 real  (b) 2 real, 2 non-real  (c) 4 non-real  

Section 3.6 ■ pAge 344
1. `, `   2. 2  3. 1, 2  4. 1

3   5. 2, 3  6. 1   
7. (a) False  (b) True  (c) False  (d) True  8. True   
9. (a) 3, 19, 199, 1999; 5, 21, 201, 2001;  
1.2500, 1.0417, 1.0204, 1.0020; 0.8333, 0.9615, 0.9804, 0.9980
(b) r1x 2 S ` as x S 2; r1x 2 S ` as x S 2

(c) Horizontal asymptote y  1  
11. (a) 22, 430, 40,300, 4,003,000; 10, 370, 
39,700, 3,997,000; 0.3125, 0.0608, 0.0302, 0.0030;  
0.2778, 0.0592, 0.0298, 0.0030
(b) r1x 2 S ` as x S 2; r1x 2 S ` as x S 2

(c) Horizontal asymptote y  0  

13.  15.   
 

domain 5x 0  x ? 16  domain 5x 0  x ? 16
range 5y 0  y ? 06  range 5y 0  y ? 06
17.  19. 

domain 5x 0  x ? 26  domain 5x 0  x ? 36
range 5y 0  y ? 26  range 5y 0  y ? 16
21. x-intercept 1, y-intercept  

1
4   23. x-intercepts 1, 2;  

y-intercept 1
3  25. x-intercepts 3, 3; no y-intercept   

27. x-intercept 3, y-intercept 3, vertical x  2; horizontal y  2  
29. x-intercepts 1, 1; y-intercept 1

4; vertical x  2, x  2;  
horizontal y  1  31. Vertical x  2; horizontal y  0  
33. Horizontal y  0  35. Vertical x  1

2, x  1;  

horizontal y  3  37. Vertical x   
7
4, x  2; horizontal y  1

2  
39. Vertical x  0; horizontal y  3  41. Vertical x  1  

y

0 x1

1

y

0 x_1

5

y

0 x2

5

y

0 x2

−2

2

−3
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Answers to Section 3.6 A29

43.   x-intercept 1 
y-intercept 2 
vertical x  2 
horizontal y  4 
domain 5x 0  x ? 26  
range 5y 0  y ? 46

45.   no x-intercept 
y-intercept 13

4  
vertical x  2 
horizontal y  3 

domain 5x 0  x ? 26  
range 5y 0  y  36

47.   no x-intercept 
y-intercept  

9
8  

vertical x  4 
horizontaly  1 
domain 5x 0  x ? 46  
range 5y 0  y  16

49.   x-intercept 2 
y-intercept 2 
vertical x  1, x  4 
horizontal y  0 
domain 5x 0  x ? 1, 46  
range 

51.   x-intercept 2 
y-intercept 2 
vertical x  2, x  1 
horizontal y  0 
domain 5x 0  x ? 2, 16  
range 5y 0  y  0.2 or y  26

53.   x-intercepts 2, 1 
y-intercept 2

3 
vertical x  1, x  3 
horizontal y  1 
domain 5x 0  x ? 1, 36  
range 

y

0
x4

5

_4
_5

1

y

1
0 x

1

y

1
0 x

y

0 x1

5

y

x3

3

0

y

0 x6

6

_6

_6

55.   x-intercepts 1, 2 
vertical x  1, x  0 
horizontal y  2 
domain 5x 0  x ? 1, 06  
range 5y 0  y  2 or y  18.46

57.   x-intercept 1 
vertical x  0, x  3 
horizontal y  0 
domain 5x 0  x ? 0, 36  
range 

59.   x-intercept 1 
y-intercept 1 
vertical x  1 
horizontal y  1 
domain 5x 0  x ? 16  
range 5y 0  y  06

61.   y-intercept 5
4 

vertical x  2 
horizontal y  5 
domain 5x 0  x ? 26  
range 5y 0  y  1.06

63.   x-intercept 5 
y-intercept 5

2 
vertical x  2 
horizontal y  1 
domain 5x 0  x ? 2, 16  
range 5y 0  y ? 1, 26

65.   x-intercept 3 
y-intercept 3 
no asymptote 
domain 5x 0  x ? 16  
range 5y 0  y ? 46

y

x2

5
0

y

0 x
21

y

0 x6

6

_6

y

x

5

−5

6

(1, 2)

y

1
x10

(_1, _4)

y

1
x10
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A30 Answers to Selected Exercises and Chapter Tests

67.   x-intercept 3 
y-intercept 9 
no asymptote 
domain 5x 0  x ? 16  
range 5y 0  y  06

69.   slant y  x  2  
vertical x  2  

71.   slant y  x  2  
vertical x  0  

73.    slant y  x  8  
vertical x  3  

75.   slant y  x  1  
vertical x  2, x  2  

77.  vertical x  3  

(_1, 16)

y

2
x10

y

0 x6

10

_6

_10

y

0 x6

10

_6

_10

y

0 x10

30

_10

_30_4 _1

y

0 x6

30

_6

30

10_10

_30

79.  vertical x  2  

81.   vertical x  1.5 
x-intercepts 0, 2.5 
y-intercept 0, local  
maximum 13.9, 10.4 2  
local minimum 10.9, 0.6 2  
end behavior y  x  4  

83.   vertical x  1  
x-intercept 0  
y-intercept 0  
local minimum 11.4, 3.1 2   
end behavior y  x2  

85.   vertical x  3 
x-intercepts 1.6, 2.7 
y-intercept 2  
local maxima 10.4, 1.8 2 , 
12.4, 3.8 2 ,  
local minima 10.6, 2.3 2 , 
13.4, 54.3 2   
end behavior y  x3

87. (a)  (b) It levels off at 3000.

89. (a) 2.50 mg/L  (b) It decreases to 0.  (c) 16.61 h  

91. 5000

4000

  If the speed of the train 
approaches the speed of sound, 
then the pitch increases 
indefinitely (a sonic boom).  

Section 3.7 ■ pAge 352
1. zeros; zeros; 32, 0 4 , 31, ` 2  

x

Sign of

x+2

x-1 

x(x+2)(x-1)

2 10

-

-

-

-

-

+

-

+

-

+

+

-

+

+

+

+

60

10_10

_30

10

10_10

_20

10

3_3

_5

100

5_5

_100

4000

300
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Answers to Chapter 3 Review A31

2. zeros; zeros; cut points; 1`, 4, 2 , 32, 1 4 , 13, ` 2

x+2

Sign of

x-1

x-3 

(x+2)(x-1)
(x-3)(x+4)

4 1

x+4 

2 3

-

-

-

-

-

-

-

+

-

-

+

+

-

+

+

+

+

+

+

+

+ - + - +

3. 1`, 5 2 < A 
5
2, 3B   5. 1`, 5 2 < 15, 3 2 < 11, ` 2   

7. 34, 2 4 < 32, ` 2   9. A`, 12 B   11. 13, 3 2   
13. 35, 1 4 < 33, ` 2   15. 1`, 1 2 < 11, 7 2   17. 11, 10 2   
19. A7,  

5
2 D < 15, ` 2   21. A`, 1  !3 B < C0, !3  1B   

23. 1`, 3 2 < A 
2
3, 1B < 13, ` 2   25. 14, 3 4   

27. C8,  
5
2 B   29. A0, 3!3

2  D < A1, 3!3
2  D   

31. 1`, 2 2 < 11, 1 2 < 11, ` 2   33. 32, 0 2 < 11, 3 4   

35. A3,  
1
2 B < 12, ` 2   37. 1`, 2 2 < 15, ` 2   

39. A 
1
2, 0B < A12, ` B   41. 32, 3 4   43. 1`, 1 4 < 31, ` 2   

45. 32, 1 4 < 33, ` 2   47. 1`, 1.37 2 < 10.37, 1 2   
49. 10, 1.60 2   51. 10, 1 4   53. 1`, a 4 < 3b, c 4 < 3d, ` 2   
55. More than 35.6 m  
57. 

 

Between 9.5 and 42.3 mi/h

chApter 3 revieW ■ pAge 356
1. (a) f 1x 2  1x  3 2 2  7 3. (a) f 1x 2  1x  5 2 2  26

(b)  (b) 

5. Maximum f A32 B  5
4 7. 68 ft  

9.  11. 

60

1000

y

1
x_1 0

y

10

x10

y

0 x4

64

300

_4

_300

y

x1
_30(_1, _32)

200

_3

_200

13.  

15. (a) y S ` as x S `, 17. (a) y S ` as x S `,
 y S ` as x S `  y S ` as x S `

(b)  (b) 

19. (a) 0 (multiplicity 3), 2 (multiplicity 2)

(b)  

21.   x-intercepts 2.1, 0.3, 1.9 
y-intercept 1  
local maximum 11.2, 4.1 2   
local minimum 11.2, 2.1 2   
y → `   as  x → `   and   
y → `   as  x → `

23.   x-intercepts 0.1, 2.1 
y-intercept 1  
local minimum 11.4, 14.5 2   
y → `   as  x → `   and 
y → `   as  x → `   

25. (a) S  13.8x1100  x2 2  (b) 0  x  10  

(c)  (d) 5.8 in.  

In answers 27–33 the first polynomial given is the quotient, and 
the second is the remainder.
27. x  2, 4  29. 2x2  11x  58, 294   
31. x3  5x2  17x  83, 422  33. 2x  3, 12  35. 3  37. 8   

y

x1_1

100
31

_100

0

x

y

0 1

10
x

y

16

0 5_5

100

_100

x

y 

1 0 

1

10

_10

3_3

30

_20

3_2

6000

100

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A32 Answers to Selected Exercises and Chapter Tests

41. (a) 1, 2, 3, 6, 9, 18   
(b) 2 or 0 positive, 3 or 1 negative  
43. (a) 1, 2, 4, 8,  

1
3 ,  

2
3 ,  

4
3 ,  

8
3    

(b) 0 or 2 positive, 1 or 3 negative   
45. (a) 4, 0, 4 (b) 

47. (a) 2, 0 (multiplicity 2), 1 (b) 

49. (a) 2, 1, 2, 3 51. (a)  
1
2 , 1

(b)  (b)  

53. 4x3  18x2  14x  12  
55. No; since the complex conjugates of imaginary zeros will 
also be zeros, the polynomial would have 8 zeros, contradicting 
the  requirement that it have degree 4.   
57. 1, i  59. 3, 1, 5  
61. 1  2i, 2 (multiplicity 2)   
63. 2, 1 (multiplicity 3)  

65. 2, 1  i !3  67. 1, 3, 
1  i !7

2
  

69. x  0.5, 3  71. x  0.24, 4.24  
73. 2, P1x 2  1x  2 2 1x2  2x  2 2
75. (a) Vertical asymptote  77. (a) Vertical asymptote  
x  4, horizontal  x  1, horizontal asymptote  
asymptote y  0,  y  3, x -intercept 4

3, 
no x -intercept, y-intercept 3

4, y-intercept 4,
domain 5x 0  x ? 46  domain 5x 0  x ? 16
range 5y 0  y ? 06  range 5y 0  y ? 36
(b)  (b)  

y

x4

30

_4 _30
0

y

x1

4

_2
_4

0

y

x2

20

_2 _10
0

y

x1

10

_1
_10

x

y

0.75

0 1

2

x

y

0
1

1
4
3

79.   81. 
 

Domain 5x 0  x ? 16 , Domain 5x 0  x ? 2, 46 ,
range 5y 0  y ? 36  range 1`, ` 2
83.  
 

Domain 1`, ` 2 , 
range Ey 0  9  y  1

2F  
85.   x-intercept 7 

y-intercept 7 
no asymptote 
domain 5x 0  x ? 26  
range 5y 0  y ? 96

87.   x-intercept  6 
y-intercept  

6
5  

vertical x  5 
horizontal y  1 
domain 5x 0  x ? 3, 56  
range Ey 0  y ? 1,  

9
2F

89.   x-intercept 3 
y-intercept 0.5 
vertical x  3 
horizontal y  0.5 
no local extrema

91.   x-intercept 2 
y-intercept 4 
vertical x  1, x  2 
slant y  x  1 
local maximum 
10.425, 3.599 2  
local minimum 14.216, 7.175 2   

y

0 x5

4

310

_5

_20
_12

y

0 x6

6

0.25

_6

_6

y

0 x5
3

_5
_3

_9

2

(2, 9)

y

1
x10

y

2
x2 9

2!3, _   @

20

10_10

_20

30

6_6

_30
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Answers to Section 4.1 A33

93. 1`, 1 4 < C  32, ` B   95. 13, 3 2   

97. 1`, 2 2  < 11, 2 2   99. 13, 0 2 < A2, 92 D   

101. C3, 83 D   103. 30.74, 1.95 4   

chApter 3 teSt ■ pAge 359
1. f 1x 2  Ax  1

2 B2  25
4   

2. Minimum gA 
3
2 B   

3
2   3. (a) 2500 ft  (b) 1000 ft

4. 

5. (a) x3  2x2  2, 9  (b) x3  2x2  1
2, 15

2   
6. (a) 1, 3,  

1
2 ,  

3
2   (b) 21x  3 2 Ax  1

2 B 1x  1 2   

(c) 1, 1
2, 3  (d) 

7. 3, 1  i  8. 1x  1 2 21x  2i 2 1x  2i 2    
9. x4  2x3  10x2  18x  9   
10. (a) 4, 2, or 0 positive; 0 negative  

(c) 0.17, 3.93 

(d) Local minimum 12.82, 70.31 2   
11. (a) r, u  (b) s  (c) s, „  (d) „   
(e) Vertical x  1, x  2; horizontal y  0  

(f) 

x

y

10
1

25
4_

y

x1

1940

_2

_40

0

y

0 x

10
1

1
2

80

_80

5_3

y

0 x6
2

6
25

6

_6
_3

_6

(g) x2  2x  5 

12. Ex 0  x  1 or 52  x  3F   

13. Ex 0  1  !5  x  1  !5F
14. (a) 

x-intercepts 1.24, 0, 2, 3.24, local maximum P 11 2  5,  
local minima P 10.73 2  P12.73 2  4
(b) 1`, 1.24 4 < 30, 2 4 < 33.24, ` 2

FocuS on Modeling ■ pAge 363
1. (a) y  0.275428x2  19.7485x  273.5523  

(b) 

(c) 35.85 lb/in2  

3. (a) y  0.00203708x3  0.104521x2  1.966206x  1.45576  

(b) 

(c) 43 vegetables  (d) 2.0 s  
5. (a) y  0.0120536x2  0.490357x  4.96571  

(b)  (c) 19.0 min

chapter 4
Section 4.1 ■ pAge 372
1. 5; 1

25; 1; 25; 15,625  2. (a) III  (b) I  (c) II  (d) IV 
3. (a) downward  (b) right  4. principal, interest rate per year, 
number of times interest is compounded per year, number of 
years, amount after t years; $112.65  5. horizontal, 0; 0  

60

10_10

_60

_5

10

_2 4

82

4625
48

22

300

5.1

200
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A34 Answers to Selected Exercises and Chapter Tests

6. horizontal, 3; 3  7. 2.000, 22.195, 0.063, 1.516   
9. 0.192, 0.070, 15.588, 1.552  

11.  13. 

15.  17. 

19.  

21. f 1x 2  3x  23. f 1x 2  A14 Bx  25. II  
27. , 13, ` 2 , y  3  29. , 1`, 0 2 , y  0

y

0 x5

3

_5

_5

(1, _1)

 

31. , 10, ` 2 , y  0  33. , 11, ` 2 , y  1

 

(0, 2)

1

1

x

y

0

y

0 x

1

_2 2

2

(2, 4)

y

0 x_2 2

3

(_2, 9)

1

(2, 5.07)

1

1 x0

y y

0 x2

1

−2

y=2x
y=2_x

y

0 x_2 2

1
2

y=7˛
y=4˛

y

0 x_2 2
_1

(1, _3)

y

0 x_2 2

(_3, 1)

1000

35. , 1`, 2 2 , y  2  37. , 11, ` 2 , y  1

 

(4, 2)

1

11

2

x

y

0

39. , 1`, 1 2 , y  1  41. (a) 

(_1, _2)

1

1

x

y

   (b) The graph of g is steeper 
 than that of f.

43. 

y
g(x) = 3x

f (x) = x3

0 x2

200

45. (a) 
20

50

˝=x∞ Ï=2˛

(i)

 

10¶

250

˝=x∞

Ï=2˛

(ii)

  The graph of f ultimately in-
creases much more quickly than 
that of g.

 (b) 1.2, 22.4

y

1

x10

y

0 x_2 2

2

˝=3(2˛)

Ï=2˛

x 0 1 2 3 4 6 8 10

fxxc 0 1 8 27 64 216 512 1000

gxxc 1 3 9 27 81 729 6561 59,049

10(iii) •

500

˝=x∞

Ï=2˛
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Answers to Section 4.2 A35

47.   

The larger the value of c, the  
more rapidly the graph  
increases.

49. (a) Increasing on 1`, 0.50 2 ; decreasing on 10.50, ` 2    
(b) 10,  1.78 2   
53. (a) N1 t 2  1500 # 2t  (b) 25,165,824,000  
55. $5203.71, $5415.71, $5636.36, $5865.99, $6104.98, $6353.71   
57. (a) $11,605.41  (b) $13,468.55  (c) $15,630.80   
59. (a) $519.02  (b) $538.75  (c) $726.23   
61. $7678.96  63. 8.30%  

Section 4.2 ■ pAge 377
1. natural; 2.71828  
2. principal, interest rate per year,  
number of years; amount after t years; $112.75   
3. 2.718, 23.141, 0.050, 4.113

5.  

7. , 12, ` 2 , y  2  9. , 1`, 0 2 , y  0

 

11. , 11, ` 2 , y  1 13. , 10, ` 2 , y  0
y

0 x_1 2

1
(_1, 1.72)

 

5

3_3

_1

c=4 c=2
c=1

c=0.25

c=0.5

x y

2 0.20
1 0.55
0.5 0.91

0 1.5
0.5 2.47
1 4.08
2 11.08

y

2

x10

y

4

x10

y

0 x_2 1
_1

(1, _2.72)

y

0 x1

1 (2, 1)

15. , 13, ` 2 , y  3  17. (a)

(0, e _3)

(_1, _2)

1

1

x

y

 

19. (a) 

5

3_3

_1

a=2

a=1
a=1.5

a=0.5

(b)  The larger the value of a, the wider the graph.
21. Local minimum 10.37, 0.69 2   23. 27.4 mg  
25. (a) 0  (b) 113.8 ft/s, 155.6 ft/s
(c)
200

1000

(d) 180 ft/s
27. (a) 100  (b) 482, 999, 1168  (c) 1200
29. (a) 11.79 billion, 11.97 billion  

(b)  (c) 12 billion

31. $7213.18, $7432.86, $7659.22, $7892.48, $8132.84, $8380.52   
33. (a) $2145.02  (b) $2300.55  (c) $3043.92   
35. (a) $768.05  (b) $769.22  (c) $769.82  (d) $770.42   
37. (a) is best.  
39. (a) A1 t 2  5000e0.09t  (b) 

(c) After 17.88 years

y

0 x2

5

_2

0

14

500

200

30000
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A36 Answers to Selected Exercises and Chapter Tests

Section 4.3 ■ pAge 387
1. x

2. 9; 1, 0, 1, 2, 12   3. (a) log5 125  3  (b) 52  25   
4. (a) III  (b) II  (c) I  (d) IV  
5. vertical, 0  6. vertical, 1  

7. 

9. (a) 34  81  (b) 30  1  
11. (a) 81/3  2  (b) 102  0.01  
13. (a) 3x  5  (b) 72  3y  
15. (a) e3y  5  (b) e1  t  1  
17. (a) log10 10,000  4  (b) log5 A 1

25 B   2  

19. (a) log8A18 B  1  (b) log2A18 B  3  

21. (a) log4 70  x  (b) log3 „  5  

23. (a) ln 2  x  (b) ln y  3  
25. (a) 1  (b) 0  (c) 5  27. (a) 2  (b) 2  (c) 10  
29. (a) 3  (b) 1

2   (c) 1  31. (a) 5  (b) 27  (c) 10  
33. (a)  

2
3   (b) 4  (c) 1  35. (a) 64  (b) 2  

37. (a) e3  (b) 2  39. (a) 2  (b) 32  
41. (a) 1  (b) 1

1000   43. (a) 2  (b) 4  
45. (a) 0.3010  (b) 1.5465  (c) 0.1761  
47. (a) 1.6094  (b) 3.2308  (c) 1.0051  
49. 51.

x

y 

1 0 

1

 

x

y 

2 0 

1

53. y  log5 x  55. y  log9 x  57. I  
59.  61. 1`, 0 2 , , x  0

y

0 x5_2

_2

5 y=4˛

y=ø› x

 

x 103 102 101 100 101 102 103 101/2

log x 3 2 1 0 1 2 3 1
2

Logarithmic form Exponential form

log8 8  1 81  8

log8 64  2 82  64

log8 4  2
3 82/3  4

log8 512  3 83  512

log8A18 B  1 81  1
8

log8A 1
64 B  2 82  1

64

y

0 x1

1

63. 14, ` 2 , , x  4 65. 15, ` 2 , , x  5

 

x

y

0 1

1

67. 10, ` 2 , , x  0  69. 11, ` 2 , , x  1
y

0 x1

1
(1, 2)

 

71. 10, ` 2 , 30, ` 2 , x  0
y

0 x1

1

73. 13, ` 2   75. 1`, 1 2 < 11, ` 2   77. 10, 2 2   

79.   domain 11, 1 2   
vertical asymptotes x  1,  
x  1  
local maximum 10, 0 2

81.   domain 10, ` 2   
vertical asymptote x  0  
no maximum or minimum

83.   domain 10, ` 2   
vertical asymptote x  0  
horizontal asymptote y  0  
local maximum  
 12.72, 0.37 2

85. 1f + g 2 1x 2  2x1, 1`, ` 2 ; 1g + f 2 1x 2  2x  1, 1`, ` 2
87. 1f + g 2 1x 2  log21x  2 2 , 12, ` 2 ;
1g + f 2 1x 2  log2 x  2, 10, ` 2
89. The graph of f grows more slowly than g.

y

0 x1
_1

1

0 x

y

2

−2

1

1

2_2

_2

3

3_1

_6

1

20_1

_3
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Answers to Section 4.6 A37

91. (a)   (b) The graph of 
f 1x 2  log1cx 2  is  
the graph of 
f 1x 2  log1x 2  shifted 
upward log c units.

93. (a) 11, ` 2   (b) f11x 2  102x
  

95. (a) f11x 2  log2 a x

1  x
b   (b) 10, 1 2   97. 2602 years  

99. 11.6 years, 9.9 years, 8.7 years  101. 5.32, 4.32

Section 4.4 ■ pAge 394
1. sum; log5 25  log5 125  2  3
2. difference; log5 25  log5 125  2  3
3. power; 10 # log5 25  10 # 2  4. 2 log x   log y  log z

5. log a x2y

z
b   6. (a) 10, e; Change of Base; 

log7 12 
log 12

log 7
 1.277  (b) Yes  7. (a) False  

(b) True  8. (a) True  (b) False  9. 4  11. 2  13. 1   
15. 1

2   17. 3  19. 200  21. 4  23. log3 8  log3 x  
25. log3 2  log3 x  log3 y  27. 3 ln a  
29. 101 log2 x  log2 y 2   31. log2 A  2 log2 B  
33. log3 2  log3 x  log3 y  35. log5 3  2 log5 x  3 log5 y  
37. 1

2  5
2 log3 x  log3 y  39. 3 log x  4 log y  6 log z  

41. 1
2 ln1x4  2 2   43. ln x  1

2 
1 ln y  ln z 2   45. 1

4 log1x2  y2 2   
47. 1

2 3 log1x2  4 2  log1x2  1 2  2 log1x3  7 24
49. log4 294  51. log 

x2

1x  1 2 3   53.  log a x41x  1 2 2
"3 x2  1

b   

55. ln 

a2  b2

c2   
57. log a x2

x  3
b   59. 2.321928  

61. 2.523719  63. 0.493008  65. 3.482892  
67. 

 

73. (a) P  c/Wk  (b) 1866, 64
75. (a) M  2.5 log B  2.5 log B0

Section 4.5 ■ pAge 404
1. (a) ex  25  (b) x  ln 25  (c) 3.219  
2. (a) log 31x  22  log x  (b) 31x  22  x  (c) 3  3. 4  
5. 3

2   7. 3  9. 1, 1  11. (a) 2 log 5  (b) 1.397940  

13. (a)  
1
5 ln 10  (b) 0.460517  15. (a) 1 

log 3

log 2
  

(b) 0.584963  17. (a) lnA10
3 B   (b) 1.203973  

19. (a) 
ln110/3 2

12 ln141/40 2   (b) 4.063202  21. (a) 
1  ln 2

4
  

(b) 0.076713  23. (a) 
5

7


ln 15

7 ln 2
  (b) 0.156158  

2.6

100_10

_1

c=4
c=3
c=2
c=1

2

4_1

_3

25. (a) 
14 log 0.1

log 3
  (b) 29.342646  

27. (a) 1
5 logA54 B   (b) 0.019382  

29. (a) 
1  ln 12

4
  (b) 0.371227  

31. (a) 
ln150/3 2

2 ln 2
  (b) 2.029447  

33. (a) 
log 4

log15/4 2   (b) 6.212567  

35. (a)  

log 18

log18/3 2   (b) 2.946865  

37. (a) ln 11.5  (b) 2.442347  39. ln 2  0.6931, 0  
41. 1

2  ln 3  0.5493  43. 1  45. 1  47. 0, 4
3   49. 5  

51. 2, 4  53. 5  55. e10  22,026  57. 0.01  59. 95
3   

61. 7  63. 4  65. 6  67. 13
12   69. 2.21  71. 0.00, 1.14  

73. 0.57  75. 0.36  77. 1/!5  0.4472  
79. 2  x  4 or 7  x  9  81. log 2  x  log 5  

83. f 
11x 2 

ln x

2 ln 2   
85. f 

11x 2  2x  1
  

87. 3
2   

89. (a) $6435.09  (b) 8.24 years  
91. 6.33 years  93. 8.15 years  95. 13 days  
97. (a) 7337  (b) 1.73 years  
99. (a) P  P0e

h/k  (b) 56.47 kPa  
101. (a) t   

5
13 lnA1  13

60 IB   (b) 0.218 s

Section 4.6 ■ pAge 414
1. (a) n1 t 2  10 # 22t/3  (b) 1.06  108  (c) 14.9 
3. (a) 3125  (b) 317,480  

(c) 

5. (a) n1 t 2  18,000e0.08t  (b) 34,100  (c) 4.1

(d) 

7. (a) 233 million  (b) 181 million  
9. (a) n1 t 2  112,000 # 2t/18  (b) n1 t 2  112,000e0.0385t  

(c)  (d) 38.9 years

0 10 20 30 5040 t (years)

n (millions)

0.2

0.4

0.6

0.8

1.0

n(t)

t2

20,000

40,000

60,000

0 10 20 30 40 t

n (millions)

0.2

0.4

0.6

0.8

1.0
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A38 Answers to Selected Exercises and Chapter Tests

11. (a) 20,000  (b) n1 t 2  20,000e0.1096t   
(c) About 48,000  (d) 14.7 years  
13. (a) n1 t 2  8600e0.1508t  (b) About 11,600  (c) 4.6 h  
15. (a) n1 t 2  29.76e0.012936t million  (b) 53.6 years   
(c) 38.55 million  17. (a) m1 t 2  22 # 2t/1600   
(b) m1 t 2  22e0.000433t  (c) 3.9 mg  (d) 463.4  
19. 18 years  21. 149 h  23. 3560 years  25. (a) 210 F   
(b) 153 F  (c) 28 min  27. (a) 137 F  (b) About 2 h  

Section 4.7 ■ pAge 421
1. (a) 2.3  (b) 3.5  (c) 8.3  3. (a) 103 M  (b) 3.2  107 M  
5. 4.8  pH  6.4  7. (a) 6.31  104 M, 1.26  103 M  
(b) California  9. (a) 5.49  (b) 6.3 cm  11. log 20  1.3  
13. Six times as intense  15. 73 dB  17. 105 W/m2  
19. (a) 75 dB  (b) 103 W/m2  (c) 32.3  

chApter 4 revieW ■ pAge 424
1. 0.089, 9.739, 55.902  3. 0.269, 1.472, 12.527  
5. , 10, ` 2 , y  0 7. , 13, ` 2 , y  3

y

0 x3

3

−3  

y

0 x3

4

−3

9. , 11, ` 2 , y  1 11. 11, ` 2 , , x  1

x

y

0 1

2

 

13. 10, ` 2 , , x  0 15. 10, ` 2 , , x  0
y

0 x1

1

(1, 2)

 

y

0 x5

1

17. A`,  
1
2 B   19. 1`, 2 2 < 12, ` 2   21. 210  1024  

23. 10 y  x  25. log2 64  6  27. log 74  x  29. 7  31. 45  
33. 6  35. 3  37. 1

2   39. 2  41. 92  43. 2
3   

45. log A  2 log B  3 log C  
47. 1

2 3 ln1x  1 2  ln1x  1 2  ln1x2  1 2 4
49. 2 log5 x  3

2 log511  5x 2 
1
2 3 log5 x  log51x  1 2  log51x  1 2 4

51. log 96  53. log2 a
1x  y 2 3/2

1x2  y2 2 2 b   55. loga x2  4

"x2  4
b   

y

0 x5

1

_1

57. 5  59. 
1

3
 c log 7

log 2
 5 d  2.60  61. 

log14/243 2
log 36

 1.15  

63. 4, 2  65. 3  67. 15  69. 9  71.  0.430618  
73. 2.303600  
75.    vertical asymptote  

x  2  
horizontal asymptote  
y  2.72 
no maximum or minimum

77.   vertical asymptotes 
 x  1, x  0, x  1 
 local maximum  
 10.58, 0.41 2

79. 2.42  81. 0.16  x  3.15
83. Increasing on 1`, 0 2  and 11.10, ` 2 , decreasing on 10, 1.10 2
85. 1.953445  87. 0.579352  89. log4258  
91. (a) $16,081.15  (b) $16,178.18  (c) $16,197.64  
(d) $16,198.31  93. 1.83 years  95. 4.341%  
97. (a) n1 t 2  30e0.15t  (b) 55  (c) 19 years  
99. (a) 9.97 mg  (b) 1.39  105 years  
101. (a) n1 t 2  150e0.0004359t  (b) 97.0 mg  (c) 2520 years  
103. (a) n1 t 2  1500e0.1515t  (b) 7940  105. 7.9, basic   
107. 8.0  

chApter 4 teSt ■ pAge 427
1. (a) , 14, ` 2 , y  4 (b) 13, ` 2 , , x  3 

x

y 

1 0 

4 

 

x

y 

1 0 

2 

2. (a) A32, ` B   (b) 1`, 1 2 < 11, ` 2
3. (a) log6 25  2x  (b) e3  A
4. (a) 36  (b) 3  (c) 3

2   (d) 3  (e) 2
3   (f) 2

5. (a) log x  3 log y  2 log z  (b) 1
2 ln x  1

2 ln y
(c) 1

3 3 log1x  2 2  4 log x  log1x2  4 24
6. (a) log1ab2 2   (b) ln1x  5 2   (c) log2 

3!x  1

x3   

7. (a) 25  (b) 1, 2  (c) 11.13  (d) 5.39   
8. (a) 500  (b) 2

3   (c) 3  e4/5  0.774  (d) 2  9. 1.326  
10. (a) n1 t 2  1000e2.07944t  (b) 22,600  (c) 1.3  

(d) 

10

20_20
_1

1.5

2.5_1.5

_1.5

y

0 x

10,000

1 2
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Answers to Section 5.2 A39

11. (a) A1 t 2  12,000a1 
0.056

12
b

12t

  (b) $14,195.06  

(c) 9.12 years  12. (a) m1 t 2  3 # 2t/10  (b) m1t2  3e0.0693t
   

(c) 0.047 g  (d) after 3.6 min  13. 1995 times more intense

FocuS on Modeling ■ pAge 434
1. (a) 

(b) y  abt, where a  3.334926  1015, b  1.019844, and  
y is the population in millions in the year t  (c) 577 million  
(d) 196 million  

3. (a) 

(b) y  abt, where a  4.79246 and b  0.99642  (c) 192.8 h
5. (a) y  atb, where a  49.70030 and b  0.15437;  
y  abt, where a  44.82418 and b  0.99317

(b) 

(c) The power function  
7. y  abx, where a  2.414 and b  1.05452

9. (a) 

(b) 

(c) The power function
(d) y  axb, where a  0.893421326 and b  1.50983

chapter 5
Section 5.1 ■ pAge 444
1. (a) arc, 1  (b) p/180  (c) 180/p  2. (a) ru  (b) 1

2r2u
3. (a) u/t  (b) s/t  (c) rv  4. No, B  5. p/12  0.262 rad  
7. 3p/10  0.942 rad  9. p/4  0.785 rad  
11. 5p/9  1.745 rad  13. 50p/9  17.453 rad  

350

0
20201780

5.5

0
-10 50

70

y = abt

y = atb

1250

850

0 100

6.75

3
0

3
2100

6.75

4.6

15. 7p/18  1.222 rad  17. 300  19. 150  
21. 540/p  171.9  23. 216/p  68.8  
25. 18  27. 24  29. 410, 770, 310, 670   
31. 11p/4, 19p/4, 5p/4, 13p/4   
33. 7p/4, 15p/4, 9p/4, 17p/4  35. Yes  37. Yes   
39. Yes  41. 40  43. 60  45. 280  47. 7p/6   
49. p  51. p/4  53. 15p/2  23.6   
55. 360/p  114.6  57. 15 cm  59. 14

9  rad, 89.1   
61. 18/p  5.73 m  63. (a) 128p/9  44.68  (b) 25   
65. 100p/3  104.7 m2  67. 6!5p/p  7.6 m   
69. 1

2 rad  71. p/4 ft2  73. 3p/2 rad, p/8 rad   
75. 13.9 mi  77. 330p mi  1037 mi  79. 1.6 million mi   
81. 1.15 mi  83. 360p in2  1130.97 in2   
85. (a) 90p rad/min  (b) 1440p in./min  4523.9 in./min   
87. 32p/15 ft/s  6.7 ft/s  89. 1039.6 mi/h  91. 2.1 m/s   
93. (a) 10p cm  31.4 cm  (b) 5 cm  (c) 3.32 cm   
(d) 86.8 cm3

Section 5.2 ■ pAge 453
1. (a) 

(b) 
opposite

hypotenuse
, 

adjacent

hypotenuse
, 

opposite

adjacent
  (c) similar

2. sin u, cos u, tan u
3. sin u  4

5, cos u  3
5,  tan u  4

3, csc u  5
4,  

sec u  5
3, cot u  3

4  
5. sin u  40

41, cos u  9
41, tan u  40

9 , 
csc u  41

40, sec u  41
9 , cot u  9

40  
7. sin u  2!13/13, cos u  3!13/13, tan u  2

3, 
csc u  !13/2, sec u  !13/3, cot u  3

2  
9. (a) 3!34/34, 3!34/34  (b) 3

5, 35   (c) !34/5, !34/5  

11. (a) 0.37461  (b) 2.35585  13. (a) 1.02630  (b) 1.23490   

15. 25
2   17. 13!3/2  19. 16.51658  

21. x  28 cos u, y  28 sin u  
23. sin u  5!61/61, cos u  6!61/61, csc u  !61/5,
sec u  !61/6, cot u  6

5

¨

œ∑∑61 5

6

25. sin u  !2/2, cos u  !2/2, tan u  1, 
csc u  !2, sec u  !2

¨

1

1
œ∑2

¨

adjacent

opposite

hypotenuse
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A40 Answers to Selected Exercises and Chapter Tests

27. sin u  6
11, cos u  !85/11, tan u  6!85/85, 

sec u  11!85/85, cot u  !85/6

¨

11
6

œ∑∑85

29. 11  !3 2/2  31. 1  33. 1
2   35. 3

4  A!2/2B   

37.  39. 

41.  43. 

45. sin u  0.44, cos u  0.89, tan u  0.50, csc u  2.25,  
sec u  1.125, cot u  2.00  47. 230.9  49. 63.7  
51. x  10 tan u sin u  53. 1026 ft  
55. (a) 2100 mi  (b) No  57. 19 ft  59. 345 ft   
61. 415 ft, 152 ft  63. 2570 ft  65. 5808 ft   
67. 91.7 million mi  69. 3960 mi  71. 0.723 AU

Section 5.3 ■ pAge 464
1. y/r, x/r, y/x  2. quadrant; positive; negative; negative
3. (a) x-axis; 80, 10  (b) 80; 10  4. 1

2 
ab sin u; 7  

5. (a) 60  (b) 20  (c) 75  7. (a) 45  (b) 90  (c) 75  
9. (a) 3p/10  (b) p/8  (c) p/3  
11. (a) 2p/7  (b) 0.4p  (c) 1.4  13. !3/2  15. !3/3   
17. !3/3  19. 1  21. !3/2  23. !3/3  25. 1  
27. !3  29. 2  31. 2  33. 1  
35. Undefined  37. III  39. IV  

41. tan u  "1  cos2
 u/cos u  

43. cos u  "1  sin2 u  45. sec u  "1  tan2 u  
47. cos u  3

5, tan u   
4
3, csc u   

5
4, sec u  5

3, cot   u   
3
4   

49. sin u  !95/12, tan u  !95/7, csc u  12!95/95, 
sec u  12

7 , cot   u  7!95/95  
51. sin u  1

2, cos u  !3/2, tan u  !3/3, 

sec u  2!3/3, cot u  !3
53. sin u  3!5/7, tan u  3!5/2, csc u  7!5/15, 
sec u   

7
2, cot u  2!5/15

55. !3/2, !3  57. 30.0  59. 25!3  43.3   
61. 66.1  63. 14p/3 2  !3  2.46  
65. (b)

u 20 60 80 85

h 1922 9145 29,944 60,351

45*

45*

16œ∑2Å22.63
16

16
52*

38*

56.8544.80

35

30.95 33.5

12.82

3π
8

π
8

106
180.34

145.90

3π
10

π
5

67. (a) A(u)  400 sin u cos u

(b) 

(c) width  depth  14.14 in.  
69. (a) 9!3/4 ft  3.897 ft, 9

16 ft  0.5625 ft   
(b) 23.982 ft, 3.462 ft  

71. (a)   (b) 0.946 rad or 54

73. 42°  

Section 5.4 ■ pAge 472
1. one-to-one; domain, 3p/2, p/2 4   
2. (a) 31, 1 4 , 3p/2, p/2 4   (b) 31, 1 4 , 30, p 4   
(c) , 1p/2, p/2 2   3. (a) 8

10   (b) 6
10   (c) 8

6   

4. 12
13  

5. (a) p/2  (b) p/2  (c) p/3  
7. (a) p/4  (b) 3p/4  (c) p/4  9. 0.30469  
11. 1.23096  13. 1.24905  15. Undefined  17. 36.9°  

19. 34.7°  21. 34.8°  23. 41.8°, 138.2°  25. 113.6°  

27. 78.7°  29. 3
5   31. 13

5   33. 12
5   35. "1  x2  

37. x/"1  x2
  39. 72.5°, 19 ft  

41. (a) h  2 tan u  (b) u  tan1 1 h/2 2   
43. (a) u  sin1 1 h/680 2   (b) u  47.3°
45. (a) 54.1°  (b) 48.3°, 32.2°, 24.5°. The function sin1 is 
undefined for values outside the interval 31, 1 4 .

Section 5.5 ■ pAge 479

1. 
sin A

a


sin B

b


sin C
c

  2. (a) ASA, SSA  (b) SSA 

3. 318.8  5. 24.8  7. 44  9. C  114, a  51, b  24 
11. A  44, B  68, a  8.99  
13. C  62, a  200, b  242

300

1.570

10

0
3

13

¨

12

5

50*

230
A B

68*

C
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Answers to Section 6.2 A41

15. B  85, a  5, c  9

17. A  100, a  89, c  71

19. B  30, C  40, c  19  21. No solution
23. A1  125, C1  30, a1  49;  
A2  5, C2  150, a2  5.6   
25. No solution  27. A1  57.2, B1  93.8, b1  30.9;  
A2  122.8, B2  28.2, b2  14.6   
29. (a) 91.146  (b) 14.427  31. (a) 1018 mi  (b) 1017 mi   
33. 219 ft  35. 55.9 m  37. 175 ft  39. 192 m   
41. 0.427 AU, 1.119 AU  

Section 5.6 ■ pAge 486
1. a2  b2  2ab cos C  2. SSS, SAS  3. 28.9  5. 47  
7. 29.89  9. 15  11. A  39.4, B  20.6, c  24.6  
13. A  48, B  79, c  3.2  
15. A  50, B  73, C  57  
17. A1  83.6, C1  56.4, a1  193;  
A2  16.4, C2  123.6, a2  54.9  
19. No such triangle  21. 2  23. 25.4  25. 89.2  
27. 24.3  29. 54  31. 26.83  33. 5.33  35. 40.77   
37. 3.85 cm2  39. 2.30 mi  41. 23.1 mi  43. 2179 mi   
45. (a) 62.6 mi  (b) S 18.2 E  47. 96  49. 211 ft   
51. 3835 ft  53. $165,554

chApter 5 revieW ■ pAge 493
1. (a) p/6  (b) 5p/6  (c) p/9  (d) 5p/4   
3. (a) 150  (b) 20  (c) 240  (d) 229.2  
5. 4p  12.6 m  7. 90/p  28.6 ft  9. 21,609  11. 25 m2

13. 0.4 rad  22.9  15. 300p rad/min  942.5 rad/min,  
7539.8 in./min  628.3 ft/min   
17. sin u  5/!74, cos u  7/!74, tan u  5

7, 
csc u  !74/5, sec u  !74/7, cot u  7

5  
19. x  3.83, y  3.21  21. x  2.92, y  3.11  
23. A  70, a  2.819, b  1.026  
25. A  16.3, C  73.7, c  24
27. a  cot u, b  csc u  29. 48 m  31. 1076 mi  
33. !2/2  35. 1  37. !3/3  39. !2/2  
41. 2!3/3  43. !3  
45. sin u  12

13, cos u   
5

13, tan u   
12
5 , 

csc u  13
12, sec u   

13
5 , cot u   

5
12   47. 60  

49. tan u  "1  cos2
 u/cos u  

51. tan2
 u  sin2 u/ 11  sin2

 u 2   
53. sin u  !7/4, cos u  3

4, csc u  4!7/7, cot u  3!7/7  
55. cos u   

4
5, tan u   

3
4, csc u  5

3, sec u   
5
4, 

cot u   
4
3   57. !5/5  59. 1  61. p/3  63. 2/"21  

65. x/"1  x2  67. u  cos11x/3 2   69. 5.32  71. 148.07  

30*

10

A B

65*

C

29*

44

A B

51*

C

73. 9.17  75. 54.1° or 125.9°  77. 80.4°  79. 77.3 mi  
81. 3.9 mi  83. 32.12  

chApter 5 teSt ■ pAge 497
1. 11p/6, 3p/4  2. 240, 74.5
3. (a) 240p rad/min  753.98 rad/min  
(b) 12,063.7 ft/min  137 mi/h  4. (a) !2/2  
(b) !3/3  (c) 2  (d) 1  5. A26  6!13B/39  
6. a  24 sin u, b  24 cos u  7. 14  3!2 2/4  

8.  
13
12   9. tan u  "sec2

 u  1  10. 19.6 ft
11. (a) u  tan11x/4 2   (b) u  cos113/x 2   12. 40

41

13. 9.1  14. 250.5  15. 8.4  16. 19.5  17. 78.6°  18. 40.2°
19. (a) 15.3 m2  (b) 24.3 m  20. (a) 129.9  (b) 44.9  
21. 554 ft

FocuS on Modeling ■ pAge 500
1. 1.41 mi  3. 14.3 m  5. (c) 2350 ft  

7. 

chapter 6
Section 6.1 ■ pAge 509
1. (a) 10, 0 2 , 1  (b) x2  y2  1  (c) (i) 0  (ii) 0  (iii) 0   
(iv) 0  2. (a) terminal  (b) 10, 1 2 , 11, 0 2 , 10, 1 2 , 11, 0 2
9.  

4
5   11. 2 !2/3  13. 3 !5/7  15.  PA 5

13,   
12
13 B   

17. PA !5/3,  
2
3 B   19. PA !2/3,  !7/3B   

21. t  p/4, A!2/2,  !2/2B ; t  p/2, 10,  1 2 ; 
t  3p/4, A !2/2,  !2/2B ; t  p, 11,  0 2 ; 
t  5p/4, A!2/2,   !2/2B ; t  3p/2, 10,  1 2 ; 
t  7p/4, A!2/2,  !2/2B ; t  2p, 11,  0 2
23. 11,  0 2   25. 10,  1 2   27. A!3/2,   

1
2 B   

29. A!2/2,  !2/2B   31. A!3/2,  
1
2 B   

33. 1!2/2, !2/2 2   35. A!2/2,  !2/2B   
37. (a) p/3  (b) p/3  (c) p/6  (d) 3.5  p  0.36  
39. (a) 2p/7  (b) 2p/9  (c) p  3  0.14   
(d) 2p  5  1.28  41. (a) p/6  (b) A!3/2,   

1
2 B   

43. (a) p/3  (b) A 
1
2,  !3/2B   

45. (a) p/3  (b) A 
1
2,  !3/2B

47. (a) p/4  (b) A!2/2,  !2/2B
49. (a) p/6  (b) A !3/2, 12 B   51. (a) p/3  (b) A12,  !3/2B
53. (a) p/3  (b) A 

1
2,  !3/2B

55. 10.5,  0.8 2   57. 10.5,  0.9 2   
59. (a) A 

3
5,  

4
5 B   (b) A35,   

4
5 B   (c) A 

3
5,   

4
5 B   (d) A35,  

4
5 B

Section 6.2 ■ pAge 518
1. y, x, y/x  2. 1; 1  3. t  p/4, sin t  !2/2, cos t  !2/2;  
t  p/2, sin t  1, cos t  0; t  3p/4, sin t  !2/2, 
cos t  !2/2; t  p, sin t  0, cos t  1; t  5p/4, 
sin t  !2/2, cos t  !2/2; t  3p/2, sin t  1,  
cos t  0; t  7p/4, sin t  !2/2, cos t  !2/2;  
t  2p, sin t  0, cos t  1

150 ft

84.0 ft

91.9 ft

120.2 ft

149.5 ft

151.7 ft

128.0 ft

173.2 ft 19
5.0

 ft
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A42 Answers to Selected Exercises and Chapter Tests

5. (a)  
1
2   (b) !3/2  (c) !3/3

7. (a) !2/2  (b) !2/2  (c) !2/2
9. (a) !2/2  (b) !2/2  (c) !2/2
11. (a) !3/2  (b) 2 !3/3  (c) !3/3
13. (a) 1

2   (b) 2  (c) !3/2  
15. (a) !3/2  (b) 2 !3/3  (c) !3/3
17. (a) 2  (b) 2 !3/3  (c) !3
19. (a) !3/2  (b) 2 !3/3  (c) !3/3
21. (a) 0  (b) 1  (c) 0  
23. sin 0  0, cos 0  1, tan 0  0, sec 0  1, others undefined
25. sin p  0, cos p  1, tan p  0, sec p  1,  
others undefined
27.  

4
5,  

3
5, 43   29. 2 !2/3,  

1
3, 2!2    

31. !13/7, 6/7, !13/6  
33.  

12
13,  

5
13, 12

5   
35. 21

29,  
20
29,  

21
20   

37. (a) 0.8  (b) 0.84147  39. (a) 0.9  (b) 0.93204  
41. (a) 1  (b) 1.02964  43. (a) 0.6  (b) 0.57482
45. Negative  47. Negative  49. II  51. II  

53. sin t  "1  cos2  t  55. tan t 
sin t

"1  sin2 t
  

57. sec t   "1  tan2 t  59. tan t  "sec2 t  1  

61. tan2 t 
sin2 t

1  sin2 t   

63. cos t  3
5, tan t   

4
3, csc t   

5
4, sec t  5

3, cot t   
3
4

65. sin t  2 !2/3, cos t  1
3, tan t  2 !2, 

csc t   
3
4 !2, cot t   !2/4

67. sin t  12
13, cos t   

5
13, csc t  13

12, sec t   
13
5 , cot t   

5
12

69. cos t   !15/4, tan t  !15/15, csc t  4, 
sec t  4 !15/15, cot t  !15
71. Odd  73. Odd  75. Even  77. Neither  
79. y10 2  4, y10.25 2  2.828, y10.50 2  0, 
y10.75 2  2.828, y11.00 2  4, y11.25 2  2.828
81. (a) 0.49870 amp  (b) 0.17117 amp

Section 6.3 ■ pAge 531
1. f1 t 2 ; 2p, 1

1

_1

π
2π

x

y

 

1

_1

π
2π

x

y

2. upward; x 3. 0  a 0 , 2p/k, 3, p 
4. 0  a 0 , 2p/k, b; 4, 2p/3, p/6

5.  7. y

2

xπ 2π0

y

0 x

−1

1

π

 9.  11. 

13.  15. 

17.  

19. 1, p  21. 1, 2p/3
y

0 x

−1

−
π

1
2

1
2

π
2

 

y

1

_1

x0

π
3

23. 2, 2
3  25. 10, 4p

 

y

0
x

_10

10

π
2

27. 1
3, 6p  29. 2, 1

y

0 x

_1

1

3π 6π

1
3

 

y

0 x

_2

2

1
4

31. 1
2, 2  33. 1, 2p, p/2 

 

5π
2

y

0 x

1

π
2

_1

y

0 x−π π

−2

y

0 x

−3

3

−π π

y

0 x

−1

1

−π π

y

0 x

3

−π π

y

0 x

1

2

−π π

y

x0 1
3

2
3

2

y

0 1 2 x

1
2
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Answers to Section 6.3 A43

35. 2, 2p, p/6  37. 4, p, p/2 

 

y

0
xπ

4
π
4

_4

_

4

39. 5, 2p/3, p/12  41. 1
2 , p, p/6

3π
4

y

0 x

5

π
12

_5  

43. 3, 2,  
1
2   45. 1, 2p/3, p/3

3
2

y

0 x

3

_3

1
2_

 

47. (a) 4, 2p, 0  (b) y  4 sin x
49. (a) 3

2, 2p/3, 0  (b) y  3
2 cos 3x

51. (a) 1
2, p, p/3  (b) y   

1
2 cos 21x  p/3 2

53. (a) 4, 32,  
1
2   (b) y  4 sin 4p/3 Ax  1

2 B
55.  57. 

1.5

0.1_0.1

_1.5
 

1.5

250_250

_1.5

59.  61. 

3

0.2_0.2

_3
 

13π
6

y

0 x

2

π
6

_2

7π
6

y

0

1

xπ
6

π
3

y

0 x

1

_1

π
3_

1.2

0.5_0.5

_0.2

63.  65. 

7

6.28_6.28

_7
 

67.   y  x2 sin x is a sine curve 
that lies between the graphs 
of y  x2 and y  x2

69.   y  !x sin 5px is a sine 
curve that lies between the 
graphs of y  !x and 
y  !x

71.   y  cos 3px cos 21px is a 
cosine curve that lies between 
the graphs of y  cos 3px 
and y  cos 3px

73. Maximum value 1.76 when x  0.94, minimum value 1.76 
when x  0.94 (The same maximum and minimum values 
occur at infinitely many other values of x.)
75. Maximum value 3.00 when x 1.57, minimum value 1.00 
when x  1.57 (The same maximum and minimum values 
occur at infinitely many other values of x.)
77. 1.16  79. 0.34, 2.80  
81. (a) Odd  (b) 2p, 4p, 6p, . . .

(c)   (d) f 1x 2  approaches 0 
 (e) f 1x 2  approaches 0

83. (a) 20 s  (b) 6 ft
85. (a) 1

80  min  (b) 80

(c)  (d) 140
90 ; higher than normal

2.25

6.25_6.25

_2.25

225

15_15

_225

2.8

7.5_0.5

_2.8

1.5

0.5_0.5

_1.5

1

20_20

_1

y

0 x

140

1
80

115

90
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A44 Answers to Selected Exercises and Chapter Tests

Section 6.4 ■ pAge 540
1. p; p2  np, n an integer 2. 2p; np, n an integer

10

_10

x

y

_π
2

π
2

 

5

_5

x

y

_π π

3. II  5. VI  7. IV
9. p  11. p 

y

5

xπ_π

 

y

4

xπ_π 0

13. p  15. 2p 

 

y

0 x_π

2

π
2

17. 2p  19. p/3
y

0 x_π

3

π

 

21. 1 23. 1
3

y

5

x1_1 0

 

y

5

x0 1
3− 1

3

y

0 x

_5

_ π
2

π
2

5

−

y

x0

2

π
2

π
2

25. 4  27. 1
3

 

y

0 x

5

_ 1 1
3

_5
3

29. p/2  31. p

2

y

_π
2

π
2

x

 

y

0 x

1

π
2_ π

2
_1

33. 4
3  35. p

y

0 x

5

1
3

1
3_

 

37. p 39. 2p
y

2

x0_2π _π π

3π
4

2π

 

41. 2p 43. p/2
y

0 xπ
6

0.5 7π
6

5π
6_

 

y

0 x4

1

_4

y

2

x0_2π _π π 2ππ
4

y

2

x0_π π 2ππ
4

_2π

y

2

x0 π
12

π
2− π

2
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45. p/3 47. p/2 

 

y

0 x

4

_ π
2

_4

π
2

49. 2  51. p

y

x

2

5
6

11
6_ 1

6

 

53. 2p/3  55. 3p/2
y

0 x

5

π
6_ π

3

 

y

0 x

1

π
4

7π
4_ 5π

4

57. 2  59. p/2 
y

0 x

3

0.5

_3

 

y

0 x

4

π
6

2π
3_ π

3

61. (a) 1.53 mi, 3.00 mi, 18.94 mi  

(b) 

(c) d1 t 2  approaches `

Section 6.5 ■ pAge 546
1. (a) 3p/2, p/2 4 , y, x, p/6, p/6, 12  
(b) 30, p 4 ; y, x, p/3, p/3, 12  2. 3p/2, p/2 4 ; 1 ii 2
3. (a) p/2  (b) p/3  (c) Undefined   

y

5

x0 π
6− π

2
π
2

y

2

x0 π
2− π

2

y

0 x
2

5

1

5. (a) p  (b) p/3  (c) 5p/6  7. (a) p/4  (b) p/3  (c) p/6  
9. (a) 2p/3  (b) p/4  (c) p/4  11. 0.72973  13. 2.01371  
15. 2.75876  17. 1.47113  19. 0.88998  21. 0.26005  
23. 1

4   25. 5  27. Undefined  29.  
1
5   31. p/4  33. p/4  

35. 5p/6  37. 5p/6  39. p/4  41. p/3  43. !3/3  
45. 1

2   47. !2/2  

Section 6.6 ■ pAge 558
1. (a) a sin vt  (b) a cos vt  
2. (a) kect sin vt  (b) kect cos vt
3. (a) 0  A 0 , 2p/k, b; A sin k At  b

k B ; b/k  (b) 5, p/2, p, p/4
4. p, p/2; p/2, out of phase  
5. (a) 2, 2p/3, 3/ 12p 2    7. (a) 1, 20p/3, 3/ 120p 2
(b)  (b) 

9. (a) 1
4 , 4p/3, 3/ 14p 2   (b)  

11. (a) 5, 3p, 1/ 13p 2   (b) 

13. y  10 sin a 2p

3
 t b   15. y  6 sin110t 2   

17. y  60 cos14pt 2   19. y  2.4 cos11500pt 2   
21. (a) y  2e1.5t cos 6pt  (b) 

y

2

π
6

_2

0 t 10π
3

y

1

_1

20π
3

0 t

14π
9

y

0.25

2π
9

8π
9

_0.25

0 t

y

0
t

9
8_

5

_5

9
83π-

y

2

_2

1 20 t

Answers to Section 6.6 A45
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A46 Answers to Selected Exercises and Chapter Tests

23. (a) y  100e0.05t cos 
p

2
 t  

(b) 

25. (a) y  7e10t sin 12t  (b) 

27. (a) y  0.3e0.2t sin(40pt)  

(b) 

29. 5, p, p/2, p/4  31. 100, 2p/5, p, p/5  
33. 20, p, p/2, p/4  
35. (a) p/2, 5p/2 37. (a) p/2, p/3
(b) 2p   (b) p/6
(c) In phase (c) Out of phase

(d)  (d) 

39. (a) 10 cycles per minute  

(b)  (c) 8.2 m

y

100

_100

8 160 t

y

3

_3

π
6

π
3

0 t

y

0 t

0.3

_0.3

0.6

y

x0

5

π
3

y⁄, y¤

y

x0

80

π
5

y⁄y¤

y

0 t

7.8

8

8.2

10
1

41. (a) 25, 0.0125, 80  (b) 

(c) The period decreases and the frequency increases.
43. d1 t 2  5 sin15pt 2   

45. y  21 sinap

6
 t b   

47. y  5 cos12pt 2   49. y  11  10 sinapt

10
b

  

51. y  3.8  0.2 sinap

5
 t b

53. f 1 t 2  10 sin a p

12
 1 t  8 2b  90

55. (a) 45 V  (b) 40  (c) 40  (d) E1 t 2  45 cos180pt 2
57. f1 t 2  e0.9t sin pt  59. c  1

3 ln 4  0.46  

61. (a) y  sin1200pt 2 , y  sin a200pt 
3p

4
b   

(b) No; 3p/4

chApter 6 revieW ■ pAge 565
1. (b) 1

2, !3/2, !3/3  3. (a) p/3  (b) A 
1
2,  !3/2B   

(c) sin t  !3/2, cos t   
1
2, tan  t  !3, csc t  2 !3/3,

 sec t  2, cot t  !3/3
5. (a) p/4  (b) 1!2/2,  !2/2 2   
(c) sin t  !2/2, cos t  !2/2,
tan t  1, csc t  !2, sec t  !2, cot t  1
7. (a) !2/2  (b) !2/2  9. (a) 0.89121  (b) 0.45360  
11. (a) 0  (b) Undefined  13. (a) Undefined  (b) 0  
15. (a) !3/3  (b) !3  

17. 
sin t

1  sin2
 t   19. 

sin t

"1  sin2
 t
  

21. tan t   
5

12, csc t  13
5 , sec t   

13
12, cot t   

12
5

23. sin t  2 !5/5, cos  t  !5/5, 
tan t  2, sec t  !5  

25.  

!17

4
 4  27. 3  

y

0 t

90

140

80
1

y (feet)

0 t
(hours)

21

3

12

_21

6 9
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Answers to Chapter 6 Test A47

29. (a) 10, 4p, 0   31. (a) 1, 4p, 0

(b)  (b) 

33. (a) 3, p, 1   35. (a) 1, 4,  
1
3   

(b)  (b) 

37. y  5 sin 4x  39. y  1
2 sin 2pAx  1

3 B  
41. p  43. p

y

0 x

5

_π π

 

y

0 x

2

π
2

45. p 47. 2p

y

0 x

4

π
4

π
4_ 3π

4
_4

 

y

x

1

π
4

5π
4

49. p/2  51. p/6  53. 100, p/4, p/2, p/16  
55. (a) 3p/2, 5p/2 (b) p (c) Out of phase

(d)  

y

0 x

10

_10

_2π 2π 4π

y

0 x

1

_1

_4π _π 4ππ

y

0 x

3

_3

1-π

1+π

1

y

0
x

1

_1

_ 3
13

3
11_3

1

y

x0

25

_25

π_π

y⁄
y¤

57. (a)   (b) Period p 
(c) Even

59. (a)   (b) Not periodic   
(c) Neither

61. (a)   (b) Not periodic 
(c) Even

63.     y  x sin x is a sine  
function whose graph lies  
between those of y  x and  
y  x

65.     The graphs are related by 
graphical addition.

67. 1.76, 1.76  69. 0.30, 2.84  
71. (a) 
  

(b) y1 has period p, y2 has period 2p  
(c) sin1cos x 2  cos1sin x 2 , for all x
73. y  50 cos18pt 2

chApter 6 teSt ■ pAge 567
1. y   

5
6   2. (a) 4

5   (b)  
3
5   (c)  

4
3   (d)  

5
3

3. (a)  
1
2   (b) !2/2  (c) !3  (d) 1

4. tan t   

sin t

"1  sin2 t
  5.  

2
15

1.5

6.28_6.28

_0.5

1.5

50_50

_1.5

5

5_5

_5

15

15_15

_15

3.5

3.14_3.14

_3.5

1.5

_1.5

8

y¤

y⁄

_8
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A48 Answers to Selected Exercises and Chapter Tests

6. (a) 5, p/2, 0, 0 7. (a) 2, 4p, p/6, p/3
(b)  (b) 

8. p  9. p/2
y

x

1 π
4

_1
3π
4

0

 

10. (a) p/4  (b) 5p/6  (c) 0  (d) 1
2

11. y  2 sin 21x  p/3 2
12. (a) p/2, p/3  (b) p/6  
(c) Out of phase
(d) 

y⁄y¤

− π
2

y

x0

30

π
2

13. (a)  (b) Even  
  

(c) Minimum value 0.11 when x  2.54, maximum value 1 
when x  0
14. y  5 sin14pt 2
15. y  16e0.1t cos 24pt 

y

0 x

5

_5

π
2

π
4

13π
3

y

0 x

2

π
3

_2

y

0 x

1

π
4_1

1.2

9.42_9.42

_0.4

18

10

_18

FocuS on Modeling ■ pAge 571
1. (a) and (c) 

(b) y  2.1 cos10.52t 2    
(d) y  2.05 sin10.50t  1.55 2  0.01  (e) The formula of (d) 
reduces to y  2.05  cos10.50t  0.02 2  0.01. Same as (b),  
rounded to one decimal.

3. (a) and (c) 

(b) y  12.05 cos15.21 t  0.3 22  13.05
(d) y  11.72 sin15.05t  0.24 2  12.96  (e) The formula of 
(d) reduces to y  11.72 cos15.051 t  0.26 22  12.96. Close, but 
not identical, to (b).

5. (a) and (c) 

(b) y  0.4 cos10.261 t  16 22  37, where y is the body  
temperature (C) and t is hours since midnight
(d) y  0.37 sin10.26t  2.62 2  37.0

7. (a) and (c) 

(b) y  20.5 sin10.521 t  6 22  42.5, where y is the salmon  
population ( 1000), and t is years since 1985
(d) y  17.8 sin10.52t  3.11 2  42.4

2

y

0 t

_2

1 14

y=2.1 cos(0.52t)

25
y

0 t

5

0.1 1.0 1.5
y=12.05 cos(5.2(t-0.3))+13.05

38
y

0 t

36

37

24

y=0.4 cos(0.26(t-16))+37

12

70
y

0 t

20

60

50

40

30

15

y=20.5 sin(0.52(t-6))+42.5

10
Year since 1985
5
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Answers to Section 7.1 A49

chapter 7
Section 7.1 ■ pAge 578
1. all; 1  2. cos1x 2  cos x  3. sin t  5. tan u  7. 1  
9. csc u  11. tan u  13. 1  15. cos t  1  17. cos x  
19. sin2x  21. cos y  23. 2 sec u  25. 1  sin x  27. 2 sec2a  

29. (a) LHS 
1  sin2

 x

sin x
 RHS

31. LHS  sin u  

cos u

sin u
 RHS

33. LHS  cos u  

1

cos u
  cot u  RHS

35. LHS 

sin y
cos y

1
sin y


sin2

 y

cos y


1  cos2
 y

cos y


1

cos y
 cos y  RHS

37. LHS  cos x  1sin x 2  RHS

39.  LHS 
sin u

cos u


cos u

sin u


sin2
 u  cos2

 u

cos u sin u

  
1

cos u sin u
 RHS

41. LHS  1  cos2   sin2   RHS

43. LHS 
1

cos2 y
 sec2 y  RHS

45.  LHS  tan2 x  2 tan x cot x  cot2 x  tan2 x  2  cot2 x
  1 tan2 x  1 2  1cot2 x  1 2  RHS

47.  LHS  12 cos2
 t 2 2  4 sin2

 t cos2
 t

  4 cos2
 t1cos2

 t  sin2
 t 2  RHS

49. LHS 
cos2

 x

sin x


sin2
 x

sin x


1

sin x
 RHS

51.  LHS 
1sin x  cos x 2 2

1sin x  cos x 2 1sin x  cos x 2 
sin x  cos x

sin x  cos x

  
1sin x  cos x 2 1sin x  cos x 2
1sin x  cos x 2 1sin x  cos x 2  RHS

53. LHS 
1

cos t  cos t
1

cos t

# cos t

cos t


1  cos2
 t

1
 RHS

55. LHS  cos2
 x  11  cos2

 x 2  2 cos2
 x  1  RHS

57.  LHS  1sin2
 u 2 2  1cos2

 u 2 2  
  1sin2

 u  cos2
 u 2 1sin2

 u  cos2
 u 2  RHS

59.  LHS 
sin2

 t  2 sin t cos t  cos2
 t

sin t cos t

  
sin2

 t  cos2
 t

sin t cos t


2 sin t cos t

sin t cos t


1

sin t cos t
 2

  RHS

61. LHS 
1  sin2 u

cos2 u

1  sin2 u
cos2 u

# cos2
 u

cos2
 u


cos2

 u  sin2
 u

cos2
 u  sin2

 u
 RHS

63. LHS 

1
cos x  1

sin x

sin x
cos x  cos x

sin x

# sin x cos x

sin x cos x


sin x  cos x

sin2
 x  cos2

 x
 RHS

65.  LHS 
1  cos x

sin x
# 1  cos x

1  cos x


sin x

1  cos x
# sin x

sin x

  
1  2 cos x  cos2 x  sin2 x

sin x11  cos x 2 
2  2 cos x

sin x11  cos x 2

 
211  cos x 2

sin x11  cos x 2  RHS

67. LHS 
sin2 u

cos2 u


sin2 u cos2 u

cos2 u


sin2 u

cos2 u
 11  cos2 u 2  RHS

69. LHS 
1  sin x

cos x

1  sin x
cos x

# cos x

cos x


cos x  sin x

cos x  sin x
 RHS

71.  LHS 
sec x  tan x  sec x  tan x

1sec x  tan x 2 1sec x  tan x 2

  
2 sec x

sec2
 x  tan2

 x
 RHS

73.  LHS 
11  sin x 2 2  11  sin x 2 2
11  sin x 2 11  sin x 2

 
1  2 sin x  sin2

 x  1  2 sin x  sin2
 x

1  sin2
 x

  
4 sin x

cos2
 x

 4  

sin x

cos x
# 1

cos x
 RHS

75.  LHS 
1sin x  cos x 2 1sin2

 x  sin x cos x  cos2
 x 2

sin x  cos x

  sin2
 x  sin x cos x  cos2

 x  RHS

77.  LHS 
1  cos a

sin a
# 1  cos a

1  cos a
 

 
1  cos2

 a

sin a11  cos a 2 
sin2

 a

sin a11  cos a 2  RHS

79. LHS 
sin „

sin „  cos „
#

1
cos „

1
cos „


sin „
cos „

sin „
cos „  cos „

cos „
 RHS

81.  LHS 
sec x

sec x  tan x
# sec x  tan x

sec x  tan x

  
sec x1sec x  tan x 2

sec2
 x  tan2

 x
 RHS

83.  LHS 
cos u

1  sin u
# 1  sin u

1  sin u


cos u11  sin u 2
1  sin2

 u

 
cos u11  sin u 2

cos2
 u

 RHS

85.  LHS 
1  sin x

1  sin x
# 1  sin x

1  sin x


1  2 sin x  sin2
 x

1  sin2
 x

  
1

cos2
 x


2 sin x

cos2
 x


sin2

 x

cos2
 x

  sec2
 x  2 sec x tan x  tan2

 x
  1sec x  tan x 2 2  RHS

87.  LHS 
1

sin x


cos x

sin x

11  cos x 2 11  cos x 2

sin x11  cos x 2

  
sin2

 x

sin x11  cos x 2 
1

1
sin x  cos x

sin x

 RHS

89. tan u  91. tan u  93. 3 cos u  
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A50 Answers to Selected Exercises and Chapter Tests

95.  Yes

97.  No

99.  LHS  sin2
 x sin2

 y  cos2
 x cos2

 y

  11  cos2
 x 2  sin2

 y  cos2
 x 11  sin2

 y 2  RHS

101.  LHS  a sin x

cos x


cos x

sin x
b

4

 a sin2
 x  cos2

 x

sin x cos x
b

4

  a 1

sin x cos x
b

4

 RHS

103.  LHS 
1sin y  csc y 2 1sin2

 y  sin y csc y  csc2
 y 2

sin y  csc y

  RHS

105.  LHS  ln 0  tan x 0  ln 0  sin x 0  ln ` sin x

cos x
`  ln 0 sin x 0

  ln 0  sin x 0  ln ` 1

cos x
`  ln 0 sin x 0  RHS

107. LHS  e1cos2
 xesec2

 x1  e1cos2
 xsec2

 x1  RHS

109. Yes  111. x  kp, k an integer  

Section 7.2 ■ pAge 587
1. addition; sin x cos y  cos x sin y  
2. subtraction; cos x cos y  sin x sin y

3. 
!6  !2

4
  5. 

!2  !6

4
  7. 2  !3  9.  

!6  !2

4
  

11. !3  2  13.  

!6  !2

4
  15. !2/2  17. 1

2   19. !3  

21.  LHS 
sinAp2  uB
cosAp2  uB 

sin p2  cos u  cos p2  sin u

cos p2   cos u  sin p2  sin u

  
cos u

sin u
 RHS

23.  LHS 
1

cosAp2  uB 
1

cos p2  cos u  sin p2  sin u

  
1

sin u
 RHS

25. LHS  sin x cos p2  cos x sin p2  RHS
27. LHS  sin x cos p  cos x sin p  RHS

29. LHS 
tan x  tan p

1  tan x tan p
 RHS

1.5

6.28_6.28

_1.5

3

6.28_6.28

_1

31.  LHS  sin ap

2
 xb  sin 

p

2
  cos x  cos 

p

2
  sin x  cos x

 RHS  sin ap

2
 xb  sin 

p

2
  cos x  cos 

p

2
  sin x  cos x

33. LHS 
tan x  tan p3

1  tan x tan p3
 RHS

35.  LHS  sin x cos y  cos x sin y
  1sin x cos y  cos x sin y 2  RHS

37.  LHS 
1

tan1x  y 2 
1  tan x tan y

tan x  tan y

  
1  1

cot x 
1

cot y
1

cot x  1
cot y

# cot x cot y

cot x cot y
 RHS

39. LHS 
sin x

cos x


sin y

cos y


sin x cos y  cos x sin y

cos x cos y
 RHS

41.  LHS 
1 tan x  tan y 2 1cos x cos y 2
11  tan x tan y 2 1cos x cos y 2

 
sin x cos y  cos x sin y

cos x cos y  sin x sin y
 RHS

43.  LHS  1cos x cos y  sin x sin y 2 1cos x cos y  sin x sin y 2
  cos2

 x cos2
 y  sin2

 x sin2
 y

  cos2
 x 11  sin2

 y 2  11  cos2
 x 2  sin2

 y
  cos2

 x  sin2
 y cos2

 x  sin2
 y cos2

 x  sin2
 y  RHS

45.  LHS  sin11x  y 2  z 2
  sin1x  y 2  cos z  cos1x  y 2  sin z
  cos z 3sin x cos y  cos x sin y 4

  sin z 3cos x cos y  sin x sin y 4  RHS

47. 
"1  x2  xy

"1  y2
  49. 

x  y

"1  x2 "1  y2
  

51. 1
4 A!6  !2 B   53. 

3  2!14

!7  6!2
  55.  

1
10 A3  4!3 B   

57. 2!5/65  59. 2 sin a x 
5p

6
b   61. 5!2 sin a2x 

7p

4
b

63. (a) g1x 2  2 sin 2a x 
p

12
b   

(b) 

67. (a) 

sin2 a x 
p

4
b  sin2 a x 

p

4
b  1

11π
12

y

0 x

2

π
12_

3

6.28_6.28

_3
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71.  LHS  tan1 a tan u  tan √
1  tan u tan √

b  tan11 tan1u  √ 22

  u  √  RHS
73. (c) 8.1°
75. (a) 

(b) k  5 !2, f  p/4

Section 7.3 ■ pAge 596
1. Double-Angle; 2 sin x cos x  

2. Half-Angle; "11  cos x 2/2

3. 120
169, 119

169, 120
119  5.  

24
25, 7

25,  
24
7   7. 24

25, 7
25, 24

7   

9.  
3
5, 45,  

3
4   11. 1

2 A34  cos 2x  1
4   cos 4xB

13. 1
16 
11  cos 2x  cos 4x  cos 2x cos 4x 2

15. 1
32 
A34  cos 4x  1

4 cos 8xB
17. 1

2 "2  !3  19. !2  1  21.  
1
2 "2  !3  

23. !2  1  25. 1
2 "2  !3  27.  

1
2 "2  !2  

29. (a) sin 36  (b) sin 6u  31. (a) cos 68  (b) cos 10u
33. (a) tan 4  (b) tan 2u  37. !10/10, 3 !10/10, 13  
39. "A3  2 !2B/6, "A3  2 !2B/6, 3  2 !2

41. !6/6,  !30/6,  !5/5  43. 
2x

1  x2   45. Å
1  x

2
  

47. 336
625   49. 8

7   51. 7
25   53. 8!3/49  55. 1

2 1sin 5x  sin x 2   
57. 1

2 1sin 5x  sin 3x 2   59. 3
2 1cos 11x  cos 3x 2   

61. 2 sin 4x cos x  63. 2 sin 5x sin x  65. 2 cos 92 x sin 52 x  
67. A!2  !3 B/2  69. 1

4 A!2  1B   71. !2/2  
73. LHS  cos12 # 5x 2   RHS
75.  LHS  sin2

 x  2 sin x cos x  cos2
 x

  1  2 sin x cos x  RHS

77. LHS 
2 tan x

sec2
 x

 2 # sin x

cos x
 cos2

 x  2 sin x cos x  RHS

79.  LHS 
1  cos x

sin x
 cos xa 1  cos x

sin x
b

 
1  cos x  cos x  cos2

 x

sin x


sin2
 x

sin x
 RHS

81.  LHS 
2 sin 2x cos 2x

sin x


212 sin x cos x 2 1cos 2x 2
sin x

 RHS

83.  LHS 
21 tan x  cot x 2

1 tan x  cot x 2 1 tan x  cot x 2 
2

tan x  cot x

  
2

sin x
cos x  cos x

sin x

# sin x cos x

sin x cos x


2 sin x cos x

sin2
 x  cos2

 x

  2 sin x cos x  RHS

85. LHS 
1

tan 2x


1
2 tan x

1  tan2
 x

 RHS

10

6.28_6.28

_10

87.  LHS  tan12x  x 2 
tan 2x  tan x

1  tan 2x tan x

  
2 tan x

1  tan2 x  tan x

1  2 tan x
1  tan2 x   tan x

  
2 tan x  tan x11  tan2

 x 2
1  tan2

 x  2 tan x tan x
 RHS

89. LHS 
2 sin 3x cos 2x

2 cos 3x cos 2x


sin 3x

cos 3x
 RHS

91. LHS 
2 sin 5x cos 5x

2 sin 5x cos 4x
 RHS

93.  LHS 
2 sinAx  y

2 B cosAx  y
2 B

2 cosAx  y
2 B cosAx  y

2 B

  
sinAx  y

2 B
cosAx  y

2 B
 RHS

95.  LHS 
1  cos 2Ax2  p

4 B
1  cos 2Ax2  p

4 B


1  cosAx  p
2 B

1  cosAx  p
2 B

  
1  1sin x 2
1  1sin x 2  RHS

101.  LHS 
1sin x  sin 5x 2  1sin 2x  sin 4x 2  sin 3x

1cos x  cos 5x 2  1cos 2x  cos 4x 2  cos 3x

  
2 sin 3x cos 2x  2 sin 3x cos x  sin 3x

2 cos 3x cos 2x  2 cos 3x cos x  cos 3x

  
sin 3x12 cos 2x  2 cos x  1 2
cos 3x12 cos 2x  2 cos x  1 2  RHS

103. RHS  cos111  2 sin2
 u 2  cos11cos 2u 2  2u  LHS 

105. (a)  sin 3x

sin x


cos 3x

cos x
 2

107. (a)   

(c)    The graph of y  f1x 2  
lies between the two other 
graphs.

109. (a) P1 t 2  8t4  8t2  1  (b) Q1 t 2  16t5  20t3  5t

5

6.28_6.28

_5

2.5

9.42_9.42

_2.5

2.5

9.42_9.42

_2.5

Answers to Section 7.3 A51
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A52 Answers to Selected Exercises and Chapter Tests

115. (a) and (c) 

The graph of f lies between the graphs of y  2 cos t and  
y  2 cos t. Thus, the loudness of the sound varies between  
y  2 cos t.

Section 7.4 ■ pAge 604
1. infinitely many  2. no, infinitely many  
3. 0.3; x  9.7, 6.0, 3.4, 0.3, 2.8, 6.6, 9.1  
4. (a) 0.30, 2.84  (b) 2p, 0.30  2kp, 2.84  2kp  

5. 
p

3
 2kp, 

2p

3
 2kp  

7. 12k  1 2p  9. 1.32  2kp, 4.97  2kp

11. 3.61  2kp, 5.82  2kp  13.  

p

3
 kp  

15. 1.37  kp  17. 
5p

6
 2kp, 

7p

6
 2kp;

7p/6, 5p/6, 5p/6, 7p/6, 17p/6, 19p/6

19. 
p

4
 2kp, 

3p

4
 2kp;

 
7p/4, 5p/4, p/4, 3p/4, 

9p/4, 11p/4
21. 1.29  2kp, 5.00  2kp; 5.00, 1.29, 1.29, 5.00, 
7.57, 11.28
23. 1.47  kp; 7.75, 4.61, 1.47, 1.67, 4.81, 7.95

25. 12k  1 2p  27. 
5p

4
 2kp, 

7p

4
 2kp

  

29. 0.20  2kp, 2.94  2kp  31.  

p

6
 kp, 

p

6
 kp

  

33. 
p

4
 kp, 

3p

4
 kp  35. 1.11  kp, 1.11  kp  

37. 
p

4
 kp, 

3p

4
 kp  

39. 1.11  kp, 1.11  kp, 
2p

3
 2kp, 

4p

3
 2kp

41. 
p

3
 2kp, 

5p

3
 2kp

  
43. 0.34  2kp, 2.80  2kp  

45. 
p

3
 2kp, 

5p

3
 2kp  47. No solution  49. 

3p

2
 2kp  

51. 
p

2
 kp, 

7p

6
 2kp, 

11p

6
 2kp  53. 

p

2
 kp  

55. kp, 0.73  2kp, 2.41  2kp  57. 44.95°  
59. (a) 0°  (b) 60°, 120°  (c) 90°, 270°  (d) 180°

Section 7.5 ■ pAge 610
1. sin x  0, kp  2. sin x  2 sin x cos x  0, sin x  0, 

1  2 cos x  0  3. 
7p

6
 2kp, 

11p

6
 2kp, 

p

2
 2kp

2.5

π_π

_2.5

5. 12k  1 2p, 1.23  2kp, 5.05  2kp

7. kp, 0.72  2kp, 5.56  2kp  9. 
p

6
 2kp, 

5p

6
 2kp

11. 
p

3
 2kp, 

5p

3
 2kp, 12k  1 2p  

13. 12k  1 2p, 
p

2
 2kp  15. 2kp  

17. (a) 
p

9


2kp

3
 , 

5p

9


2kp

3
  (b) p/9, 5p/9, 7p/9, 11p/9, 

13p/9, 17p/9  

19. (a) 
p

3
 kp, 

2p

3
 kp  (b) p/3, 2p/3, 4p/3, 5p/3  

21. (a) 
5p

18


kp

3
  (b) 5p/18, 11p/18, 17p/18, 23p/18, 

29p/18, 35p/18  

23. (a) 4kp  (b) 0  

25. (a) 4p  6kp, 5p  6kp  (b) None  

27. (a) 0.62 
kp

2
  (b) 0.62, 2.19, 3.76, 5.33  

29. (a) kp, 
p

2
 2kp  (b) 0, p/2, p  

31. (a) 
p

6
 kp, 

p

4
 kp, 

5p

6
 kp  

(b) p/6, p/4, 5p/6, 7p/6, 5p/4, 11p/6

33. (a) 
p

6
 2kp, 

5p

6
 2kp, 

3p

4
 kp  

(b) p/6, 3p/4, 5p/6, 7p/4

35. (a) 37. (a) 

 _2.5

4.5

_2π 2π

 _10

10

_ �
2

�
2

 13.14, 2 2  11.04, 1.73 2
(b) 112k  1 2p, 2 2  (b) ap

3
 kp, !3 b

39. p/8, 3p/8, 5p/8, 7p/8, 9p/8, 11p/8, 13p/8, 15p/8
41. p/3, 2p/3  43. p/2, 7p/6, 3p/2, 11p/6  45. 0
47. 0, p  49. 0, p/3, 2p/3, p, 4p/3, 5p/3  51. p/6, 3p/2  

53. kp/2  55. 
p

2
 kp, 

p

9


2kp

3
, 

5p

9


2kp

3
  

57. 0, 0.95  59. 1.92  61. 0.71  

63. 
!17  3

4
  65. 0.95° or 89.1°  

67. (a) 34th day (February 3), 308th day (November 4)  
(b) 275 days  
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Answers to Chapter 7 Test A53

chApter 7 revieW ■ pAge 614

1.  LHS  sin u a cos u

sin u


sin u

cos u
b  cos u 

sin2
 u

cos u

  
cos2

 u  sin2
 u

cos u
 RHS

3.  LHS  11  sin2
 x 2  csc x  csc x

  csc x  sin2
 x csc x  csc x

  sin2
 x 

1

sin x
 RHS

5. LHS 
cos2

 x

sin2
 x


tan2

 x

sin2
 x

 cot2
 x 

1

cos2
 x

 RHS

7. LHS 
cos x

1
cos x  
11  sin x 2 

cos x
1

cos x  sin x
cos x

 RHS

9. LHS  sin2 x 
cos2 x

sin2 x
 cos2 x 

sin2 x

cos2 x
 cos2 x  sin2 x  RHS

11. LHS 
2 sin x cos x

1  2 cos2 x  1


2 sin x cos x

2 cos2 x


2 sin x

2 cos x
 RHS

13.  LHS  csc x 
1  cos x

sin x

  csc x  1csc x  cot x 2  RHS

15.  LHS 
2 sin x cos x

sin x


2 cos2 x  1

cos x

  2 cos x  2 cos x 
1

cos x
 RHS

17.  LHS 
1

cos x  1

sin x 1
cos x

 a 1

cos x
 1b  

cos x

sin x

 
1  cos x

sin x
 RHS

19.  LHS  cos2
  
x
2  2 sin x

2 cos x
2  sin2

  
x
2

  1  sinA2 # x
2 B  RHS

21.  LHS 
2 sinA 1 xy 2  1 xy 2

2 B cosA 1 xy 2  1 xy 2
2 B

2 cosA 1 xy 2  1 xy 2
2 B cosA 1 xy 2  1 xy 2

2 B
 

2 sin x cos y

2 cos x cos y
 RHS

23. (a)    (b) Yes

25. (a)    (b) No

1.5

3.14_3.14

_1.5

4

6.28_6.28

_4

27. (a)  2 sin2
 3x  cos 6x  1

29. 0.85, 2.29  31. 0, p  33. p/6,  5p/6  35. p/3,  5p/3  
37. 2p/3,  4p/3  39. p/3,  2p/3,  3p/4,  4p/3,  5p/3,  7p/4   
41. p/6,  p/2,  5p/6,  7p/6,  3p/2,  11p/6  43. p/6  
45. 1.18  47. (a) 63.4  (b) No  (c) 90  

49. 
!2  !6

4
 or 12 "2  !3  51. !2  1  53. !2/2  

55. !2/2  57. 
!2  !3

4
  59. 2

9 1!10  1 2
  

61. 2
3 A!2  !5B   63. "A3  2 !2B/6  65.  

12"10

31
  

67. 
2x

1  x2   69. (a) u  tan1 a 10
x
b   (b) 286.4 ft

chApter 7 teSt ■ pAge 616

1. LHS 
sin u

cos u
 sin u  cos u 

sin2 u  cos2 u

cos u
 RHS

2.  LHS 
tan x

1  cos x
# 1  cos x

1  cos x


tan x11  cos x 2
1  cos2 x

  
sin x
cos x  
11  cos x 2

sin2 x


1

sin x
# 1  cos x

cos x
 RHS

3. LHS 
2 tan x

sec2 x


2 sin x

cos x
# cos2 x  2 sin x cos x  RHS

4. LHS  sin x tana x

2
b  sin xa 1  cos x

sin x
b  RHS

5. LHS  2 a 1  cos 6x

2
b  RHS

6.  LHS  1  2 sin2 2x  1  212 sin x cos x 2 2
  1  8 sin2 x11  sin2 x 2  RHS

7.  LHS  sin2 a x

2
b  2 sin a x

2
b  cos a x

2
b  cos2 a x

2
b

  1   sin 2a x

2
b  RHS

8. tan u  9. (a) 1
2   (b) 

!2  !6

4
 or 12 "2  !3  

(c) 
!6  !2

4
 or 12 "2  !3

10. A10  2 !5 B/15
11. 1

2 1sin 8x  sin 2x 2   12. 2 cos 72 x sin 32 x  13. 2
14. 0.34, 2.80  15. p/3, p/2, 5p/3  16. 2p/3, 4p/3  
17. p/6, p/2, 5p/6, 3p/2  18. 0.58, 2.56, 3.72, 5.70  
19. p/3, 2p/3, 4p/3, 5p/3  20. p/3, 5p/3  

21. 1519
1681  22. 

"1  x2  xy

"1  y2

1.5

3.14_3.14

_1.5
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A54 Answers to Selected Exercises and Chapter Tests

FocuS on Modeling ■ pAge 620

1. (a) y  5 sin ap

2
  t b   

(b) 

Yes, it is a traveling wave. 

(c) √  p/4
3. y1x, t 2  2.7 sin10.68x  4.10t 2
5. y1x, t 2  0.6 sin1px 2  cos140pt 2
7. (a) 1, 2, 3, 4  

(b) 5: 

 6:

(c) 880p  (d) y1x, t 2  sin x cos1880pt 2 ; 
y1x, t 2  sin12x 2  cos1880pt 2 ;  y1x, t 2  sin13x 2  cos1880pt 2 ; 
y1x, t 2  sin14x 2  cos1880pt 2

chapter 8
Section 8.1 ■ pAge 628
1. coordinate; 11, 1 2 , 1!2, p/4 2   2. (a) r cos u, r sin u  
(b) x2  y2, y/x  3. Yes  4. No; adding a multiple of 2p to u 
gives the same point.

5.  7. 

9.  

11.
  a3,  

3p

2
b , a3,  

5p

2
b

7

y
5

1

_5

0 x

!4, @π
4

π
4

O

!6, _     @7π
6

7π
6

O

_

!_2,      @4π
3

4π
3

O

!3,    @π
2

π
2

O

13.
  a1,   

5p

6
b , a1,  

p

6
b

15.  15,  2p 2 , 15,  p 2

17. Q  19. Q  21. P  23. P  25. A3 !2,  3p/4B   

27. a 

5

2
,   

5 !3

2
b

  
29. A2 !3,  2B   31. 11,  1 2   

33. 15,  0 2   35. A3 !6,  3 !2B   37. A!2,  3p/4B   
39. 14,  p/4 2   41. A5,  tan1 

  
4
3 B   43. 16,  p 2   45. u  p/4  

47. r  tan u sec u  49. r  4 sec u  51. x2  y2  49  
53. x  0  55. x  6  57. x2  y2  4y  
59. x2  y2  1x2  y2  x 2 2  61. 1x2  y2  2y 2 2  x2  y2  
63. y  x  1  65. x2  3y2  16y  16  0

67. x2  y2 
y

x
  69. y2  3x2  0  

Section 8.2 ■ pAge 636
1. circles, rays  2. (a) satisfy  (b) circle, 3, pole; line, pole, 1
3. VI  5. II  7. I  9. Symmetric about u  p/2
11. Symmetric about the polar axis
13. Symmetric about u  p/2
15. All three types of symmetry

17.  19. 

O 1 (2, 0)

!2,    @π
2

!2,      @3π
2

(2, π)

 

O 1

x2  y2  4 x  0

21.  23. 

O 1

!6,    @π
2

 

O 1

(_2, 0)

x2  1y  3 2 2  9 

25.  27. 

O 1

(4, π)

!2,    @π
2

!2,      @3π
2  

O 1

(_3, π)(_3, 0)

!_6,    @π
2

!_1,      @7π
67π

6

O

O

(_5, 0)
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Answers to Section 8.3 A55

29.  31. 

O 1

 

1

1

33.  35. 

 

2
1O

3 � 2,
3π
2! @œ

3 � 2,
π
2! @œ

3, π! @œ 3, 0! @œ

37.  39. 

1

1

O

3 ,
3π
2! @œ

3,
π
2! @œ

3 � 1, 0! @œ

3 � 1, π! @œ

 

41.  43. 

1O

 

O 10

(π, π)

45.  

O 1

(3, 0)

 

47. 0  u  4p 49. 0  u  4p

1

1.25_1.25

_1  

3

1.5_3.5

_3

51. The graph of r  1  sin nu has n loops.
53. IV  55. III  

!5,    @π
2

!2,      @3π
2

O

!2,    @π
2

!2-2 2, 0@œ

!2+2 2, π@œ

57.  59. 

61. (a) a x 
a

2
b

2

 a y 
b

2
b

2


a2  b2

4
, 

a a

2
, 

b

2
b , 

1

2
 "a2  b2

(b) 

63. (a) Elliptical 

(b) p; 540 mi

Section 8.3 ■ pAge 645
1. real, imaginary, 1a, b 2   2. (a) "a2  b2, b/a  
(b) r 1cos u  i sin u 2   

3. (a) !2 a cos 
3p

4
 i sin 

3p

4
b   (b) !3  i

(c) 1  i, !2 a cos 
p

4
 i sin 

p

4
b   

4. n; four; 2, 2i, 2, 2i; 2 

5. 4  7. 2 

O 1

1

1

1

O (2, 0)

!2,    @π
2

!0,      @3π
4

7000

12000_9000

_7000

2i

�2i

Re

Im

2�2 0

Im

0 Re1

i

_1

4i

Im

0 Re

i

_2
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A56 Answers to Selected Exercises and Chapter Tests

9. !29  11. 2
Im

0 Re1

i
5+2i

 

Im

0 Re1

i œ∑3+i

13. 1  15. 
Im

0 Re1

i
0.6+0.8i

  

17.  19. 

21.  23. 

25.  27. 

29. !2 a cos 
p

4
 i sin 

p

4
b   31. 2!2 a cos 

3p

4
 i sin 

3p

4
b   

33. 2a cos 
7p

6
 i sin 

7p

6
b   35. 4a cos 

11p

6
 i sin 

11p

6
b   

37. 2 a cos 
p

2
 i sin 

p

2
b   39. 31cos p  i sin p 2   

41. 2!2 a cos 
5p

6
 i sin 

5p

6
b   

43. 5AcosAtan1 34 B  i sinAtan1 34 BB
45. 8a cos 

11p

6
 i sin 

11p

6
b   47. 3 !2 a cos 

3p

4
 i sin 

3p

4
b   

49. z1z2  6 a cos 
p

2
 i sin 

p

2
 b , 

z1

z2


3

2
 a cos 

p

6
 i sin 

p

6
b

Im

0 Re1

i

_1
0.5+0.5i

1+i
2+2i

_1-i

Im

0 Re2

i

8+2i

8-2i

8

Im

0 Re1

i
z¤=2+i

z⁄=2-i
4

z⁄+z¤=4

z⁄ z¤=5

Im

0 Re1

i

_1

Im

0 Re1

i

Im

0 Re1

i

Im

0 Re1

i

51. z1z2  4 a cos 
7p

6
 i sin 

7p

6
b , 

z1

z2


1

2
 a cos 

p

6
 i sin 

p

6
b

  
53. z1z2  81cos 150  i sin 150 2

z1/z2  21cos 90  i sin 90 2
55. z1z2  1001cos 350  i sin 350 2

z1/z2  4
 25  
1cos 50  i sin 50 2

57. z1  2 a cos 
p

6
 i sin 

p

6
b

z2  2 a cos 
p

3
 i sin 

p

3
b

z1z2  4 a cos 
p

2
 i sin 

p

2
b

z1

z2
 cos a 

p

6
b  i sin a 

p

6
b

1
z1


1

2
c cos a 

p

6
b  i sin a 

p

6
bd

59. z1  4 a cos 
11p

6
 i sin 

11p

6
b

z2  !2 a cos 
3p

4
 i sin 

3p

4
b

z1z2  4 !2 a cos 
7p

12
 i sin 

7p

12
b

z1

z2
 2 !2 a cos 

13p

12
 i sin 

13p

12
b

1
z1


1

4
a cos 

p

6
 i sin 

p

6
b

61. z1  5 !2 a cos 
p

4
 i sin 

p

4
b

z2  41cos 0  i sin 0 2
z1z2  20 !2 a cos 

p

4
 i sin 

p

4
b

z1

z2


5 !2

4
a cos 

p

4
 i sin 

p

4
b

1
z1


!2

10
c cos a 

p

4
b  i sin a 

p

4
bd

63. z1  201cos p  i sin p 2
z2  2 a cos 

p

6
 i sin 

p

6
b

z1z2  40a cos 
7p

6
 i sin 

7p

6
b

z1

z2
 10a cos 

5p

6
 i sin 

5p

6
b

1
z1


1

20
 1cos p  i sin p 2

65. 64  67. 16!2  16!2i  69. 1  71. 4096

73. 811  i 2   75. 1
 2048 
A!3  iB   
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77. 2 !2 a cos 
p

12
 i sin 

p

12
b , 

2 !2 a cos 
13p

12
 i sin 

13p

12
b  

79. 3a cos 
3p

8
 i sin 

3p

8
b , 

3 a cos 
7p

8
 i sin 

7p

8
b ,

3 a cos 
11p

8
 i sin 

11p

8
b , 

 
3 a cos 

15p

8
 i sin 

15p

8
b  

81. 1, i,  

!2

2


!2

2
 i, 

 

!2

2


!2

2
 i

83. 
!3

2


1

2
 i,  

!3

2


1

2
 i, i 

85. 
!2

2


!2

2
 i, 

  

!2

2


!2

2
 i

87. 
!2

2


!2

2
 i, 

!2

2


!2

2
 i

89. 2a cos 
p

18
 i sin 

p

18
b , 2a cos 

13p

18
 i sin 

13p

18
b , 

2 a cos 
25p

18
 i sin 

25p

18
b

91. 21/6 a cos 
5p

12
 i sin 

5p

12
b , 21/6 a cos 

13p

12
 i sin 

13p

12
b , 

21/6 a cos 
21p

12
 i sin 

21p

12
b

93. 
1

2


!5

2
 i  95. 1  i, 1  i  

i

1

Im

0 Re

„⁄

„¤

„‚

i

1

Im

0 Re

„¤

„⁄

„‹

„‚

i

1

Im

0 Re

„¤

„⁄„‹

„›

„fi

„fl
„‡

„‚

i

1

Im

0 Re

„¤

„⁄

„‚
i

1

Im

0 Re

„¤

„⁄

„‹

Section 8.4 ■ pAge 653
1. (a) parameter  (b) 10, 0 2 , 11, 1 2   (c) x2; parabola
2. (a) True  (b) 10, 0 2 , 12, 4 2   (c) x2; path

  

1

0 321

y

x

t=1 [1(b)]

t=0 [1(b) and 2(b)]

t=1 [2(b)]

3. (a)  5. (a) 

y

0 x6

6

_6
 

y

0 x4

1

16

(b) x  2y  12  0 (b) x  1 y  2 2 2
7. (a)  9. (a) 

y

0 x3

1

_3

 

y

0 x3

3

_3

_3

(b) x  !1  y (b) y 
1
x

 1

11. (a)  13. (a) 

 

y

0 x1

1

_1

_1

(b) x3  y2 (b) x2  y2  4, x  0
15. (a)  17. (a) 

y

0 x1

1

 

y

0 x1

1

(b) y  x2, 0  x  1 (b) y  2x2  1, 1  x  1

y

0 x3

3

_3

_3

Answers to Section 8.4 A57
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A58 Answers to Selected Exercises and Chapter Tests

19. (a)  21. (a) 
y

0 x1

1

 

(b) x2  y2  1, x  1, y  0 (b) y  1/x, x  0
23. (a)  25. (a) 

 

y

0 x1

1

(b) x  y2, y  0 (b) x  y  1, 0  x  1
27. 3, (3, 0), counterclockwise, 2p sec
29. 1, (0, 1), clockwise, p sec  31. x  4  t, y  1  1

2 t
33. x  6  t, y  7  t  35. x  a cos t, y  a sin t  
39.  41. 

2.5

1.25_1.25

_2.5  

6

3.5_3.5

_6

43. 
1.2

1_1

_1.2

45. (a) x  2t/12 cos t, y  2t/12 sin t

(b) 

47. (a) x 
4 cos t

2  cos t
, y 

4 sin t

2  cos t
  

(b) 

y

0 x1

1

y

0 x1

1

2.5

2.5_2.5

_2.5

3

5_2

_3

49. III  51. II  
53. (a) x  a cos u, y  b sin u  

(b)
    (c) 

x2

a2 
y2

b2  1

55.  59. 

 

y

0 x2

3

_2

_3

61.  63. (b) x2/3  y2/3  a2/3

y

0 x3

3

_3

_3

 

65. x  a1sin t cos t  cot t 2 , y  a11  sin2
 t 2

67. y  a  a cos a x  "2ay  y2

a
b

69. (b) 

chApter 8 revieW ■ pAge 658
1. (a)  3. (a) 

(b) A6!3,  6B  (b) a3!2

2
,  

3!2

2
b

5. (a)  

(b) A2!3,  6B  

4_4

_3

3

20_20

_1

6

y

0 xa

a

15

23_23

_15

!12,    @π
6

π
6

O

!_3, @

7π
4

7π
4

O

!4 @

_    5π
3

_    5π
3

O

œ∑3,
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Answers to Chapter 8 Review A59

7. (a)  

 

(b) a8!2,  

p

4
b   (c) a8!2,  

5p

4
b

9. (a)  

 

 

(b) a12,  

5p

4
b   (c) a12,  

p

4
b

11. (a)
  

 

(b) a2!3,  

5p

6
b   (c) a2!3,   

p

6
b

13. (a) r 
4

cos u  sin u
 

(b) 

15. (a) r  41cos u  sin u 2  
(b) 

y

0 x8

8 (8, 8)

y

0 x_8

_8Ó_6œ∑ 2Ô2, _6œ∑

y

0 x3

1

_3

Ó_3, œ∑3Ô

y

0 x

4

4

O

2

2

17. (a) 

(b) 1x2  y2  3x 2 2  91x2  y2 2
19. (a) 

(b) 1x2  y2 2 3  16x2y2

21. (a) 

(b) x2  y2  1

23. (a)  

(b) x2  y2  x  y

25. 0  u  3p  

1

1.25_0.75

_1  

27. 0  u  6p

5

6_4

_5

1

(6, 0)

!3,    @π
2

!3,      @3π
2

O

O 2

O
(1, 0)(1, π)

O (1, 0)

!1,    @π
2
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A60 Answers to Selected Exercises and Chapter Tests

29. (a)  

 

(b) 4!2, 
p

4
  (c) 4!2 a cos 

p

4
 i sin 

p

4
b

31. (a) 

(b) !34, tan1 35   (c) !34 3cosAtan1 35 B  i sinAtan1 35 B 4
33. (a) 

(b) !2, 
3p

4
  (c) !2 a cos 

3p

4
 i sin 

3p

4
b   

35. 8A1  i !3 B   37.  
1

32 
A1  i !3 B   

39. 2 !211  i 2 , 2!211  i 2   

41. 1, 
1

2


!3

2
 i,  

1

2


!3

2
 i  

43. (a)  
y

0 x
_2

2

_2

(b) x  2y  y2

45. (a) 
y

0 x1

1

(b) 1x  1 2 2  1 y  1 2 2  1, 1  x  2, 0  y  1

Im

0 Re1

i

4+4i

Im

0 Re1

i

5+3i

Im

0 Re1

i

_1

_1+i

47.  

1.25

1.25_1.25

_1.25  

49. x  1
2 11  cos u 2 , y  1

2 1sin u  tan u 2

chApter 8 teSt ■ pAge 660
1. (a) A4!2,  4!2B   (b) A4!3,  5p/6B, A4!3,  11p/6B
2. (a) circle    

(b) 1x  4 2 2  y2  16

3. limaçon   

4. (a) 

(b) 2a cos 
p

3
 i sin 

p

3
b   

(c) 512  5. 8, !3  i

6. 3i, 3a 

!3

2


1

2
 i b

O 8

_2 2O

œ∑3i1+

Im

0 Re

i

1

„‚

3

Im

0 Re

„¤

„⁄

_3i
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Answers to Section 9.2 A61

7. (a)
y

0 x2

2

_2

(b) 
1x  3 2 2

9


y2

4
 1, x  3

8. x  3  t, y  5  2t
9. (a) 3, (0, 3), clockwise, p  (b) x  3 sin 4t, y  3 cos 4t
(c) x2  y2  9  (d) r  3

FocuS on Modeling ■ pAge 663

1. y   a g
2√2

0 cos2 u
b x2  1 tan u 2x

3. (a) 62.26 s  (b) 15,500 ft  (c) 5426 ft  

(d) 

7. No, u  23  

chapter 9
Section 9.1 ■ pAge 673
1. (a) A, B 

u 2u

u

v

u+v

(b) 12, 1 2 , 14, 3 2 , 82, 29, 83, 69, 84, 49, 81, 89
2. (a) "a2

1  a2
2, 2"2  (b) 8 0  w 0  cos u, 0  w 0  sin u9

3.  5. 

y
(feet)

x
(feet)

1000

5000

0

2

_2

y

0 x

2u 7

1

y

0 x

u+v

7.  

9. 3, 3  11. 3, 1  13. 5, 7  15. 4, 3  17. 0, 2  

19.  21. 

23.  25. 

27. i  4 j  29. 3 i  
31. 4, 14, 9, 3, 5, 8, 6, 17

33. 0, 2, 6, 0, 2, 1, 8, 3

35. 4 i, 9 i  6 j, 5 i  2 j, 6 i  8 j
37. !5, !13, 2!5, 12!13, !26, !10, !5  !13

39. !101, 2!2, 2!101, !2, !73, !145, !101  2!2

41. 20!3 i  20 j  43.  

!2

2
  i 

!2

2
  j

45. 4 cos 10 i  4 sin 10 j  3.94 i  0.69 j
47. 5, 53.13  49. 13, 157.38  51. 2, 60  53. 15!3, 15
55. 2 i  3 j  57. S 84.26° W  59. (a) 40 j  (b) 425 i  
(c) 425 i  40 j  (d) 427 mi/h, N 84.6 E
61. 794 mi/h, N 26.6  W  
63. (a) 10 i  (b) 10 i  10!3 j  (c) 20 i  10!3 j   
(d) 26.5 mi/h, N 49.1  E  
65. (a) 22.8 i  7.4 j  (b) 7.4 mi/h, 22.8 mi/h
67. (a) 5, 3  (b) 5, 3  69. (a) 4 j  (b) 4 j
71. (a) 7.57, 10.61  (b) 7.57, 10.61  

73. T1  56.5 i  67.4 j, T2  56.5 i  32.6 j

Section 9.2 ■ pAge 682
1. a1b1  a2b2; real number or scalar  

2. 
u # v
0  u 0 0  v 0 ; perpendicular

_2

7

y

0 x

v-2u

1

u

x

y
(6, 7)

(4, 3)

1 1

1
u

x

y

(8, 0)

(4, 3)

1

u

x

y

(2, 3)

u

(_3, 5)

u

1

1

1

u

u

u

x

y

(_3, 5)
u

(2, 3)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A62 Answers to Selected Exercises and Chapter Tests

3. (a) 
u # v
0 v 0   (b) a u # v

0  v 0 2 bv  

4. F # D  5. (a) 2  (b) 45  7. (a) 13  (b) 56  
9. (a) 1  (b) 97  11. (a) 5!3  (b) 30  
13. (a) 1  (b) 86°  15. Yes  17. No  19. Yes  
21. 9  23. 5  25.  

12
5   27. 24  

29. (a) 1, 1  (b) u1  1, 1, u2  3, 3

31. (a) 8 
1
2,  

3
2 9  (b) u1  8 

1
2,  

3
2 9, u2  832,  

1
2 9

33. (a) 8 
18
5 ,  

24
5 9  (b) u1  8 

18
5 ,  

24
5 9, u2  828

5 ,  
21
5 9

35. 28  37. 25  45. 16 ft-lb  47. 8660 ft-lb  
49. (a) 2822 lb  (b) 2779 lb  51. 23.6  

Section 9.3 ■ pAge 688
1. x, y, z; (5, 2, 3); y  2 

 

P y

x

z

0

2. "1x2  x1 2 2  1y2  y1 2 2  1z2  z1 2 2; 

!38; 1x  5 2 2  1y  2 2 2  1z  3 2 2  9

3. (a)  5. (a) 

 

(b) !42 (b) 2!29
7.  Plane parallel to the  9. Plane parallel to the  

yz-plane    xy-plane

 

11. 1x  2 2 2  1y  5 2 2  1z  3 2 2  25
13. 1x  3 2 2  1y  1 2 2  z2  6
15. Center: 15, 1, 4 2 , radius: !51
17. Center: 16, 1, 0 2 , radius: !37
19. (a) Circle, center: 10, 2, 10 2 , radius: 3!11  
(b) Circle, center: 14, 2, 10 2 , radius: 5!3  21. (a) 3  

Section 9.4 ■ pAge 694
1. unit, a1i  a2 j  a3k; 

"a2
1  a2

2  a3
2; 4i  12 2j  k, 80, 7, 249

v

u

projv u

compv u

¨

y0

Q(_1, 2, _5)

P(3, 1, 0)x

z

Q(_12, 3, 0)  

P(_2, _1, 0)  

x y

z

0

x

y
4

0

z

x

y

z

0

8

2. 
u # v
0  u 0 0  v 0 ; 0; 0, perpendicular  3. 81, 1, 59    

5. 86, 2, 09  7. 15, 4, 1 2   9. 11, 0, 1 2   11. 3  

13. 5!2  15. 82, 3, 29, 82, 11, 49, H6, 23, 19
2  
I  

17. i  2 k, i  2 j  2 k, 3 i  7
2 j  k  19. 12 i  2k  

21. 3 i  3 j  23. (a) 83, 1, 29  (b) 3 i  j  2k  25. 4  
27. 1  29. Yes  31. No  33. 116.4°  35. 100.9°  
37. a  65°,   56°,   45°  39. a  73°,   65°,  
  149°  41. 45°  43. 125°  47. (a) Parallel, v  2u  
(b) Parallel, v   

4
3 u  (c) Not parallel  

49. (a) 7 i  24 j  25k  (b) 25"2  

Section 9.5 ■ pAge 701

1. †
i j k

a1 a2 a3

b1 b2 b3

†
 

 1a2b3  a3b2 2  i  1a3b1  a1b3 2 j 
    1a1b2  a2b1 2k, 3 i  2 j  3 k

2. perpendicular; perpendicular  3. 9 i  6 j  3k  
5. 0  7. 4 i  7 j  3k  

9. (a) 80, 2, 29  (b) h0, 
!2

2
, 
!2

2
i   

11. (a) 14 i  7 j  (b) 
2!5

5
 i 

!5

5
 j

13. 
3!3

2
  15. 100  17. 80, 2, 29  19. 810, 10, 09  

21. 4!6  23. 
5!14

2
  25. !14  27. 18!3  

29. (a) 0  (b) Yes  31. (a) 55  (b) No, 55   
33. (a) 2  (b) No, 2  
35. (a) 2,700,000!3  (b) 4677 liters  

Section 9.6 ■ pAge 705
1. parametric; x  x0  at, y  y0  bt, z  z0  ct
2. a1x  x0 2  b1y  y0 2  c1z  z0 2  0
3. x  1  3t, y  2t, z  2  3t
5. x  3, y  2  4t, z  1  2t
7. x  1  2t, y  0, z  2  5t
9. x  1  t, y  3  4t, z  2  3t
11. x  1  t, y  1  t, z  2t
13. x  3  4t, y  7  4t, z  5
15. (a) x  y  z  5  (b)  x-intercept 5, y-intercept 5,  

z-intercept 5

yx

5
5

_5

0

z

17. (a) 6x  z  4  (b)  x-intercept 2
3, no y-intercept,  

z-intercept 4

yx

z

2
3 0

_4
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Answers to Chapter 9 Focus on Modeling A63

19. (a) 3x  y  2z  8  (b)  x-intercept  
8
3, y-intercept 8,  

z-intercept 4

y

x

z

0

_4
8

8
3_

21. 5x  3y  z  35  23. x  3y  2  
25. 2x  3y  9z  0  27. x  2t, y  5t, z  4  4t  
29. x  2, y  1  t, z  5  31. 12x  4y  3z  12  
33. 4x  3y  z  10  

chApter 9 revieW ■ pAge 709
1. "13, 86, 49, 810, 29, 84, 69, 822, 79
3. "5, 3 i  j, i  3 j, 4 i  2 j, 4 i  7 j

5. 83, 49  7. 4, 120°  9. 810, 10!39  

11. (a) 10414.8 i  0.4 j 2   (b) 4.8  104 lb, N 85.2° E  

13. 5, 25, 60  15. 2!2, 8, 0  17. Yes  19. No, 45°  

21. (a) 
17!37

37
  (b) H102

37 ,  
17
37I  

(c) u1  H102
37 ,  

17
37I, u2  H 9

37, 54
37I  

23. (a)  

14!97

97
  (b)  

56
97  i  126

97   j  

(c) u1   
56
97  i  126

97   j, u2  153
97   i  68

97  j  

25. 3 

x

y

P(1, 0, 2)  

0

Q(3, _2, 3)  

z

 

27. x2  y2  z2  36  

29. Center: 11, 3, 2 2 , radius: 4  

31. 6, 86, 1, 39, 82, 5, 59, 81,  
15
2 , 59

33. (a) 1  (b) No, 92.8°  35. (a) 0  (b) Yes  
37. (a) 82, 17, 59  

(b) h 

!318

159
, 

17!318

318
,  

5!318

318
i   

39. (a) i  j  2k  

(b) 
!6

6
  i 

!6

6
  j 

!6

3
  k  

41. 15
2   43. 9  45. x  2  3t, y  t, z  6  

47. x  6  2t, y  2  3t, z  3  t
49. 2x  3y  5z  2  51. x  y  3z  5  
53. x  2  2t, y  0, z  4t

chApter 9 teSt ■ pAge 711
1. (a)                        (b) 6 i  10 j  (c) 2!34

1

u

x

y

(3, _1)

(_3, 9)

1

2. (a) 819, 39  (b) 5!2  (c) 0  (d) Yes

3. (a)                         (b) 8, 150°  

1

u

x

y

(_4 œ∑3, 4)

1

4. (a) 14 i  6"3 j  (b) 17.4 mi/h, N 53.4° E  

5. (a) 45°  (b) 
!26

2
  (c) 5

2  i  1
2  j  6. 90  

7. (a) 6  (b) 1x  4 2 2  1y  3 2 2  1z  1 2 2  36  
(c) 82, 4, 49  2 i  4 j  4 k  8. (a) 11 i  4j  k  (b) !6  
(c) 1  (d) 3 i  7 j  5k  (e) 3!35  (f) 18  (g) 96°  

9. h 7!6

18
, 
!6

9
,  

!6

18
i , h 

7!6

18
,  

!6

9
, 
!6

18
i

10. (a) 84, 3, 49  (b) 4x  3y  4z  4  (c) 
!41

2
11. x  2  2t, y  4  t, z  7  2t

FocuS on Modeling ■ pAge 714
1.  3. 

5.  7. 

x

y

0 x

y

0

x

y

0
x

y

z

0x
y

z

0
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A64 Answers to Selected Exercises and Chapter Tests

9.  

11. II  13. I  15. IV  17. III  

19.  

chapter 10
Section 10.1 ■ pAge 724
1. x, y; equation; 12, 1 2   
2. substitution, elimination, graphical  
3. no, infinitely many  
4. infinitely many; 1  t; 11, 0 2 , 13, 4 2 , 15, 4 2   
5. 13, 2 2   7. 13, 1 2   9. 12, 1 2   11. 13, 2 2   13. 12, 3 2   
15. 12, 2 2  17. No solution

 

y

0 x
5

5

_5

_5

19. Infinitely many solutions 
y

0 x2

2

 

21. 12, 2 2   23. 13, 1 2   25. 12, 1 2   27. 13, 5 2   
29. 11, 3 2   31. 16, 6 2   33. 110, 9 2   35. 12, 1 2   

37. No solution  39. Ax, 13 x  5
3 B   41. Ax, 3  3

2 xB   

43. 13, 7 2   45. Ax, 5  5
6 xB   47. 15, 10 2   

49. No solution  51. 13.87, 2.74 2   53. 161.00, 20.00 2   

55. a 

1

a  1
, 

1

a  1
b   57. a 1

a  b
, 

1

a  b
b   59. 22, 12  

x y

z

0x
y

z

0

_5

0

5

_5

(a)

(b)

(c)

x

y

x0 1
1

y

(2, _2)

2x+y=2

x-y=4

61. 5 dimes, 9 quarters  63. 200 gallons of regular gas,  
80 gallons of premium gas  65. Plane’s speed 120 mi/h,  
wind speed 30 mi/h  67. 200 g of A, 40 g of B   
69. 25%, 10%  71. $14,000 at 5%, $6,000 at 8%  

73. John 2 
1
4  h, Mary 2 

1
2  h  75. 25  

Section 10.2 ■ pAge 732
1. x  3z  1  2. 3; 4y  5z  4  3. Linear  
5. Nonlinear  7. 15, 1, 2 2   9. 14, 0, 3 2   11. A5, 2,  

1
2 B   

13. c 

3x  y  z  4

y  z  1

x  2y  z  1

   15. c 

2x  y  3z  5

2x  3y  z  13

8y  8z  8

  

17. 12, 1, 3 2   19. 11, 1, 5 2   21. 11, 2, 1 2   23. 15, 0, 1 2   

25. 10, 1, 2 2   27. A14, 12,  
1
2 B   29. No solution  

31. No solution  33. 13  t, 3  2t, t 2   

35. A2  2t,  
2
3  4

3 t, tB   37. 11, 1, 1, 2 2   

39. $30,000 in short-term, $30,000 in intermediate-term,  
$40,000 in long-term   
41. 250 acres corn, 500 acres wheat, 450 acres soybeans   
43. Impossible   
45. 50 Midnight Mango, 60 Tropical Torrent, 30 Pineapple Power   
47. 1500 shares of A, 1200 shares of B, 1000 shares of C  

Section 10.3 ■ pAge 739

1. (iii)  2. (ii)  3. 
A

x  1


B

x  2
  

5. 
A

x  2


B

1x  2 2 2 
C

x  4
  

7. 
A

x  3


Bx  C

x2  4
  9. 

Ax  B

x2  1


Cx  D

x2  2
  

11. 
A

x


B

2x  5


C

12x  5 2 2 
D

12x  5 2 3 

Ex  F

x2  2x  5


Gx  H

1x2  2x  5 2 2

13. 
1

x  1


1

x  1
  15. 

1

x  1


1

x  4
  

17. 
2

x  3


2

x  3
  19. 

1

x  2


1

x  2
  

21. 
3

x  4


2

x  2
  23. 

 
1
2

2x  1


3
2

4x  3
  

25. 
2

x  2


3

x  2


1

2 x  1
  

27. 
2

x  1


1
x


1

x2   29. 
1

2x  3


3

12x  3 2 2

31. 
2
x


1

x3 
2

x  2
  

33. 
4

x  2


4

x  1


2

1x  1 2 2 
1

1x  1 2 3

35. 
3

x  2


1

1x  2 2 2 
1

1x  3 2 2   

37. 
x  1

x2  3


1
x

  39. 
2x  5

x2  x  2


5

x2  1
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Answers to Section 10.5 A65

41. 
1

x2  1


x  2

1x2  1 2 2 
1
x

  

43. x2 
3

x  2


x  1

x2  1
  

45. A 
a  b

2
, B 

a  b

2

Section 10.4 ■ pAge 743
1. 14, 8 2 , 12, 2 2   3. 14, 16 2 , 13, 9 2   5. 12, 2 2 , 12, 2 2   
7. 125, 5 2 , 125, 5 2   9. 13, 4 2  13, 4 2   
11. 12, 1 2 , 12, 1 2 , 12, 1 2 , 12, 1 2  
13. 11, !2 2 , 11, !2 2 , A12, "7

2 B, A12, "7
2 B   

15. 12, 4 2 , A 
5
2, 74 B   17. 10, 0 2 , 11, 1 2 , 12, 4 2   

19. 14, 0 2   21. 12, 2 2   23. 16, 2 2 , 12, 6 2   
25. No solution  
27. 1!5, 2 2 , 1!5, 2 2 , 1!5, 2 2 , 1!5, 2 2   

29. A3,  
1
2 B, A3,  

1
2 B   31. A15, 13 B   33. 12.00, 20.00 2 , 

18.00, 0 2   35. 14.51, 2.17 2 , 14.91, 0.97 2   
37. 11.23, 3.87 2 , 10.35, 4.21 2   39. 12.30, 0.70 2 , 
10.48, 1.19 2   41. 1!10, 10 2   43. 15, 8 2 , 18, 5 2   
45. 12 cm by 15 cm  47. 15, 20   
49. 1400.50, 200.25 2 , 447.77 m  51. 112, 8 2

Section 10.5 ■ pAge 752
1. 2, 3; yes  
2. equation; y  x  1; test

Test point Inequality y " x 1 1 Conclusion

10, 0 2 0 
?

0  1 ✓ Part of graph
10, 2 2 2 

?
0  1 ✕ Not part of graph

y

0 x1

1

y=x+1

3. 2, 3; yes  
4. (a) (b)

x 0 1 

1 

y 

x+y=2

x-y=0

 

x 0 1 

1 

y 

x+y=2

x-y=0

(c) (d)

x 0 1 

1 

y 

x+y=2

x-y=0

 

x 0 1 

1 

y 

x+y=2

x-y=0

5. 11, 2 2 , 11, 2 2   7. 11, 2 2 , 11, 1 2   
9.  11. 

y=_2x

y

0 x1

1

 

y=2

y

x1

1

0

13.  15. 

x=2

y

x1

1

0

 

y=x-3

y

x1

1
0

17.  19. 

2x-y=_4

y

x1

1
0

 

_x™+y=5

y

x1

10

0

21.  

x™+y™=9

y

x1

1
0

 

23.  25. 
3

−12

10−2

 

9

−9

6−3

27. y  1
2 
x  1  29. x2  y2  4
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A66 Answers to Selected Exercises and Chapter Tests

31.  33. 
y

0 x3

3

x + y = 4

y = x

(2, 2)

 

y

0 x3

(4, 3)1
4

3
y =

y = 2x − 5

x + 2

Not bounded Not bounded
35. 37.

 

y

0 x1

1
3x + 5y = 15

, 2

3x + 2y = 9

( )5
3

Bounded Bounded
39.  41. 

 

y

0 x1

1

y = 9 − x2

y = x + 3

(2, 5)

(−3, 0)

Bounded Bounded
43.  45. 

y

0 x1

1

(−   2, −   2)

x2 + y2 = 4

x − y = 0

(   2,    2)

 

Bounded Bounded

x 0 1 
1 

(0, 5) (2, 4) 

(4, 0) 

y=_2x+8

yy=_ x+51
2

x0 1 
1 

y 

(3, 0) 

(0, 9) 

y=9-x2

y

0 x1

5
x2 − y = 0

2x2 + y = 12

(2, 4)(−2, 4)

47.  49. 

2x+y™=1 x™+y™=9

y

x1

1

0

(_2, _   5)

(_2,    5)

 

y

x2

2

x − y = 2

3x − y = 0

x + 2y = 14
(6, 4)

(−1, −3)

Bounded Not bounded
51.  53. 

y

0 x1

1

x + y = 7

x = 5

(5, 2)

 

y

0 x3

3
x + 1 = 0

x + 2y = 12

y = x + 1

10
3

13
3,( )13

2−1,( )

Bounded Bounded
55.  57. 

y

0 x1

1

(2, 2)

x2 + y2 = 8
x = 2

(2   2, 0)

 

Bounded Bounded
59.  61. 

y

x2

2

(_1, _3)

(2, 6)

(6, 4)

 

y

x2

2

(_8, _10)

(2, 10)

(12, 0)

0

Bounded Not bounded
63. 

y

x1

1
0

(0, 5)

(1, 2)
(3, 1)

(9, 0)

Not bounded

y

0 x2

2

(0, 3)

,( )−3   2
2

3   2
2

x + y = 0

x2 + y2 = 9
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Answers to Chapter 10 Review A67

65.  67. 
10

−4

13−5

(11, 8)
(−1, 8)

 

10

−6

10−4

(0.6, 3.4)

(6.4, −2.4)

69. (a) d  

x  y  500

90x  50y  40,000

30x  80y  30,000

x  0, y  0

 

y

x100

100

0

(375, 125)

(200, 300)

4000
9 , 0( )

(0, 375)

(b) Yes  (c) No
71. x  number of fiction books 
 y   number of nonfiction  

books

 c 

x  y  100

20  y, x  y

x  0, y  0

 

73. x   number of standard  
packages

 y   number of deluxe  
packages

 c  

1
4 x  5

8 y  80
3
4 x  3

8 y  90

x  0, y  0 

chApter 10 revieW ■ pAge 757
1. 12,  1 2   3.  x  any number 

y  2
7 x  4 y

0 x1

1

 

y

0 x2

2

y

x50

50

0

(50, 50)

(80, 20)
(20, 20)

y

0 x50

(70, 100)
(0, 128)

(120, 0)

50

5. No solution 
y

0 x1

1

7. 13,  3 2 , 12,  8 2   9. A  16 

7 ,   
 14 

3 B   11. 121.41,  15.93 2   

13. 111.94,  1.39 2 , 112.07,  1.44 2   15. 11, 1, 5 2   
17. 11,  1,  2 2   19. No solution  21. 14t  1, t  1, t 2   

23. A 2
 11 

,  
48
11,   

60
11,   

40
11 B   

25. Siobhan is 9 years old; Kieran is 13 years old.
27. 12 nickels, 30 dimes, 8 quarters

29. 
2

x  5


1

x  3
  31. 

4
x


4

x  1


2

1x  1 2 2   

33. 
1
x


x  2

x2  1
  35. 

3

x2  2


x

1x2  2 2 2   

37. 12,  1 2   39. A 
1
2,   

7
4 B, 12,   2 2   41. x  y2  4  

43.  45. 

 

y

0 x1

1

x2 + y2 = 9

47.  49. 

 

y

0 x1

1

51.  53. 

 

y

0 x4

4

,( )4
3

16
3

x + 2y = 12

y = x + 4

Bounded   Bounded

55. x 
b  c

2
, y 

a  c

2
, z 

a  b

2
  57. 2, 3  

y

0 x1

1

3x + y = 6

y

0 x1

1

y

0 x2

2,( )3   2
2

3   2
2

,( )3   2
2

3   2
2

x2 + y2 = 9

x + y = 0
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A68 Answers to Selected Exercises and Chapter Tests

chApter 10 teSt ■ pAge 759
1. (a) Linear  (b) 12,  3 2   
2. (a) Nonlinear  (b) 11,  2 2 , A53,  0B
3. (a) Nonlinear  (b) A!10, 3!10B, A!10, 3!10B   
4. 10.55,  0.78 2 , 10.43,  0.29 2 , 12.12,  0.56 2
5. (a) 12, 1, 1 2   (b) Neither  
6. (a) No solution  (b) Inconsistent  
7. (a) A17 1 t  1 2 , 17 19t  2 2 , tB   (b) Dependent  
8. (a) 110, 0, 1 2   (b) Neither   
9. Wind 60 km/h, airplane 300 km/h
10. Coffee $1.50, juice $1.75, doughnut $0.75
11.  12. 

y

3x+4y=6

x40

3

 y

_≈+y=3

x10
1

13.  14. 
y

0 x1

1

(2, 4)

2x + y = 8

x + 2y = 4

 

y

0 x1

1(_2, 1)

y = 2x + 5

x2 + y = 5

15. 
1

x  1


1

1x  1 2 2 
1

x  2
  16.  

1
x


x  2

x2  3

FocuS on Modeling ■ pAge 764
1. 198, 195  

3.  maximum 161
 minimum 135

5. 3 tables, 34 chairs  7. 30 grapefruit crates, 30 orange crates   
9. 15 Pasadena to Santa Monica, 3 Pasadena to El Toro,  
0 Long Beach to Santa  Monica, 16 Long Beach to El Toro   
11. 90 standard, 40 deluxe  13. $7500 in municipal bonds, 
$2500 in bank certificates, $2000 in high-risk bonds   
15. 4 games, 32 educational, 0 utility

chapter 11
Section 11.1 ■ pAge 778
1. dependent, inconsistent

y

0 x3

3

2x + y = 10

2x + 4y = 28

2. C
1 1 1 1

1 0 2 3

0 2 1 3

S

3. (a) x and y  (b) dependent  (c) x  3  t, y  5  2t, z  t
4. (a) x  2, y  1, z  3  (b) x  2  t, y  1  t, z  t   
(c) No solution  5. 3  2  7. 2  1  9. 1  3  

11. C
3 1 1 2

2 1 0 1

1 0 1 3

S   

13. (a) Yes  (b) Yes  (c) e x  3

y  5

15. (a) Yes  (b) No  (c) c
x  2y  8z  0

y  3z  2

0  0

  

17. (a) No  (b) No  (c) c 

x  0

0  0

y  5z  1

19. (a) Yes  (b) Yes  (c) d  

x  3y  „  0

z  2„  0

0  1

0  0

  

21. C
1 1 2 0

0 4 7 4

1 2 1 1

S   23. C
2 1 3 5

2 3 1 13

0 8 8 8

S   

25. (a) c 

x  2y  4z  3

y  2z  7

z  2

  (b) 11, 3, 2 2

27. (a) d  

x  2y  3z  „  7

y  2z  5

z  2„  5

„  3

  (b) 17, 3, 1, 3 2

29. 11, 1, 2 2   31. 11, 0, 1 2   33. 11, 0, 1 2   
35. 11, 5, 0 2   37. 110, 3, 2 2   39. No solution  
41. 12  3t, 3  5t, t 2   43. No solution  

45. 12t  5, t  2, t 2   47. A 
1
2 
s  t  6, s, tB   

49. 12, 1, 3 2   51. No solution  53. 19, 2, 0 2   
55. 15  t, 3  5t, t 2   57. 10, 3, 0, 3 2   

59. 11, 0, 0, 1 2   61. A13 s  2
3 t, 13 s  1

3 t, s, tB   

63. A74  7
4 
t,  

7
4  3

4 
t, 94  3

4 
t, tB   

65. x  1.25, y  0.25, z  0.75  
67. x  1.2, y  3.4, z  5.2, „  1.3  
69. 2 VitaMax, 1 Vitron, 2 VitaPlus  71. 5-mile run, 2-mile 
swim, 30-mile cycle  73. Impossible  

Section 11.2 ■ pAge 789
1. dimension  2. (a) columns, rows  (b) (ii), (iii)  3. (i), (ii)

4. C
4 9 7

7 7 0

4 5 5

S   5. No  7. a  5, b  3  

9. B1 3

1 5
R   11. C

3 6

12 3

3 0

S   13. Impossible  
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Answers to Section 11.3 A69

15. B
5 2 1

7 10 7
R   17. B

1  
1
2

1 2
R   

19. Impossible  21. C
0 5

25 20

10 10

S   

23. (a) B5 2 5

1 1 0
R   (b) Impossible  

25. (a) B
10 25

0 35
R   (b) Impossible  

27. (a) Impossible  (b) 314 14 4   

29. (a) B
4 7

14 7
R   (b) B

6 8

4 17
R   

31. (a) C
5 3 10

6 1 0

5 2 2

S   (b) C
1

8

1

S   

33. (a) B4 45

0 49
R   (b) B

8 335

0 343
R   

35. (a) B
13

7
R   (b) Impossible  

37. C
1.56 5.62

1.28 0.88

1.09 0.97

S   39. C
0.35 0.03 0.33

0.55 1.05 1.05

2.41 4.31 4.46

S   

41. Impossible  43. x  2, y  1  

45. x  1, y  2  47. B2 5

3 2
R   B  x

 y
R  B7

4
R

49. C
3 2 1 1

1 0 1 0

0 3 1 1

S   D

x1

x2

x3

x4

T  C
0

5

4

S

51. Only ACB is defined. ACB  B3 21 27 6

2 14 18 4
R

53. (a) C
5

22

7

S

(b) Five members have no postsecondary education, 22 have 1 to 
4 years, and seven have more than 4 years.

55. (a) C
353.75

656.25

892.50

S   (b) $353.75  (c) $1902.50

57. (a) C
$32,000 $18,000

$42,000 $26,800

$44,000 $26,800

S   (b) $42,000  (c) $71,600

59. (a) C
97.00

46.50

41.00

S  

(b) C
70.00

33.50

48.50

S  

Amy’s stand sold $97 of produce on Saturday.
Beth’s stand sold $46.50.
Chad’s stand sold $41.

Amy’s stand sold $70 of produce on Sunday.
Beth’s stand sold $33.50.
Chad’s stand sold $48.50.

(c) C
220 110 90

75 45 50

120 55 50

S  

(d) C
167.00

80.00

89.50

S  

Section 11.3 ■ pAge 800
1. (a) identity  (b) A, A  (c) inverse
 A X B

2. (a) B5 3

3 2
R   B  x

 y
R  B4

3
R   (b) B 2 3

3 5
R

 A1 B 

(c) B 2 3

3 5
R   B4

3
R  B  1

 3
R   (d) x  1, y  3  

7. B
1 2

 
3
2

7
2

R   9. B
1
3  

1
2

2 2
R   11. B 3 5

2 3
R   

13. B 13 5

5 2
R   15. No inverse  17. B 1 2

 
1
2

2
3

 R   

19. C
4 4 5

1 1 1

5 4 6

S   21. No inverse  

23. C
 

9
2 1 4

3 1 3
7
2 1 3

S   25. D

0 0 2 1

1 0 1 1

0 1 1 0

1 0 0 1

T   

27. C

2
3

4
3 3

1 1 3
1
3

2
3 1

S   29. D

2 3 1 2

0 1 0 1
2

2 2 1 2

1 1 1 0

T   

31. C
1  

7
2

1
6

0 1
2  

1
6

0 0 1
3

S   33. D

1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
7

T   

35. C
 

1
4

3
4

3
4

 
7

16  
23
16  

3
16

7
8  

1
8  

5
8

S   37. C
7 3 4

22
7  

2
7

16
7

50
7

26
7

37
7

S   

39. x  12, y  8  41. x  126, y  50  
43. x  38, y  9, z  47  45. x  20, y  10, z  16  
47. x  3, y  2, z  1  49. x  3, y  2, z  2  
51. x  8, y  1, z  0, „  3  

53. B 7 2 3

10 3 5
R   55. 

1

2a
  B 1 1

1 1
R

  

57. D
1  

1
x

 

1
x

2

x2

T ; inverse does not exist for x  0

59. 1
2C

1 ex 0

ex e2x 0

0 0 1

S ; inverse exists for all x

This represents the number of melons, 
squash, and tomatoes they sold during 
the weekend.

During the weekend Amy’s stand sold $167, 
Beth’s stand sold $80, and Chad’s stand sold 
$89.50 of produce.
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A70 Answers to Selected Exercises and Chapter Tests

61. (a) C
0 1 1

2 3
2 0

1  
3
2 1

S   (b) 1 oz A, 1 oz B, 2 oz C

(c) 2 oz A, 0 oz B, 1 oz C  (d) No  

63. (a) c 

 9x  11y  8z  740

13x  15y  16z  1204

 8x  7y  14z  828

(b) C
9 11 8

13 15 16

8 7 14

S   C
x

y

z
S  C

740

1204

828

S   

(c) A1  C

7
4  

7
4 1

 
27
28

31
28  

5
7

 
29
56

25
56  

1
7

S

She earns $16 on a standard model, $28 on a deluxe model and  
$36 on a super-deluxe model.

Section 11.4 ■ pAge 811
1. True  2. True  3. True  4. (a)  2 # 4  13 2 # 1  11
(b)  
1(2  4  (3)  1)  0(3  4  0  1)  2(3  (3)  0  2)  7  
5. 6  7. 0  9. 4  11. Does not exist  13. 1

8   15. 20, 20  
17. 12, 12  19. 0, 0  21. 4, has an  inverse  
23. 5000, has an inverse  25. 0, does not have an inverse  
27. 4, has an inverse  29. 6, has an inverse  
31. 12, has an inverse  33. 0, does not have an inverse  
35. 18  37. 120  39. (a) 2  (b) 2  (c) Yes  
41. 12, 5 2    43. 10.6, 0.4 2   45. 14, 1 2   47. 14, 2, 1 2   

49. 11, 3, 2 2   51. 10, 1, 1 2   53. A189
29 ,  

108
29 , 88

29 B   

55. A12, 14, 14, 1B   57. 21  59. 63
2   61. abcde  63. 0, 1, 2  

65. 1, 1  69. (a) 0  (b) (i) Yes, (ii) No  

71. (a) c 

75x  90y  60z  1318

75x  90y  60z  1380

75x  90y  60z  1180

(b) 8 apples, 6 peaches, 4 pears  
73. 7 million ft2

chApter 11 revieW ■ pAge 817
1. (a) 2  3  (b) Yes  (c) No

(d) e x  2y  5

y      3

3. (a) 3  4  (b) Yes  (c) Yes

(d) •
 x  8z  0

y  5z  1

0  0

5. (a) 3  4  (b) No  (c) No

(d) •
y  3z  4

x  y  7

x  2y  z  2

7. 10, 1, 2 2   9. No solution  11. 11,  0,  1,  2 2   

13. A 
4
3 t  4

3,  
5
3 t  2

3,  tB   15. 1s  1,  2s  t  1,  s,  t 2   

17. No solution  19. 11,  t  1,  t,  0 2   21. Not equal  

23. Impossible   25. £
4 18

4 0

2 2

§   27. 310 0 5 4   

29. c 
7
2 10

1  
9
2

d   31. c 30 22 2

9 1 4
d

33. £
 

1
2

11
2

15
4  

3
2

 
1
2 1

§   35. C
27 0 21

20 5 13

5 22 7

S   

37. C
14 26 8

3  
7
3

7
3

18 80
3  

35
3

S   39. 12  41. 1
3   43. 4  

47. 1
3 c

1 3

5 2
d   49. c

7
2 2

0 8
d   51. c 2 2 6

4 5 9
d   

53. 1, c 9 4

2 1
d   55. 0, no inverse

57. 1, £
3 2 3

2 1 2

8 6 9

§   59. 24, ≥
1 0 0  

1
4

0 1
2 0  

1
4

0 0 1
3  

1
4

0 0 0 1
4

¥

61. 165,  154 2   63. A 
1

12,  
1

12,  
1

12 B
65. (a) Matrix A describes the number of pounds of each vegeta-
ble sold on each day; matrix B lists the 

price per pound of each vegetable.  (b) AB  B68.5

41.0
R ; 

$68.50 was the  total made on Saturday, and $41.00 was the total 
made on Sunday.

67. A15,  
9
5 B   69. A 

87
26,  

21
26,  

3
2 B   71. 11  

73. $2500 in bank A, $40,000 in bank B, $17,500 in bank C

chApter 11 teSt ■ pAge 819
1. Row-echelon form  2. Neither  
3. Reduced row-echelon form  4. Reduced row-echelon form  
5. A52,  

5
2,  0B   6. No solution  7. 11, 1, 1 2

8. A 
3
5  2

5 t,  
1
5  1

5 t,  tB   9. Incompatible dimensions
10. Incompatible dimensions

11. £
6 10

3 2

3 9

§   12. £
36 58

0 3

18 28

§   13. c 2  
3
2

1 1
d

14. B is not square  15. B is not square  16. 3

17. (a) c 4 3

3 2
d c x

y
d  c 10

30
d   (b) 170, 90 2

18. 0  A 0  0, 0  B 0  2, B1  £
1 2 0

0 1
2 0

3 6 1

§

19. 15,  5,  4 2   20. 1.2 lb almonds, 1.8 lb walnuts

FocuS on Modeling ■ pAge 822

3. (a) Shear to the right  (b) T 
1  B

1 1.5

0 1
R   

(c) Shear to the left  (d) We get back the original square.  
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Answers to Section 12.2 A71

5. (a) D  B
0 1 1 4 4 1 1 6 6 0 0

0 0 4 4 5 5 7 7 8 8 0
R

(b) T  B
0.75 0

0 1
R

  

TD 
 
B0 0.75 0.75 3 3 0.75 0.75 4.5 4.5 0 0

0 0 4 4 5 5 7 7 8 8 0
R

(c) T  B1 0.25

0 1
R

TD  B0 1 2 5 5.25 2.25 2.75 7.75 8 2 0

0 0 4 4 5 5 7 7 8 8 0
R

chapter 12
Section 12.1 ■ pAge 832
1. focus, directrix  2. F10, p 2 , y  p, F10, 3 2 , y  3
3. F1  p, 0 2 , x  p, F13, 0 2 , x  3

4. (a) (b)

 

0 1

3
Vertex (0, 0)

Focus (3, 0)

Directrix
x=_3

x 

y

5. III  7. II  9. VI  

Order of answers for 11–23, part (a): focus; directrix;  
focal diameter
11. (a) F10, 2 2 ; y  2; 8 13. (a) F16, 0 2 ; x  6; 24

(b)  (b) 

15. (a) F10, 2 2 ; y  2; 8 17. (a) FA 
1
8, 0B; x  1

8; 12
(b)  (b) 

0 1 

1 

Focus (0, 3)

Vertex (0, 0)

Directrix
y=_3

x 

y

y

x10
1

y

x10
2

y

x10
1

y

x1

1

19. (a) FA0, 54 B; y   
5
4; 5 21. (a) F10, 3 2 ; y  3; 12

(b)  (b) 

23. (a) FA 
5

12, 0B; x  5
12; 53  25. 

(b)  

27.  29. 
1

_1

1_3

 

4

_4

1_2

31. x2  24y  33. y2  32x  35. x2  3y  37. y2  16x  

39. x2   
2
5 y  41. y2   

1
5 x  43. y2  4x  45. x2  40y  

47. x2  24y  49. x2  8y  51. y2  16x  
53. y2  3x  55. x  y2  57. x2  4 !2 y  

59. (a) x2  4py, p  1
2, 1, 4, and 8  

(b) The closer the directrix to the    
vertex, the steeper the parabola.

61. (a) y2  12x  (b) 8 !15  31 cm  63. x2  600y  

Section 12.2 ■ pAge 840
1. sum; foci
2. 1a, 0 2 , 1a, 0 2 ; c  "a2  b2; 
15, 0 2 , 15, 0 2 , 13, 0 2 , 13, 0 2
3. 10, a 2 , 10, a 2 ; c  "a2  b2; 
10, 5 2 , 10, 5 2 , 10, 3 2 , 10, 3 2

y

x10

1

y

x6

1

1

_0.5

3_3

y

x

2

_1

_2

0
3_3

_1

p=8

p=4

p=1 p=1
2
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A72 Answers to Selected Exercises and Chapter Tests

4. (a)  (b) 

0 1 

1 Focus (3, 0)Focus (_3, 0)

Vertex (_5, 0) Vertex (5, 0)

x 

y

  

0 1 

1 
Focus
(0, 3)

Focus
(0, _3)

Vertex (0, _5)

Vertex (0, 5)

x 

y

5. II  7. I  

Order of answers for 9–27 part (a): vertices; foci; eccentricity
9. (a) V15, 0 2 ; F14, 0 2 ; 45  11. (a) V10, 9 2 ;
(b) 10, 6 F10, 3!5 2 ; !5/3
 (b) 18, 12(c) 

 (c) 

13. (a) V17, 0 2 ; 15. (a) V10, 3 2 ;
F12!6, 0 2 ; 2!6/7 FA0, !5 B; !5/3
(b) 14, 10 (b) 6, 4
(c)  (c) 

17. (a) V14, 0 2 ; 19. (a) V110, 0 2 ;
FA2!3, 0B; !3/2  F16, 0 2 ; 35
(b) 8, 4 (b) 20, 16
(c)  (c) 

y

0 x5

3

_5

_3

y

x20
2

y

x10
1

y

0 x2

2

_2

_2

y

0 x4

2

_4

_2

y

x20
2

21. (a) V10, 3 2 ; 23. (a) V10, 2 2 ;
F10, !6 2 ; !6/3 F10, !2 2 ; !2/2

(b) 6, 2!3 (b) 4, 2!2
(c)  (c) 

25. (a) V11, 0 2 ; 27. (a) V12, 0 2 ;
FA!3/2, 0B; !3/2 FA!2, 0B; !2/2
(b) 2, 1 (b) 4, 2!2
(c)  (c) 

29. 
x2

25


y2

16
 1  31. 

x2

4


y2

8
 1  33. 

x2

256


y2

48
 1  

35.  37. 
5

6_6

_5  

7

7_7

_7

39. 
x2

25


y2

9
 1  41. 

x2

4


y2

3
 1  43. 

x2

39


y2

49
 1  

45. x2 
y2

4
 1

  
47. 

x2

9


y2

13
 1  49. 

x2

100


y2

91
 1  

51. 
x2

25


y2

5
 1

  
53. 

x2

32


y2

36
 1  55. x2 

y2

4
 1   

57. 10, 2 2   59. 11, 0 2

 

y

0 x1

1

_1

61. (a) x2  y2  4

y

x10

1

y

x10

1

y

0 x1

1

_1

_1

y

x1−1 0

2

−2

y

0 x3

2

_3

_2
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Answers to Section 12.3 A73

65. 
x2

2.2500  1016 
y2

2.2491  1016  1

67. 
x2

1,455,642


y2

1,451,610
 1  

69. 5 !39/2  15.6 in.

Section 12.3 ■ pAge 849
1. difference; foci
2. horizontal; 
1a, 0 2 , 1a, 0 2 ; "a2  b2; 14, 0 2 , 14, 0 2 , 15, 0 2 , 15, 0 2  
3. vertical; 
10, a 2 , 10, a 2 ; "a2  b2; 10, 4 2 , 10, 4 2 , 10, 5 2 , 10, 5 2  
4. (a)       (b)

     

Focus
(0, _5)

Vertex
(0, 4)

4
3y=_ x

Vertex
(0, _4)

Focus
(0, 5)

4
3y= x

0 1

1

x

y

5. III  7. II  

Order of answers for 9–25, part (a): vertices; foci; asymptotes
9. (a) V12, 0 2 ; 11. (a) V10, 6 2 ;
FA2!5, 0B; y  2x FA0,  2!10 B; y   3 x
(b) 4 (b) 12
(c)  (c)

13. (a) V10, 1 2 ; 15. (a) V11, 0 2 ; FA!2, 0B;
FA0,  !26 B; y   

1
5 x y  x

(b) 2 (b) 2
(c)  (c) 

Focus (_5, 0)

Asymptote Asymptote
3 
4 

Focus (5, 0)

y=_ x 

Vertex (_4, 0) Vertex (4, 0)

3 
4 y= x 

0 1 

1 

x 

y

y

0 x3

3

_3

_3

y

x1

4

y

x5

2

_5

_2

y

x3

3

_3

_3

17. (a) V12, 0 2 ;  19. (a) V10, 6 2 ;
FA!13, 0B; y   

3
2 x F10, 2!13 2 ; y   

3
2 x

(b) 4 (b) 12
(c)  (c) 

21. (a) VA2!2, 0B; 23. (a) V10, 2 2 ;
F1!10, 0B; y   

1
2 x F10, 2!2 2 ; y  x

(b) 4!2 (b) 4
(c)  (c) 

25. (a) VA0,  
1
2 B; 

FA0, !5/2B; y   
1
2 x 

(b) 1 
(c)  

27. 
x2

4


y2

12
 1  29. 

y2

16


x2

16
 1  31. 

y2

9
 x2  1  

33.  35. 
8

_8

8_8

 

8

_8

8_8

37. 
x2

9


y2

16
 1  39. y2 

x2

3
 1  41. x2 

y2

25
 1  

43. 
y2

36


x2

20
 1  45. 

x2

16


y2

16
 1  47. 

y2

8
 x2  1  

y

x5−5

5

−5

y

x4

4

y

x5

5

_5

_5

y

x5−5

5

−5

y

x3

2

_3

_2
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A74 Answers to Selected Exercises and Chapter Tests

49. 
x2

9


y2

16
 1  51. (b) x2  y2  c2/2  

55. (b) 

     As k increases, the 
 asymptotes get  
steeper.

57. x2  y2  2.3  1019

Section 12.4 ■ pAge 857
1. (a) right; left  (b) upward; downward

2.  

3.  

4. 

Focus
(_2, 1)

Focus
(8, 1)

0 1 

1 

Vertex (_1, 1) Vertex (7, 1)

x 

y 

Asymptote
Asymptote3 

4 y=_ x+ 13 
4 x- 5 

4 
3 
4 y=

10

5_5
0

k=12

k=8

k=4

k=1

0 1 

1 

Focus (0, 3)

Vertex (0, 0)

Directrix
y=_3

x 

y

0 1 

1 

Focus (3, 4)

Vertex (3, 1)

Directrix
y=_2

x 

y

0 1 

1 Focus (3, 0)Focus (_3, 0)

Vertex (_5, 0) Vertex (5, 0)

x 

y

0 1 

1 

Focus (6, 1)Focus (0, 1)

Vertex (_2, 1) Vertex (8, 1)

x 

y

Focus (_5, 0) Focus (5, 0)

Vertex (_4, 0) Vertex (4, 0)

Asymptote Asymptote
3 
4 y=_ x 3 

4 y= x 

0 1 

1 

x 

y

5. (a) C 12, 1 2 ; V111, 1 2 ,  7. (a) C10, 5 2 ; V110, 10 2 ,
V215, 1 2 ; F12  !5, 1 2  V210, 0 2 ; F110, 9 2 , F210, 1 2  
(b) 6, 4 (b) 10, 6

(c)  (c) 

9. (a) C15, 1 2 ; V119, 1 2 , 11. (a) C10, 1 2 ; V15, 1 2 ;
V211, 1 2 ; F15  2!3, 1 2  F1!21, 1 2  
(b) 8, 4 (b) 10, 4 
(c)  (c) 

13. (a) V13, 1 2 ; F13, 1 2 ; 15. (a) V12, 5 2 ; FA12, 5B; 
directrix y  3 directrix x  7

2

(b)  (b) 

17. (a) V11, 0 2 ; FA1, 18 B;  19. (a) V12, 3 2 ; F15, 3 2 ;
directrix y   

1
8  directrix x  1

(b)  (b) 

y

x1

1

y

x3

1

y

x10

1

y

x50
1

y

x20

1

y

x1

1

y

x1

1

y

x1

1
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Answers to Section 12.5 A75

21. (a) C11, 3 2 ; V114, 3 2 , 23. (a) C11, 0 2 ; V11,  1 2 ;
V212, 3 2 ; F116, 3 2 , F214, 3 2 ; F11, !5 2 ; asymptotes

asymptotes y  4
3 x  13

3  and y  1
2 x  1

2 and y   
1
2 x  1

2

y   
4
3 x  5

3

(b)  
(b) 

25. (a) C11, 1 2 ; 27. (a) C11, 4 2 ; V111, 2 2 ,
V114, 1 2 , V212, 1 2 ; V211, 10 2 ; F11, 4  2!10 2 ;
F11  !13, 1 2 ; asymptotes asymptotes y  3x  7 and

y  2
3 x  1

3 and y   
2
3 x  5

3  y  3x  1

(b)  (b) 

29. x2   
1
4 1y  4 2   31. 

1x  5 2 2
25


y2

16
 1  

33. 1 y  1 2 2  x 
2  1  35. 

1x  2 2 2
100


1y  3 2 2

64
 1  

37. 
1y  4 2 2

49

1x  1 2 2

32
 1  39. 1x  3 2 2  121y  5 2   

41. 
y2

16

1x  1 2 2

9
 1  43. 

1x  3 2 2
29


1y  4 2 2

25
 1  

45. 1y  2 2 2  1
7 
1x  1 2   

47. Parabola;  49. Hyperbola; C11, 2 2 ;
V14, 4 2 ; F13, 4 2 ;  F11  !30, 2 2 ; V114, 2 2 ,
directrix x  5 V216, 2 2 ; asymptotes

 y   

!5

5
 1x  1 2  2

y

x50

5

 

y

x20

2

y

x10
1

y

x1

2

y

x1

1

y

1

4

x

51. Ellipse; C13, 5 2 ; 53. Hyperbola; C13, 0 2 ;
FA3  !21, 5B; F13, 5 2 ;V13, 4 2 ; 
V112, 5 2 , V218, 5 2 ;  asymptotes y   

4
3 
1x  3 2

major axis 10,  
minor axis 4  

 

y

0 x
1

1

55. Degenerate conic  57. Point 11, 3 2  
(pair of lines),  

y   
1
2 
1x  4 2   

 

y

0 x1

1

(1, 3 )

59.  61. 
3

4_2

_9  

8

_12

6_2

63. (a) F  17  (b) F  17  (c) F  17

65. (a) 

(c) The parabolas become narrower.

67. 
1x  150 2 2
18,062,500


y2

18,040,000
 1

Section 12.5 ■ pAge 867
1. x  X cos f  Y sin f, y  X sin f  Y cos f,  
X  x cos f  y sin f, Y  x sin f  y cos f
2. (a) conic section  (b) 1A  C 2/B  (c) B2  4AC,  

parabola, ellipse, hyperbola  3. A!2,  0B   5. A0,  2 !3 B   
7. 11.6383,  1.1472 2   9. X 2  !3 XY  2  0
11. 7Y 2  48XY  7X 2  40X  30Y  0  13. X 2  Y 2  2

y

0 x3

_5

y

0 x

4

4

6

6_6

_6

p=1

p=
p=2

p=-2
p=-

p=-1

1
2p=

3
2

1
2

3
2

p=-
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A76 Answers to Selected Exercises and Chapter Tests

15. (a) Hyberbola  (b) X 2  Y 2  16

(c) f  45  

17. (a) Hyberbola   19. (a) Hyberbola 
(b) Y 2  X 2  1

 (b) 
X 2

4
 Y 2  1(c) f  30

 

 (c) f  53
y

0 x

Y

X

5

5

_5

_5

 

y

x

Y

X

4

4

_4

_4

21. (a) Hyberbola 23. (a) Parabola  

(b) 3X 2  Y 2  2 !3 (b) Y  !2 X 2

(c) f  30  (c) f  45 
y

x

Y

X

6

6

_6

_6

 

25. (a) Hyberbola 27. (a) Ellipse  
(b) 1X  1 2 2  3Y 2  1

 (b) X 2 
1Y  1 2 2

4
 1(c) f  60 

 (c) f  53

29. (a) Parabola 31. (a) Hyperbola  

(b)
  

(b)  

y

Y

0 x

X

6

6

_6

_6

y

x

Y X

6

6

_6

y

x

Y

X

1

1

y

x

Y

X

6

6

_6

_6

6

_4

6_2

10

_15

15_10

33. (a) 1X  5 2 2  Y 2  1   
(b) XY-coordinates: C15,  0 2 ; V116,  0 2 , V214,  0 2 ; FA5  !2,  0B ; 
xy-coordinates: 

C14,  3 2 ; V1A24
5 ,  

18
5 B, V2A16

5 ,  
12
5 B; F1A4  4

5 !2,  3  3
5 !2B,

F2A4  4
5 !2,  3  3

5 !2B
(c) Y  1X  5 2 ; 7x  y  25  0, x  7y  25  0
35. X  x cos f  y sin f; Y  x sin f  y cos f

Section 12.6 ■ pAge 873

1. focus, directrix; 
distance from P to F

distance from P to ,
, conic section; parabola, 

ellipse, hyperbola, eccentricity  

2. 
ed

1  e cos u
, 

ed

1  e sin u
  3. r  6/ 13  2 cos u 2   

5. r  2/ 11  sin u 2   7. r  20/ 11  4 cos u 2
9. r  10/ 11  sin u 2   11. II  13. VI  15. IV  

17. (a), (b) 19. (a), (b)

 

21. (a), (b) 23. (a), (b)

1O
, π @

V⁄(4,0)

x=_4

V¤ ! 4
3

 

(c) CA43, 0B , major axis: 16
3 ,  (c) CA36

7 , 3p
2 B , major axis: 96

7 , 

minor axis: 8!3
3  minor axis: 24!7

7

25. (a), (b) 27. (a), (b)

2O

, 0V⁄ !  @8
3

V2 (_8, π)

x=4

 

(c) A16
3 , 0B  (c) A12, 3p

2 B

4

y=_4 2,V !  @3π
2

O
1O

, 0V !  @5
6

x=
5
3

2O

y=4

3π
2

,V⁄ !  @12
7

π
2

12,V¤ !  @

5

y=_ 20
3

_20,V¤ !  @π
2

4,V⁄ !  @3π
2
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Answers to Chapter 12 Review A77

29. (a) 3, hyperbola 31. (a) 1, parabola

(b)  (b) 

33. (a) 1
2 , ellipse   35. (a) 5

2 , hyperbola

(b)  (b) 

37. (a) eccentricity 3
4,     39. (a) eccentricity 1,  

directrix x   
1
3  directrix y  2

(b) r 
1

4  3 cosAu  p
3 B  

(b) r 
2

1  sinAu  p
4 B

(c)  (c) 

41. The ellipse is nearly circular      
when e is close to 0 and becomes  
more elongated as e → 1. At e  1  
the curve becomes a parabola. 

43. (b) r  11.49  108 2/ 11  0.017 cos u 2   45. 0.25

chApter 12 revieW ■ pAge 877
1. (a) V10,  0 2 ; F11,  0 2 ; 3. (a) V10, 0 2 ; F10, 2 2 ;
directrix x  1 directrix y  2

(b)  (b)

O
(_2,π)(1,0)

O
(1,π)

!2, @3π
2

!2, @π
2

(3, 0)
O

!2,    @π
 2

!6,      @3π
 2

O

7
3!_   ,    @π

2

!1,      @3π
2

1

0.5

_0.5 1.25

3

8

_9 3

e=0.4 e=1.0

e=0.8
e=0.6

y

x10

2

y

x1

1
0

5. (a) V10,  0 2 ; F10,  2 2 ; 7. (a) V12, 2 2 ; F11, 2 2 ; 
directrix y  2 directrix x  3

(b)  (b)

9. (a) V10, 3 2 ; FA 
1
2, 3B;  11. (a) V12,  3 2 ;  

directrix x  1
2 F12,  2 2 ; directrix y  4

(b)  (b)

13. (a) C10,  0 2 ; V10,  5 2 ; 15. (a) C10, 0 2 ; V17, 0 2 ;
F10,  4 2  F13!5, 0 2
(b) 10, 6 (b) 14, 4

(c)  (c)

17. (a) C10,  0 2 ; V14,  0 2 ; 19. (a) C13,  0 2 ; V13,   4 2 ;
FA2!3,  0B  FA3,   !7B  
(b) 8, 4 (b) 8, 6
(c)  (c)

y

x40

1

y

x10

1

y

x10

1

y

x20

1

y

0 x2_2
_2

2

y

x20

4

y

0 x4

1

_4

y

x1

_4

4
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A78 Answers to Selected Exercises and Chapter Tests

21. (a) C12, 23 2 ; V112, 29 2 , 23. (a) C10,  2 2 ; V163,  2 2 ;
V212, 3 2 ; F12, 23 6 3!3 2  FA6!5,  2B  
(b) 12, 6 (b) 6, 4

(c)  (c)

25. (a) C10,  0 2 ; V10,  64 2 ; 27. (a) C10, 0 2 ; V162, 0 2 ;
F10,  65 2 ; asymptotes  F16!53, 0 2 ; asymptotes 

y  6 
4
3 x y  6 

7
2 x

(b)  (b) 

29. (a) C10,  0 2 ; V164,  0 2 ; 31. (a) C124,  0 2 ; V1128,  0 2 ,
FA62!6,  0B; asymptotes V210,  0 2 ; FA24 6 4!2,  0B;
y  6 

1

!2
 x

 

asymptotes y  61x 1 4 2

(b)  (b)

33. (a) C121, 3 2 ; V1121, 1 2 , 35. (a) C123,  21 2 ;
V2121, 5 2 ; F121, 3 6 2!10 2 ; VA23,  21 6 !2 B;
asymptotes y  1

3 x 1 10
3  and FA23,  21 6 2!5 B;

y  2 
1
3 x 1 8

3 asymptotes y  1
3 x,

 y  2 
1
3 x 2 2

(b)  (b)

37. y2  8x  39. 
y2

16
2

x2

9
 1  41. 

1x 2 4 2 2
16

1
1 y 2 2 2 2

4
 1

y

x10

2

3_3

y

0 x

1

y

x2

2

y

x1

6

y

0 x3

3

_3

_3

y

0 x1

1

4

_4

y

x20

6

y

0 x3

2

_3

_2

43. Parabola; V10, 1 2 ; 45. Hyperbola; C10, 0 2 ;
F10, 22 2 ; directrix y  4 F10, 612!2 2 ; V10, 612 2 ;
 asymptotes y  6xy

0 x3

3

_3

_3

 

47. Ellipse; C11, 4 2 ; 49. Parabola; V1264, 8 2 ;
F11, 4 6 !15 2 ; FA2 

255
4 , 8B; directrix x  2 

257
4

V11, 4 6 2!5 2  
y

0 x3_3

3

 

y

0 x

5

_60

_5

51. Ellipse; C13, 23 2 ; F a3, 23 6
!2

2
b ; 

V113, 24 2 , V213, 22 2
y

0 x3

_3

53. Has no graph

55. x2  4y  57. 
x2

4
1

y2

25
 1  

59. 
x2

9
1
1y 2 4 2 2

25
 1  

61. 
1x 2 1 2 2

3
1
1 y 2 2 2 2

4
 1

63. 
41x 2 7 2 2

225
1
1 y 2 2 2 2

100
 1

65. (a) 91,419,000 mi  (b) 94,581,000 mi  
67. (a) 

10

10_10

_10

k=8
k=4

k=1

k=2

y

0
x18

18

_18

_18
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Answers to Chapter 12 Test A79

69. (a) Hyperbola  (b) 3X 2  Y 2  1  

(c) f  45  

71. (a) Ellipse   
(b) 1X  1 2 2  4Y 2  1  

(c) f  30  

 

73. Ellipse  75. Parabola

_5

5

5_5

 

20

15_15

_10

77. (a) e  1, parabola   79. (a) e  2, hyperbola  

(b)  (b)  

chApter 12 teSt ■ pAge 879
1. F10,  3 2 , y  3 

2. V14,  0 2 ; FA2!3,  0B; 8, 4 

y

x
2

2

_2

_2

XY

y

x1

1 XY

O

!   , π@1
2

1
O 1

!_4,      @3π
2

!   ,    @π
2

4
3

y

0 x4

2

_4

_2

y

0 x4

2

_4

_2

3. V10,  3 2 ; F10,  5 2 ; y   
3
4 x 

4. y2  16x  5. 
x2

16


y2

7
 1  6. 

y2

9


x2

16
 1

  

7. y2  x  8. 
x2

16

1 y  3 2 2

9
 1

  
9. 1x  2 2 2 

y2

3
 1

10. Ellipse; C A3,  
1
2 B; 11. Hyperbola; C12, 4 2 ,

FA3  !5,  
1
2 B; V1A0,  

1
2 B , F12  !17, 4 2 ,

V2A6,  
1
2 B  V12  2!2, 4 2 , asymptotes

 y  4   

3!2

4
 1x  2 2

 

y

0 x_2

4

12. Parabola; V14, 4 2 ; 
FA72, 4B; directrix x  9

2

13. 
1x  2 2 2

7


y2

16
 1  14. 1x  2 2 2  81y  2 2   15. 3

4 in.  

16. (a) Ellipse  (b) 
X 2

3


Y 2

18
 1

(c) f  27  

(d) A3 "2/5,  6 "2/5B, A3 "2/5,  6 "2/5B

y

0 x8

8

_8

_8

y

0 x6

3

_3

y

0 x4

2

_4

_4

y

x2

2

_2

_2

X

Y
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A80 Answers to Selected Exercises and Chapter Tests

17. (a) r 
1

1  0.5 cos u
 (b) Ellipse

1

1

O

 

2

2

, π!  @3
2

, 0!  @3
2

1,!  @3π
2

3,!  @π
2

O

FocuS on Modeling ■ pAge 882
5. (c) x2  mx  1ma  a2 2  0,  
discriminant m2  4ma  4a2  1m  2a 2 2,  m  2a

chapter 13
Section 13.1 ■ pAge 894
1. the natural numbers  2. n; 12  22  32  42  30

3. 2, 1, 0, 1; 97  5. 1
3, 15, 17, 19; 1

201   7. 5, 25, 125, 625; 5100  

9. 1, 14,  
1
9, 1

16; 1
10,000   11. 0, 2, 0, 2; 2  

13. 1, 4, 27, 256; 100100  15. 4, 14, 34, 74, 154  
17. 1, 3, 7, 15, 31  19. 1, 2, 3, 5, 8
21. (a) 7, 11, 15, 19, 23, 27,  23. (a) 12, 6, 4, 3, 12

5 , 2, 12
7 , 32,  

31, 35, 39, 43 4
3, 65

(b)  (b) 

25. (a) 2, 12, 2, 12, 2, 12, 2, 12, 2, 12
(b)  

27. 2n  29. 2n  31. 5n  7  33. an  11 2 n1
 5n  

35. 12n  1 2/n2  37. 1  11 2 n  39. 1, 4, 9, 16, 25, 36

41. 1
3, 49, 13

27, 40
81, 121

243, 364
729  43. 2

3, 89, 26
27, 80

81; Sn  1 
1

3n

45. 1  !2, 1  !3, 1, 1  !5; Sn  1  !n  1

47. 10  49. 11
6   51. 8  53. 31  55. 385  57. 46,438  

59. 22  61. 13  23  33  43

63. !4  !5  !6  !7  !8  !9  !10

65. x 3  x 4  . . .  x 100  67. a
25

k1
2k  69. a

10

k1
k2  

71. a
999

k1

1

k1k  1 2   73. a
100

k0
xk  75. 212

n12/2n

77. (a) 2004.00, 2008.01, 2012.02, 2016.05, 2020.08, 2024.12
(b) $2149.16  79. (a) 35,700, 36,414, 37,142, 37,885, 38,643  
(b) 42,665  81. (b) 6898  83. (a) Sn  Sn1  2000  
(b) $38,000

45

110

14

110

3

110

Section 13.2 ■ pAge 900
1. difference  2. common difference; 2, 5  3. True  4. True
5. (a) 7, 10, 13, 16, 19   7. (a) 6, 10, 14, 18, 22
(b) 3 (b) 4

(c)  (c) 

9. (a) 5
2, 32, 12, 

1
2,  

3
2

(b) 1

(c) 

1

1

n

an

0
_1

11. an  9  41n  1 2 , a10  45
13. an  0.7  0.21n  1 2 , a10  2.5

15. an  5
2  1

2 
1n  1 2 , a10  2  17. Yes, 6  19. No  

21. No  23. Yes,  
3
2   25. Yes, 1.7  

27. 11, 18, 25, 32, 39; 7; an  11  71n  1 2
29. 1

3, 15, 17, 19, 1
11; not arithmetic

31. 4, 2, 8, 14, 20; 6; an  4  61n  1 2
33. 6, a5  28, an  4  61n  1 2 , a100  598
35. 18, a5  43, an  29  181n  1 2 , a100  1753
37. 5, a5  24, an  4  51n  1 2 , a100  499
39. 4, a5  4, an  12  41n  1 2 , a100  384
41. 1.5, a5  31, an  25  1.51n  1 2 , a100  173.5
43. s, a5  2  4s, an  2  1n  1 2s, a100  2  99s

45. 706, 712  47. a1   
5

12, an   
5

12  1
12 
1n  1 2

49. 33rd  51. 1010  53. 870  55. 1090  57. 20,301  
59. 1735  61. 832.3  63. 46.75  65. 50  69. Yes  
71. $1250  73. $403,500  75. 20  77. 78

Section 13.3 ■ pAge 908
1. ratio  2. common ratio; 2, 5  3. True  4. (a) a a 1  r 

n

1  r
b

  
(b)  geometric; converges, a/ 11  r 2 ; diverges
5. (a) 7, 21, 63, 189, 567  
(b) 3

(c) 

1 n

an

0

5

1 n

an

0

_10

1 n

an

0

100
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Answers to Section 13.5 A81

7. (a) 5
2,  

5
4, 58,  

5
16, 5

32   (b)  
1
2

(c) 

9. an  714 2 n1, a4  448  11. an  5
2 A 

1
2 Bn1

, a4   
5

16   

13. Yes, 2  15. Yes, 1
2   17. Yes, 1

2   19. No  21. Yes, 1.1  

23. 6, 18, 54, 162, 486; geometric, common ratio 3; an  6  3n1  

25. 1
4, 1

16, 1
64, 1

256, 1
1024; geometric, common ratio 1

4; an  1
4 A14 Bn1

  

27. 0, ln 5, 2 ln 5, 3 ln 5, 4 ln 5; not geometric  
29. 3, a5  162, an  2  3n1  
31. 0.3, a5  0.00243, an  10.3 2 10.3 2 n1  

33.  
1

12, a5  1
144, an  144 A 

1
12 Bn1

35. 32/3, a5  311/3, an  312n12/3  

37. s2/7, a5  s8/7, an  s21n12/7  39. 24
25   

41. a1   
1

27, a2  1
9  43. a1   

9
32, an   

9
32  
A8Bn1

  

45. a1  1728, a2  1296, a3  972  47. Ninth  49. 315  
51. 441  53. 3280  55. 645  57. 13,888,888.75  

59. 93
16   61. 105  63. 211

27   65. 3
2   67. 3

4   

69. divergent  71. 2  73. divergent  75. !2  1  

77. 7
9   79. 1

33   81. 112
999  83. 10, 20, 40  85. (a) Neither  

(b) Arithmetic, 3  (c) Geometric, 9!3  (d) Arithmetic, 3  

87. (a) Vn  160,00010.80 2n1  (b) 4th year  89. 19 ft, 80 A34 Bn  

91. 64
25, 1024

625 , 5 A45 Bn  93. (a) 17 
8
9  ft  (b) 18  A13 Bn3

  

95. 2801  97. 3 m  99. (a) 2  (b) 8  4 !2  101. 1

Section 13.4 ■ pAge 915
1. amount  2. present value  3. $13,180.79  
5. $360,262.21  7. $5,591.79  9. $572.34  
11. $13,007.94  13. $2,601.59  15. $307.24  
17. $733.76, $264,153.60  19. $583,770.65  21. $9020.60  
23. (a) $859.15  (b) $309,294.00  (c) $1,841,519.29  
25. 18.16%  27. 11.68%  

Section 13.5 ■ pAge 922
1. natural; P(1)  2. (ii)  

3. Let P1n 2  denote the statement 2  4  . . .  2n  n1n  1 2 .
Step 1 P11 2  is true, since 2  111  1 2 .
Step 2 Suppose P1k 2  is true. Then

2  4  . . .  2k  21k  1 2
   k1k  1 2  21k  1 2     Induction 

hypothesis
   1k  1 2 1k  2 2

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathe matical Induction P1n 2  holds for all n.

5. Let P1n 2  denote the statement

5  8  . . .  13n  2 2 
n13n  7 2

2
.

Step 1 P11 2  is true, since 5 
113 # 1  7 2

2

1

1

n

an

0
_1

Step 2 Suppose P1k 2  is true. Then

5  8  . . .  13k  2 2  331k  1 2  2 4

   
k13k  7 2

2
 13k  5 2     

Induction  
hypothesis

   
3k 2  13k  10

2

   
1k  1 2 331k  1 2  7 4

2

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

7. Let P1n 2  denote the statement

1 # 2  2 # 3  . . .  n1n  1 2 
n1n  1 2 1n  2 2

3
.

Step 1 P11 2  is true, since 1 # 2 
1 # 11  1 2 # 11  2 2

3
.

Step 2 Suppose P1k 2  is true. Then

1 # 2  2 # 3  . . .  k1k  1 2  1k  1 2 1k  2 2

   
k1k  1 2 1k  2 2

3
 1k  1 2 1k  2 2     

Induction  
hypothesis

 
  
1k  1 2 1k  2 2 1k  3 2

3

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

9. Let P1n 2  denote the statement

13  23  . . .  n3 
n21n  1 2 2

4
.

Step 1 P11 2  is true, since 13 
12 # 11  1 2 2

4
.

Step 2 Suppose P1k 2  is true. Then

13  23  . . .  k 3  1k  1 2 3

  
  

k 
21k  1 2 2

4
 1k  1 2 3    

Induction  
hypothesis

  
  
1k  1 2 2 3k 

2  41k  1 2 4
4

  
  
1k  1 2 21k  2 2 2

4

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

11. Let P1n 2  denote the statement
23  43  . . .  12n 2 3  2n21n  1 2 2.

Step 1 P11 2  is true, since 23  2 # 1211  1 2 2.
Step 2 Suppose P1k 2  is true. Then

23  43  . . .  12k 2 3  321k  1 2 4 3

   2k 21k  1 2 2  321k  1 2 4 3    Induction hypothesis

   1k  1 2 212k 2  8k  8 2
   21k  1 2 21k  2 2 2

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.
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13. Let P1n 2  denote the statement
1 # 2  2 # 22  . . .  n # 2n  2 31  1n  1 22n 4 .
Step 1 P11 2  is true, since 1 # 2  2 31  0 4 .
Step 2 Suppose P1k 2  is true. Then

1 # 2  2 # 22  . . .  k # 2k  1k  1 2 # 2k1

   2 31  1k  1 22k 4  1k  1 2 # 2k1    Induction 
hypothesis

   2  1k  1 22k1  1k  1 2 # 2k1

   2  2k2k1  211  k2k1 2
So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

15. Let P1n 2  denote the statement n2  n is divisible by 2.

Step 1 P11 2  is true, since 12  1 is divisible by 2.
Step 2 Suppose P1k 2  is true. Now

 1k  1 2 2  1k  1 2  k2  2k  1  k  1

  1k2  k 2  21k  1 2
But k 2  k is divisible by 2 (by the induction hypothesis), and 
21k  1 2  is clearly divisible by 2, so 1k  1 2 2  1k  1 2  is 
divisible by 2. So P1k  1 2  follows from P1k 2 . Thus by the Prin-
ciple of Mathematical Induction P1n 2  holds for all n.

17. Let P1n 2  denote the statement n2  n  41 is odd.

Step 1 P11 2  is true, since 12  1  41 is odd.
Step 2 Suppose P1k 2  is true. Now

1k  1 2 2  1k  1 2  41  1k2  k  41 2  2k

But k2  k  41 is odd (by the induction hypothesis), and 2k is 
clearly even, so their sum is odd. So P1k  1 2  follows from 
P1k 2 . Thus by the Principle of Mathematical Induction P1n 2  
holds for all n.

19. Let P1n 2  denote the statement 8n  3n is divisible by 5.

Step 1 P11 2  is true, since 81  31 is divisible by 5.
Step 2 Suppose P1k 2  is true. Now

8k1  3k1  8 # 8k  3 # 3k

  8 # 8k  18  5 2 # 3k  8 # 18k  3k 2  5 # 3k

which is divisible by 5 because 8k  3k is divisible by 5 (by the 
induction hypothesis) and 5  3k is clearly divisible by 5. So 
P1k  1 2  follows from P1k 2 . Thus by the Principle of Mathemat-
ical Induction P1n 2  holds for all n.

21. Let P1n 2  denote the statement n  2n.

Step 1 P11 2  is true, since 1  21.
Step 2 Suppose P1k 2  is true. Then

 k  1  2k  1     Induction hypothesis

  2k  2k     Because 1  2k

  2 # 2k  2k1

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

23. Let P1n 2  denote the statement 11  x 2 n  1  nx for  
x  1.

Step 1 P11 2  is true, since 11  x 2 1  1  1 # x.

Step 2 Suppose P1k 2  is true. Then

11  x 2 k1  11  x 2 11  x 2 k

  11  x 2 11  kx 2     Induction hypothesis

  1  1k  1 2x  kx2

  1  1k  1 2x
So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

25. Let P1n 2  denote the statement an  5  3n1.

Step 1 P11 2  is true, since a1  5  30  5.
Step 2 Suppose P1k 2  is true. Then

ak1  3 # ak     Definition of ak1

  3 # 5 # 3k1    Induction hypothesis

  5 # 3k

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

27. Let P1n 2  denote the statement x  y is a factor of xn  yn.

Step 1 P11 2  is true, since x  y is a factor of x 1  y 1.
Step 2 Suppose P1k 2  is true. Now

x 
k1  y 

k1  x 
k1  x 

ky  x 
ky  y 

k1

  x 
k1x  y 2  1x 

k  y 
k 2y

But x 
k1x  y 2  is clearly divisible by x  y, and 1x 

k  y 
k 2y is 

divisible by x  y (by the induction hypothesis), so their sum is 
divisible by x  y. So P1k  1 2  follows from P1k 2 . Thus by the 
Principle of Mathematical Induction P1n 2  holds for all n.

29. Let P1n 2  denote the statement F3n is even.

Step 1 P11 2  is true, since F31  2, which is even.
Step 2 Suppose P1k 2  is true. Now, by the definition of the  
Fibonacci sequence

 F31k12  F3k3  F3k2  F3k1

  F3k1  F3k  F3k1

  F3k  2 # F3k1

But F3k is even (by the induction hypothesis), and 2  F3k1 is 
clearly even, so F31k12 is even. So P1k  1 2  follows from P1k 2 . 
Thus by the Principle of Mathematical Induction P1n 2  holds for  
all n.

31. Let P1n 2  denote the statement
F2

1  F2
2  . . .  F2

n  Fn
# Fn1.

Step 1 P11 2  is true, since F2
1  F1

# F2 (because F1  F2  1).
Step 2 Suppose P1k 2  is true. Then

F2
1  F2

2  . . .  F2
k  F2

k1

  Fk
# Fk1  F2

k1    Induction hypothesis

  Fk11Fk  Fk1 2     Definition of the 
 Fibonacci sequence

  Fk1
# Fk2

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.
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33. Let P1n 2  denote the statement 

c 1 1

1 0
d

n

 cFn1 Fn

Fn Fn1
d .

Step 1 P12 2  is true, since 

c 1 1

1 0
d

2

 c 2 1

1 1
d  cF3 F2

F2 F1
d .

Step 2 Suppose P1k 2  is true. Then

c 1 1

1 0
d

k1

 c 1 1

1 0
d

k

c 1 1

1 0
d

  cFk1 Fk

Fk Fk1
d c 1 1

1 0
d  Induction hypothesis

  cFk1  Fk Fk1

Fk  Fk1 Fk

d

  cFk2 Fk1

Fk1 Fk

d  Definition of the 
 Fibonacci sequence

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n  2.

35. Let P1n 2  denote the statement Fn  n.

Step 1 P15 2  is true, since F5  5 (because F5  5).
Step 2 Suppose P1k 2  is true. Now

Fk1  Fk  Fk1    Definition of the Fibonacci sequence

  k  Fk1     Induction hypothesis

  k  1     Because Fk1  1

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n  5.

Section 13.6 ■ pAge 930
1. binomial  2. Pascal’s; 1, 4, 6, 4, 1  

3. 
n!

k! 1n  k 2!; 
4!

3! 14  3 2!  4

4. Binomial; a4

0
b , a4

1
b , a4

2
b , a4

3
b , a4

4
b

5. x6  6x5y  15x4y2  20x3y3  15x2y4  6xy5  y6

7. x4  4x2  6 
4

x2 
1

x4   

9. x5  5x4  10x3  10x2  5x  1
11. x10y5  5x8y4  10x6y3  10x4y2  5x2y  1
13. 8x3  36x2y  54xy2  27y3

15. 
1

x5 
5

x7/2


10

x2 
10

x1/2
 5x  x5/2

17. 15  19. 4950  21. 18  23. 32  
25. x4  8x3y  24x2y2  32xy3  16y4

27. 1 
6
x


15

x2 
20

x3 
15

x4 
6

x5 
1

x6

29. x20  40x19y  760x18y2  31. 25a26/3  a25/3  
33. 48,620x18  35. 300a2b23  37. 100y99  39. 13,440x4y6  

41. 495a8b8  43. 1x  y 2 4  45. 12a  b 2 3
47. 3x2  3xh  h2

chApter 13 revieW ■ pAge 933
1. 1

2, 43, 94, 16
5 ; 100

11   3. 0, 14, 0, 1
32; 1

500  
5. 1, 3, 15, 105; 654,729,075
7. 1, 4, 9, 16, 25, 36, 49  
9. 1, 3, 5, 11, 21, 43, 85
11. (a) 7, 9, 11, 13, 15   13. (a) 3

4, 98, 27
16, 81

32, 243
64

(b)  (b) 

(c) 55 (c) 633
64

(d)  Arithmetic, common  (d)  Geometric, common 
difference 2 ratio 3

2

15. Arithmetic, 7  17. Arithmetic, t  1  19. Geometric, 
1

t
  

21. Geometric, 4
27   23. 2i  25. 5  27. 81

4   

29. (a) An  32,00011.05 2 n1  (b) $32,000, $33,600, $35,280, 
$37,044, $38,896.20, $40,841.01, $42,883.06, $45,027.21  
31. 12,288  35. (a) 9  (b) 6 !2  37. 126  
39. 384  41. 02  12  22  . . .  92  

43. 
3

22 
32

23 
33

24  . . . 
350

251   45. a
33

k1
3k  47. a

100

k1
k2k2  

49. Geometric; 4.68559  51. Arithmetic, 5050 !5  
53. Geometric, 9831  55. 5

7   57. Divergent  59. Divergent  
61. 13  63. 65,534  65. $2390.27  

67. Let P1n 2  denote the  statement

1  4  7  . . .  13n  2 2 
n13n  1 2

2
.

Step 1 P11 2  is true, since 1 
113 # 1  1 2

2
.

Step 2 Suppose P1k 2  is true. Then

1  4  7  . . .  13k  2 2  331k  1 2  2 4

  
k13k  1 2

2
 33k  1 4     Induction hypothesis

   
3k 2  k  6k  2

2

   
1k  1 2 13k  2 2

2

   
1k  1 2 331k  1 2  1 4

2

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

1

10

15

5

n

an

0 1

2

3

1

n

an

0

4
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69. Let P1n 2  denote the statement

A1  1
1 B A1  1

2 B . . . A1  1
n B  n  1.

Step 1 P11 2  is true, since A1  1
1 B  1  1.

Step 2 Suppose P1k 2  is true. Then

a1 
1

1
b a1 

1

2
b  . . . a1 

1

k
b a1 

1

k  1
b

 
  1k  1 2 a1 

1

k  1
b     Induction hypothesis

   1k  1 2  1

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

71. Let P1n 2  denote the statement that F4n is divisible by 3.

Step 1 P11 2  is true, since F4  3.
Step 2 Suppose P1k 2  is true. Then F4k is divisible by 3. Using the 
definition of the Fibonacci sequence repeatedly, we get

F41k12  F4k4  F4k3  F4k2

  1F4k2  F4k1 2  1F4k1  F4k 2
  3 1F4k1  F4k 2  F4k1 4  1F4k1  F4k 2
  3F4k1  2F4k

The first term is clearly divisible by 3, and so is the second by the 
induction hypothesis. So P1k  1 2  follows from P1k 2 . Thus by 
the Principle of Mathematical Induction P1n 2  holds for all n.

73. 100  75. 32  77. A3  3A2B  3AB2  B3

79. 1  6x 2  15x 4  20x 6  15x 8  6x 10  x 12

81. 1540a3b19  83. 17,010A 6B 4

chApter 13 teSt ■ pAge 936
1. 1, 6, 15, 28, 45, 66; 161  
2. 2, 5, 13, 36, 104, 307  
3. (a) 3  (b) an  2  1n  1 23  (c) 104  

4. (a) 1
4  (b) an  12A14 Bn1

  (c) 3/48  

5. (a) 1
5, 1

25   (b) 
58  1

12,500
  

6. (a)  
8
9, 78  (b) 60

8. (a) 11  12 2  11  22 2  11  32 2  11  42 2 

11  52 2  50
(b) 11 2 321  11 2 422  11 2 523  11 2 624  10

9. (a) 58,025
59,049   (b) 2  !2

10. Let P1n 2  denote the statement

12  22  . . .  n2 
n1n  1 2 12n  1 2

6
.

Step 1 P11 2  is true, since 12 
111  1 2 12 # 1  1 2

6
.

Step 2 Suppose P1k 2  is true. Then

  12  22  . . .  k2  1k  1 2 2

    
  

k1k  1 2 12k  1 2
6

 1k  1 2 2    Induction hypothesis

    
  

k1k  1 2 12k  1 2  61k  1 2 2
6

    
  
1k  1 2 3k12k  1 2  61k  1 2 4

6

    
  
1k  1 2 12k 2  7k  6 2

6

    
  
1k  1 2 3 1k  1 2  1 4 321k  1 2  1 4

6

So P1k  1 2  follows from P1k 2 . Thus by the Principle of  
Mathematical Induction P1n 2  holds for all n.

11. 32x5  80x4y2  80x3y4  40x2y6  10xy8  y10

12. a10

3
b 13x 2 312 2 7  414,720x 

3

13. (a) an  10.85 2 11.24 2 n  (b) 3.09 lb  (c) Geometric

FocuS on Modeling ■ pAge 939
1. (a) An  1.0001An1, A0  275,000  (b) A0  275,000, 
A1  275,027.50, A2  275,055.00, A3  275,082.51,  
A4  275,110.02, A5  275,137.53, A6  275,165.04,  
A7  275,192.56  (c) An  1.0001n1275,000 2
3. (a) An  1.0025An1  100, A0  100  (b) A0  100,  
A1  200.25, A2  300.75, A3  401.50, A4  502.51   
(c) An  100 3 11.0025n1  1 2/0.0025 4   (d) $6580.83
5. (a) Un  Un1  0.05Un1  0.11Un1  0.05Un1 2 
1.155Un1, U0  5000  (b) U0  5000, U1  5775,  
U2  6670.13, U3  7703.99, U4  8898.11   
(c) Un  500011.155 2 n  (d) $21,124.67  

chapter 14
Section 14.1 ■ pAge 949
1. m  n; 2  3  6  2. permutations, n!/ 1n  r 2!
3. combinations, n!/ 3r! 1n  r 2! 4   4. (a) False  (b) True   
(c) False  (d) True  5.  336  7. 7920  9. 100  11. 56  
13. 330  15. 100  17. 12  19. (a) 40,320  (b) 336  
21. 8,000,000  23. 60  25. 32  27. 216  
29. 158,184,000  31. 208,860  33. 24,360  
35. 700,000,000  37. (a) 56  (b) 256  39. 1024  
41. (a) 3,628,800  (b) 151,200  43. 2730  45. 336  
47. 362,880  49. 997,002,000  51. 24  53. 15  55. 277,200  
57. 2,522,520  59. 168  61. 2300  63. 220  65. 2,598,960  
67. 120  69. 495  71. 120  73. 13,983,816  
75. (a) 15,504  (b) 792  (c) 6160  77. 1,162,800  
79. 104,781,600  81. 6600  83. 182  85. 48  
87. (a) 20,160  (b) 8640  89. 17,813,250  
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Answers to Section 14.3 A85

Section 14.2 ■ pAge 962
1. sample space; event; S  5HH, HT, TH, TT6 ; 
E  5HH, HT, TH6 ; P1E 2 

n1E 2
n1S 2 

3

4
  

2. (a) P1E < F 2  P1E 2  P1F 2  P1E > F 2   
(b) mutually exclusive; mutually exclusive  
(c) P1E < F 2  P1E 2  P1F 2   

3. P1E 0 F 2 
n1E > F 2

n1F 2 ; P1E 0  F 2 
1

3  

4. (a) P1E > F 2  P1E 2P1F 0  E 2   
(b) independent; independent  (c) P1E > F 2  P1E 2 # P1F 2
5. (a) 51, 2, 3, 4, 5, 66   (b) 52, 4, 66   (c) 55, 66
7. (a) S  5HH, HT, TH, TT6   (b) 1

4  (c) 3
4  (d) 1

2

9. (a) 1
6  (b) 1

2  (c) 1
6  11. (a) 1

13  (b) 3
13  (c) 10

13  
13. (a) 5

8  (b) 7
8  (c) 0  

15. (a) 
C113, 5 2
C152, 5 2  0.000495

  
(b) 

4 # C113, 5 2
C152, 5 2  0.00198

(c) 
C112, 5 2
C152, 5 2  0.000305

  
(d) 

4

C152, 5 2  0.00000154  

17. (a) 
C13, 2 2
C18, 2 2  0.11  (b) 

C15, 2 2
C18, 2 2  0.36

19. (a) 1 
C139, 5 2
C152, 5 2  0.778  (b) 1 

C140, 5 2
C152, 5 2  0.747

21. (a) 3
4  (b) 1

2  (c) 1  

23. (a) Mutually exclusive; 1  (b) Not mutually exclusive; 2
3  

25. (a) Not mutually exclusive; 11
26  (b) Mutually exclusive; 1

2  

27. (a) 1
3  (b) 1

3  29. 1
3  31. (a) 1

2  (b) 1  (c) 2
5  (d) 2

5  
33. (a) 7

30  (b) 7
15  35. (a) 4

663  (b) 1
221  37. 1

12  
39. (a) Yes  (b) 1

8  
41. (a) S  5GGGG, GGGB, GGBG, GBGG, BGGG, GGBB, 

GBGB, BGGB, BGBG, BBGG, GBBG, GBBB, BGBB, BBGB,

BBBG, BBBB6   (b) 1
16  (c) 3

8  (d) 1
8  (e) 11

16

43. 9
19  45. 1/C149, 6 2  7.15  108

  47. 1
1024  

49. (a) 1/486  8.18  1011  (b) 1/4818  5.47  1031
  

51. 
1

P18, 8 2 
1

P18, 8 2  0.0000496  53. (a) 3
4  (b) 1

4  

55. 1
1444  57. 1/363  2.14  105

  
59. (a) 3

8   (b) 1
2  (c) 11

16  (d) 13
16  61. (i)  

63. 600/P140, 3 2  5/494  65. 1
10   67. 1

9,979,200

Section 14.3 ■ pAge 969
1. two; success, failure  
2. 1  p; C1n, r 2pr11  p 2 nr

3. C15, 2 2 10.7 2 210.3 2 3  0.1323
5. C15, 0 2 10.7 2 010.3 2 5  0.00243
7. C15, 1 2 10.7 2 110.3 2 4  0.02835
9. C15, 4 2 10.7 2 410.3 2 1  C15, 5 2 10.7 2 510.3 2 0  0.52822
11. C15, 5 2 10.7 2 510.3 2 0  C15, 4 2 10.7 2 410.3 2 1  0.52822
13. 1  C15, 0 2 10.7 2 010.3 2 5  C15, 1 2 10.7 2 110.3 2 4  0.96922

15. (a) (b) 

Outcome Probability

1 0.2
2 0.2
3 0.2
4 0.2
5 0.2

 

17. (a) (b)

r Probability

0 1
16

1 4
16

2 6
16

3 4
16

4 1
16  

19. (a) (b)

r Probability

0 0.2097
1 0.3670
2 0.2753
3 0.1147
4 0.0287
5 0.0043
6 0.00036
7 0.000013

 

21. C16, 2 2 A16 B2A56 B4  0.20094

23. C110, 4 2 10.4 2 410.6 2 6  0.25082
25. (a) C110, 5 2 10.45 2 510.55 2 5  0.23403  
(b) 1  C110, 0 2 10.45 2 010.55 2 10  C110, 1 2 10.45 2 110.55 2 9 

C110, 2 2 10.45 2 210.55 2 8  0.90044
27. (a) 1  C14, 0 2 10.75 2 010.25 2 4  0.99609  
(b) C14, 2 2 10.75 2 210.25 2 2  C14, 3 2 10.75 2 310.25 2 1 
C14, 4 2 10.75 2 410.25 2 0  0.94922  
(c) C14, 4 2 10.75 2 410.25 2 0  0.31641
29. (a) 10.52 2 10  1.4456  103   
(b) 10.48 2 10  6.4925  104  
(c) C110, 5 2 10.52 2 510.48 2 5  0.24413
31. (a) 10.005 2 3  1.25  107

(b) 1  10.995 2 3  0.014925 
33. 1  C18, 0 2 10.04 2 010.96 2 8  C18, 1 2 10.04 2 110.96 2 7 

0.038147
35. (a) 10.75 2 6  0.17798  (b) 10.25 2 6  2.4414  104  
(c) C16, 3 2 10.75 2 310.25 2 3  0.13184  
(d) 1  C16, 6 2 10.25 2 010.75 2 6  C16, 5 2 10.25 2 110.75 2 5 

0.46606
37. (a) 1  10.75 2 4  0.68359  
(b) C14, 3 2 10.25 2 310.75 2 1  C14, 4 2 10.25 2 410.75 2 0  0.05078
39. (a) C14, 1 2 10.3 2 110.7 2 3  0.4116  
(b) 1  10.7 2 4  0.7599
41. (a) C110, 8 2 10.4 2 8 10.6 2 2  C110, 9 2 10.4 2 910.6 2 1 
C110, 10 2 10.4 2 1010.6 2 0  0.0123  (b) Yes  

0 2 3 4 5

0.2

1

1
16

0 2 3 41

0.3

0 2 3 41 5 6 7
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A86 Answers to Selected Exercises and Chapter Tests

Section 14.4 ■ pAge 973
1. E  $10  0.9  $100  0.1  $19  2. $19  3. $1.50
5. $0.94  7. $0.92  9. 0  11. $0.30  13. $0.0526
15. $0.50  17. No, she should expect to lose $2.10 per stock.  
19. $0.93  21. 3.35 h  23. 1.95  25. (a) No  (b) $25.50  
27. (a) No  (b) $70  29. (a) No  (b) $623  

chApter 14 revieW ■ pAge 977
1. 624  3. (a) 10  (b) 20  5. 120  7. 45  9. 17,576  
11. 120  13. 5  15. 14  17. (a) 240  (b) 3360  (c) 1680  
19. 720  21. 120  23. (a) 31,824  (b) 11,760  (c) 19,448  
(d) 2808  (e) 2808  (f) 6,683,040  

25. (a) 2
3   (b) 8

15   (c) 2
15   (d) 4

5   

27. (a) S  {HHH, HHT, HTH, HT T, THH, THT, T TH, T T T}  

(b) 1
8   (c) 1

2   (d) 1
2   29. 1

78   31. (a) 1
624   (b) 1

48   (c) 3
52   

33. (a) 
C14, 4 2
C152, 4 2  3.69  106  (b) 

C113, 4 2
C152, 4 2  0.00264  

(c) 
2 # C126, 4 2

C152, 4 2  0.11044  35. 1
24   37. (a) 3  (b) 0.51  

39. (a) 109  (b) 105  (c) 104  

41. (a) 1
13   (b) 2

13   (c) 1
3   (d) 1

12   

43. (a) C18, 4 2 A16 B4A56 B4  0.02605  

(b) 1  C18, 0 2 A12 B0A12 B8  C18, 1 2 A12 B1A12 B7  0.9648

45. (a) C112, 9 2 10.65 2 910.35 2 3  C112, 10 2 10.65 2 1010.35 2 2    
C112, 11 2 10.65 2 1110.35 2 1  C112, 12 2 10.65 2 1210.35 2 0  0.34665  
(b) No  47. 0  49. $0.00016  

chApter 14 teSt ■ pAge 980
1. 81  2. 72  3. (a) 456,976,000  (b) 258,336,000
4. (a) P130, 4 2  657,720  (b) C130, 4 2  27,405  5. 12  

6. 4 # 214  65,536  7. (a) 4!  24  (b) 6!/3!  120
8. 30 # 29 # 28 # C127, 5 2  1,966,582,800  9. (a) 1

2   (b) 1
13   

(c) 1
26   10. (a) 5

13   (b) 6
13   (c) 9

13    
11. C15, 3 2/C115, 3 2  0.022  12. 1

6    
13. 1  1 # 11

12
# 10

12
# 9

12  0.427
14. (a) C110, 6 2 10.55 2 610.45 2 4  0.23837  
(b) C110, 0 2 10.55 2 010.45 2 10  C110, 1 2 10.55 2 110.45 2 9 

C110, 2 2 10.55 2 210.45 2 8  0.02739  15. $0.65

FocuS on Modeling ■ pAge 982
1. (b) 9

10   3. (b) 7
8   7. (b) 1

2

AppendiX A ■ pAge 988
1. Congruent, ASA  2. Congruent, SSS  
3. Not necessarily congruent  4. Congruent, SAS  
5. Similar  6. Similar  7. Similar  8. Not similar  

9. x  125  10. y  30  11. x  6, y 
21

4
  

12. x  4  13. x 
ac

a  b
  14. x 

ac

b
 a  

17. x  10  18. x  48  19. x  !3  
20. x  2!10  21. x  40  22. x  144  
23. Yes  24. Yes  25. No  26. No  27. Yes  

28. Yes  29. 61 cm  30. 119 ft by 120 ft  
31. No  32. 12  33. 13

34. (b)  35. h  6

AppendiX B ■ pAge 992
1. 3.09  2. 129.4  3. 14,220  4. 38.41  5. 2.52  
6. 20.67  7. 2300  8. 75.9  9. 3.80  10. 506.6  
11. 33.1 ft, 87.3 ft2  12. 997 cm3  13. 2.66  1012 N  
14. (a) 3.52  1022 N  (b) 7.93  1021 lb

AppendiX c ■ pAge 997
1. (c)  2. (c)  3. (c)  4. (d)  5. (c)  6. (d)
7. 8. 

−10

400

−2 2
 −1000

100

−5 5

9.  10. 

−10

20

−4 10

 −10

20

−10 5

11.  12. 

−1

5

−20 20

 

13. 14. 

−2000

2000

−50 150

 −250

150

−10 10

m n xa, b, cc

2 1 13, 4, 5 2
3 1 18, 6, 10 2
3 2 15, 12, 13 2
4 1 115, 8, 17 2
4 2 112, 16, 20 2
4 3 17, 24, 25 2
5 1 124, 10, 26 2
5 2 121, 20, 29 2
5 3 116, 30, 34 2
5 4 19, 40, 41 2

20

0
10
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Answers to Appendix C A87

15.  16. 

_8

8

_2 4

 

17.  18. 

−1

5

−3 5

 −10

10

−10 10

19. No  20. No  21. Yes, 2  22. Yes, 1

−0.2

0.2

−10 10

23.  24. 

−4

4

−6 6

 
−1

3

−3 3

25. 26. 

−0.8

0.8

−1.2 1.2

 
−5

5

−5 5
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INDEX

Abel, Niels Henrik, 322
Absolute value, 13–14, 150

of complex numbers, 639
equations, 95, 150–151
properties of, 14

Absolute value function, 198, 202
Absolute value inequalities, 151–152
Acute angle, 694
Addition

common errors in applying properties of 
multiplication to, 50

of complex numbers, 127
graphical, of functions, 248
with inequalities, 141
of matrices, 782–783
of polynomials, 32–33
of rational expressions, 46–47
of vectors, 666, 668, 669

Addition and subtraction formulas, 
581–589

Additive identity, 9
Adleman, Leonard, 338
Agnesi, Maria Gaetana, 649
Ahmes (Rhind papyrus scribe), 736
Algebra, derivation of term, 28
Algebraic errors

avoiding, 50
counterexamples, 53

Algebraic expressions, 32–45
domain of, 44–45
multiplying, 33–34

Algebraic method, graphical method 
compared with, 154, 155, 156, 157

Algebra models, 2–6. See also 
Mathematical models; Modeling

of decision-making, 81–85
making, 4–5
using, 2–4

al-Khowarizmi, 28
Alternating current, modeling, 552–553
AM (amplitude modulation) radio, 530
Ambiguous case, of solving triangles, 

476–479, 482
Amortization schedule, 917
Amplitude, 524, 525

decaying, 530
harmonic motion and, 548
period and, 525–526
variable, 529–530

Amplitude modulation (AM) radio, 530
Anagram, 978, 980
Analogy, used in problem solving, P1
Ancillary circle of ellipse, 842
Angle measure, 438–447

Arrow diagram, of functions, 185–186
Arrow notation, 292–293, 332
Assets, division of, 898
Associative Property, 8
Astroid, 655
Asymptotes, 331–333

defined, 332–333
horizontal, 332, 333, 335–342
of hyperbolas, 844, 845, 848
of rational functions, 334–343
slant, 341–343
vertical, 332, 333, 334–343, 534–536

Atmospheric pressure formula, 405
Augmented matrix, 768, 769
Automotive design, 296
Average rate of change, 219–226, 228
Avogadro’s number, 24
Axes. See also Rotation of axes

of a conic, 870
coordinate, 684
of ellipses, 836, 837
of hyperbolas, 844
of parabolas, 827–829
polar axis, 624
real and imaginary, 638

Axis of symmetry, parabolas, 826

Back-substitution
in nonlinear systems, 741
solving linear equations, 716, 717, 727, 

728, 771, 772
Base

change of, 393–394
in exponential notation, 18

Base 10 logarithm, 384–385
Bearing, 484–485
Beats, sound, 599
Beer-Lambert Law, 402, 434–435
Bell, E.T., 782
Bernoulli, Johann, 651
Best fit

exact fit vs., 730
finding, 174–182, 361–364
on graphing calculator, 1003
measuring, 178–179
polynomials of, 361–364

Bhaskara, 64
Binomial coefficients, 925–927
Binomial distribution, 968–969
Binomial expansion, 923–925, 926, 

927–929
general term of, 928

Binomial experiment, 966–968
Binomial probability, 966–971

Angles. See also Trigonometric functions, 
of angles

acute, 694
angle of depression, 451
angle of elevation, 451
angle of incidence, 605
angle of inclination, 451
angle of refraction, 605
bond, 695
central, of tetrahedron, 695
defined, 438
direction angles of a vector, 692–693
equations with trigonometric functions 

of multiples of, 608–610
obtuse, 694
quadrantal, 459
reference, 460–461
in right triangles, solving for, 469–470
standard position of, 439–441
supplement of, 477
between vectors, 677, 692
viewing, 594

Angle-Side-Angle (ASA) congruence, 985
Angular speed, 442–443
Annual percentage yield, 371
Annuities

calculating amount of, 911–913
in perpetuity, 917
present value of, 913–914

Aphelion, 842, 874
Apolune, 842
Approval voting, 973
Approximate data, rules for working with, 

991
Approximation symbol, 7
Arccosine function, 468, 543
Archimedes, 73, 518, 831
Architecture, conics in, 880–883
Arcsine function, 468, 542
Arctangent function, 468, 545
Area

of circular sector, 442
of a parallelogram, 699
of a triangle, 463–464, 485–486, 699, 

810–811, 814
Area problems, modeling, 64–66
Argument of complex number, 640
Aristarchus of Samos, 451
Aristotle, 277
Arithmetic mean, 902
Arithmetic sequences, 897–902

defined, 897
partial sums, 898–900

Arrow, Kenneth, 973

I1
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I2 Index

Binomials, 32, 923
multiplying, using FOIL, 33

Binomial Theorem, 927–930
proof of, 929–930

Bits, 21
changing words/sounds/pictures to, 40

Blood pressure, systolic and diastolic, 532
Boltzmann Law, 218
Bond angle, 695
Bounded region, in coordinate plane, 750
Bowen, Tony, 474
Boyle’s Law, 161
Brahe, Tycho, 852
Brams, Steven, 898
Branches, of hyperbolas, 844
Bridge science, 298
Building envelope, 36
Burton, David, 984

C 1n, r 2 , 947
CAD (computer-aided design), 296
Calculators

evaluating trigonometric functions, 
515–516, 535, 543

graphing calculators, 212–214, 528–530, 
634–635, 651–652, 993–997, 
999–1008

as graphing device, 528
radian mode, 516
square root key, 185

Calculus, addition and subtraction formulas 
in, 583–584

Cancellation, simplifying rational 
expressions by, 45

Cancellation properties, 542, 544, 545
Cardano, Gerolamo, 322, 328
Cardioid, 632, 635
Carrier signals, radio, 530
Carrying capacity, 433
Cartesian plane, 88–89, 237. See also 

Coordinate plane
CAT (Computer Aided Tomography) scan, 

828
Catenary, 374
Cayley, Arthur, 794
Center

of ellipse, 836
of hyperbola, 844
of sphere, 686

Central angle of tetrahedron, 695
Central box, of hyperbolas, 845, 846
Certain event, 955
Change of Base Formula, 393–394
Chaos, iteration and, 247
Chevalier, Auguste, 313
Chu Shikie, 924
Circadian rhythms, 560, 571
Circles, 97–99, 825

ancillary, of ellipse, 842
area of, 190
equations of, 98–99

Complex roots, of quadratic equations, 
129–130, 131

Complex zeros, 323–330
Component form of a vector, 667–668, 689
Composite function, 248–251
Compound fractions, 47–49
Compound interest, 370–371, 373, 405

annuities and, 912–913
continuously compounded, 376–377
formula for, 370
using logarithmic equations for, 

402–403, 405
Computer-aided design (CAD), 296
Computer Aided Tomography (CAT) scan, 

828
Computer graphics

applying matrices to generation of, 
788–789, 820–823

rotating an image, 864
Computers

applications of, 238
as graphing device, 528

Conditional probability, 959–960
Confocal conics

family of, 860
hyperbolas, 850
parabolas, 859

Congruent triangles, 985–986
Conics. See also by type

in architecture, 880–883
basic shapes of, 825
confocal, 850, 859, 860
degenerate, 856–857
equivalent description of, 868
graphing rotated, 864–865
identifying and sketching, 870–872
identifying by discriminant, 866
polar equations of, 868–875
shifted, 851–860
simplifying general equation for, 

862–865
Conjecture, mathematical induction and, 

917–918
Conjugate hyperbolas, 850
Conjugate radical, 49
Conjugate Zeros Theorem, 327–328, 330
Constant(s)

damping, 553
of proportionality, 160, 161, 163
spring, 164, 560

Constant coefficient, 290
Constant function, 196
Constant rate of change, 223
Constant term, 290
Constraints, 751, 761
“Contestant’s dilemma,” 981, 984
Continuous functions, 200, 292
Continuously compounded interest, 

376–377
Contradiction, proof by, P2
Convergent infinite series, 906, 907–908

graphing, 98–99, 996–997
involute of a, 656
as polar graph, 635
symmetry, 101

Circular arc, length of, 441–442
Circular functions. See Trigonometric 

functions, of real numbers
Circular motion, 442–443

parametric equations modeling, 649
Circular sector, area of, 442
Closed curves, 652
Codes, unbreakable, 338
Coefficient matrix, 798
Coefficients

binomial, 925–927
correlation, 178–179
of polynomials, 290, 293
roots and, 125

Cofactors, determinant of matrix, 803–804
Cofunction identities, 574, 583
Collinear points, 115
Column transformations, of determinants, 

806–807
Combinations, 947–949

complementary, 953
identity involving, 953
of n objects taken r at a time, number of, 

947
problem solving with, 948–949

Combinatorics, 945
Combining logarithmic expressions, 392
Comets, paths of, 847
Common (base 10) logarithms, 384–385
Common difference of sequence, 897
Common factors in numerator and 

denominator of rational function, 
340–341

Common ratio of geometric sequence, 902
Commutative Property, 8
Complement of an event, probability of, 

957
Complete Factorization Theorem, 323–325
Completing the square, 99, 116–117
Complex conjugates, 128, 130, 131

Conjugate Zeros Theorem, 327–328, 330
Complex numbers, 126–131

argument of, 640
arithmetic operations on, 127–128
complex roots of quadratic equations, 

129–130, 131
defined, 126
De Moivre’s Theorem, 642–643
graphing, 638–639
on graphing calculator, 1008
modulus of, 639, 640
multiplication and division of, 641–642
polar (trigonometric) form of, 639–642
roots of, 643–645
square roots of negative numbers, 

128–129
Complex plane, 638
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Index I3

Converse of Pythagorean Theorem, 988
Cooling, Newton’s Law of, 413–414, 416
Cooper, Curtis, 889
Coordinate axes, 684
Coordinate geometry

three-dimensional, 683–689
Coordinate line (real number line), 11, 14
Coordinate plane, 87, 88–94, 684

circles on, 97–99
coordinates as addresses, 89
graphing equations by plotting points on, 

94–95
intercepts, 96–97
symmetry, 99–101
vectors in, 667–670

Coordinates, 88. See also Polar 
coordinates; Rectangular coordinates

Correlation, 178–179
causation vs., 178–179

Correlation coefficient, 178–179
Cosecant function, 511

cosecant curves, 538–539
formula for, 457
graphing, 535–536, 538–539
inverse, 546
periodic properties, 534
special values of, 512
trigonometric ratios, 448

Cosine function, 511
addition and subtraction formulas for, 

581–582
cosine curves, 523, 524, 525, 529–530, 

568–570
double-angle formula for, 590, 863
formula for, 457
graphing, 521–523
graphing transformations of, 523–527
half-angle formula for, 592
inverse cosine, 467–469, 543–544
Law of Cosines, 482–489
periodic properties of, 521
product-to-sum formula for, 595
shifted curves, 526, 527
special values of, 512
sum of sines and cosines, 585–586
sum-to-product formula for, 596
trigonometric ratios, 448

Cosines
direction, of a vector, 692–693
proving an identity by rewriting in terms 

of, 576
Cost function, 199
Cotangent function, 511

cotangent curves, 537, 538
formula for, 457
graphing, 535, 536
inverse, 546
periodic properties, 534
special values of, 512
trigonometric ratios, 448

Coterminal angles, 439–441

invertibility criterion, 805–806
minors, 803–804
of order three, 696
of order two, 696
row and column transformations, 

806–807
zero, matrices with, 814

Diaconis, Persi, 956
Difference

of cubes, 39
of functions, 246, 247
of matrices, 782
of squares, 39–40
of two vectors, 667

Difference quotients, 188, 221
Digital images, 788–789, 792
Digital numbers, 40
Dimension, matrix, 768
Diophantus, 47
Directed quantities. See Vectors
Direction angles of a vector, 692–693
Direction cosines, 692–693
Directrix, 826, 827, 828, 868, 869, 870
Direct variation, 159–160
Discriminant

identifying conics by, 866
invariant under rotation, 866, 868
of quadratic equation, 119

Distance, between points on the real line, 
14

Distance, rate, and time problems, 68–69
modeled by quadratic equation, 120–121
modeled with linear systems, 721–722

Distance formula, 89–90, 629
in three dimensions, 685–686

Distinguishable permutations, 946
Distributive Property

combining like terms, 32
factoring with, 37
multiplying algebraic expressions, 33–34
real numbers and, 8–9

Divergent infinite series, 906, 907–908
Dividends, 305, 306
Division

of complex numbers, 128, 641–642
long, 305–306, 739
overview of, 9–10
of polynomials, 305–311
of rational expressions, 46
synthetic, 306–307

Division Algorithm, 305
Divisors, 10, 305, 306
Domains

of algebraic expressions, 44–45
of combined functions, 247
finding, from graphs, 206–207
of functions, 185, 189
of inverse functions, 256, 257
of logarithmic functions, 386
of rational functions, 331
of trigonometric functions, 514

Counterexample, 53
Counting, calculating probability by, 

956–957
Counting principles, 942–953. See also 

Probability
Counting problems, guidelines for solving, 

948
Cramer’s Rule, 807–810
Cross product, 695–702

area of a parallelogram, 699
finding, 696–697
length of, 698–699
properties of, 697–699
volume of a parallelepiped, 699–700

Cross Product Theorem, 697–698
Cubic equation, graphing, 994–995
Cubic formula, 322
Cubic splines, 291
Cumulative voting, 973
Curtate cycloid (trochoid), 654
Cut points, 349
Cycles, of vibration, 548
Cycloid

curtate (trochoid), 654
parametric equations, 650–651
prolate, 654

D’Alembert, Jean le Rond, 982, 984
Damped harmonic motion, 553–555, 611
Damping constant, 553
Data

entering, on graphing calculator, 1003
fitting sinusoidal curves to, 568–572
linearizing, 430–431
rules for working with approximate, 991
visualizing, on graph, 89

Data matrix, 821–822
Daylight, modeling hours of, 551–552
Decibel scale, 420–421
Decision-making, modeling, 81–85
Degenerate conics, 856–857
Degrees

as angle measure, 438
compared with radians, 439

Demand function, 264
De Moivre’s Theorem, 642–643
Denominators, 10

of partial fractions, 735–740
rationalizing, 28–29, 49

Dependent systems, linear equations, 719, 
720–721, 729, 730–731, 774, 775–777

Dependent variables, 185
Depressed cubic, 322
Depression, angle of, 451
Descartes, René, 88, 237, 314
Descartes’ Rule of Signs, 314–315, 317
Determinants, 795, 803–814, 1005

areas of triangles, 810–811, 814
cofactors, 803–804
collinear points and, 813
expanding, about row or column, 805
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I4 Index

Doppler effect, 346, 561
Dot product, 675–683

calculating work, 680–681
component of u along v, 678–679
defined, 676
projection of u onto v, 679–680
properties of, 676
of vectors, 675–678, 691–692

Dot Product Theorem, 676–677
Double-angle formulas, 589–591, 600, 863

e (number), 374
expressing a model in terms of, 410–411
logarithm with base e (natural 

logarithm), 385–386
Earthquakes, magnitude of, 418–420
Ebbinghaus, Hermann, 392, 435
Eccentricity

of a conic, 868, 869, 872
of an ellipse, 838–840
of planetary orbits, 840

Ecology, mathematical study of, 799
Economics, use of mathematics in, 913
Einstein, Albert, P4, 154, 661, 806
Elementary row operations, 769–770
Elements, of sets, 11
Elevation, angle of, 451
Elimination method, 717–718

for solving system of nonlinear 
equations, 741

Ellipses, 97, 446, 825, 834–843
ancillary circle of, 842
with center at origin, 836
constructing, 883
eccentricity of, 838–840
equation of, 835, 836, 838, 839
foci of, 838, 839
geometric definition of, 834
graphing shifted, 852–853
latus rectum of, 842
orbits of planets as, 840
rotating, 872
sketching, 837
vertices of, 836, 837

Elongation, 456, 481
Empty set ([), 12
Encryption, 338
End behavior

of polynomials, 292–294, 295
of rational functions, 341–343

Envelope of lines, parabola as, 881
Epicycloid, 655
Equality

of matrices, 781
properties of, 54
of vectors, 666, 668

Equations, 53–61. See also Systems of 
equations; Systems of linear equations

absolute value, 95, 150–151
of circles, 98–99
of an ellipse, 835, 836, 838

probability of complement of, 957
probability of intersection of, 960–961
probability of union of, 957–958
probability of union of mutually 

exclusive events, 958–959
in a sample space, 954–955

Everest, Sir George, 478
Expanding a logarithmic expression, 

391–392
Expected value, 971–975

in a fair game, 973
Experiment, 954. See also Probability

binomial, 966–968
with small samples, 961

Exponential data, linearizing, 431
Exponential equations, 396–399
Exponential form, 380
Exponential function, 365, 366–379

compared with power function, 369–370
compound interest, 370–371
family of, 367–368
graphs of, 367–370, 375
natural, 374–379
transformations of, 369

Exponential growth, 374
doubling time, 406–408
relative growth rate, 408–411

Exponential modeling, 406–416, 428–429, 
432

Exponential notation, 18–19, 21–22
Exponents, 18

fractional, 27, 41, 58, 135
integer, 18–25
integer, exponential notation, 18–19
integer, zero and negative exponents, 19, 

21
Laws of, 19–21, 27–28, 366
rational, 27–28

Extraneous solutions, 56, 133–134
Extreme values, using graphing devices for, 

212–214

Factorial notation, 945
Factoring, 37–43

common factors, 37–38
Complete Factorization Theorem, 

323–325
completely, 40–41
complex zeros and, 325–326
differences and sums of cubes, 39, 40
differences of squares, 39–40
expressions with fractional exponents, 41
fifth-degree polynomial, 316–317
by grouping, 41–42, 132
inequalities, 142–144
polynomials, 323–326
solving polynomial equations by, 132
solving quadratic equations by,  

115–116
solving trigonometric equations by, 

603–604

equivalent, 53
exponential, 396–399
false, 729
family of, 61
of functions, 200–201
graphic solutions for, 154–157, 207–209
graphing, that are not functions, 996–997
graph of, 94–104, 999
of horizontal lines, 108
of a hyperbola, 844
involving fractional expressions, 55, 133
involving fractional powers, 58, 135
involving radicals, 133–134
linear, 54–56, 108–109
of lines, 106–112
of lines in three-dimensional space, 

702–703
logarithmic, 399–402
matrix, 786, 797–800
modeling with. See Mathematical models
nonlinear, 54
with no solution, 56
of a parabola, 827
parametric. See Parametric equations
polar. See Polar equations
polynomial, 132–133, 317–318
power, 56–58
Properties of Equality and, 54
quadratic, 115–126
of quadratic type, 134–135
roots of, 294
of a shifted conic, 856–857
shifting graphs of, 851–852
solving by working backward, P2
solving for one variable in terms of 

others, 58–59
solving for unknown functions, 253, 265
solving using analogy strategy, P1
two-intercept form of, 114
in two variables, 94–104
of vertical lines, 108

Equations, trigonometric, 573, 600–612
with functions of multiples of angles, 

608–610
solving, 600–604
solving, on an interval, 470

Equivalent equations, 53
Equivalent inequalities, 141
Equivalent systems, 727–728
Eratosthenes, 446, 888
Error-correcting codes, 136
Euclid, 57
Euler, Leonhard, P1, 130, 374, 804
Even function, 240–241, 246, 254, 303
Even-odd identities, 574
Even-odd properties, 516–517
Events

certain, 955
defined, 954
impossible, 955
probability of, finding, 955–957
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Index I5

by trial and error, 38, 39
trinomials, 38–39

Factoring formulas, 39
Factor Theorem, 308–309, 311
Fair division of assets, 898
Fair game, 973
Fair voting methods, 973
False equations, 729
Family

of equations, 61
of exponential functions, 367–368
of lines, graphing, 111
of logarithmic functions, 382
of polynomials, 301
of power functions, 197–198

Feasible region, 751–752, 761, 762, 763
Fechner, Gustav, 384
Fermat, Pierre de, 47, 88, 130, 154, 954, 983
Fermat’s Last Theorem, 154
Ferrari, 322
Fibonacci, Leonardo, 890
Fibonacci numbers, 782, 885, 889–890, 

893, 896, 1006
Finance

mathematics of, 911–917
modeling using linear systems, 731–732

Flow lines of vector field, 714
FM (frequency modulation) radio, 530
Focal diameter, of parabolas, 829, 830
Focal length, 834
Focus

of a conic, 868
of an ellipse, 834, 837, 838, 839
of a hyperbola, 843, 847
of a parabola, 826, 827, 828, 834
prime, of a telescope, 834

FOIL method, 33
Force

modeling, 672
resolving into components, 678–679

For command, in calculators, 822
Forgetting, Law of (Forgetting Curve), 

392–393, 435
Formula, 2

representing functions with, 190, 191
visualizing, 34

Fourier, Jean Baptiste Joseph, 529, 582
Fourier analysis, 40
Four-leaved rose, 632–633, 635
Frac command, in calculators, 796, 801, 

1006
Fractal image compression, 907
Fractals, 644, 907
Fractional exponents, 27, 41, 58, 135
Fractional expressions, 44. See also 

Rational expressions
compound fractions, 47–49
solving equations involving, 55, 133

Fractions
compound, 47–49
LCD and adding, 10

Galileo, Galilei, 661, 662
Galois, Evariste, 313, 322
Game, fair, 973
Game theory, 913
Gateway Arch, 374
Gaudí, Antoni, 880
Gauss, Carl Friedrich, 323, 326, 771, 898
Gaussian elimination, 728, 770–773
Gauss-Jordan elimination, 773–774
Gear ratio, 493
General conic equation, simplifying, 

862–865
Geometric mean, 910
Geometric sequences, 902–911
Geometry, analytic. See Conics; Ellipses; 

Hyperbolas; Parabolas; Parametric 
equations

Gibbs, Josiah Willard, 698
GIMPS (Great Internet Mersenne Prime 

Search), 889
Global Positioning System (GPS), 742
Global warming, modeling, 87
Golden ratio, 893
Googol, 390
Googolplex, 390
Grads, measuring angles with, 447
Graham, Ronald, 945
Graphical addition, 248
Graphical solutions, 154–159

compared with algebraic method, 154, 
155, 156, 157

for equations, 154–157, 207–209
for inequalities, 157–158, 207–209, 351
for systems of equations, 718–719
for systems of nonlinear equations, 

741–743
using graphing calculator, 155–158

Graphing calculators, 197–198, 993–997
choosing viewing rectangle, 528, 

993–995
for extreme values of functions, 212–214
for graphing polar equations, 634–635
interpreting screen image, 995–996
for parametric curve graphs, 651–652
for trigonometric graphs, 528–530
using, 95, 155–158, 999–1008

Graphing devices. See Graphing calculators
Graphing functions, 195–206

exponential functions, 367–370, 375
getting information from, 206–218
with a graphing calculator, 197–198
linear functions, 202, 227
logarithmic functions, 381–383, 386–387
rational functions, 337–343

Graphs, 88
of complex numbers, 638–639
of equations of two variables, 94–104, 

999
with “hole,” 340–341
of inequalities, 12, 1002–1003
on inequalities, nonlinear, 745–747

partial, 735–740
properties of, 10
proving an identity by combining, 577
solving linear equation involving, 55
writing repeated decimal as, 908

Frequency, harmonic motion and, 548
Frequency modulation (FM) radio, 530
Functions, 183–280

algebra of, 247
average rate of change and, 219–226
combining, 246–254
common examples of, 184–185
comparing values of, from graphs, 

207–209
composition of, 248–251
defined, 185–186
demand, 264
domain of, 189
equations of, 200–201
evaluating, 186–189
even, 240–241, 246, 254, 303
exponential, 365, 366–379
finding values of, from graph, 206–207
graphing, 195–206, 337–343, 367–370, 

375, 381–383, 386–387
graphing equations that are not, 996–997
greatest integer, 198–199
identity, 264
increasing/decreasing, 209–211, 256
inverse, 256–261
linear, 196, 202, 226–233
linear, constant rate of change, 223
local maximum and minimum values of, 

211–214
logarithmic, 365, 380–390, 417–422
logistic, 247
methods for representing, 190–191
modeling with, 273–280
modeling with, guidelines for, 273
objective, 760, 761, 762, 763
odd, 240–241, 246, 254, 303
one-to-one, 255–256, 258
piecewise defined, 187, 198–200, 1002
polynomial, 281, 290–303, 361–364
power, 197–198, 202, 369–370, 429–430
rational, 331–347
relations and, 199
as a rule, 183
table of values of, 188–189, 190, 191, 

1001–1002
transformations of, 234–246
trigonometric. See Trigonometric 

functions
zeros of, on graphing calculator, 1001

Fundamental Counting Principle, 942–944
combinations, 947–949
permutations, 944–947, 948–949

Fundamental identities, 462, 517–518, 574
Fundamental Principle of Analytic 

Geometry, 94, 97
Fundamental Theorem of Algebra, 323, 326
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I6 Index

Graphs (continued )
of inverse function, 260
of parametric equations, on graphing 

calculator, 1008
of polar equations, 630–637, 1008
of polynomials, 291–301
reflecting, 236–237, 239
representing functions with, 190, 191
of sequence, on graphing calculator, 

1007
shifted, 383, 851–856
shifts, horizontal, 235–236, 383
shifts, vertical, 234–235, 236, 383
“story” told by, 213
stretching and shrinking, 238–240
of systems of inequalities, 747–752
using symmetry to sketch, 100
of vector fields, 712–713
visualizing data on, 89

Gravity, Newton’s Law of, 58, 163, 218, 
430, 713, 992

Greater than (.), 11
Greatest integer function, 198–199, 202
Great Internet Mersenne Prime Search 

(GIMPS), 889
Great Trigonometric Survey of India, 478, 

502
Grouping, factoring by, 41–42, 132
Guza, Robert, 474

Half-angle formulas, 589, 591–593
Half-life of radioactive elements, 411, 412
Halley, Edmund, 927
Hamilton, William Rowan, 698
Hamming, Richard, 136
Hardy, G.H., 904
Harmonic mean, 901
Harmonic motion, 520, 547–562

damped, 553–555, 611
modeling periodic behavior, 547–553, 

568–572
phase and phase difference, 555–557, 

562
simple, 548–553, 617

Harmonic sequences, 901
Heron’s Formula, 485–486
Hilbert, David, 155, 804
Hilbert’s tenth problem, 782
Hipparchus, 449
Histogram, probability, 968, 969
Hooke’s Law, 164, 170
Horizontal asymptotes, 332, 333, 335–342
Horizontal lines, 108, 255, 256
Horizontal Line Test, 255, 256
Horizontal shifts

of graphs, 235–236, 383
phase and, 555–557
of sine and cosine curves, 526–527

Horizontal stretching and shrinking, of 
graphs, 239–240

Huygens, Christian, 651

rational, 349–351
with repeated factors, 145
rules for, 141
systems of, graphing, 747–752

Infinite geometric series, 907–908
Infinite series, 905–908
Infinity symbol (∞), 12
Initial point, vectors, 666
Initial side, of angles, 438
Inner product, of matrices, 784–785
Input, in function as machine, 185
Installment buying, 914–915
Instantaneous rate of change, 221
Integer exponents, 18–25
Integers, as real number type, 7
Intensity levels of sound, 384–385, 

420–421
Intercepts, 96–97
Interest, on investment, 63–64
Interest problems, modeling, 63–64
Intermediate Value Theorem for 

Polynomials, 295
intersect command, in calculators, 

156, 351, 608, 725, 750, 1000
Intersections

of events, probability of, 960–961
finding intersection points, 608, 1000
of independent events, probability of, 

961
of intervals, 13
of sets, 12

Intervals, 11–13
graphing, 12, 13
increasing/decreasing functions,  

210–211
open and closed, 12, 13
solving an equation in an interval,  

156
solving polynomial inequalities and,  

347, 348, 349
solving rational inequalities and, 349, 

350, 351
test values for, 143
unions and intersections, 13

Invariants under rotation, 866, 868
Invariant Theory, 806
Inverse cosecant, 546
Inverse cosine, 467–469, 543–544
Inverse cotangent, 546
Inverse Function Property, 381
Inverse functions, 256–261

defined, 256
finding, 257–259
graphing, 260
linear functions becoming, 264
properties of, 258

Inverse numbers, 9–10
Inverse of matrices, 793–797, 798–799
Inverse sine, 467–469
Inverse square laws, 163

for sound, 422

Hyperbolas, 825, 843–851
with center at origin, 844
confocal, 850
conjugate, 850
constructing, 882–883
degenerate, 857
equation of, 847–848
geometric definition of, 843
rotating, 861–862
shifted, 854–856
sketching, 845–848
with transverse axis, 845–847

Hyperbolic cosine function, 377
Hyperbolic sine function, 377
Hypocycloid, 655
Hypotenuse, 987
Hypothesis, induction, 919

Identities, 574
addition and subtraction formulas for, 

583
cofunction, 574, 583
even-odd, 574
involving combinations, 953
proving, 576, 577
Pythagorean, 462, 517, 574
reciprocal, 462, 516, 517, 574
trigonometric, 461–463, 516, 517–518, 

573, 574–581, 606–608
Identity function, 264
Identity matrices, 793
Image of x under f, 185
Imaginary axis, 638
Imaginary part, of complex numbers, 126
Impossible event, 955
Incidence, angle of, 605
Inclination, angle of, 451
Inconsistent systems, linear equations, 719, 

720, 729–730, 774–775
Independent events, probability of 

intersection of, 961
Independent variables, 185
Index of refraction, 605
Index of summation, 892
Induction, mathematical, P2, 917–923

conjecture and proof, 917–918
induction step, 918–919
principle of, 919–921, 930
sums of powers and, 921

Induction hypothesis, 919
Inequalities, 11, 141–150

absolute value, 151–152
equivalent, 141
graphic solutions for, 157–158, 207–209, 

351
graphing, 12, 745–747, 1002–1003
linear, 142, 748
modeling with, 146–147
nonlinear, 142–146
polynomial, 347–349
proving by induction, 921
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Index I7

Inverse tangent, 467–469
Inverse trigonometric functions, 467–474, 

541–547
cosecant function, 546
cosine function, 467–469, 543–544
cotangent function, 546
evaluating expressions involving, 

471–472, 584–585, 594
secant function, 546
sine function, 467–469, 541–543
solving for angles in right triangles 

using, 469–470
tangent function, 467–469, 544–545

Inverse variation, 161
Invertibility criterion, 805–806
Involute of a circle, 656
Irrational numbers, 7
Irreducible quadratic factor, 328–329, 

737–739
Iterates of a function, 247

Joint variation, 162–163
Jordan, Camille, 313

Kantorovich, Leonid, 760
Karmarkar, Narendra, 761
Kepler, Johannes, 429, 430, 840, 852
Kepler’s Third Law, 165
Kirchhoff’s Laws, 734
Knuth, Donald, 201
Koopmans, T.C., 760
Kovalevsky, Sonya, 241

Lag time, phase angle and, 555
Laminar flow, law of, 194
Latus rectum, 829, 842
Law enforcement, use of mathematics for, 

383
Law of Cooling, Newton’s, 413–414, 416
Law of Cosines, 482–489
Law of Forgetting (Forgetting Curve), 

392–393, 435
Law of Gravity, 58, 163, 218, 430, 713, 

992
Law of laminar flow, 194
Law of Sines, 474–482
Law of the Lever, 73, 831
Law of the pendulum, 166
Laws of Exponents, 19–21, 366

for rational exponents, 27–28
Laws of Logarithms, 390–396, 397
LCD. See Least common denominator 

(LCD)
Leading coefficients, 290, 293
Leading entry in row-echelon form, 771
Leading terms, 290

end behavior of polynomial and, 
292–294

Leading variable, 774
Lead time, phase angle and, 555, 557
Learning curve, 406

Local extrema, of polynomials, 300–301, 
304

Local maximum, 211–214, 300
Local minimum, 211–214, 300
loga, 380
Logarithmic equations, 399–402

applications of, 402–403
Logarithmic form, 380
Logarithmic functions, 365, 380–390

applications of, 417–422
common (base 10) logarithms,  

384–385
family of, 382
graphs of, 381–383, 386–387
natural logarithms, 385–386
properties of, 381

Logarithmic scales, 417–422
Logarithms, Laws of, 390–396, 397
Logistic command, in calculators,  

433, 436
Logistic curves (or logistic growth model), 

376, 378, 433, 436
Logistic function, iterates of, 247
Log-log plot, 431
Longbow curve, 655
Long division

partial fractions and, 739
of polynomials, 305–306

LORAN (LOng RAnge Navigation), 848
Lotka, Alfred J., 799
Lower bounds, 315–316, 318
Lowest common denominator (LCD), 

solving linear equations using, 55

Machine, function as, 185
Magnetic resonance imaging (MRI), 828
Magnitude

of an earthquake, 418–420
of gravitational force, 713
orders of, 386
of a star, 396
of vectors, 666, 668, 690

Main diagonal, of matrices, 793
Major axes, of ellipses, 836, 837
Majority voting, 973
Mandelbrot, Benoit, 907
Mapmaking, polar coordinates and, 626
Mathematical models, 61–74, 135–138. See 

also Modeling
constructing, 63–69
defined, 174
finding line of best fit, 174–182
functions as, 273–280
guidelines for, 62
guidelines for modeling with functions, 

273
linear, making and using, 229–231
measuring fit, 178–179
using inequalities, 146–147
variation, 159–166

Matijasevič, Yuri, 782

Least common denominator (LCD)
adding fractions, 10
using with rational expressions, 46–47

Least squares line, 726
Legs of right triangle, 987
Lemniscates, as polar graph, 635
Length, vectors, 666, 668, 669
Length problems, modeling, 64–66
Lens equation, 139
Leontief, Wassily, 913
Less than (,), 11
Lever, Law of the, 73, 831
Like terms, combining, 32
Limaçon, 634, 635
Linear and Quadratic Factors Theorem, 328
Linear depreciation, 115
Linear equations, 54, 108–109. See also 

Systems of linear equations
graph of, 109
solving, 54–56
two-intercept form of, 114

Linear factors, 328–329, 735–737
Linear fractional transformations, 333–334
Linear functions, 226–233

composing, 234–235, 253
constant rate of change, 223
defined, 196
finding inverse of, 264
graphs of, 202, 227
identifying, 227
modeling with, 229–231
slope and rate of change of, 228

Linear inequalities, 142, 748
graphing systems of, 748–750

Linearizing, 430–431
exponential data, 431
power data, 431

Linear models, making and using,  
229–231

Linear programming, 760–765
guidelines for, 762
Karmarkar’s technique, 761

Linear speed, 442–443
Line of sight, 451
Lines, 104–115

of best fit, 174–182
family of, graphing, 111
general equation of, 108–109
parallel, 110
parametric equations for, 703
perpendicular, 110–111
point-slope form of equation of, 106–107
slope-intercept form of equation of, 

107–108
slope of, 104–106
vector equation of, 702
vertical and horizontal, 108

LinReg command, 178
Lissajous figure, 652
Lithotripsy, reflection property used in, 840
ln (natural logarithm), 385
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I8 Index

Matrices, algebra of, 781–792. See also 
Determinants

applied to computer graphics, 788–789
determinants, 795, 803–814, 1005
equality of matrices, 781
on graphing calculator, 1004–1005
identity matrices, 793
inverse of matrices, 793–797, 798–799
matrix equations, 786, 797–800
modeling in computer graphics and, 

820–823
multiplication, 783–787, 820–823
no Zero-Product Property for, 802
rotating images in plane, 864
rotation of axes formulas, 868
singular matrix, 797
square matrix, 793, 803–807
square roots of matrix, 792
stochastic matrices, 787
sum, difference, and scalar product, 

782–783
transition matrix, 799

Matrices, solving linear systems,  
768–781

augmented matrix, 768, 769
elementary row operations, 769–770
Gaussian elimination, 770–773
matrix defined, 768
reduced row-echelon form, 771, 

773–774, 1004
row-echelon form, 771, 774–777, 1004

Matrix equations, 786, 797–800
Maxima value, 283–285

of a fourth-degree polynomial function, 
288

linear programming for, 760–762
local, 211–214, 300
modeling with functions to find, 

273–274, 286–287
maximum command, in calculators, 213, 

214, 1001
Maximum values, on graphing calculator, 

1001
Mean

arithmetic, 902
geometric, 910
harmonic, 901

Median, 93
Mendel, Gregor, 965
Méré, Chevalier de, 954
Mersenne numbers, 889
Midpoint formula, 90–91
Mill, John Stuart, 237
Minima value, 283–285

on graphing calculator, 1001
linear programming for, 762–763
local, 211–214, 300
modeling with functions to find, 

275–276
of a sixth-degree polynomial, 288

minimum command, in calculators, 213

scalar, of matrices, 782–783
of vectors by scalars, 666, 667, 668, 669

Multiplicative identity, 9
Multiplicities, zeros and, 299, 325–327
Music

logarithmic scale and, 418
vibrations of musical note, 549

Mutually exclusive events, probability of 
union of, 958–959

n! (n factorial), 925
Napier, John, 384
Nash, John, 913
Natural exponential functions, 374–379
Natural logarithms, 385–386
Natural numbers, 7
Nautical mile, 446
Navigation

bearings, 484–485
Global Positioning System (GPS), 742
LORAN, 848

Negative exponents, 19, 21
Negative numbers, 9

square roots of, 128–129
Negative of image, 792
Net change in value of a function, 187
Newton, Sir Isaac, 661, 840, 847, 927
Newton’s Law of Cooling, 413–414, 416
Newton’s Law of Gravity, 58, 163, 218, 

430, 713, 992
n-leaved rose, 633, 635
Nodes, standing wave, 618–619
Noether, Emmy, 806
Nonlinear equations, 54

systems of, 740–745
Nonlinear inequalities, 142–146

graphing, 745–747
guidelines for solving, 143

Normal vector, 704
Notation

arrow, 292–293, 332
composite function, 248, 249
exponential, 18–19, 21–22
factorial, 945
scientific, 21–22, 991
set-builder, 11
sigma, 892–894
summation, 892–894
use in problem solving, P1

nth root, 25
of complex number, 643–645
properties of, 26

Numbers
complex. See Complex numbers
converting words, sound, and pictures 

into, 40
imaginary, 127
inverse, 9–10
irrational, 7
negative, 9
ordered pair of, 88

Minor axes, of ellipses, 836, 837
Minors, determinant of matrix, 803–804
Mixture problems, 66–67, 723
Modeling, 2. See also Mathematical models

algebra models, 2–6, 81–85
with area or length, 64–66
conics in architecture, 880–883
decision-making, 81–85
defined, 273
with equations, 61–74, 135–138
exponential, 406–416, 428–429, 432
fitting sinusoidal curves to data, 568–572
force and velocity, 670–672
global warming, 87
harmonic motion, 547–562
with inequalities, 146–147
with linear functions, 229–231
with linear systems, 721–723, 731–732, 

777–778
logarithmic, 417–422
with logistic functions, 433
matrix algebra and computer graphics, 

820–823
Monte Carlo method, 981–984
path of a projectile, 661–664
with polynomial functions, 361–364
population growth, 365, 406–408, 

409–410, 428–429, 433
with power functions, 429–430, 432
prey/predator models, 529, 572, 799
with quadratic equations, 119–122
with quadratic functions, 286–287
with recursive sequences, 937–940
standing waves, 618–619
surveying, 499–502
traveling waves, 617–618
using linear programming, 760–765
using matrix equations, 799–800
vector fields, 712–714

MODE, on graphing calculators, setting, 
999

Modulus of complex numbers, 639, 640
Moment magnitude scale, 419
Monomials, 32, 291–292
Monte Carlo method, 981–984
Moon, phases of, 562, 606
Mortgage payments, 915

amortizing a mortgage, 917
MRI (magnetic resonance imaging), 828
Multiple angles, trigonometric functions of, 

608–610
Multiplication. See also Products

of algebraic expressions, 33–34
of complex numbers, 127, 641–642
of functions, 246, 247
with inequalities, 141
of matrices, 783–787, 820–823
of polynomials, 33–34
properties, common errors in application 

to addition, 50
of rational expressions, 45–46
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Index I9

prime, 888, 889
rational, 7
real. See Real numbers
reference, 507–509
representing functions with, 190, 191
significant digits in, 991

Numerators, 10
rationalizing, 49

Numerical method to find trigonometric 
ratios, 450

Objective function, 760, 761, 762, 763
Oblique asymptotes, 341–343
Oblique triangles, 474
Obtuse angle, 694
Octants, 684
Odd functions, 240–241, 246, 254, 303
“Oldest son or daughter” phenomenon, 966
One-to-one function, 255–256

finding inverse of, 258
Orbits. See Planetary orbits
Ordered pair, of numbers, 88
Ordered triple, 684
Orders of magnitude, 386
Origami, super, 397
Origin (O), 11, 88, 624

hyperbola with center at, 844
symmetry with respect to, 100

Outcomes, 954
Output, in function as machine, 185

P 1n, r 2 , 944–946
Palindromes, 979
Parabolas, 745–746, 825, 826–834

confocal, 859
constructing, 881, 882
equation of, 827
family of, 830
focal diameter of, 829, 830
focal point of, 831–832
geometric definition of, 826
graph of, 95
graph of shifted, 854
with horizontal axis, 828–829
latus rectum of, 829
path of a projectile, 662
as quadratic function, 282
sketching, 829–830
with vertical axis, 827–828

Parallax, 456
Parallelepiped, volume of, 699–700
Parallel lines, 110
Parallelogram, area of, 699
Parallel vectors, 694–695
Parameters, 61, 648, 649–650, 731
Parametric curve, graphing, 651–652
Parametric equations, 648

for cycloid, 650–651
eliminating parameter, 649–650
for a graph, 650
graphing, on graphing calculator, 1008

Planetary orbits
eccentricities of, 840
Kepler’s description of, 165, 852
perihelion and aphelion, 842, 874
power model for planetary periods, 

429–430
Plurality voting, 973
Point-slope form of equation of lines, 

106–107
Polar axis, 624
Polar coordinates, 623, 624–629

graphing polar equations, 630–637
relationship between rectangular 

coordinates and, 625–627
Polar equations, 627–628

of conics, 868–875
family of, 635
graphs of, 630–637, 1008
in parametric form, 652

Polar form of complex numbers, 639–642
Pole. See Origin (O)
Polya, George, P1
Polynomial function, 281, 290–303

defined, 290
of degree n, 282, 290
as models, 361–364

Polynomial inequalities, 347–349
Polynomials, 32, 132–133

adding and subtracting, 32–33
of best fit, 361–364
defined, 290
degrees of, 32
dividing, 305–311
end behavior of, 292–294, 295
factoring, 323–326
family of, 301
graphs of, 291–301
guidelines for graphing, 295
local extrema of, 300–301
nested form, 311
product of, 33–34
real zeros of, 295, 311–322, 347
Tchebycheff, 598
zeros of, 294–299, 308–309

Pope, Alexander, 927
Population growth, 365, 406–408, 

409–410, 428–429, 433
carrying capacity and, 433

Position vector, 702
Power data, linearizing, 431
Power equations, 56–58
Power functions

compared with exponential functions, 
369–370

graphs of, 197–198, 202
modeling with, 429–430, 432

Powers
finding, using De Moivre’s Theorem, 

642–643
formulas for lowering, 592

Predator/prey models, 529, 572, 799

graphing parametric curves, 651–652
for a line, 703
for path of projectile, 661–664
plane curves and, 647–648
polar equations in parametric form, 652

Pareto, Vilfredo, 395
Pareto’s Principle, 395
Partial fraction decomposition, 735–740
Partial fractions, 735–740
Partial sums, of sequences, 891–892, 

898–900, 904–905, 1007
Partitions in permutations, finding number 

of, 947
Pascal, Blaise, 651, 919, 954, 983
Pascal’s triangle, 924–925, 926–927
Pattern recognition, P1, 905
Paulos, John Allen, 178
Pendulum, law of the, 166
Perfect square, 39, 40, 116
Perihelion, 842, 874
Perilune, 842
Period, 521, 525

amplitude and, 525–526
harmonic motion and, 548

Periodic behavior, modeling, 547–553, 
568–572

Periodic functions, 521, 529, 533
Periodic motion, 503
Periodic properties, 534
Periodic rent, 912
Permutations, 944–947

anagram as, 978, 980
distinguishable, 946
finding the number of partitions, 947
of n objects taken r at a time, number of, 

944
problem solving with, 948–949

Perpendicular lines, 110–111
Phase difference, 556–557

out of phase vs. in phase, 556
Phase (phase angle), 555–556, 562
Phase shift, of sine curve, 526, 555, 556
pH scale, 417–418
Pi (p)

Monte Carlo method to estimate, 983
series for calculating, 904
value of, 518

Piecewise defined function, 187
graphing, 198–200
on graphing calculator, 1002

Plane(s)
bounded and unbounded regions in, 750
complex, 638
coordinate, 87, 88–94, 684
as graph of linear equation in three 

variables, 729
moving points/images in, computer 

graphics, 820–822
vector equation of, 703–705
vector fields in, 712–713

Plane curves, 647–648
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Preference voting, 973
Present value, 374

of an annuity (Ap), 913–914
Prime focus, 834
Prime numbers, 888, 889
Principal, compound interest and, 370
Principal nth root, 25
Principal square root, 25

of complex numbers, 128
of negative numbers, 128

Principle of Mathematical Induction, 
919–921, 930

Principle of Substitution, 34
Probability, 941, 954–971

binomial, 966–971
of complement of an event, 957
conditional, 959–960
defined, 955
of event, finding, 955–957
expected value, 971–975
of intersection of events, 960–961
of intersection of independent events, 

961
Monte Carlo method, 981–984
of union of mutually exclusive events, 

958–959
of union of two events, 957–958

Probability distribution, 968
binomial distribution, 968–969
uniform, 968

Probability histogram, 968, 969
Problem solving, principles, P1–P4
Products. See also Multiplication

of functions, 246, 247
inner, 784–785
of polynomials, 33–34
positive/negative, 142
scalar, 782, 783
sign of, 142
Special Product Formulas, 34–35

Product-sum formulas, 589, 595–596
Projectile

modeling path of, 121–122, 661–664
range of, 611, 662–663

Projection laws, 489
Projection of vectors, 679–680
Prolate cycloid, 654
Proof

of Binomial Theorem, 929–930
by contradiction, P2
mathematical induction and, 917–918, 

919–921, 930
Proportionality, 160–163

constant of, 160, 161, 163
direct, 160
inverse, 161
joint, 162–163
similar triangles and, 986–987

Pure imaginary number, 127
PwrReg command, in calculators, 432
Pythagoras, 277

of an inverse function, 256, 257
of a projectile, 611

Rate of change
average, 219–226, 228
changing, 222
constant, 223
instantaneous, 221
making a linear model from, 229
slope as, 220, 228

Rational exponents, 27–28
Rational expressions, 44–53

adding and subtracting, 46–47
avoiding common errors, 50
compound fractions, 47–49
multiplying and dividing, 45–46
rationalizing denominator or numerator, 

49
simplifying, 45

Rational functions, 259, 331–347
asymptotes of, 334–343
graphing, 337–343
inverse of, finding, 259
simple, 331–332
slant asymptotes and end behavior, 

341–343
transformations, 333–334, 347

Rational inequalities, 349–351
Rationalizing the denominator or 

numerator, 28–29, 49
Rational numbers, 7
Rational zeros. See Real zeros, of 

polynomials
Rational Zeros Theorem, 311–314, 327
Real axis, 638
Real number line, 11, 13, 14
Real numbers, 6–17

absolute values and distance, 13–14
Law of Exponents and, 366
natural numbers as, 7
operations on, 9–10
order of (less than, greater than), 11
properties of, 8–10
real lines and, 11
sets and intervals, 11–13

Real part, of complex numbers, 126
Real zeros, of polynomials, 295, 311–322, 

347
Reciprocal functions, 202
Reciprocal identities, 462, 516, 517, 574
Reciprocal relations, 450
Reciprocals with inequalities, direction of 

inequality and, 141
Rectangular array (or table) of numbers. 

See Matrices
Rectangular coordinates, 623, 625–628
Recursive sequences, 889–890

finding term of, on graphing calculator, 
1006

as models, 937–940
Reduced row-echelon form of a matrix, 

771, 773–774, 1004

Pythagorean identities, 462, 517, 574
Pythagorean Theorem, 277, 987–988

converse of, 988
Pythagorean triple, 990

Quadrantal angles, 459
Quadrants, of coordinate plane, 88
Quadratic equations, 115–126

complex roots of, 129–130, 131
discriminant of, 119
exponential equation of quadratic type, 

399
form of, 115
fourth-degree equation of quadratic type, 

134
modeling with, 119–122
path of projectile modeled by, 121–122
solving by completing the square, 

116–117
solving by factoring, 115–116
trigonometric equation of quadratic type, 

603–604
Quadratic factors, 328–329

irreducible, 328–329, 737–739
Quadratic formula, 117–119

complex solutions and, 130
using Rational Zeros Theorem and, 314

Quadratic function, 282–290
graphing, 282–283
maximum/minimum value of, 283–285
modeling with, 286–287
standard form of, 282–283

Quadratic inequalities, 143–144
Quadratic type, equations of, 134–135
Quasi-period, 553n
Quaternions, 698
Quotients, 305, 306

difference quotients, 188, 221
in division, 10
of functions, 246, 247
inequalities and, 145–146
positive/negative, 142

Radian measure, of angles, 438–439, 441
Radicals, 25–27

combining, 26–27
conjugate, 49
equations for, 133–134
nth root and, 25
using, with rational exponents, 27, 28

Radio, AM and FM, 530
Radioactive decay model, 412
Radioactive elements, half-lives of, 411,  

412
Radioactive waste, 413
Radiocarbon dating, 389, 403
Radius of a sphere, 686
Ramanujan, Srinivasa, 904
Range

finding from graphs, 206–207
of functions, 185
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Index I11

Reduction formulas, 520, 541
ref command, in calculators, 772–773, 

1004
Reference angle, 460–461
Reference numbers, 507–509

finding value of trigonometric function 
with, 514–515

Reflecting graphs, 236–237, 239, 382–383
Reflection, total internal, 605
Reflection property

of ellipses, 840
of hyperbolas, 848
of parabolas, 831

Refraction, angle of, 605
Refraction, Index of, 605
Regression line, 175–178, 726, 1003
Relations

functions and, 199
reciprocal, 450

Relative growth rate, 408–411
Relativity, Theory of, 194, 661, 806
Remainders, 305, 306
Remainder Theorem, 308
Repeating decimal, 7, 908
Resistance, electrical, 52, 166, 343
Resultant force, 672
Rhind papyrus, 736
Richter, Charles, 418
Richter scale, 418–420
Right-hand rule, 698
Right triangles, 448–452

proving triangle to be, 988
Pythagorean Theorem, 277, 987–988
solving for angles in, 469–470

Right triangle trigonometry, 448–456
applications, 450–452

Rise, vs. run in slope, 104, 105
Rivest, Ron, 338
Rnd or Rand command, on calculators, 

981
Roberval, Gilles de, 983, 984
Robinson, Julia, 782
Romanus, Adrianus, 518
Root functions, 202
Root-mean-square (rms) method, 553
Roots

coefficients and, 125
complex, 129–130, 131
of complex numbers, 643–645
of equations, 53
of polynomial equations, 294
of quadratic equation, 118
of unity, 330
upper and lower bounds for, 315–318

Roses (polar curve), 632–633, 635
Rotation of axes, 860–868

eliminating xy-term, 863–864
formulas, 861
graphing rotated conics, 864–865
matrix form of formulas, 868
rotating hyperbolas, 861–862

Set-builder notation, 11
Sets

as collection of objects, 11
of complex numbers, graphing, 638
subsets of, finding number of, 944
unions and intersections, 12

Shamir, Adi, 338
Shanks, William, 518
Shifted conics, 851–860
Side-Angle-Side (SAS) congruence,  

985
Side-Side-Side (SSS) congruence, 985
Sieve of Eratosthenes, 888
Sight, line of, 451
Sigma notation, 892–894
Significant digits, 991
Signs, of trigonometric functions, 459,  

514
Similarity, 450
Similar triangles, 986–987
Simple harmonic motion, 548–553, 617
Simple interest formula, 63
Sine

addition and subtraction formulas for, 
581, 583, 589

curves, 525, 529, 530, 555–557, 570
double-angle formula for, 590, 863
formula for, 457
half-angle formula for, 592, 593
Law of, 474–482
phase and phase difference, 555–557, 

562
product-to-sum formula for, 595
proving an identity by rewriting in terms 

of, 576
sum of sines and cosines, 585–586
sum-to-product formula for, 596
trigonometric ratios, 448

Sine function, 511
applications, 532
graphing, 521–522
graphing transformations of, 523–527
inverse, 467–469, 541–543
periodic properties of, 521
shifted curves, 526–527
special values of, 512

Singular matrix, 797
SinReg command, in calculators, 570
Sinusoidal curves, 525, 533

fitting to data, 568–572
Slant asymptotes, 341–343
Slope

indicating rate of change, 220, 228
interpreting, 112
of lines, 104–106
making a linear model from, 230

Slope-intercept form of equation of a line, 
107–108

Snell’s Law, 605
Solutions. See Roots
Sørensen, Søren Peter Lauritz, 417

Rounding off, significant digits, 991
Row-echelon form

of a matrix, 771, 774–777, 1004
reduced, 771, 773–774, 1004
solutions of a linear system in, 774–777
solving linear equations, 772–773

Row transformations, of determinants, 
806–807

rref command, in calculators, 774, 778, 
1004

RSA code, 338
Rubik’s Tetrahedron, 702
Rule of Signs (Descartes), 314–315, 317
Rules, for inequalities, 141
Run, vs. rise in slope, 104, 105

Sample space of an experiment, 954–955
Scalar product, 782, 783
Scalars, 666, 667, 668, 669
Scalar triple product, 699–700
Scatter plots, 174–178, 361, 362, 363, 

428–429, 431, 432
fitting sinusoidal curves to data, 568–572

Scientific notation, 21–22, 991
Secant

formula for, 457
trigonometric ratios, 448

Secant function, 511
graphing, 535, 536, 538, 539
inverse, 546
periodic properties, 534
secant curves, 538, 539
special values of, 512

Secant line, average rate of change as slope 
of, 220

Sectors, circular, 442
Self-similar, fractals as, 907
Semi-log plot, 431
Semiperimeter, 485
Seq mode, in calculators, 888, 940
Sequences, 885–910

arithmetic, 897–902
defined, 886
Fibonacci, 782, 885, 889–890, 893, 896, 

1006
finding terms of, 887–888, 903–904, 

1005–1006
geometric, 902–911
graphing, on graphing calculator, 1007
harmonic, 901
infinite series, 905–908
partial sums of, 891–892, 898–900, 

904–905, 1007
properties of sums of, 894
recursive, 889–890, 937–940, 1006
sigma notation of, 892–894
table of values of, on graphing 

calculator, 1006–1007
Series

for calculating pi (p), 904
infinite, 905–908
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I12 Index

Sound. See also Harmonic motion
beats, 599
intensity levels of, 384–385, 420–421
inverse square law for, 422

Special Product Formulas, 34–35
Special Theory of Relativity, 661
Species, study of survival of, 788
Species-Area relationship, 396, 435
Sphere

area of, 193
equation of, 686–687

Spiral, as polar graph, 635
polar equation in parametric form, 652

Splines, polynomial curves, 291, 296
Spring, vibrating, 548, 549, 550
Spring constant, 164, 560
Square matrix, 793, 803–807
Square roots, 25–26

of matrices, 792
of negative numbers, 128–129
nth root and, 25

Squaring function, 185
Standard form, of equation of a circle, 98
Standard position, of angles, 439–441
Standing waves, 618–619
Stars, modeling brightness of, 551
Stefan Boltzmann Law, 218
Step functions, 199, 205
Stochastic matrices, 787
Streamlines of vector field, 714
Substitution, Principle of, 34
Substitution, trigonometric, 578
Substitution method

for solving linear systems, 716
for solving systems of nonlinear 

equations, 740–741
Subtraction

of complex numbers, 127
with inequalities, 141
of matrices, 782
overview of, 9
of polynomials, 32–33
of rational expressions, 46–47
of vectors, 667, 668

Subtraction and addition formulas, 
581–589

Summation notation, 892–894
Summation variable, 892
Sums

of cubes, 39, 40
of functions, 246, 247
of infinite geometric series, 906, 

907–908
of matrices, 782–783
partial sums of sequences, 891–892, 

898–900, 904–905
of powers, 921
of sequences, properties of, 894
of sines and cosines, 585–586

Sum-to-product formulas, 595–596
Supplement of angle, 477

Terms
combining like, 32
factors and, 38
of polynomial, 32

Terms, of sequences
defined, 886
finding, 887–888, 897–898, 900, 

903–904, 928–929
finding, on graphing calculator,  

1005–1006
listing, on graphing calculator, 1006
for recursive sequences, 889

Test points, graphing, 295, 296, 746
Test values for intervals, 143
Tetrahedron, 695

Rubik’s Tetrahedron, 702
Thales of Meletus, 452
Theodolite, 478
Theory of Relativity, 194, 661, 806
Three-dimensional coordinate geometry, 

683–689
distance formula in, 685–686
equation of a sphere, 686–687
equations of lines in, 702–703
equations of planes in, 703–705
three-dimensional rectangular coordinate 

system, 684–685
vector fields in space, 713
vectors in, 689–695

Tide, modeling height of, 568–570
Time needed to do job, problems about, 

67–68
Torricelli, Evangelista, 286
Torricelli’s Law, 193, 264, 286, 364
Total internal reflection, 605
TRACE command, in calculators, 156, 211, 

212–213, 608, 637, 725, 750, 1000
Trace of sphere, 687
Transformations

of cosecant and secant functions, 
538–539

of exponential functions, 369
of functions, 234–246
matrices and, 820–823
of monomials, 291–292
of rational functions, 333–334, 347
of sine and cosine functions, 523–527
of tangent and cotangent functions, 

536–538
Transition matrix, 799
Transverse axis, of hyperbola, 844, 

845–847
Traveling waves, 617–618
Tree diagram, 942
Triangle Inequality, 14, 17
Triangles

ambiguous case, 476–479, 482
area of, 463–464, 485–486, 699, 

810–811, 814
congruent, 985–986
Pascal’s triangle, 924–925, 926–927

Surveying, 499–502
using triangulation for, 478

Symmetry, 99–101
tests for, 633–634

Synthetic division, 306–307
Systems of equations, 715, 716

elimination method for solving, 717–718
graphical method for solving, 718–719
modeling with, 721–723
substitution method for solving, 716–717

Systems of inequalities, graphing, 747–752. 
See also Inequalities

linear inequalities, 748–750
Systems of linear equations, 716

dependent and inconsistent, 719, 
729–731

graph of, 729
matrices and solving, 768–781
modeling with, 721–723, 731–732, 

777–778
several variables, 726–734
solutions of, 716, 719–721
three variables, 809–810
two variables, 716–726, 808–809
using Cramer’s Rule for solving, 

807–810
writing as matrix equations, 786

Systems of nonlinear equations, 740–745

TABLE command, in calculators, 888, 895, 
940, 1002

Table of values
of a function, 188–189, 190, 191
of a function, on graphing calculator, 

1001–1002
of a sequence, on graphing calculator, 

1006–1007
Taking cases, P2
Tangent, 457, 596

addition and subtraction formulas for, 
581, 589

double-angle formula for, 590
half-angle formula for, 592, 593
to parabola, 881, 883
trigonometric ratios, 448

Tangent function, 511
graphing, 534–535, 536
inverse, 467–469, 544–545
periodic properties, 534
special values of, 512
tangent curves, 536–537

Taussky-Todd, Olga, 787
Taylor, Brook, 535, 898
Tchebycheff, P.L., 598
Tchebycheff polynomials, 598
Terminal points

reference numbers and, 507–509
on unit circle, 504–507
of vectors, 666

Terminal side, of angles, 438
Terminal velocity, 378
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Index I13

Pythagorean Theorem, 277, 987–988
right triangle trigonometry, 448–456
similar, 986–987
solving a, 450
solving height problems, 65–66
solving oblique, 474
special, 449–450

Triangular form, of linear systems, 727
Triangulation

in Global Positioning System (GPS), 742
for surveying, 478

Trigonometric equations, 573, 600–612
on an interval, solving, 470

Trigonometric functions, inverse, 467–474, 
541–547

evaluating expressions involving, 
584–585, 594

Trigonometric functions, of angles, 
437–502

defined, 457
evaluating, 459–461, 463
reference angle and, 460–461
relationship to trigonometric functions of 

real numbers, 458, 513
signs of, 459

Trigonometric functions, of real numbers, 
503–572

defined, 511
domains of, 514
even-odd properties, 516–517
relationship to trigonometric functions of 

angles, 458, 513
signs of, 514
trigonometric identities, 516, 517–518
unit circle, 504–511
values of, 514–517, 534, 535

Trigonometric graphs, 521–541
of cosecant and secant functions, 

535–536, 538–539
graphing devices used for, 528–530
of sine and cosine functions, 521–529
of sum of sine and cosine, 586
of tangent and cotangent functions, 

534–535, 536
Trigonometric identities, 573, 574–581

of angles, 461–463
fundamental, 462, 517–518, 574
proving, 575–578
of real numbers, 516, 517–518
simplifying trigonometric expressions, 

574–575
solving trigonometric equations by 

using, 606–608
Trigonometric ratios, 448–449, 451, 457

special, 449–450
Trigonometric substitution, 578
Trinomials, 32

factoring, 38–39
Triple-angle formula, 591
Trochoid, 654
True velocity, 671

modeling velocity and force, 670–672
normal, 704
orthogonal, 677–678, 680, 692, 697
parallel, 694–695
perpendicularity, checking for, 678,  

692
perpendicular to plane, finding, 698
properties of, 669
in space, 689–695
unit, 669, 695
use of, 666
wind as, tacking against, 665, 681
zero, 666, 669

Velocity
modeling, 670–672
terminal, 378
of traveling waves, 617–618
true, 671

Vertical asymptotes, 332, 333, 334–343, 
534–536

Vertical axes, of parabolas, 827–828
Vertical lines, 108
Vertical Line Test, 200
Vertical shifts, graphs, 234–235, 236, 383
Vertical stretching and shrinking, graphs, 

238–239
Vertices

of ellipses, 836, 837
of feasible region, 761, 763
of hyperbolas, 844, 847–848
of parabolas, 282, 826, 827, 828
of systems of inequalities, 747, 748,  

749
x-intercepts and, 290

Viète, François, 119, 467
Viewing angle, 594
Viewing rectangle, of graphing calculator, 

528, 993–995
Voltage, measuring, 553
Volterra, Vito, 799
Von Neumann, John, 238
Voting methods, fair, 973

Wankel, Felix, 655
Wavelet theory, 40
Waves

standing, 618–619
traveling, 617–618

Weather prediction, 715, 722
Weber-Fechner Law, 420
Whispering galleries, reflection property 

used in, 840
Wiles, Andrew, 154
Witch of (Maria) Agnesi (curve), 655
Words, representing functions with, 190, 

191
Work

calculating with dot product, 680–681

x-axis, 88, 99, 100, 684
x-coordinate, 88

Tsu Ch’ung-chih, 518
Turing, Alan, 155, 238
Two-intercept form of linear equation, 114

Unbounded regions, of planes, 750
Unbreakable codes, 338
Uniform distribution, 968
Union of events, probability of, 957–958

mutually exclusive events, 958–959
Unions

of intervals, 13
of sets, 12

Unit circle, 504–511
points on, 504
reference numbers, 507–509, 514–515
terminal points, 504–507

Unit vector, 669, 695
Universal machine, 238
Upper and Lower Bounds Theorem, 

315–318
Upper bounds, 315–317, 318

Value of f at x, 185
Variables

correlation of, 178–179
defined, 32
dependent and independent, 185
leading, 774
in linear systems, 716–734
solving for one variable in terms of 

others, 58–59
summation, 892

Variation, modeling, 159–166
direct, 159–160
inverse, 161
joint, 162–163

Variation in sign, 315
Vector fields

flow lines (or streamlines) of, 714
gravitational, 713
modeling, 712–714

Vectors, 665–714. See also Dot product
algebraic operations on, 668, 690
analytic description of, 667–670
angle between, 677, 692
calculating components of, 679
component form of, 667–668, 689
coplanar, 700
cross product of, 695–702
direction angles of, 692–693
direction of, 666, 667, 670, 671, 

678–679, 698
dot product of, 675–678, 691–692
equations of lines, 702–703
equations of planes, 703–705
expressing in terms of i, j, and k, 691
expressing in terms of i and j, 669–670
geometric description of, 666–667
horizontal and vertical components, 667, 

670
magnitude, 666, 668, 690
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I14 Index

x-intercepts, 96, 97
graphing rational functions and, 

337–339, 341–343
vertex and, 290

xy-plane, 684
xz-plane, 684

y-axis, 88, 99, 100, 684
y-coordinate, 88
y-intercepts, 96, 97

graphing rational functions and, 
337–339, 341–343

yz-plane, 684

zero command, in calculators, 156, 1001
Zero exponents, 19
Zero-Product Property, 116, 603

no Zero-Product Property for matrices, 
802

Zeros Theorem, 325
Zero vector, 666, 669
Zooming in on a graph, on graphing 

calculator, 999–1000
ZSquare command, in calculators, 996

z-axis, 684
Zero(s)

additive identity, 9
complex, 323–330
Factor Theorem and, 308–309
of function, on graphing calculator, 1001
multiplicities and, 299, 325–327
of polynomials, 294–299, 308–309
Rational Zeros Theorem, 311–314, 327
real, 295, 311–322, 347
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chapter 1 

(continued)

Review: Concept Check Answers

 1. What is an algebra model for a real-world situation? If 
Shellie’s wages are $12 an hour, find a model for the  
amount W that Shellie earns after working x hours.

A model is a mathematical representation of a real-world  
situation. A model for the amount W that Shellie earns after 
working x hours is W 5 12x.

 2. (a)  What does the set of natural numbers consist of? What 
does the set of integers consist of? Give an example of 
an integer that is not a natural number.

The set of natural numbers consists of the counting num-
bers 1, 2, 3, . . . . The set of integers consists of the natu-
ral numbers together with their negatives and 0. The 
number 21 is an integer that is not a natural number.

(b) What does the set of rational numbers consist of? Give 
an example of a rational number that is not an integer.

The set of rational numbers is constructed by taking all 
ratios of nonzero integers, and then adding the number 0. 
The number 2/3 is a rational number that is not an 
integer.

(c) What does the set of irrational numbers consist of? Give 
an example of an irrational number.

The set of irrational numbers consists of all those num-
bers that cannot be expressed as a ratio of integers. The 
number !5 is an irrational number.

(d) What does the set of real numbers consist of? 

The set of real numbers consists of all the rational num-
bers along with all the irrational numbers.

 3. A property of real numbers is given. State the property and 
give an example in which the property is used.

 (i) Commutative Property:

a 1 b 5 b 1 a and ab 5 ba. For example, 
5 1 8 5 8 1 5 and 5 # 8 5 8 # 5.

 (ii) Associative Property:

1a 1 b 2 1 c 5 a 1 1b 1 c 2  and 1ab 2c 5 a1bc 2 .  
For example, 12 1 5 2 1 3 5 2 1 15 1 3 2  and 
12 # 5 23 5 215 # 3 2 .

 (iii) Distributive Property:

a1b 1 c 2 5 ab 1 ac and 1b 1 c 2a 5 ab 1 ac.  
For example, 711 1 4 2 5 7 # 1 1 7 # 4 and 
12 1 5 29 5 9 # 2 1 9 # 5.

 4. Explain the difference between the open interval 1a, b 2  and 
the closed interval 3a, b4. Give an example of an interval that 
is neither open nor closed.

The open interval excludes the endpoints a and b, and the 
closed interval includes the endpoints a and b. The interval 
10, 14 is neither open nor closed.

 5. Give the formula for finding the distance between two real 
numbers a and b. Use the formula to find the distance 
between 103 and 252.

The distance between a and b is 0  b 2 a 0 . The distance 
between 103 and 252 is 0 1252 2 2 103 0 5 155.

 6. Suppose a ? 0 is any real number.

(a) In the expression an, which is the base and which is the 
exponent?

The base is a and the exponent is n.

(b) What does an mean if n is a positive integer? What does 
65 mean?

The expression an means to multiply a by itself n times. 
For example, 65 5 6 # 6 # 6 # 6 # 6.

(c) What does a2n mean if n is a positive integer? What 
does 322 mean?

The expression a2n means the reciprocal of an, that is, 

a2n 5
1

an . For example, 322 5
1

32 .

(d) What does an mean if n is zero? 

Any number raised to the 0 power is always equal to 1.

(e) If m and n are positive integers, what does am/n mean? 
What does 43/2 mean?

The expression am/n means the nth root of the mth power 
of a. So 43/2 means that you take the square root of 4 and 
then raise it to the third power: 43/2 5 8.

 7. State the first five Laws of Exponents. Give examples in 
which you would use each law.

Law 1: aman 5 am1n; 52 # 56 5 58

Law 2: 
am

an 5 am2n; 
34

32 5 3422 5 32

Law 3: 1am 2 n 5 amn; 132 2 4 5 32 #4 5 38

Law 4: 1ab 2 n 5 anbn; 13 # 5 2 4 5 34 # 54

Law 5: a a

b
b

n

5
an

bn ; a 3

5
b

2

5
32

52

 8. When you multiply two powers of the same number, what 
should you do with the exponents? When you raise a power 
to a new power, what should you do with the exponents? 

When you multiply two powers of the same number, you add 
the exponents. When you raise a power to a new power, you 
multiply the two exponents.

 9. (a) What does !n a 5 b mean? 

The number b is the nth root of a.

(b) Is it true that "a2 is equal to 0  a 0 ? Try values for a that 
are positive and negative.

Yes, "a2 5 0  a 0 .
(c) How many real nth roots does a positive real number 

have if n is even? If n is odd?

There are two real nth roots if n is even and one real nth 
root if n is odd.

(d) Is !4 22 a real number? Is !3
22 a real number? Explain 

why or why not.

The expression !4 22 does not represent a real number 
because the fourth root of a negative number is unde-
fined. The expression !3

22 does represent a real number 
because the third root of a negative number is defined.

✃
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ChApteR p Review: Concept Check Answers (continued)

 10. Explain the steps involved in rationalizing a denominator. 
What is the logical first step in rationalizing the denominator 

of the expression 
5

!3
?

The logical first step in rationalizing 
5

!3
 is to multiply the 

numerator and denominator by !3:

5

!3
# !3

!3
5

5!3

3

 11. Explain the difference between expanding an expression and 
factoring an expression.

We use the Distributive Property to expand algebraic expres-
sions, and we reverse this process by factoring an expression 
as a product of simpler ones.

 12. State the Special Product Formulas used for expanding the 
given expression. Use the appropriate formula to expand 
1x 1 5 2 2 and 1x 1 5 2 1x 2 5 2 .

 (i) 1a 1 b 2 2 5 a2 1 2ab 1 b2

 (ii) 1a 2 b 2 2 5 a2 2 2ab 1 b2

 (iii) 1a 1 b 2 3 5 a3 1 3a2b 1 3ab2 1 b3

 (iv) 1a 2 b 2 3 5 a3 2 3a2b 1 3ab2 2 b3

 (v) 1a 1 b 2 1a 2 b 2 5 a2 2 b2

By (i) we have 1x 1 5 2 2 5 x2 1 10x 1 25, and by (v) we 
have 1x 1 5 2 1x 2 5 2 5 x2 2 25.

 13. State the following Special Factoring Formulas. Use the 
appropriate formula to factor x2 2 9.

 (i) Difference of Squares:

a2 2 b2 5 1a 1 b 2 1a 2 b 2
 (ii) Perfect Square:

a2 1 2ab 1 b2 5 1a 1 b 2 2
 (iii) Sum of Cubes:

a3 1 b3 5 1a 1 b 2 1a2 2 ab 1 b2 2
By (i) we have x2 2 9 5 1x 1 3 2 1x 2 3 2 .

 14. If the numerator and the denominator of a rational expression 
have a common factor, how would you simplify the expres-

sion? Simplify the expression 
x2 1 x

x 1 1
.

You would simplify the expression by canceling the common 
factors in the numerator and the denominator. We simplify 
the expression as follows:

x2 1 x

x 1 1
5

x1x 1 1 2
x 1 1

5 x

 15. Explain the following.

(a) How to multiply and divide rational expressions. 

To multiply two rational expressions, we multiply their 
numerators and multiply their denominators. To divide a 
rational expression by another rational expression, we 
invert the divisor and multiply.

(b) How to add and subtract rational expressions. 

To add or subtract two rational expressions, we first find 
the least common denominator (LCD), then rewrite the 
expressions using the LCD, and then add the fractions 
and combine the terms in the numerator.

(c) What LCD do we use to perform the addition in the 

 expression 
3

x 2 1
1

5

x 1 2
?

We use 1x 2 1 2 1x 1 2 2 .
 16. What is the logical first step in rationalizing the denominator 

of 
3

1 1 !x
?

Multiply both the numerator and the denominator by 

A1 2 !x B : 3

1 1 !x
# 1 2 !x

1 2 !x
5

3A1 2 !x B
1 2 x

 17. What is the difference between an algebraic expression and 
an equation? Give examples.

An algebraic expression is a combination of variables; for 
example, 2x2 1 xy 1 6. An equation is a statement that two 
mathematical expressions are equal; for example, 
3x 2 2y 5 9x 2 1.

 18. Consider the equation 5x 1 7 5 10 2 3x.

(a) Determine whether x 5 21 is a solution to the equation.

We replace the variable x in the equation with the value 
21 and get 5121 2 1 7 5 10 2 3121 2 , which is not a 
true equation, so x 5 21 is not a solution.

(b) Show how to use the rules of algebra to solve the 
equation.

 5x 1 7 5 10 2 3x  Given equation

 5x 5 3 2 3x   Subtract 7

 8x 5 3   Add 3x

 x 5 3
8   Divide by 8

 19. (a)  Give some examples of power equations.

x2 5 2, 3x3 5 15, x3/2 5 27, 1x 1 1 2 4 5 16

(b) Find all real solutions to the power equation x2 5 15.

x 5 6!15

(c) Find all real solutions to the power equation x3 5 15.

x 5 !3 15
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Review: Concept Check AnswersChApteR 1 

 1. (a)  In the coordinate plane, what is the horizontal axis called 
and what is the vertical axis called?

The horizontal axis is called the x-axis and the vertical 
axis is called the y-axis.

(b) To graph an ordered pair of numbers 1x,  y 2 , you need the 
coordinate plane. For the point 12,  3 2 , which is the 
x-coordinate and which is the y-coordinate?

The x-coordinate is 2, and the y-coordinate is 3.

(c) For an equation in the variables x and y, how do you 
determine whether a given point is on the graph? Is the 
point 15,  3 2  on the graph of the equation y 5 2x 2 1?

Any point 1x,  y 2  on the graph must satisfy the equation.  
Since 3 ? 215 2 2 1, the point 15,  3 2  is not on the graph 
of the equation y 5 2x 2 1.

 2. (a)  What is the formula for finding the distance between the 
points 1x1,  y1 2  and 1x2,  y2 2 ?

d 5 "1x2 2 x1 2 2 1 1y2 2 y1 2 2
(b) What is the formula for finding the midpoint between 
1x1,  y1 2  and 1x2,  y2 2 ?

a x1 1 x2

2
, 

y1 1 y2

2
b

 3. How do you find x-intercepts and y-intercepts of a graph of 
an equation?

To find the x-intercepts, you set y 5 0 and solve for x. To 
find the y-intercepts, you set x 5 0 and solve for y.

 4. (a)  Write an equation of the circle with center 1h,  k 2  and 
radius r. 

1x 2 h 2 2 1 1y 2 k 2 2 5 r2

(b) Find the equation of the circle with center 12,  21 2  and 
radius 3.

1x 2 2 2 2 1 1y 1 1 2 2 5 9

 5. (a)  How do you test whether the graph of an equation is 
symmetric with respect to the (i) x-axis, (ii) y-axis, and 
(iii) origin?

 (i)  When you replace y by 2y, the resulting equation 
is equivalent to the original one. 

 (ii)  When you replace x by 2x, the resulting equation 
is equivalent to the original one. 

 (iii)  When you replace x by 2x and y by 2y, the result-
ing equation is equivalent to the original one. 

(b) What type of symmetry does the graph of the equation
xy2 1 y2x2 5 3x have?

The graph is symmetric with respect to the x-axis.

 6. (a)  What is the slope of a line? How do you compute the 
slope of the line through the points 121,  4 2  and 11,  22 2 ?
The slope of a line is a measure of “steepness.” The slope 
of the line through the points 121, 4 2  and 11, 22 2  is

m 5
rise

run
5

22 2 4

1 2 121 2 5 23

(b) How do you find the slope and y-intercept of the line 
6x 1 3y 5 12? 

You write the equation in slope-intercept form 
y 5 mx 1 b. The slope is m, and the y-intercept is b. 
The slope-intercept form of this line is y 5 22x 1 4, so 
the slope is 22 and the intercept is 4.

(c) How do you write the equation for a line that has slope 3 
and passes through the point 11,  2 2 ?
Use the point-slope form of the equation of a line. So the 
equation is y 2 2 5 31x 2 1 2 .

 7. Give an equation of a vertical line and of a horizontal line 
that passes through the point 12,  3 2 .
An equation of a vertical line that passes through 12, 3 2  is 
x 5 2. An equation of a horizontal line that passes through 
12, 3 2  is y 5 3.

 8. State the general equation of a line.

Ax 1 By 5 C, where A and B are not both zero

 9. Given lines with slopes m1 and m2, explain how you can tell 
whether the lines are (i) parallel, (ii) perpendicular.

 (i) The lines are parallel if m1 5 m2.

 (ii) The lines are perpendicular if m2 5 2 

1
m1

.

 10. Write the general form of each type of equation.

 (i) Linear equation: ax 1 b 5 0

 (ii) Quadratic equation: ax2 1 bx 1 c 5 0

 11. What are the three ways to solve a quadratic equation? 

 (i) Factor the equation and use the Zero-Product property.
 (ii) Complete the square and solve.
 (iii) Use the Quadratic Formula.

 12. State the Zero-Product Property. Use the property to solve the 
equation x1x 2 1 2 5 0.

The Zero-Product Property states that AB 5 0 if and only if 
A 5 0 or B 5 0.

To solve the equation x1x 2 1 2 5 0, the Zero-Product  
Property shows that either x 5 0 or x 5 1.
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ChApteR 1 Review: Concept Check Answers (continued)

 13. What do you need to add to ax2 1 bx  to complete the 
square? Complete the square for the expression x2 1 6x.

To complete the square, add a b

2
b

2

. To make x2 1 6x a  

perfect square, add a 6

2
b

2

5 9, and this gives the perfect 

square x2 1 6x 1 9 5 1x 1 3 2 2.

 14. State the Quadratic Formula for the quadratic equation 
ax2 1 bx 1 c 5 0, and use it to solve the equation 
x2 1 6x 2 1 5 0.

The Quadratic Formula is x 5
2b 6 "b2 2 4ac

2a
.

Using the Quadratic Formula we get

x 5
26 6 !36 2 411 2 121 2

211 2 5 23 6 !10

 15. What is the discriminant of the quadratic equation 
ax2 1 bx 1 c 5 0? Find the discriminant of 
2x2 2 3x 1 5 5 0. How many real solutions does this  
equation have?

The discriminant is b2 2 4ac. The discriminant of 
2x2 2 3x 1 5 5 0 is negative, so there are no real solutions.

 16. What is a complex number? Give an example of a complex 
number, and identify the real and imaginary parts.

A complex number is an expression of the form a 1 bi, 
where a and b are real numbers and i 2 5 21. The complex 
number 2 1 3i has real part 2 and imaginary part 3.

 17. What is the complex conjugate of a complex number a 1 bi? 

The complex conjugate of a 1 bi is a 2 bi. 

 18. (a) How do you add complex numbers? 

To add complex numbers, add the real parts and the 
imaginary parts.

(b) How do you multiply 13 1 5i 2 12 2 i 2 ? 

Multiply complex numbers like binomials: 
13 1 5i 2 12 2 i 2 5 6 1 10i 2 3i 2 5i 2 5 11 1 7i

(c) Is 13 2 i 2 13 1 i 2  a real number? 

Yes, 13 2 i 2 13 1 i 2 5 9 2 i 2 5 10

(d) How do you simplify the quotient 13 1 5i 2/ 13 2 i 2 ?
Multiply the numerator and the denominator by 3 1 i, 
the complex conjugate of the denominator.

 19. What is the logical first step in solving the equation 
!x 2 1 5 x 2 3? Why is it important to check your 
answers when solving equations of this type? 

The logical first step in solving this equation is to square both 
sides. It is important to check your answers because the oper-
ation of squaring both sides can turn a false equation into a 
true one. In this case x 5 5 and x 5 2 are potential solu-
tions, but after checking, we see that x 5 5 is the only 
solution.

 20. Explain how to solve the given type of problem.

(a) Linear inequality: 2x $ 1

Divide both sides by 2; the solution set is 3 
1
2, ` B .

(b) Nonlinear inequality: 1x 2 1 2 1x 2 4 2 , 0

Find the intervals and make a table or diagram; the solu-
tion set is 11, 4 2 .

(c) Absolute value equation: 0  2x 2 5 0 5 7

Solve the two equations 2x 2 5 5 7 and 2x 2 5 5 27; 
the solutions are x 5 6 and x 5 21.

(d) Absolute value inequality: 0  2x 2 5 0 # 7

Solve the equivalent inequality 27 # 2x 2 5 # 7; the 
solution set is 321, 6 4 .

 21. How do you solve an equation (i) algebraically?  
(ii) graphically? 

 (i)  Use the rules of algebra to isolate the unknown on one 
side of the equation.

 (ii)  Move all terms to one side and set that side equal to y. 
Sketch a graph of the resulting equation to find the val-
ues of x at which y 5 0.

 22. How do you solve an inequality (i) algebraically?  
(ii) graphically? 

 (i)  Use the rules of algebra to isolate the unknown on one 
side of the inequality.

 (ii)  Move all terms to one side, and set that side equal to y.  
Sketch a graph to find the values x where the graph is 
above (or below) the x-axis.

 23. Write an equation that expresses each relationship.

(a) y is directly proportional to x: y 5 kx

(b) y is inversely proportional to x: y 5
k

x

(c) z is jointly proportional to x and y: z 5 kxy
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Review: Concept Check AnswersChApteR 2 

 1. Define each concept.

(a) Function

A function f is a rule that assigns to each input x in a set 
A exactly one output f 1x 2  in a set B.

(b) Domain and range of a function

The domain of a function is the set of all the possible 
input values, and the range is the set of all possible out-
put values.

(c) Graph of a function

The graph of a function f is the set of all ordered pairs 
1x, f 1x 22  plotted in a coordinate plane for x in the 
domain of f.

(d) Independent and dependent variables 

The symbol that represents any value in the domain of a 
function f is called an independent variable, and the 
symbol that represents any value in the range of f is 
called a dependent variable.

 2. Describe the four ways of representing a function.

A function can be represented verbally (using words), alge-
braically (using a formula), visually (using a graph), and 
numerically (using a table of values).

 3. Sketch graphs of the following functions by hand.

(a) f 1x 2 5 x2 (b) g1x 2 5 x3

1

1

y

x0

 

1

5

y

x0

(c) h1x 2 5 0  x 0  (d) k1x 2 5 !x

1

1

y

x0

 

1

1

y

x0

 4. What is a piecewise defined function? Give an example.

A piecewise defined function is defined by different formulas 
on different parts of its domain. An example is

f 1x 2 5 e x2 if x . 0

2 if x # 0

 5. (a) What is the Vertical Line Test, and what is it used for?

The Vertical Line Test states that a curve in the coordi-
nate plane represents a function if and only if no vertical 
line intersects the curve more than once. It is used to 
determine when a given curve represents a function.

(b) What is the Horizontal Line Test, and what is it used for?

The Horizontal Line Test states that a function is one-to-
one if and only if no horizontal line intersects its graph 
more than once. It is used to determine when a function 
is one-to-one.

 6. Define each concept, and give an example of each.

(a) Increasing function

A function is increasing when its graph rises. More  
precisely, a function is increasing on an interval I if 
f 1x1 2 , f 1x2 2  whenever x1 , x2 in I. For example,  
the function f 1x 2 5 x2 is an increasing function on the  
interval 10, ` 2 .

(b) Decreasing function

A function is decreasing when its graph falls. More  
precisely, a function is decreasing on an interval I if 
f 1x1 2 . f 1x2 2  whenever x1 , x2 in I. For example,  
the function f 1x 2 5 x2 is a decreasing function on the  
interval 12`, 0 2 .

(c) Constant function

A function f is constant if f 1x 2 5 c. For example, the 
function f 1x 2 5 3 is constant.

 7. Suppose we know that the point 13, 5 2  is a point on the graph 
of a function f. Explain how to find f 13 2  and f 

2115 2 .
Since 13, 5 2  is on the graph of f, the value 3 is the input and 
the value 5 is the output, so f 13 2 5 5 and f2115 2 5 3.

 8. What does it mean to say that f 14 2  is a local maximum value 
of f?

The value f 14 2  is a local maximum if f 14 2 $ f 1x 2  for all x 
near 4.

 9. Explain how to find the average rate of change of a function 
f between x 5 a and x 5 b.

The average rate of change of f is 

change in y

change in x
5

f 1b 2 2 f 1a 2
b 2 a

 10. (a)  What is the slope of a linear function? How do you find 
it? What is the rate of change of a linear function?

The slope of the graph of a linear function 
f 1x 2 5 ax 1 b is the same as the rate of change of f, 
and they are both equal to a, the coefficient of x.

(b)  Is the rate of change of a linear function constant? 
Explain.

Yes, because it is equal to the slope, and the slope is the 
same between any two points.
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(c) Give an example of a linear function, and sketch its 
graph.

An example is f 1x 2 5 2x 1 1, and the graph is shown 
below.

f 1x 2 5 2x 1 1

1

2

y

x0

 11. Suppose the graph of a function f is given. Write an equation 
for each of the graphs that are obtained from the graph of f 
as follows.

(a) Shift upward 3 units: y 5 f 1x 2 1 3

(b) Shift downward 3 units: y 5 f 1x 2 2 3

(c) Shift 3 units to the right: y 5 f 1x 2 3 2
(d) Shift 3 units to the left: y 5 f 1x 1 3 2
(e) Reflect in the x-axis: y 5 2f 1x 2
(f) Reflect in the y-axis: y 5 f 12x 2
(g) Stretch vertically by a factor of 3: y 5 3f 1x 2
(h) Shrink vertically by a factor of 1

3: y 5 1
3 
f 1x 2

(i) Shrink horizontally by a factor of 1
3: y 5 f 13x 2

(j) Stretch horizontally by a factor of 3: y 5 f A13 
xB

 12. (a)  What is an even function? How can you tell that a func-
tion is even by looking at its graph? Give an example of 
an even function.

An even function f satisfies f 12x 2 5 f 1x 2  for all x in its 
domain. If the graph of a function is symmetric with 
respect to the y-axis, then the function is even. Some 
examples are f 1x 2 5 x2 and f 1x 2 5 0  x 0 .

(b)  What is an odd function? How can you tell that a func-
tion is odd by looking at its graph? Give an example of 
an odd function.

An odd function f satisfies f 12x 2 5 2f 1x 2  for all x in 
its domain. If the graph of a function is symmetric with 
respect to the origin, then the function is odd. Some 
examples are f 1x 2 5 x3 and f 1x 2 5 !3 x.

 13. Suppose that f has domain A and g has domain B. What are 
the domains of the following functions?

(a) Domain of f 1 g: A > B

(b) Domain of fg: A > B

(c) Domain of f/g: 5x [ A > B 0  g1x 2 ? 06
 14. (a)  How is the composition function f + g defined? What is 

its domain? 

The function f + g is defined by f + g 1x 2 5 f 1g1x 22 . The 
domain is the set of all x in the domain of g such that 
g 1x 2  is in the domain of f.

(b)  If g1a 2 5 b and f 1b 2 5 c, then explain how to find 
1f + g 2 1a 2 .
To find f + g1a 2 , we evaluate the following:

f + g1a 2 5 f 1g1a 22 5 f 1b 2 5 c

 15. (a) What is a one-to-one function?

A function with domain A is called a one-to-one function 
if no two elements of A have the same image. More pre-
cisely, f 1x1 2 ? f 1x2 2  whenever x1 ? x2.

(b)  How can you tell from the graph of a function whether it 
is one-to-one?

We use the Horizontal Line Test, which states that a 
function is one-to-one if and only if no horizontal line 
intersects its graph more than once.

(c)  Suppose that f is a one-to-one function with domain A 
and range B. How is the inverse function f 

21 defined? 
What are the domain and range of f 

21? 

The inverse function of f has domain B and range A and 
is defined by 

f 
211y 2 5 x    3     f 1x 2 5 y

(d)  If you are given a formula for f, how do you find a  
formula for f 

21? Find the inverse of the function 
f  1x 2 5 2x.

We write y 5 f 1x 2 , solve the equation for x in terms  
of y, and interchange x and y. The resulting equation is 
y 5 f 

211x 2 . If f 1x 2 5 2x, we write y 5 2x, solve for x 
to get x 5 1

2 y, interchange x and y to get f 
211x 2 5 1

2 x.

(e)  If you are given a graph of f, how do you find a graph of 
the inverse function f 

21?

The graph of the inverse function f 
21 is obtained by 

reflecting the graph of f in the line y 5 x.
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ChApteR 3 

 1. (a)  What is the degree of a quadratic function f? What is the 
standard form of a quadratic function? How do you put a 
quadratic function into standard form?

A quadratic function f is a polynomial of degree 2.  
The standard form of a quadratic function f is 
f 1x 2 5 a1x 2 h 2 2 1 k . Complete the square to put a 
quadratic function into standard form.

(b)  The quadratic function f 1x 2 5 a1x 2 h 2 2 1 k is in stan-
dard form. The graph of f is a parabola. What is the ver-
tex of the graph of f? How do you determine whether 
f 1h 2 5 k is a minimum or a maximum value?

The vertex of the graph of f is 1h, k 2 . If the coefficient a 
is positive, then the graph of f opens upward and
f 1h 2 5 k is a minimum value. If a is negative, then the 
graph of f opens downward andf 1h 2 5 k is a maximum 
value.

(c)  Express f 1x 2 5 x2 1 4x 1 1 in standard form. Find the 
vertex of the graph and the maximum or minimum value 
of f.

We complete the square to get f 1x 2 5 1x 1 2 2 2 2 3. 
The graph is a parabola that opens upward with vertex 
122, 23 2 . The minimum value is f 122 2 5 23.

 2. (a)  Give the general form of polynomial function P of 
degree n.

P1x 2 5 an 
xn 1 an21x

n21 1 . . . 1 a1x 1 a0  an ? 0

(b)  What does it mean to say that c is a zero of P? Give two 
equivalent conditions that tell us that c is a zero of P.

The value c is a zero of P if P1c 2 5 0. Equivalently,  
c is a zero of P if x 2 c is a factor of P or if c is an 
x-intercept of the graph of P.

 3. Sketch graphs showing the possible end behaviors of polyno-
mials of odd degree and of even degree.

yy

0 x

0 x

y y

0 x

0 x

Odd degree

Even degree

 4. What steps do you follow to graph a polynomial function P?

We first find the zeros of P and then make a table using test 
points between successive zeros. We then  determine the end 
behavior and use all this information to graph P.

 5. (a)  What is a local maximum point or local minimum point 
of a polynomial P?

The point 1a, P1a 22  is a local maximum if it is the high-
est point on the graph of P within some viewing rectan-
gle. The point  1b, P1b 22  is a local minimum if it is the 
lowest point on the graph of P within some viewing 
rectangle.

(b)  How many local extrema can a polynomial P of degree n 
have?

The graph of P has at most n 2 1 local extrema.

 6. When we divide a polynomial P1x 2  by a divisor D1x 2 , the 
Division Algorithm tells us that we can always obtain a quo-
tient Q1x 2 and a remainder R1x 2 . State the two forms in 
which the result of this division can be written.

 
P1x 2
D1x 2 5 Q1x 2 1

R1x 2
D1x 2

 P1x 2 5 D1x 2Q1x 2 1 R1x 2
 7. (a) State the Remainder Theorem. 

If a polynomial P1x 2  is divided by x 2 c, then the 
remainder is the value P1c 2 . 

(b) State the Factor Theorem. 

The number c is a zero of P if and only if x 2 c is a  
factor of P1x 2 .

(c) State the Rational Zeros Theorem.

If the polynomial 

P1x 2 5 an xn 1 an21x
n21 1 . . . 1 a1x 1 a0

has integer coefficients, then every rational zero of P is 
of the form p/q, where p is a factor of the constant coef-
ficient a0 and q is a factor of the leading coefficient an.

 8. What steps would you take to find the rational zeros of a 
polynomial P?

First list all possible rational zeros of P given by the Rational 
Zeros Theorem. Evaluate P at a possible zero (using syn-
thetic division), and note the quotient if the remainder is 0. 
Repeat this process on the quotient until you reach a quotient 
that is quadratic. Then use the quadratic formula to find the 
remaining zeros.
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 9. Let P1x 2 5 2x4 2 3x3 1 x 2 15.

(a)  Explain how Descartes’ Rule of Signs is used to deter-
mine the possible number of positive and negative real 
roots of P.

Since there are three variations in sign in P1x 2 , by 
Descartes’ Rule of Signs there are either three or one 
positive real zeros. Since there is one variation in sign in 
P12x 2 , by Descartes’ Rule of Signs there is exactly one 
negative real zero.

(b)  What does it mean to say that a is a lower bound and b is 
an upper bound for the zeros of a polynomial?

We say that a is a lower bound and b is an upper bound 
for the zeros of a polynomial if every real zero c of the 
polynomial satisfies a # c # b.

(c)  Explain how the Upper and Lower Bounds Theorem is 
used to show that all the real zeros of P lie between 23 
and 3. 

When we divide P by x 2 3, the row that contains the 
quotient and the remainder has only nonnegative  
entries, so 3 is an upper bound. When we divide P by 
x 2 123 2 5 x 1 3, the row that contains the quotient 
and the remainder has entries that alternate in sign, so 
23 is a lower bound. 

 10. (a) State the Fundamental Theorem of Algebra.

Every polynomial has at least one complex zero.

(b) State the Complete Factorization Theorem. 

Every polynomial of degree n $ 1 can be factored com-
pletely into linear factors (with complex coefficients).

(c) State the Zeros Theorem. 

Every polynomial of degree n $ 1 has exactly n zeros, 
provided that a zero of multiplicity k is counted  
k times. 

(d) State the Conjugate Zeros Theorem. 

If a polynomial has real coefficients and if the complex 
number z is a zero of the polynomial, then its complex 
conjugate z is also a zero of the polynomial.

 11. (a) What is a rational function?

A rational function is a function of the form 

r 1x 2 5
P1x 2
Q1x 2 , where P and Q are polynomials.

(b)  What does it mean to say that x 5 a is a vertical asymp-
tote of y 5 f 1x 2 ?
The line x 5 a is a vertical asymptote if 

y S 6`  as x S a1 or x S a2

(c)  What does it mean to say that y 5 b is a horizontal 
asymptote of y 5 f 1x 2 ?
The line y 5 b is a horizontal asymptote if 

y S b as x S `  or x S 2`

 12. (a)  How do you find vertical asymptotes of rational functions? 

Vertical asymptotes of a rational function are the line 
x 5 a, where a is a zero of the denominator. 

(b)  Let s be the rational function 

s1x 2 5
an 

xn 1 an21x
n21 1 . . . 1 a1x 1 a0

bm 
xm 1 bm21x

m21 1 . . . 1 b1x 1 b0

  How do you find the horizontal asymptote of s? 

If n , m, then the horizontal asymptote is 

y 5 0

If n 5 m, then the horizontal asymptote is 

y 5
an

bm

If n . m, then there is no horizontal asymptote.

(c)  Find the vertical and horizontal asymptotes of 

f 1x 2 5
5x2 1 3

x2 2 4

The denominator factors as 1x 2 2 2 1x 1 2 2 , so the verti-
cal asymptotes are x 5 2 and x 5 22. The horizontal 
asymptote is y 5 5.

 13. (a)  Under what circumstances does a rational function have 
a slant asymptote? 

If r 1x 2 5 P1x 2/Q1x 2  and the degree of P is one greater 
than the degree of Q, then r has a slant asymptote.

(b)  How do you determine the end behavior of a rational 
function? 

Divide the numerator by the denominator; the quotient 
determines the end behavior of the function.

 14. (a)  Explain how to solve a polynomial inequality.

Move all terms to one side, factor the polynomial, find 
the zeros of the polynomial, use the zeros and test points 
to make a sign diagram, and use the diagram to solve the 
inequality.

(b) What are the cut points of a rational function? Explain 
how to solve a rational inequality. 

The cut points are the zeros of the numerator and zeros 
of the denominator. To solve a rational inequality, move 
all terms to one side, factor the numerator and denomina-
tor to find all the cut points, use the cut points and test 
points to make a sign diagram, and use the diagram to 
solve the inequality.

(c)  Solve the inequality x2 2 9 # 8x.

Move all terms to one side and then factor: 
1x 1 1 2 1x 2 9 2 # 0. We make a sign diagram as shown.

Sign of x  1

Sign of x 9

Sign of (x  1)(x  9)

1

+

-

-

-

-

+

+

+

+

9

The solution is the interval 321, 9 4 .
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 1. Let f be the exponential function with base a.

(a) Write an equation that defines f. 

f 1x 2 5 ax

(b) Write an equation for the exponential function f with 
base 3.

f 1x 2 5 3x

 2. Let f be the exponential function f 1x 2 5 ax, where a . 0.

(a) What is the domain of f?

All real numbers 12`, ` 2
(b) What is the range of f?

All positive real numbers 10, ` 2
(c) Sketch graphs of f for the following cases.

 (i) a . 1  (ii) 0 , a , 1

0 x

y

(0, 1)

0 x

y

(0, 1)

(i) (ii)

 3. If x is large, which function grows faster, f 1x 2 5 2x or 
g1x 2 5 x2?

The function f 1x 2 5 2x grows faster. We can see this by 
graphing both functions in a sufficiently large viewing 
rectangle.

 4. (a) How is the number e defined?

The number e is the value that a1 1
1
n
b

n

approaches as 
n becomes large.

(b) Give an approximate value of e, rounded to five decimal 
places.

e < 2.71828

(c) What is the natural exponential function?

It is the exponential function with base e: 

f 1x 2 5 ex

 5. (a) How is loga x defined?

loga x 5 y 3 ay 5 x

(b) Find log3 9.

log3 9 5 2 because 32 5 9

(c) What is the natural logarithm?

It is the logarithm with base e: ln x 5 loge x

(d) What is the common logarithm?

It is the logarithm with base 10: log x 5 log10 x

(e) Write the exponential form of the equation  
log7 49 5 2.

72 5 49

 6. Let f be the logarithmic function f 1x 2 5 loga x.

(a) What is the domain of f?

All positive real numbers 10, ` 2
(b) What is the range of f?

All real numbers 12`, ` 2
(c) Sketch a graph of the logarithmic function for the case 

that a . 1.

x

y

0 1

 7. State the three Laws of Logarithms.

loga xy 5 loga x 1 loga y

loga a x

y
b 5 loga x 2 loga y

loga x
N 5 N loga x

 8. (a) State the Change of Base Formula. 

loga x 5
logb x

logb a

(b) Find log7 30.

By the Change of Base Formula

log7 30 5
log 30

log 7
< 1.7479

 9. (a) What is an exponential equation?

An exponential equation is one in which the unknown 
occurs in an exponent.

(b) How do you solve an exponential equation?

First isolate the exponential term on one side, take loga-
rithms of each side, and then use the laws of logarithms 
to bring down the exponent. Then solve for the unknown.

(c) Solve for x: 2x 5 19

 log 2x 5 log 19

 x log 2 5 log 19

 x 5
log 19

log 2
< 4.2479
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 10. (a) What is a logarithmic equation?

A logarithmic equation is one in which a logarithm of 
the unknown occurs.

(b) How do you solve a logarithmic equation?

First combine the logarithmic terms on one side of the 
equation, write the resulting equation in exponential 
form, and then solve for the unknown. 

(c) Solve for x: 4 log3 x 5 7

 4 log3 x 5 7

 log3 x 5 1.75

 x 5 31.75 <  6.84

 11. Suppose that an amount P is invested at an interest rate r and 
A1 t 2  is the amount of the investment after t years. Write a 
formula for A1 t 2  in the following cases.

(a) Interest is compounded n times per year.

A1 t 2 5 P a1 1
r

n
b

nt

(b) Interest is compounded continuously.

A1 t 2 5 Pert

 12. Suppose that the initial size of a population is n0 and the 
population grows exponentially. Let n1 t 2  be the size of the 
population at time t. 

(a) Write a formula for n1 t 2  in terms of the doubling time a.

n1 t 2 5 n0 
2t/a

(b) Write a formula for n1 t 2  in terms of the relative growth 
rate r. 

n1 t 2 5 n0 ert

 13. Suppose that the initial mass of a radioactive substance is m0 
and the half-life of the substance is h. Let m1 t 2  be the mass 
remaining at time t. 

(a) What is meant by the half-life h?

The time it takes for a mass to decay to half its amount

(b) Write a formula for m1 t 2  in terms of the half-life h.

m1 t 2 5 m0 22t/h

(c) Write a formula for the relative decay rate r in terms of 
the half-life h.

r 5
ln 2

h

(d) Write a formula for m1 t 2  in terms of the relative decay 
rate r. 

m1 t 2 5 m0 e2rt

 14. Suppose that the initial temperature difference between an 
object and its surroundings is D0 and the surroundings have 
temperature Ts. Let T1 t 2  be the temperature at time t. State 
Newton’s Law of Cooling for T1 t 2 .

T1 t 2 5 Ts 1 D0 e2kt

where k is a constant that depends on the type of object.

 15. What is a logarithmic scale? If we use a logarithmic scale 
with base 10, what do the following numbers correspond to 
on the logarithmic scale? 

(i) 100  (ii) 100,000  (iii) 0.0001

On a logarithmic scale, numbers are represented by their 
logarithms. 

(i) 2  (ii) 5   (iii) 24

 16. (a) What does the pH scale measure?

The acidity (or alkalinity) of a substance

(b) Define the pH of a substance with hydrogen ion concen-
tration of 3H14.

pH 5 2log 3H14

 17. (a) What does the Richter scale measure?

The magnitude of earthquakes

(b) Define the magnitude M of an earthquake in terms of the 
intensity I of the earthquake and the intensity S of a stan-
dard earthquake.

M 5 2log 
I

S

 18. (a) What does the decibel scale measure?

The loudness of sound

(b) Define the decibel level B of a sound in terms of the 
intensity I of the sound and the intensity I0 of a barely 
audible sound. 

B 5 10 log 
I

I0
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 1. (a) How is the degree measure of an angle defined?

An angle of 18 is 1
360 of a complete revolution.

(b) How is the radian measure of an angle defined?

The radian measure of an angle is the length of the arc 
that the angle subtends in a circle of radius 1.

(c) How do you convert from degrees to radians? Convert 
458 to radians.

To convert from degrees to radians, we multiply by 
p/180. So

458 5 45a p

180
b rad 5

p

4

(d) How do you convert from radians to degrees? Convert  
2 rad to degrees.

To convert from radians to degrees, we multiply by 
180/p. So

2 rad 5 2a 180
p
b < 114.68

 2. (a)  When is an angle in standard position? Illustrate with a 
graph.

An angle is in standard position if it is drawn in the  
xy-plane with its vertex at the origin and its initial side 
on the positive x-axis.

¨
¨

y

x0

y

x0

(b) When are two angles in standard position coterminal?  
Illustrate with a graph.

Two angles are coterminal if their sides coincide. Angles 
that differ by a multiple of 2p rad (or a multiple of 
3608) are coterminal.

y

x0

5π
3_

y

x0

π
3

(c) Are the angles 258 and 7458 coterminal? 

Yes, because 7458 2 258 5 7208, which is a multiple of 
3608.

(d) How is the reference angle for an angle u defined?

The reference angle u is the acute angle formed by the 
terminal side of u and the x-axis.

(e) Find the reference angle for 1508. 

The reference angle is u 5 1808 2 1508 5 308.

 3. (a)  In a circle of radius r, what is the length s of an arc that 
subtends a central angle of u radians?

s 5 ru

(b) In a circle of radius r, what is the area A of a sector with 
central angle u radians?

A 5 1
2 
r2u

 4. (a)  Let u be an acute angle in a right triangle. Identify the 
opposite side, the adjacent side, and the hypotenuse in 
the figure.

¨

hypotenuse

adjacent

opposite

(b) Define the six trigonometric ratios in terms of the  
adjacent and opposite sides and the hypotenuse.

 sin u 5
opp

hyp
   cos u 5

adj

hyp
   tan u 5

opp

adj

 csc u 5
hyp

opp
   sec u 5

hyp

adj
   cot u 5

adj

opp

(c) Find the six trigonometric ratios for  
the angle u shown in the figure. 

 sin u 5
3

5
   cos u 5

4

5
   tan u 5

3

4

 csc u 5
5

3
   sec u 5

5

4
   cot u 5

4

3

(d) List the special values of sine, cosine, and tangent.

 sin p6 5 1
2   sin p4 5 !2

2    sin p3 5 !3
2

 cos p6 5 !3
2    cos p4 5 !2

2    cos p3 5 1
2

 tan p6 5 !3
3    tan p4 5 1   tan p3 5 !3

 5. (a) What does it mean to solve a triangle? 

To solve a triangle means to find all three angles and all 
three sides.

(b) Solve the triangle shown.

/B 5 908 2 358 5 558

 a 5 10 sin 358 < 5.74

 b 5 10 cos 358 < 8.19

 6. (a)  Let u be an angle in standard position, let P1x, y 2  be a 
point on the terminal side, and let r be the distance from 

¨

4
5

3

10
A

B

C

35*
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Review: Concept Check Answers (continued)ChApteR 5 

the origin to P, as shown in the figure. Write expressions 
for the six trigonometric functions of u.

P(x, y)

y

x0

¨
r

  

 sin u 5 y
r   csc u 5 r

y

 cos u 5 x
r   sec u 5 r

x

 tan u 5 y
x   cot u 5 x

y

(b) Find the sine, cosine, and tangent for the angle u shown 
in the figure. 

P(_3, 4)
y

x0

¨
r

  

Here x 5 23, y 5 4, and 

r 5 "123 2 2 1 42 5 5. So 

sin u 5 4
5, cos u 5 23

5 , and 

tan u 5 4
23.

 7. In each of the four quadrants, identify the trigonometric func-
tions that are positive.

In Quadrant I all the trigonometric functions are positive; in 
Quadrant II the sine and cosecant functions are positive; in 
Quadrant III the tangent and cotangent functions are positive; 
and in Quadrant IV the cosine and secant functions are positive.

 8. (a)  Describe the steps we use to find the value of a trigono-
metric function of an angle u. 

We find the reference angle for u, the quadrant where the 
terminal side lies, and the sign of the function in that 
quadrant, and we use all these to find the value of the 
function at u.

(b) Find sin 5p/6.

The terminal side of the angle 5p
6  is in Quadrant II, and 

the reference angle is p 2 5p
6 5 p

6 . Since sine is positive 
in Quadrant II, sin 5p

6 5 sin p6 5 1
2.

 9. (a) State the reciprocal identities.

csc u 5
1

sin u
  sec u 5

1

cos u
  cot u 5

1

tan u

(b) State the Pythagorean identities.

sin2
 u 1 cos2

 u 5 1  tan2
 u 1 1 5 sec2

 u  1 1 cot2
 u 5 csc2

 u

 10. (a)  What is the area of a triangle with sides of length a and b 
and with included angle u?

The area is ! 5
1

2
 ab sin u.

(b) What is the area of a triangle with sides of length a, b, 
and c?

The area is given by Heron’s Formula

! 5 !s1s 2 a 2 1s 2 b 2 1s 2 c 2
where s 5 1

2 
1a 1 b 1 c 2  is the semiperimeter.

 11. (a)  Define the inverse sine function, the inverse cosine func-
tion, and the inverse tangent function. 

 sin21
 x 5 y 3  sin y 5 x

 cos21
 x 5 y 3  cos y 5 x

 tan21
 x 5 y 3  tan y 5 x

(b) Find sin21
  
1
2 , cos211!2/2 2 , and tan21

 1.

From 2(c) and the definitions in part (a) we get

sin21
  
1
2 5 p

6  cos21
  
!2
2 5 p

4  tan211 5 p
4

(c) For what values of x is the equation sin1sin21
 x 2 5 x 

true? For what values of x is the equation 
sin211sin x 2 5 x true?

sin 1sin21
 x 2 5 x for 21 # x # 1

sin211sin x 2 5 x for 2 
p
2 # x # p

2

 12. (a) State the Law of Sines.

In triangle ABC we have 
sin A

a
5

sin B

b
5

sin C
c

.

(b) Find side a in the figure. 

Note that /C 5 1808 2 1858 1 408 2 5 558. 

By the Law of Sines 

sin 858

a
5

sin 558

100
, so 

a 5
100 sin 858

sin 558
< 121.6.

(c) Explain the ambiguous case in the Law of Sines.

In the case SSA there may be two triangles, one triangle, 
or no triangle with the given sides and angles. 

 13. (a) State the Law of Cosines.

In triangle ABC we have 

 a2 5 b2 1 c2 2 2bc cos A

 b2 5 a2 1 c2 2 2ac cos B

 c2 5 a2 1 b2 2 2ab cos C

(b) Find side a in the figure. 

A B

a30

C

40*
50

By the Law of Cosines we have

 a 5 "b2 1 c2 2 2bc cos A

 5 "502 1 302 2 2150 2 130 2cos 408

 < 33.2

A B

a
b

C

85* 40*
100
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Review: Concept Check Answers

(continued)

ChApteR 6 

 1. (a)  What is the unit circle, and what is the equation of the 
unit circle?

The unit circle is the circle of radius 1 centered at 10, 0 2 . 
The equation of the unit circle is x2 1 y2 5 1.

(b) Use a diagram to explain what is meant by the terminal 
point P1x, y 2  determined by t.

y

x0 1

tP(x, y)

(c) Find the terminal point for t 5
p

2
.

P1x, y 2 5 10, 1 2
(d) What is the reference number associated with t?

The reference number is the shortest distance along the 
unit circle between the terminal point determined by t 
and the x-axis.

(e) Find the reference number and terminal point for t 5
7p

4
.

The reference number is p
4 . The terminal point is in 

Quadrant IV, so P1x, y 2 5 A!2
2 , 2 

!2
2  
B .

 2. Let t be a real number, and let P1x, y 2  be the terminal point 
determined by t.

(a) Write equations that define sin t, cos t, tan t, csc t, sec t, 
and cot t.

 sin t 5 y   cos t 5 x   tan t 5 y
x

 csc t 5 1
y    sec t 5 1

x    cot t 5 x
y

(b) In each of the four quadrants, identify the trigonometric 
functions that are positive.

In Quadrant I all functions are positive; in Quadrant II the 
sine and cosecant functions are positive; in Quadrant III 
the tangent and cotangent functions are positive; and in 
Quadrant IV the cosine and secant functions are positive.

(c) List the special values of sine, cosine, and tangent.

sin 0 5 0, sin p6 5 1
2, sin p4 5 !2

2 , sin p3 5 !3
2 , sin p2 5 1

cos 0 5 1, cos p6 5 !3
2 , cos p4 5 !2

2 , cos p3 5 1
2, cos p2 5 0

tan 0 5 0, tan p6 5 !3
3 , tan p4 5 1, tan p3 5 !3

 3. (a)  Describe the steps we use to find the value of a trigono-
metric function at a real number t. 

We find the reference number for t, the quadrant where 
the terminal point lies, and the sign of the function in 
that quadrant, and we use all these to find the value of 
the function at t.

(b) Find sin 
5p

6
.

The terminal point of 5p
6  is in Quadrant II. Since sine is 

positive in Quadrant II, sin 5p
6 5 sin p6 5 1

2.

 4. (a) What is a periodic function? 

A function f is periodic if there is a positive number p 
such that f 1x 1 p 2 5 f 1x 2  for every x. The least such p 
is called the period of f.

(b) What are the periods of the six trigonometric functions?

The sine, cosine, cosecant, and secant functions have period 
2p, and the tangent and cotangent functions have period p.

(c) Find sin 
19p

4
.

sin 19p
4 5 sin A3p

4 1 4pB 5 sin 3p
4 5 !2

2

 5. (a) What is an even function, and what is an odd function?

An even function satisfies f 12x 2 5 f 1x 2 . 
An odd function satisfies f 12x 2 5 2f 1x 2 .

(b) Which trigonometric functions are even? Which are odd?

The cosine and secant functions are even; the sine,  
cosecant, tangent, and cotangent functions are odd.

(c) If sin t 5 0.4, find sin12t 2 .
Since the sine function is odd, sin 12t 2 5 20.4.

(d) If cos s 5 0.7, find cos12s 2 .
Since the cosine function is even, cos 12s 2 5 0.7.

 6. (a) State the reciprocal identities.

csc t 5 1
sin t , sec t 5 1

cos t , cot t 5 1
tan t , 

tan t 5 sin t
cos t , cot t 5 cos t

sin t

(b) State the Pythagorean identities.

sin2 t 1 cos2 t 5 1, tan2 t 1 1 5 sec2 t, 
1 1 cot2 t 5 csc2 t

 7. (a) Graph the sine and cosine functions.

y

x0

y=ß x
1

_1
π 2π

Period 2π

y

x0

y=ç x
1

_1
π 2π

Period 2π

(b) What are the amplitude, period, and horizontal shift for 
the sine curve y 5 a sin k1x 2 b 2  and for the cosine 
curve y 5 a cos k1x 2 b 2 ?
Amplitude a; period 2p

k ; horizontal shift b

(c) Find the amplitude, period, and horizontal shift of 

 y 5 3 sin a2x 2
p

6
b .

We factor to get y 5 3 sin 21x 2 p
12 2 .

Amplitude 3; period p; horizontal shift p
12
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 8. (a) Graph the tangent and cotangent functions.

y=† x y=ˇ x
y

xπ
2

0 ππ
2__π

1

y

xπ
2

3π
2

π
2_

1

0 π

(b) For the curves y 5 a tan kx and y 5 a cot kx, state appro-
priate intervals to graph one complete period of each curve.

An appropriate interval for y 5 a tan kx is 
12p/2k, p/2k 2 .
An appropriate interval for y 5 a cot kx is 10, p/k 2 .

(c) Find an appropriate interval to graph one complete 
period of y 5 5 tan 3x.

An appropriate interval for y 5 5 tan 3x is 12p/6, p/6 2 .
 9. (a) Graph the cosecant and secant functions.

y

x0

y= x

1

_1
π 2π

y=˚ x
y

x0

1

_1
π 2π

(b) For the curves y 5 a csc kx and y 5 a sec kx, state 
appropriate intervals to graph one complete period of 
each curve.

An appropriate interval for y 5 a csc kx is 10, 2p/k 2 .
An appropriate interval for y 5 a sec kx is 10, 2p/k 2 .

(c) Find an appropriate interval to graph one period of 
y 5 3 csc 6x.

An appropriate interval for y 5 3 csc 6x is 10, p/3 2 .

 10. (a)  Define the inverse sine function, the inverse cosine func-
tion, and the inverse tangent function. 

 sin21x 5 y 3   sin y 5 x

 cos21x 5 y 3   cos y 5 x

 tan21x 5 y 3   tan y 5 x

(b) Find sin21 
1

2
, cos21 

!2

2
, and tan21

 1.

From 2(c) and the definitions in part (a) we get 

sin21 12 5 p
6 , cos21 !2

2 5 p
4 , and tan21 1 5 p

4 .

(c) For what values of x is the equation sin1sin21
 x 2 5 x true? 

For what values of x is the equation sin211sin x 2 5 x true?

 sin1sin21 x 2 5 x for 21 # x # 1

 sin211sin x 2 5 x for 2 
p
2 # x # p

2

 11. (a) What is simple harmonic motion?

An object is in simple harmonic motion if its displacement 
y at time t is modeled by y 5 a sin vt or y 5 a cos vt.

(b) What is damped harmonic motion?

An object is in damped harmonic motion if its displace-
ment y at time t is modeled by y 5 ke2ct sin vt or 
y 5 ke2ct cos vt, c . 0.

(c) Give real-world examples of harmonic motion.

The motion of a vibrating mass on a spring, the vibra-
tions of a violin string, the brightness of a variable star, 
and many more

 12. Suppose that an object is in simple harmonic motion given by 

  y 5 5 sina2t 2
p

3
b .

(a) Find the amplitude, period, and frequency. 

Amplitude 5; period 2p
2 5 p; frequency 2

2p 5 1
p

(b) Find the phase and the horizontal shift.

The phase is p
3 , and the horizontal shift (or lag time) is p

6 .

 13. Consider the following models of harmonic motion.

y1 5 5 sin12t 2 1 2   y2 5 5 sin12t 2 3 2
  Do both motions have the same frequency? What is the phase 

for each equation? What is the phase difference? Are the 
objects moving in phase or out of phase?

Both motions have the same frequency: 1/p. The phase of 
the first is 1, and the phase of the second is 3. The phase dif-
ference is 3 2 1 5 2, which is not a multiple of 2p, so the 
objects are moving out of phase.
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(continued)

ChApteR 7 

 1. What is an identity? What is a trigonometric identity? 

An identity is an equation that is true for all values of the 
variable(s). A trigonometric identity is an identity that 
involves trigonometric functions.

 2. (a) State the Pythagorean identities.

 sin2
 x 1 cos2

 x 5 1

 tan2
 x 1 1 5 sec2

 x

 1 1 cot2
 x 5 csc2

 x

(b) Use a Pythagorean identity to express cosine in terms of 
sine.

By the first Pythagorean identity we have 

cos x 5 6"1 2 sin2
 x

 3. (a)  State the reciprocal identities for cosecant, secant, and 
cotangent.

csc x 5
1

sin x
  sec x 5

1

cos x
  cot x 5

1

tan x

(b) State the even-odd identities for sine and cosine.

sin12x 2 5 2sin x  cos12x 2 5 cos x

(c) State the cofunction identities for sine, tangent, and secant.

sin Ap2 2 xB 5 cos x  tan Ap2 2 xB 5 cot x  sec Ap2 2 xB 5 csc x

(d) Suppose that cos12x 2 5 0.4; use the identities in parts 
(a) and (b) to find sec x.

sec x 5
1

cos x
5

1

cos12x 2 5
1

0.4
5 2.5

(e) Suppose that sin 108 5 a; use the identities in part (c) to 
find cos 808.

Since 108 and 808 are complementary angles, we have 
cos 808 5 sin 108 5 a.

 4. (a) How do you prove an identity?

Start with one side of the equation, and then use known 
identities to transform it to the other side.

(b) Prove the identity sin x1csc x 2 sin x 2 5 cos2
 x

 LHS 5 sin x1csc x 2 sin x 2

 5 sin xa 1

sin x
2 sin xb  Reciprocal identity

 5 1 2 sin2
 x  Distributive Property

 5 cos2
 x 5 RHS  Pythagorean identity

 5. (a)  State the Addition and Subtraction Formulas for Sine and 
Cosine.

sin1s 1 t 2 5 sin s cos t 1 cos s sin t

cos1s 1 t 2 5 cos s cos t 2 sin s sin t

(b) Use a formula from part (a) to find sin 758.

 sin 758 5 sin1458 1 308 2
 5 sin 458 cos 308 1 cos 458 sin 308

 5
!2

2
 
!3

2
1

!2

2
 
1

2
5

!6 1 !2

4

 6. (a) State the formula for A sin x 1 B cos x.

Let k 5 "A2 1 B2; then

A sin x 1 B cos x 5 k sin1x 1 f 2
where f satisfies cos f 5 A/"A2 1 B2 and 

sin f 5 B/"A2 1 B2.

(b) Express 3 sin x 1 4 cos x as a function of sine only.

We have k 5 "32 1 42 5 5. The angle f satisfies 
cos f 5 3

5 and sin f 5 4
5, so f is in Quadrant I. We 

find f 5 sin21A45 B < 53.18. Thus

3 sin x 1 4 cos x 5 5 sin1x 1 53.18 2
 7. (a)  State the Double-Angle Formula for Sine and the  

Double-Angle Formulas for Cosine. 

 sin 2x 5 2 sin x cos x

 cos 2x 5 cos2
 x 2 sin2

 x

 5 1 2 2 sin2
 x

 5 2 cos2
 x 2 1

(b) Prove the identity sec x sin 2x 5 2 sin x.

 LHS 5 sec x sin 2x

 5 sec x12 sin x cos x 2  Double-Angle Formula

 5
1

cos x
 12 sin x cos x 2  Reciprocal identity

 5 2 sin x 5 RHS  Pythagorean identity

 8. (a)  State the formulas for lowering powers of sine and cosine.

sin2
 x 5

1 2 cos 2x

2
  cos2

 x 5
1 1 cos 2x

2

(b) Prove the identity 4 sin2
 x cos2

 x 5 sin2
 2x.

 LHS 5 4 sin2
 x cos2

 x

 5 4 a 1 2 cos 2x

2
b a 1 1 cos 2x

2
b  Lower powers

 5 1 2 cos2
 2x  Simplify

 5 sin2
 2x 5 RHS  Pythagorean identity

 9. (a) State the Half-Angle Formulas for Sine and Cosine.

sin 
u

2
5 6 Ä

1 2 cos u

2
  cos 

u

2
5 6 Ä

1 1 cos u

2

(b) Find cos 158.

 cos 158 5 cos a 308

2
b

 5 6Å
1 1 cos 308

2
5 6Å

1 1 !3/2

2

 5 6 Å
2 1 !3

4
5 6 

1

2
 "2 1 !3

Since 158 is in Quadrant I and since cosine is positive in 

Quadrant I, we conclude that cos 158 5 1
2 

 "2 1 !3.
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 10. (a)  State the Product-to-Sum Formula for the product 
sin u cos √.

sin u cos √ 5 1
2 
3sin1u 1 √ 2 1 sin1u 2 √ 24

(b) Express sin 5x cos 3x as a sum of trigonometric 
functions.

By the formula in part (a) we have

 sin 5x cos 3x 5 1
2 3sin15x 1 3x 2 1 sin15x 2 3x 24

 5 1
2 sin 8x 1 1

2 sin 2x

 11. (a)  State the Sum-to-Product Formula for the sum 
sin x 1 sin y.

sin x 1 sin y 5 2 sin 
x 1 y

2
 cos 

x 2 y

2

(b) Express sin 5x 1 sin 7x as a product of trigonometric 
functions.

By the formula in part (a) we have

 sin 5x 1 sin 7x 5 2 sin 
5x 1 7x

2
 cos 

5x 2 7x

2

 5 2 sin 6x cos12x 2
 5 2 sin 6x cos x

 12. What is a trigonometric equation? How do we solve a trigo-
nometric equation?

A trigonometric equation is an equation involving trigono-
metric functions. To solve a trigonometric equation, we first 
find all solutions for one period of the function involved and 
then add integer multiples of the period to obtain all 
solutions.

(a) Solve the equation cos x 5 1
2.

The solutions of this equation in the interval 30, 2p 2  are 

x 5
p

3
  and  x 5

5p

3

To obtain all solutions, we add multiples of 2p (because 
cos x is periodic with period 2p). The solutions are

x 5
p

3
1 2kp  and  x 5

5p

3
1 2kp

where k is any integer. 

(b) Solve the equation 2 sin x cos x 5 1
2.

First we use a double-angle formula to express the left-
hand side as a single trigonometric function.

 2 sin x cos x 5 1
2 Given equation

 sin 2x 5 1
2 Double-Angle Formula

The solutions of this equation in the interval 30, 2p 2  are 

2x 5
p

6
  and  2x 5

5p

6

To obtain all solutions, we add multiples of 2p. The 
solutions are

2x 5
p

6
1 2kp  and  2x 5

5p

6
1 2kp

and dividing by 2, we get the solutions

x 5
p

12
1 kp  and  x 5

5p

12
1 kp

where k is any integer. 
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 1. (a) Explain the polar coordinate system. 

In the polar coordi-
nate system the loca-
tion of a point P in the 
plane is determined by 
an ordered pair 1r, u 2 , 
where r is the distance 
from the pole O to P 
and u is the angle formed by the polar axis  
and the ray OP

>
, as shown in the figure.

(b) Graph the points with polar coordinates 12, p/3 2  and 
121, 3p/4 2 .

x

y

O

3π
4

π
3

π
3

!_1, 

1

     @3π
4

x

y

O

!2, 
2

 @

(c) State the equations that relate the rectangular coordinates 
of a point to its polar coordinates. 

To change from polar to rectangular:

x 5 r cos u  and  y 5 r sin u

To change from rectangular to polar:

r2 5 x2 1 y2  and  tan u 5
y

x

(d) Find rectangular coordinates for 12, p/3 2 .

x 5 2 cos 
p

3
5 1  and  y 5 2 sin 

p

3
5 !3

So in rectangular coordinates the point is 11, !3 2 .
(e) Find polar coordinates for P122, 2 2 . 

r2 5 122 2 2 1 22 5 8, so r 5 !8 5 2!2. 
tan u 5 2/ 122 2 5 21 and P is in Quadrant II, so 
u 5 3p/4. So in polar coordinates the point is 
12!2, 3p/4 2 .

 2. (a) What is a polar equation? 

A polar equation is an equation in the variables r and u, 
where these variables are the polar coordinates of the 
point 1r, u 2 .

(b) Convert the polar equation r 5  sin u to an equivalent 
rectangular equation.

 r 5 sin u  Polar equation

 r2 5 r sin u Multiply by r

 x2 1 y2 5 y  Convert

In the last step we substituted r2 5 x2 1 y2 and 
r sin u 5 y. So an equivalent rectangular equation is 
x2 1 y2 5 y.

 3. (a) How do we graph a polar equation?

We plot all the points with polar coordinates 1r, u 2  that 
satisfy the equation.

(b) Sketch a graph of the polar equation r 5 4 1 4 cos u. 
What is the graph called?

O 8

This graph is called a cardioid.

 4. (a)  What is the complex plane? How do we graph a complex 
number z 5 a 1 bi in the complex plane?

The complex plane is a plane determined by two axes: 
the real axis and the imaginary axis. To graph the com-
plex number z 5 a 1 bi, we plot the ordered pair 1a, b 2  
in this plane as shown.

Imaginary
axis

Real
axis

bi a+bi

a0

(b) What are the modulus and argument of the complex 
number z 5 a 1 bi?

The modulus of z, written 0  z 0 , is the distance of the 
point z to the origin in the complex plane. So 

0  z 0 5 "a2 1 b2

The argument of z is the angle u formed by the line seg-
ment connecting the origin to the point z and the positive 
real axis. So tan u 5 b/a.

Im

Re

Modulus

Argument

bi
a+bi

a0
¨

|z |

O

r

¨

P(r, ¨) 

Polar axis
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(c) Graph the point z 5 !3 2 i, and find the modulus and 
argument of z.

Im

Re

i

10

œ∑3-i

11π
6  

Modulus:   0  z 0 5 "1!3 2 2 1 12 

 5 !4 5 2

Argument: u 5
11p

6

 5. (a) How do we express the complex number z in polar form?

The polar form is z 5 r 1cos u 1 i sin u 2 , where r is the 
modulus and u is the argument of z.

(b) Express z 5 !3 2 i in polar form.

Using the moduli and arguments from Question 4(c) 
above, we get 

z 5 2a cos 
11p

6
1 i sin 

11p

6
b

 6. Let z1 5 2 a cos 
p

3
1 i sin 

p

3
b

  and z2 5 5 a cos 
p

4
1 i sin 

p

4
b

(a) Find the product z1z2.

To find the product z1z2, we multiply the moduli and add 
the arguments, so 

 z1z2 5 10 c cos ap

3
1

p

4
b 1 i sin ap

3
1

p

4
b d

 5 10a cos 
7p

12
1 i sin 

7p

12
b

(b) Find the quotient z1/z2.

To find the quotient z1/z2, we divide the moduli and sub-
tract the arguments, so 

 
z1

z2
5

2

5
 c cos ap

3
2

p

4
b 1 i sin ap

3
2

p

4
b d

 5
2

5
 a cos 

p

12
1 i sin 

p

12
b

 7. (a) State De Moivre’s Theorem. 

If z 5 r 1cos u 1 i sin u 2  then 

zn 5 rn1cos nu 1 i sin nu 2
(b) Use De Moivre’s Theorem to find the fifth power of 

 z 5 2 a cos 
p

3
1 i sin 

p

3
b .

z5 5 32a cos 
5p

3
1 i sin 

5p

3
b

 8. (a)  State the formula for the nth roots of a complex number 
z 5 r 1cos u 1 i sin u 2 .
The n nth roots are 

„k 5 r1/n c cos a u 1 2kp

n
b 1 i sin a u 1 2kp

n
b d

for k 5 0, 1, 2, . . . , n 2 1.

(b) How do we find the nth roots of a complex number?

We use the following guidelines.

1. The modulus of each nth root is r1/n.
2. The argument of the first root is u/n.
3.  Add 2p/n to get the argument of each successive root.

(c) Find the three third roots of z 5 28.

First we express z in polar form:

z 5 81cos p 1 i sin p 2
So the modulus of each root is 81/3 5 2. The argument 
of the first root is p/3. We add 2p/3 to get the argument 
of each successive root. So the three roots are

 „0 5 2 c cos ap

3
b 1 i sin ap

3
b d 5 1 1 !3 i

 „1 5 2 c cos ap 1 2p

3
b 1 i sin ap 1 2p

3
b d 5 22

 „2 5 2 c cos ap 1 4p

3
b 1 i sin ap 1 4p

3
b d 5 1 2 !3 i

 9. (a) What are parametric equations? 

Parametric equations are equations of the form 

x 5 f 1 t 2  y 5 g1 t 2
 where f and g are functions of the parameter t. 

(b) Sketch a graph of the following parametric equations, 
using arrows to indicate the direction of the curve.

x 5 t 1 1  y 5 t2  22 # t # 2

t xx, yc

22 121, 4 2
21 10, 1 2

0 10, 0 2
1 12, 1 2
2 13, 4 2

(c) Eliminate the parameter to obtain an equation in  
x and y.

From the first equation t 5 x 2 1, so from the second 
equation we have y 5 1x 2 1 2 2.

1

1

y

x0

t=_2 t=2

t=_1 t=1
t=0
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(continued)

ChApteR 9 

 1. (a)  What is a vector in the plane? How do we represent a 
vector in the coordinate plane?

A vector is a quantity that has both length (or magnitude) 
and direction. A vector v in the coordinate plane is 
expressed in terms of components as

v 5 ka1, a2l

where a1 is the horizontal component and a2 is the verti-
cal component.

(b) Find the vector with initial point 12, 3 2  and terminal 
point 14, 10 2 .

v 5 k4 2 2, 10 2 3l 5 k2, 7l

(c) Let v 5 82, 19. If the initial point of v is placed at 
P11, 1 2 , where is its terminal point? Sketch several rep-
resentations of v.

The terminal point is Q11 1 2, 1 1 1 2 5 Q13, 2 2 .

1

1 x

y

v
v

v
v

vv

v

v v

0

(d) How is the magnitude of v 5 8a1, a29 defined? Find the 
magnitude of w 5 83, 49. 
The magnitude of v is 0  v 0 5 "a2

1 1 a2
2. We have

0  w 0 5 "32 1 42 5 5.

(e) What are the vectors i and j? Express the vector 
v 5 85, 99 in terms of i and j. 

The vector i 5 k1, 0l and j 5 k0, 1l. So v 5 5 i 1 9 j.

(f) Let v 5 8a1, a29 be a vector in the coordinate plane. What 
is meant by the direction u of v? What are the coordi-
nates of v in terms of its length and direction? Sketch a 
figure to illustrate your answer.

The direction of v is the smallest positive angle u in 
standard position formed by the positive x-axis and v. So  
v 5 0  v 0  cos u i 1 0  v 0  sin u j.

x

y

v
|v | ß ¨

|v | ç ¨
0

¨

(g) Suppose that v has length 0  v 0 5 5 and direction 
u 5 p/6. Express v in terms of its coordinates. 

v 5 5 cos 
p

6
   i 1 5 sin 

p

6
   i 5

5!3

2
  i 1

5

2
  j

 2. (a) Define addition and scalar multiplication for vectors. 

Let u 5 ka1, a2l and v 5 kb1, b2l and let c [ R. Then 
u 1 v 5 ka1 1 b1, a2 1 b2l, and cu 5 kca1, ca2l.

(b) If u 5 82, 39 and v 5 85, 99, find u 1 v and 4 u.

u 1 v 5 k2 1 5, 3 1 9l 5 k7, 12l, and 
4 u 5 k4 # 2, 4 # 3l 5 k8, 12l.

 3. (a)  Define the dot product of the vectors u 5 8a1, a29 and 
v 5 8b1, b29, and state the formula for the angle u 
between u and v.

The dot product is u # v 5 a1b1 1 a2b2. The angle u  

satisfies cos u 5
u # v
0  u 0 0  v 0 .

(b) If u 5 82, 39 and v 5 81, 49, find u # v and find the angle 
between u and v.

The dot product is u # v 5 2 # 1 1 3 # 4 5 14. The angle 
u between u and v satisfies

cos u 5
14

!13!17
< 0.942

So u 5 cos2110.942 2 < 19.78.

 4. (a)  Describe the three-dimensional coordinate system. What 
are the coordinate planes?

The coordinate system consists of a point O, called the 
origin, and three mutually perpendicular lines called the 
coordinate axes, labeled as the x-, y-, and z-axes. The 
point P1a, b, c 2  is plotted in this system as shown.

The coordinate planes are the xy-plane, the xz-plane, and 
the yz-plane as shown.

0

b

a
c

P(a, b, c)

yx

z

0

b

a
c

P(a, b, c)

yx

z

yz-plane

xy-plane

xz-plane

(b) What is the distance from the point 13, 22, 5 2  to each of 
the coordinate planes? 

The distance to the xy-plane is 5, to the xz-plane is 2, and 
to the yz-plane is 3.

(c) State the formula for the distance between the points 
P1x1, y1, z1 2  and Q1x2, y2, z2 2 .

d1P, Q 2 5 "1x2 2 x1 2 2 1 1y2 2 y1 2 2 1 1z2 2 z1 2 2
(d) Find the distance between the points P11, 2, 3 2  and 

Q13, 21, 4 2 .
d1P, Q 2 5 "13 2 1 2 2 1 121 2 2 2 2 1 14 2 3 2 2 5 !14
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(e) State the equation of a sphere with center C1h, k, l 2  and 
radius r.

1x 2 h 2 2 1 1y 2 k 2 2 1 1z 2 l 2 2 5 r2

(f) Find an equation for the sphere of radius 5 centered at 
the point 11, 2, 23 2 .

1x 2 1 2 2 1 1y 2 2 2 2 1 1z 1 3 2 2 5 52

 5. (a)  What is a vector in space? How do we represent a vector 
in a three-dimensional coordinate system?

A vector is a quantity that has both length (or magnitude) 
and direction. A vector v in a three-dimensional coordi-
nate system is expressed in terms of components as

v 5 ka1, a2, a3l

(b) Find the vector with initial point 12, 3, 21 2  and terminal 
point 14, 10, 5 2 .

v 5 k4 2 2, 10 2 3, 5 2 121 2 l 5 k2, 7, 6l

(c) How is the magnitude of v 5 8a1, a2, a39 defined? Find 
the magnitude of w 5 83, 4, 19.
The magnitude of v is 0  v 0 5 "a2

1 1 a2
2 1 a2

3. 

We have  0  w 0 5 "32 1 42 1 12 5 "26.

(d) What are the vectors i, j, and k? Express the vector 
v 5 85, 9, 219 in terms of i, j, and k. 

 i 5 k1, 0, 0l

 j 5 k0, 1, 0l

 k 5 k0, 0, 1l

So v 5 5 i 1 9 j 2 k.

 6. (a) Define addition and scalar multiplication for vectors. 

u 5 ka1, a2, a3l and v 5 kb1, b2, b3l, and let c [ R. Then 
u 1 v 5 ka1 1 b1, a2 1 b2, a3 1 b3l, and 
cu 5 kca1, ca2, ca3l.

(b) If u 5 82, 3, 219 and v 5 85, 9, 29, find u 1 v and 4 u.

u 1 v 5 k2 1 5, 3 1 9, 21 1 2l 5 k7, 12, 1l and 
4 u 5 k4 # 2, 4 # 3, 4121 2 l 5 k8, 12, 24l.

 7. (a)  Define the dot product of the vectors u 5 8a1, a2, a39 and 
v 5 8b1, b2, b39, and state the formula for the angle u 
between u and v.

The dot product is u # v 5 a1b1 1 a2b2 1 a3b3. The 

angle u satisfies cos u 5
u # v
0  u 0 0  v 0 .

(b) If u 5 82, 3, 219 and v 5 81, 4, 59, find u # v.

u # v 5 2 # 1 1 3 # 4 1 121 2 # 5 5 9

 8. (a)  Define the cross product of the vectors u 5 8a1, a2, a39 
and v 5 8b1, b2, b39.

 u 3 v 5 †
i j k

a1 a2 a3

b1 b2 b3

†

 5 1a2b3 2 a3b2 2 i 2 1a1b3 2 a3b1 2 j 1 1a1b2 2 a2b1 2k
(b) True or False? The vector u 3 v is perpendicular to both 

u and v.

True.

(c) Let u and v be vectors in space. State the formula that 
relates the magnitude of u 3 v and the angle u between 
u and v.

0  u 3 v 0 5 0  u 0 0  v 0 sin u

(d) How can we use the cross product to determine whether 
two vectors are parallel? 

The vectors u and v are parallel if and only if 
u 3 v 5 0.

 9. (a)  What are the two properties that determine a line in 
space? Give parametric equations for a line in space.

A line is determined by a point 1x0, y0, z0 2  on the line 
and a vector v 5 ka, b, cl parallel to the line. Parametric 
equations for the line are x 5 x0 1 at, y 5 y0 1 bt, and 
z 5 z0 1 ct.

(b) Find parametric equations for the line through the point 
122, 4, 1 2  and parallel to the vector v 5 87, 5, 39.
x 5 22 1 7t  y 5 4 1 5t  z 5 1 1 3t

 10. (a)  What are the two properties that determine a plane in 
space? State the equation of a plane.

A plane is determined by a point 1x0, y0, z0 2  on the plane 
and a vector n 5 ka, b, cl that is normal (or perpendicu-
lar) to the plane. An equation for the plane is 
a1x 2 x0 2 1 b1y 2 y0 2 1 c1z 2 z0 2 5 0.

(b) Find an equation for the plane passing through the point 
16, 24, 3 2 and with normal vector n 5 85, 23, 29.

51x 2 6 2 2 31y 1 4 2 1 21z 2 3 2 5 0
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 1. (a)  What is a system of equations in the variables x, y, and z?

A system of equations in the variables x, y, and z is a set 
of equations in which each equation contains these 
variables.

(b) What are the three methods we use to solve a system of 
equations?

The three methods are the substitution method, the elimi-
nation method, and the graphical method. 

 2. Consider the following system of equations:

e x 1 y 5 3

3x 2 y 5 1

(a) Describe the steps you would use to solve a system by 
the substitution method. Use the substitution method to 
solve the given system.

We solve for one of the variables in one equation and 
then substitute the result into the other equation.

Solving for y in the first equation, we get y 5 3 2 x. 

Substituting for y into the second equation, we get

3x 2 13 2 x 2 5 1

Solving for x we get x 5 1. Substituting this value of x 
into the first equation, we get y 5 2. So the solution is 
11, 2 2 .

(b) Describe the steps you would use to solve a system by 
the elimination method. Use the elimination method to 
solve the given system.

We add a multiple of one equation to the other to elimi-
nate one of the variables. 

To eliminate y, we add the two equations to get 4x 5 4, 
so x 5 1.  Substituting 1 for x in the first equation, we 
get 1 1 y 5 3, so y 5 2. The solution is 11, 2 2 .

(c) Describe the steps you would use to solve a system by 
the graphical method. Use the graph shown below to 
solve the system.

We graph the two equations; the solution is the point of 
intersection of the two graphs.

From the graphs we see that the point of intersection is 
11, 2 2 . So the solution of the system is 11, 2 2 .

y

x+y=3

3x-y=1

x1

1

0

(1, 2)

 3. What is a system of linear equations in the variables x, y, and z?

A system of equations in the variables x, y, and z is a linear  
system if each equation in the system is a linear equation.  
Recall that a linear equation in the variables x, y, and z is  
an equation of the form ax 1 by 1 cz 5 d, where the co - 
efficients a, b, c, and d are real numbers.

 4. For a system of two linear equations in two variables,

(a) How many solutions are possible?

Such a system can have one solution, no solution, or infi-
nitely many solutions.

(b) What is meant by an inconsistent system?

A system is inconsistent if it has no solution.

(c) What is meant by a dependent system?

A system is dependent if it has infinitely many solutions.

 5. What operations can be performed on a linear system to 
arrive at an equivalent system?

1. Add a nonzero multiple of one equation to another.
2. Multiply an equation by a nonzero constant.
3. Interchange the position of two equations.

 6. (a)  Explain how Gaussian elimination works.

We use the operations in Question 5 above to obtain a 
system in triangular form and then use back-substitution 
to solve for the variables.

(b) Use Gaussian elimination to put the following system in 
triangular form, and then solve the system.

 System Triangular form

 •
x 1 y 2 2z 5 3

x 1 2y 1 z 5 5

3x 2 y 1 5z 5 1

 •
x 1 y 2 2z 5 3

y 1 3z 5 2

23z 5 0

Using back-substitution, we get the solution 11, 2, 0 2 .
 7. (a)  How do we express a rational function r as a partial frac-

tion decomposition?

We express r as a sum of fractions whose denominators 
consist of linear or irreducible quadratic factors.

(b) Give the form of the partial fraction decomposition.

 (i)  
2x

1x 2 5 2 1x 2 1 2 2 5
A

x 2 5
1

B

x 2 1
1

C

1x 2 1 2 2

 (ii)  
2x

1x 2 5 2 1x2 1 1 2 5
A

x 2 5
1

Bx 1 C

x2 1 1

 (iii) 
3x 1 1

x1x2 1 1 2 2 5
A

x
1

Bx 1 C

x2 1 1
1

Dx 1 E

1x2 1 1 2 2
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 8. (a)  How do we graph an inequality in two variables?

We first graph the corresponding equation and then use 
test points to determine the solution set.

(b) Graphs of equations in two variables are shown. On 
each graph, shade the solution set of the indicated 
inequality.

y=3x-x™

y

x1

1

y

x+y=3

x1

1

0

 y # 3x 2 x2 x 1 y $ 3

 9. (a)  How do we graph the solution set of a system of 
inequalities?

We first graph the corresponding equations and then use 
test points in each region formed by the graphs to deter-
mine whether the region is part of the solution set.

(b) Graphs of the equations in the following system of 
inequalities are given. Graph the solution set of the sys-
tem of inequalities.

e x 1 y $ 3

3x 2 y $ 1
  

y

x+y=3

3x-y=1

x1

1

0

(c) Graphs of the equations in the following system of 
inequalities are given. Graph the solution set of the sys-
tem of inequalities.

The inequalities in this system are graphed in 8(b). The 
solution of the system is graphed below.

e x 1 y $ 3

y # 3x 2 x2  

x+y=3
y=3x-x™

y

x1

1
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 1. What does it mean to say that A is a matrix with dimension 
m 3 n? 

An m 3 n matrix A has m rows and n columns. 

 2. What is the row-echelon form of a matrix? What is a leading 
entry?

The first nonzero entry in a row (reading from left to right) is 
called a leading entry. A matrix is in row-echelon form if it 
satisfies the following:

1. The leading entry in each row is 1.
2.  The leading entry in each row is to the right of the leading 

entry in the row above it.
3.  All rows consisting entirely of 0’s are at the bottom of the 

matrix.

 3. (a)  What is the augmented matrix of a system? What are 
leading variables?

The augmented matrix of a linear system is the matrix 
that contains the coefficients and the constant terms. A 
leading variable is one that corresponds to a leading 
entry in the augmented matrix. 

(b) What are the elementary row operations on an aug-
mented matrix? 

The elementary row operations on a matrix correspond to 
the operations in Question 3.

1. Add a nonzero multiple of one row to another.
2. Multiply a row by a nonzero constant.
3. Interchange the position of two rows.

(c) How do we solve a system using the augmented matrix? 

We perform elementary row operations to put the matrix 
in row-echelon form (as in Question 6). The equations 
that correspond to the row-echelon form can be solved 
using back-substitution.

(d) Write the augmented matrix of the following system of 
linear equations. 

•
x 1 y 2 2z 5 3

x 1 2y 1 z 5 5

3x 2 y 1 5z 5 1

  £
1 1 22 3

1 2 1 5

3 21 5 1

§

(e) Solve the system in part (d). 

We use elementary row operations to put the augmented 
matrix into row-echelon form. 

£
1 1 22 3

0 1 3 2

0 0 23 0

§   •
x 1 y 2 2z 5 3

y 1 3z 5 2

23z 5 0

The system is solved by back-substitution. The solution 
is 11, 2, 0 2 .

 4. Suppose you have used Gaussian elimination to transform the 
augmented matrix of a linear system into row-echelon form. 
How can you tell whether the system has exactly one solu-
tion? no solution? infinitely many solutions?

No solution: The row-echelon form has a row that represents 
the equation 0 5 c, where c is not zero.

Exactly one solution: Each variable in the row-echelon form 
is a leading variable.

Infinitely many solutions: The variables in the row-echelon 
form are not all leading.

 5. What is the reduced row echelon form of a matrix?

A matrix is in reduced row-echelon form if it is in row-
echelon form and also satisfies the following:

Every number above and below each leading entry is a 0.

 6. (a)  How do Gaussian elimination and Gauss-Jordan elimina-
tion differ?

In each method we start with the augmented matrix of a 
linear system and perform row operations. In Gaussian 
elimination we put the matrix in row-echelon form. In 
Gauss-Jordan elimination we put the matrix in reduced 
row-echelon form.

(b) Use Gauss-Jordan elimination to solve the linear system 
in part 3(d). 

We start with the matrix in 3(e) and continue to use row 
operations to obtain the following reduced-row echelon 
form and the corresponding system of equations:

£
1 0 0 1

0 1 0 2

0 0 1 0

§   •
x  5 1

y 5 2

z 5 0

The solution is 11, 2, 0 2 .
 7. If A and B are matrices with the same dimension and k is a 

real number, how do you find A 1 B and kA?

To find A 1 B, we add corresponding entries. To find kA, we 
multiply each entry in A by k. 

 8. (a)  What must be true of the dimensions of A and B for the 
product AB to be defined? 

The number of columns of A must be the same as the 
number of rows of B. 

(b) If A has dimension 2 3 3 and if B has dimension 3 3 2, 
is the product AB defined? If so, what is the dimension 
of AB?

The product AB is defined and has dimension 2 3 2.

(c) Find the matrix product.

c 2 1

4 0
d c 3 4 1

5 1 2
d 5 c 11 9 4

12 16 4
d

 9. (a)  What is an identity matrix In? If A is an n 3 n matrix, 
what are the products AIn and In 

A?

The identity matrix In is an n 3 n matrix with 1’s on the 
main diagonal and 0’s elsewhere: AIn 5 A and In A 5 A.

(b) If A is an n 3 n matrix, what is its inverse matrix?

The inverse is a matrix A21 with the property that 
AA21 5 In and A21A 5 In.
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(c) Complete the formula for the inverse of a 2 3 2matrix

A 5 c a b

c d
d   A21 5

1

ad 2 bc
c d 2 b

2c a
d

(d) Find the inverse of the following matrix. 

A 5 c 1 1

3 21
d   A21 5 c  

1
4

1
4

3
4 2 

1
4

d

10. Consider the following linear system.

e x 1 y 5 3

3x 2 y 5 1

(a) Express the system as a matrix equation AX 5 B.

c 1 1

3 21
d c x

y
d 5 c 3

1
d

 A X B

(b) If a linear system is expressed as a matrix equation 
AX 5 B, how do we solve the system? Solve the system 
in part (a).

c b b

The solution is given by the matrix X 5 A21B. We found 
A21 in 9(d). So

c x
y
d 5  c

1
4

1
4

3
4 2 

1
4

d c 3
1
d 5 c 1

2
d

 X A21 B

11. (a)  Is it true that the determinant det A of a matrix A is 
defined only if A is a square matrix? 

Yes

(b) Find the determinant of the matrix A in part 10(a).

det c 1 1

3 2 1
d 5 11 2 121 2 2 11 2 13 2 5 24

(c) Use Cramer’s Rule to solve the system in 10. 

x 5

`  3 1

1 21
 `

`  1 1

3 21
 `

5 1  y 5

`  1 3

3 1
 `

`  1 1

3 21
 `

5 2

cb b
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Review: Concept Check AnswersChApteR 12 

 1. (a) Give the geometric definition of a parabola.

A parabola is the set of points in the plane that are equi-
distant from a fixed point F (called the focus) and a fixed 
line l (called the directrix).

(b) Give the equation of a parabola with vertex at the origin 
and with vertical axis. Where is the focus? What is the 
directrix?

The equation of a parabola with vertical axis and vertex 
at the origin has the form 

x2 5 4py

where the focus is F10, p 2  and the directrix is the hori-
zontal line y 5 2p.

(c) Graph the equation x2 5 8y. Indicate the focus on the 
graph.

Writing the equation as x2 5 412 2y, we see that p 5 2. 
So the focus is F10, 2 2 , and the directrix is the line 
y 5 22. 

1

1

y

x0

(0, 2)

 2. (a) Give the geometric definition of an ellipse.

An ellipse is the set of all points in the plane, the sum of 
whose distances from two fixed points F1 and F2 is a 
constant. These two fixed points are the foci (plural of 
focus) of the ellipse.

(b) Give the equation of an ellipse with center at the origin 
and with major axis along the x-axis. How long is the 
major axis? How long is the minor axis? Where are the 
foci? What is the eccentricity of the ellipse?

The equation of an ellipse with center at the origin and 
with major axis along the x-axis has the form 

x2

a2 1
y2

b2 5 1

The major axis is along the x-axis, provided that a . b. 
In this case its length is 2a. The minor axis is along the 
y-axis, and its length is 2b.

The foci are 16c, 0 2 , where c2 5 a2 2 b2. 

The eccentricity is e 5 c/a. 

(c) Graph the equation 
x2

16
1

y2

9
5 1. What are the lengths 

 of the major and minor axes? Where are the foci?

Comparing this equation with the general equation of an 
ellipse, we see that a 5 4 and b 5 3. Since 4 . 3, the 
major axis is along the x-axis and has length 2 # 4 5 8. 
The minor axis is along the y-axis, and it length is 

2 # 3 5 6. We find c2 5 16 2 9 5 7, so the foci are at 
16!7, 0 2 .

1

1

y

x0
7, 0)_ (7, 0)(

 3. (a) Give the geometric definition of a hyperbola.

A hyperbola is the set of all points in the plane, the dif-
ference of whose distances from two fixed points F1 and 
F2 is a constant. These two fixed points are the foci of 
the hyperbola.

(b) Give the equation of a hyperbola with center at the origin 
and with transverse axis along the x-axis. How long is 
the transverse axis? Where are the vertices? What are the 
asymptotes? Where are the foci? 

The equation of a hyperbola with center at the origin and 
with transverse axis along the x-axis has the form 

x2

a2 2
y2

b2 5 1

The transverse axis is along the x-axis and  its length 2a.

The vertices are at 16a, 0 2 .
The asymptotes are the lines y 5 61b/a 2x.

The foci are at 16c, 0 2 , where c2 5 a2 1 b2. 

(c) What is a good first step in graphing the hyperbola that is 
described in part (b)? 

A good first step is to sketch the central box. This is the 
rectangle centered at the origin, with sides parallel to the 
axes, that crosses the x-axis at 6a and the y-axis at 6b. 

(d) Graph the equation 
x2

16
2

y2

9
5 1. What are the 

 asymptotes? Where are the vertices? Where are the foci? 
What is the length of the transverse axis? 

This is an equation of a hyperbola with transverse axis 
along the x-axis. The central box crosses the axes at 
164, 0 2  and 10, 63 2 . The asymptotes are y 5 6 

3
4 x. The 

vertices are 164, 0 2 . We find c2 5 16 1 9 5 25, so the 
foci are 165, 0 2 . Using the vertices and the asymptotes 
as guides, we graph the hyperbola as shown.

x

y

(5, 0)1(_5, 0)

2
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 4. (a)  Suppose we are given an equation in x and y. Let h and k 
be positive numbers. What is the effect on the graph of 
the equation if x is replaced by x 2 h or x 1 h and if  
y is replaced by y 2 k or y 1 k?

Replacing x by x 2 h or x 1 h shifts the graph to the 
right or left, respectively, by h units. Replacing y by 
y 2 k or y 1 k shifts the graph upward or downward 
respectively, by k units. 

(b) Sketch a graph of 
1x 1 2 2 2

16
1
1y 2 4 2 2

9
5 1.

The graph is the same as the ellipse in 2(c) but shifted 
left 2 units and upward 4 units. So the center of the 
ellipse is at 122, 4 2 .

1

2

y

x0

(_2, 4)

 5. (a)  How can you tell whether the following nondegenerate 
conic is a parabola, an ellipse, or a hyperbola?

Ax2 1 Cy2 1 Dx 1 Ey 1 F 5 0

The graph is a parabola if either A or C is 0, an ellipse if 
A and C have the same sign (a circle if A 5 C), or a 
hyperbola if A and C have opposite signs.

(b) What conic does 3x2 2 5y2 1 4x 1 5y 2 8 5 0 
represent?

The graph is a hyperbola because the coefficients of x2 
and y2 (3 and 25) have opposite signs. 

 6. (a)  Suppose that the x- and y-axes are rotated through an 
acute angle f to produce the X- and Y-axes. What are the 
equations that relate the coordinates 1x, y 2  and 1X, Y 2  of 
a point in the xy-plane and XY-plane, respectively?

 x 5 X cos f 2 Y sin f   X 5 x cos f 1 y sin f

 y 5 X sin f 1 Y cos f   Y 5 2x sin f 1 y cos f

(b) In the equation below, how do you eliminate the 
xy-term?

Ax2 1 Bxy 1 Cy2 1 Dx 1 Ey 1 F 5 0

Rotate the axes through an angle f that satisfies 

cot 2f 5
A 2 C

B

(c) Use a rotation of axes to eliminate the xy-term in the 
equation 25x2 2 14xy 1 25y2 5 288. Graph the 
equation.

The angle f satisfies cot 2f 5 0, so f 5 458. By part 
(a) we have 

 x 5 X cos 458 2 Y sin 458 5
X 2 Y

!2

 y 5 X sin 458 1 Y cos 458 5
X 1 Y

!2

Substituting into the given equation and simplifying,  
we get

X 2

16
1

Y 2

9
5 1

y

x

y

Y

x

X

45*

 7. (a)  What is the discriminant of the equation in 6(b)? How 
can you use the discriminant to determine the type of 
conic that the equation represents? 

The discriminant is B2 2 4AC. The conic is a parabola, 
ellipse, or hyperbola provided that the discriminant is 
zero, negative, or positive, respectively.

(b) Use the discriminant to identify the equation in 6(c).

The discriminant is 142 2 4125 2 125 2 , 0, which con-
firms that the equation represents an ellipse.

 8. (a)  Write polar equations that represent a conic with eccen-
tricity e. For what values of e is the conic an ellipse? a 
hyperbola? a parabola?

Polar equations of conics have the form 

r 5
ed

1 6 e cos u
  or  r 5

ed

1 6 e sin u

The equation represents a parabola if e 5 1, an ellipse if 
0 , e , 1, and a hyperbola if e . 1.

(b) What conic does the polar equation r 5 2/ 11 2 cos u 2  
represent? Graph the conic.

This is a polar equation of a parabola.

1

1
O
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 1. (a)  What is a sequence? What notation do we use to denote 
the terms of a sequence?

A sequence is a list of numbers written in a specific 
order. Each number is called a term of the sequence. We 
denote the terms of a sequence by a1, a2, a3, . . . .

(b)  Find a formula for the sequence of even numbers and a 
formula for the sequence of odd numbers.

Even numbers: an 5 2n
Odd numbers: an 5 2n 1 1 

(c)  Find the first three terms and the 10th term of the 
sequence given by an 5 n/ 1n 1 1 2 .

a1 5 1
2, a2 5 2

3, a3 5 3
4, and a10 5 10

11

 2. (a)  What is a recursively defined sequence?

A recursively defined sequence is a sequence in which 
each term depends on some or all of the preceding terms. 

(b)  Find the first four terms of the sequence recursively 
defined by a1 5 3 and an 5 n 1 2an21.

a1 5 3, a2 5 8, a3 5 19, a4 5 42

 3. (a)  What is meant by the partial sums of a sequence?

The nth partial sum Sn of a sequence a1, a2, a3, . . . is 
obtained by adding the first n terms of the sequence 
S1 5 a1, S2 5 a1 1 a2, . . . , and in general 
Sn 5 a1 1 a2 1 . . . 1 an.

(b)  Find the first three partial sums of the sequence given by 
an 5 1/n.

S1 5 1
1 5 1, S2 5 1

1 1 1
2 5 3

2, S3 5 1
1 1 1

2 1 1
3 5 11

6

 4. (a)  What is an arithmetic sequence? Write a formula for the 
nth term of an arithmetic sequence.

An arithmetic sequence an is obtained when we start 
with a number a and add to it a fixed constant d over and 
over again. So 

an 5 a 1 1n 2 1 2d
(b)  Write a formula for the arithmetic sequence that starts  

as follows: 3, 8, . . . Write the first five terms of this 
sequence.

The first term is a 5 3, and the common difference is 5. 
So the nth term is 

an 5 3 1 1n 2 1 25
which simplifies to an 5 22 1 5n. So the first five 
terms are 3, 8, 13, 18, and 23.

(c)  Write two different formulas for the sum of the first  
n terms of an arithmetic sequence.

Sn 5
n

2
 32a 1 1n 2 1 2d 4 and Sn 5 n c a 1 an

2
d

(d)  Find the sum of the first 20 terms of the sequence in  
part (b).

Using the first formula in part (c), we get

S20 5
20

2
 32 # 3 1 19 # 5 4 5 1010

 5. (a)  What is a geometric sequence? Write an expression for 
the nth term of a geometric sequence that has first term a 
and common ratio r.

A geometric sequence an is obtained when we start with 
a number a and multiply it by a fixed constant r over and 
over again. So 

an 5 arn21

(b)  Write an expression for the geometric sequence with first 
term a 5 3 and common ratio r 5 1

2. Give the first five 
terms of this sequence.

The nth term is an 5 3A12 Bn21
.

The first five terms are 3, 3
2, 34, 38, and 3

16.

(c)  Write an expression for the sum of the first n terms of a 
geometric sequence. 

Sn 5 a 

1 2 rn

1 2 r

(d)  Find the sum of the first five terms of the sequence in 
part (b).

Using the formula in part (c), we get

S5 5 3 

1 2 A12 B5

1 2 A12 B
5

93

16

 6. (a)  What is an infinite geometric series?

An infinite geometric series is a series with infinitely 
many terms of the form

a 1 ar 1 ar2 1 . . . 1 arn 1 . . .

(b)  What does it mean for an infinite series to converge? For 
what values of r does an infinite geometric series con-
verge? If an infinite geometric series converges, then 
what is its sum?

An infinite series converges if its sequence of partial 
sums Sn approaches a finite number as n S ` . An infi-
nite geometric series converges if 0  r 0 , 1; in this case 
its sum is S 5 a/ 11 2 r 2 . 

(c) Write the first four terms of the infinite geometric series 
with first term a 5 5 and common ratio r 5 0.4. Does 
the series converge? If so, find its sum.

5 1 510.4 2 1 510.4 2 2 1 510.4 2 3 1 . . . 1 510.4 2 n 1 . . . 

The series converges because 0  0.4 0 , 1. By the formula 
in part (b) the sum of the series is

S 5
5

1 2 0.4
5

25

3

 7. (a)  Write 13 1 23 1 33 1 43 1 53 using sigma notation.

13 1 23 1 33 1 43 1 53 5 a
5

k51
k3

(b)  Write a
5

k53
2k2 without using sigma notation.

a
5

k53
2k2 5 2 # 32 1 2 # 42 1 2 # 52
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 8. (a)  What is an annuity? Write an expression for the amount 
Af  of an annuity consisting of n regular equal payments 
of size R with interest rate i per time period.

An annuity is a sum of money that is paid in regular 
equal payments. The amount is 

Af 5 R  

11 1 i 2 n 2 1

i

(b)  An investor deposits $200 each month into an account 
that pays 6% compounded monthly. How much is in the 
account at the end of 3 years?

The interest per time period is i 5 0.06/12 5 0.005; the 
number of time periods is n 5 3 3 12 5 36.

Af 5 200  

11 1 0.005 2 36 2 1

0.005
5 7867. 22

(c)  What is the formula for calculating the present value of 
the annuity in part (b)?

Ap 5 R  

1 2 11 1 i 22n

i

(d)  What is the present value of the annuity in part (b)?

Ap 5 200  

1 2 11 1 0.005 2236

0.005
5 6574. 20

(e) When buying on installment, what is the formula for cal-
culating the periodic payments?

If a loan Ap is to be repaid in n regular equal payments 
with interest rate i per time period, then the size R of 
each payment is 

R 5
iAp

1 2 11 1 i 22n

(f) If you take out a 5-year loan for $10,000 at 3% interest 
compounded monthly, what is the size of each monthly 
payment?

The interest per time period is i 5 0.03/12 5 0.0025; 
the number of time periods is n 5 5 3 12 5 60. 

R 5
0.0025110,000 2

1 2 11 1 0.0025 2260 5 179. 69

 9. (a)  State the Principle of Mathematical Induction.

A statement P1n 2  about a natural number n is true for all 
n provided that the following hold.

1. P11 2  is true.
2. If P1k 2  is true, then P1k 1 1 2  is true.

(b)  Use mathematical induction to prove that for all natural 
numbers n, 3n 2 1 is an even number.

Let P1n 2  be the statement that 3n 2 1 is even.

1. P11 2  is true because 31 2 1 is even.
2. Suppose P1k 2  is true. Now

3k11 2 1 5 3 # 3k 2 1 5 2 # 3k 1 3k 2 1

 even even

The first term is clearly even, and the second is even 
by the induction hypothesis. So P1k 1 1 2  is true.

It follows that the statement is true for all n.

 10. (a)  Write Pascal’s triangle. How are the entries in the trian-
gle related to each other?

Row 0 1

Row 1 1  1

Row 2 1  2  1

Row 3 1  3  3  1

Each entry is the sum of the two entries above it.

(b)  Use Pascal’s triangle to expand 1x 1 c 2 3.

1x 1 c 2 3 5 x3 1 3x2c 1 3xc2 1 c3

 11. (a)  What does the symbol n! mean? Find 5!.

n! 5 1 # 2 # 3 # . . . # n; 5! 5 1 # 2 # 3 # 4 # 5 5 120 

(b)  Define Anr B , and find A52B .

an

r
b 5

n!

r! 1n 2 r 2!,  a5

2
b 5

5!

2!  3!
5 10

 12. (a)  State the Binomial Theorem.

1a 1 b 2 n 5 an 1 an

1
ban21b 1 an

2
ban22b2 1 . . . 1 bn

(b)  Use the Binomial Theorem to expand 1x 1 2 2 3.

 1x 1 2 2 3 5 x3 1 a3

1
b x221 1 a3

2
b x1 # 22 1 23

 5 x3 1 6x2 1 12x 1 8

(c)  Use the Binomial Theorem to find the term containing x4 
in the expansion of 1x 1 2 2 10.

The term is A10
4 Bx426 5 13440x4.

b b
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 1. (a) What does the Fundamental Counting Principle say?

If one event can occur in m ways and another can occur in 
n ways, the two events can occur in order in m 3 n ways.

(b) Suppose that there are three roads from town A to town 
B and five roads from town B to town C. How many 
routes are there from A to C via B?

By the Fundamental Counting Principle there are 
3 3 5 5 15 routes.

 2. (a)  What is a permutation of r elements of a set? How many 
permutations are there of n objects taken r at a time?

A permutation of r objects of a set is an ordering of the r 
objects. The number of permutations is

P1n, r 2 5
n!

1n 2 r 2!
(b) In how many different ways can a president, vice-president, 

and secretary be selected from a group of 15 students?

P115, 3 2 5 2730

 3. (a)  What is a combination of r elements of a set? How many 
combinations are there of n elements taken r at a time?

A combination of r elements from a set is any subset of r 
elements. The number of combinations is

C1n, r 2 5
n!

r! 1n 2 r 2!
(b) How many subsets does a set with n elements have? 2n

(c) A pizza parlor offers ten different toppings. How many 
three-topping pizzas are possible? How many pizzas are 
possible?

Number of three-topping pizzas: C110, 3 2 5 120

Number of pizzas: 210 5 1024

 4. (a)  In solving a problem involving picking r objects from n 
objects, how do you know whether to use permutations 
or combinations?

If order matters, we use permutations. If order does not 
matter, we use combinations. 

(b) Would you use combinations or permutations in counting 
the following: 

 (i) The number of five-card hands from a 52-card deck. 

Combinations

 (ii)  The number of ways in which first, second, and third 
prizes can be awarded in a ten-person race.

Permutations

 5. (a) What is meant by an experiment? Sample space?

An experiment is any process that gives definite out-
comes. The sample space of an experiment is the set of 
all possible outcomes.

(b) What is an event?

An event is any subset of the sample space.

(c) Define the probability of an event E in a sample space S 
in which all outcomes are equally likely.

P1E 2 5
n1E 2
n1S 2 5

number of elements in E

number of elements in S

(d) What is the probability of the complement of E? 

P1E r 2 5 1 2 P1E 2
(e) If a coin is tossed three times, what is the probability of 

getting all heads? At least one tail? 

There are eight outcomes. Let E be the event “all heads.” 
Then E r  is the event “at least one tail.” 

P1E 2 5
1

8
 and P1E r 2 5 1 2 P1E 2 5 1 2

1

8
5

7

8

 6. (a) What are mutually exclusive events?

Two events that have no outcome in common

(b) If E and F are mutually exclusive events, what is the 
probability of E or F occurring? What if E and F are not 
mutually exclusive?

P1E < F 2 5 P1E 2 1 P1F 2 2 P1E > F 2
If E and F are mutually exclusive, then

P1E < F 2 5 P1E 2 1 P1F 2
(c) A card is picked from a deck. Let E, F, and G be the 

events “the card is an ace,” “the card is a spade,” and 
“the card is king,” respectively. Are E and F mutually 
exclusive? E and G? Find P1E < F 2  and P1E < G 2 .
E and F are not mutually exclusive (the ace of spades is 
in both events):

P1E < F 2 5
4

52
1

13

52
2

1

52
5

4

13

E and G are mutually exclusive (a card cannot be an ace 
and a king):

P1E < G 2 5
4

52
1

4

52
5

2

13

 7. (a)  What is meant by the conditional probability of E given 
F? How is this probability calculated?

This is the probability that E occurs if we know that F 
has occurred.

P1E 0  F 2 5
P1E > F 2

P1F 2
(b) What are independent events? 

Two events are independent if the occurrence of one 
event does not affect the probability of the occurrence of 
the other event.
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(c) If E and F are independent events, what is the probability of 
E and F occurring? What if E and F are not independent?

P1E > F 2 5 P1E 2P1F 0  E 2
If E and F are independent, then 

P1E > F 2 5 P1E 2P1F 2
(d) A jar contains 3 white and 7 black balls. Let E and F be 

the event “the first ball drawn is black” and “the second 
ball drawn is black,” respectively.

 (i)  Find P1E > F 2  if the balls are drawn with 
replacement.

In this case E and F are independent, so 

P1E > F 2 5 P1E 2P1F 2 5
7

10
# 7

10
5

49

100

 (ii)  Find P1E > F 2  if the balls are drawn without 
replacement.

In this case E and F are not independent, so 

P1E > F 2 5 P1E 2P1F 0  E 2 5
7

10
# 6

9
5

7

15

 8. (a)  An experiment has two outcomes, “success” and “fail-
ure,” where the probability of “success” is p. The experi-
ment is performed n times. What type of probability is 
associated with this experiment? 

Binomial probability

(b) What is the probability that success occurs exactly r times?

P1r successes in n trials 2 5 C1n, r 2pr11 2 p 2 n2r

(c) An archer has probability 0.6 of hitting the target. Find 
the probability that she hits the target exactly 3 times in 
5 attempts.

P13 hits in 5 tries 2 5 C15, 3 2 10.6 2 310.4 2 2 5 0.3456

 9. (a)  Suppose that a game gives payouts a1, a2, . . . , an with 
probabilities p1, p2, . . . , pn. What is the expected value 
of this game?

E 5 a1 
p1 1 a2 

p2 1 . . . 1 an 
pn

(b) You get $10 if you pick an ace from a deck, and you 
must pay $2 if you pick any other card. What is your 
expected value?

E 5 10a 4

52
b 2 2 a 48

52
b < 21.08
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sequences and series

Arithmetic

a, a 1 d, a 1 2d, a 1 3d, a 1 4d, . . .

an 5 a 1 1 n 2 1 2 d
Sn 5 a

n

k51
ak 5

n

2
 32a 1 1n 2 1 2d 4 5 n a a 1 an

2
b

Geometric

a, ar, ar2, ar3, ar4, . . .      

an 5 ar n21

Sn 5 a
n

k51
ak 5 a  

1 2 rn

1 2 r

If 0  r 0 , 1, then the sum of an infinite geometric series is

S 5
a

1 2 r

the binomial theorem

1a 1 b 2 n 5 a n
0
b an 1 a n

1
b an21b 1 . . . 1 a n

n21
b abn21 1 a n

n b bn

finance

Compound interest

A 5 P a1 1
r

n
b

nt

where A is the amount after t years, P is the principal, r is the 
interest rate, and the interest is compounded n times per year.

Amount of an annuity

Af 5 R  

11 1 i 2 n 2 1

i

where Af is the final amount, i is the interest rate per  
time period, and there are n pay ments of size R.

Present value of an annuity

Ap 5 R  

1 2 11 1 i 22n

i

where Ap is the present value, i is the interest rate per  
time period, and there are n pay ments of size R.

Installment buying

R 5
iAp

1 2 11 1 i 22n

where R is the size of each payment, i is the interest rate per 
time period, Ap is the amount of the loan, and n is the num-
ber of pay ments.

counting

Fundamental counting principle

Suppose that two events occur in order. If the first can occur  
in m ways and the second can occur in n ways (after the  
first has occurred), then the two events can occur in order  
in m 3 n ways.

Permutations and combinations

The number of permutations of n objects taken r at a time is

P1n, r 2 5
n!

1n 2 r 2!
The number of combinations of n objects taken r at a time is

C1n, r 2 5
n!

r! 1n 2 r 2!
The number of subsets of a set with n elements is 2n.

The number of distinguishable permutations of n elements, with 
ni elements of the ith kind (where n1 1 n2 1 . . . 1 nk 5 n), is

n!

n1! n2! . . . nk!

probability

Probability of an event:

If S is a sample space consisting of equally likely outcomes, and 
E is an event in S, then the probability of E is

P1E 2 5
n1E 2
n1S 2 5

number of elements in E

number of elements in S

Complement of an event:

P1E 92 5 1 2 P1E 2
Union of two events:

P1E < F 2 5 P1E 2 1 P1F 2 2 P1E > F 2
Conditional probability of E given F:

P1E 0  F 2 5
n1E > F 2

n1F 2
Intersection of two events:

P1E > F 2 5 P1E 2P1F 0  E 2
Intersection of two independent events:

P1E > F 2 5 P1E 2P1F 2
Binomial Probability: If an experiment has the outcomes  
“success” and “failure” with probabilities p and q 5 1 2 p  
respectively, then

P1r successes in n trials2  5 C 1n, r2prqn2r

If a game gives payoffs of a1, a2, . . . , an with probabilities  
p1, p2, . . . , pn, respectively, then the expected value is 

E 5 a1p1 1 a2p2 1 . . . 1 an pn
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special triangles

60*

1

230*œ∑3
1

1

œ∑2

45*

45*

graphs of the trigonometric functions

y=ß x

x

y

1

_1

π 2π

y=ç x

x

y

1

_1
π x

y

π

2π

y=† x

y= x

x

y

1

_1
π 2π

y=˚ x

x

y

1

_1
π

2π

x

y

π 2π

y=ˇ x

sine and cosine curves

y 5 a sin k1x 2 b2  1k . 02 y 5 a cos k1x 2 b2  1k . 02

x

y

a

_a

b

One period

b+2π
k

x

y

a

_a

b

b+2π
k

One period

a>0a>0

amplitude: 0  a 0    period: 2p/k   phase shift: b

graphs of the inverse
trigonometric functions

 y 5 sin21x y 5 cos21x y 5 tan21x

y

x1

π

_1

π
2

y

x1_1

π
2

π
2_

y

x

π
2

π
2_

angle measurement

p radians 5 180° 

r

r
¨

s
A

18 5
p

180
 rad  1 rad 5

1808

p

s 5 ru  A 5 1
2 r2u  1u in radians2

To convert from degrees to radians, multiply by 
p

180
.

To convert from radians to degrees, multiply by 
180
p

.

trigonometric functions
of real numbers

sin t 5 y csc t 5 
1
y

 
y

x0 1

(x, y)

t
cos t 5 x sec t 5 

1
x

tan t 5 
y

x
 cot t 5 

x

y

trigonometric functions of angles 

sin u 5 }
y

r
} csc u 5 }

y
r

} 

(x, y)
r

¨
x

y

cos u 5 }
x
r

} sec u 5 }
x
r

}

tan u 5 }
y

x
} cot u 5 }

x
y

}

right angle trigonometry

sin u 5 
opp

hyp
 csc u 5 

hyp

opp
 

¨

opp

adj

hyp

cos u 5 
adj

hyp
 sec u 5 

hyp

adj

tan u 5 
opp

adj
 cot u 5 

adj

opp

special values of the
trigonometric functions

 u radians sin u cos u tan u

 0° 0 0 1 0
 30° p/6  1/2  !3/2  !3/3
 45° p/4  !2/2  !2/2  1
 60° p/3  !3/2  1/2  !3
 90° p/2  1 0 —
 180° p 0 21 0
 270° 3p/2  21 0 — 
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formulas for reducing poWers

sin2x 5 
1 2 cos 2x

2
 cos2x 5 

1 1 cos 2x

2

tan2x 5 
1 2 cos 2x

1 1 cos 2x

half-angle formulas

sin 
u

2
 5 6Å

1 2 cos u

2
 cos 

u

2
 5 6Å

1 1 cos u

2

tan 
u

2
 5 

1 2 cos u

sin u
5

sin u

1 1 cos u

product-to-sum and
sum-to-product identities

sin u cos √ 5 1
2 3sin1u 1 √ 2 1 sin1u 2 √ 2 4

cos u sin √ 5 1
2 3sin1u 1 √ 2 2 sin1u 2 √ 2 4

cos u cos √ 5 1
2 3cos1u 1 √ 2 1 cos1u 2 √ 2 4

sin u sin √ 5 1
2 3cos1u 2 √ 2 2 cos1u 1 √ 2 4

sin x 1 sin y 5 2 sin 
x 1 y

2
 cos 

x 2 y

2

sin x 2 sin y 5 2 cos 
x 1 y

2
 sin 

x 2 y

2

cos x 1 cos y 5 2 cos 
x 1 y

2
 cos 

x 2 y

2

cos x 2 cos y 5 22 sin 
x 1 y

2
 sin 

x 2 y

2

the laWs of sines and cosines

The Law of Sines

sin A
a

5
sin B

b
5

sin C
c

The Law of Cosines

a2 5 b2 1 c2 2 2bc cos A

b2 5 a2 1 c2 2 2ac cos B

c2 5 a2 1 b2 2 2ab cos C

fundamental identities

sec x 5 
1

cos x
 csc x 5 

1

sin x

tan x 5 
sin x

cos x
 cot x 5 

1

tan x

sin2x 1 cos2x 5 1 1 1 tan2x 5 sec2x  1 1 cot2x 5 csc2x

sin12x2 5 2sin x cos12x2 5 cos x tan12x2 5 2tan x

cofunction identities

sin ap

2
2 xb  5 cos x cos ap

2
2 xb  5 sin x

tan ap

2
2 xb  5 cot x cot ap

2
2 xb  5 tan x

sec ap

2
2 xb5 csc x csc ap

2
2 xb  5 sec x

reduction identities

sin 1 x 1 p 2  5 2sin x sin a x 1
p

2
b  5 cos x

cos 1 x 1 p 2  5 2cos x cos a x 1
p

2
b  5 2sin x

tan 1 x 1 p 2  5 tan x tan a x 1
p

2
b  5 2cot x

addition and subtraction formulas

sin 1 x 1 y 2  5 sin x cos y 1 cos x sin y

sin 1 x 2 y 2  5 sin x cos y 2 cos x sin y

cos 1 x 1 y 2  5 cos x cos y 2 sin x sin y

cos 1 x 2 y 2  5 cos x cos y 1 sin x sin y

tan 1 x 1 y 2  5 
tan x 1 tan y

1 2 tan x tan y
 tan 1 x 2 y 2  5 

tan x 2 tan y

1 1 tan x tan y

double-angle formulas

sin 2x 5 2 sin x cos x  cos 2x 5 cos2x 2 sin2x

  5 2 cos2x 2 1

tan 2x 5 
2 tan x

1 2 tan2
 x

  5 1 2 2 sin2x

A

b

c

a

B

C
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